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Abstract

Program transformation is the mechanical manipulation of a program in order to improve it
relative to some cost function and is understood broadly as the domain of computation where
programs are the data. The natural basic building blocks of the domain of program transformation
are transformation rulesexpressing a ‘one-step’ transformation on a fragment of a program.
The dtimate perspective of research in this area isighfievel, language parametric, rule-based
program transformation system, which supports aawéhge of transformatins, admitting #icient
implementations that scale to large programs. Fitisation has not yet been reached, as trade-offs
between different goals need to be made. This survey gives an overview of issues in rule-based
program transformation systems, focusing on the expressivity of rule-based program transformation
systems and in particular on transformatitrategiesavalable in varous approaches. The survey
covers term rewriting, extensions of basic terawiiting, tree parsing strategies, systems with
programmable strategiesaversal strategies, and context-sensitive rules.
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1. Introduction

Program transformationis the mechanical manipulan of a poogram in order to
improve it relative to some cost functidd suchthat C(P) > C(r(P)), i.e., the cost
decreases as a result of applying the transformation. The cost of a program can be
measured in different dimensions such adfgrenance, memory usagunderstandability,
flexibility, maintainability, portability, correctness, and satisfaction of requirements. In
general, transformations should presetiie semantics of the program according to
some appropriate definition of semantid3eftorossi and Proieftil996a Paige 1996
Cousot and Cousp2002. However, in some applications, such as program evolution, the
goal of a transformation ay be to deliberatelghangethe semantics fothe program.
Furthemore, a strict interpretation of program transformations restricts the term to
rephrasingsi.e., transformations of a program to another program in the same language.
Here we also considéranslationsto programs in another language. Such translations can
be seen as rephrasings in a language that is the union of the source and target languages.
While transformationsan be achieved by manual manipulation of programs, in general,
the am of program transformation is to increase programmer productivitgiigmating
programming tasks, thus enabling programming at a higher level of abstraction, and
increasing maintainability and reusability of programs.

Thus, program transformation is understood here broadly as the domain of computation
where programs are the data. In practice, the area is divided into many different schools
corresponding to application areas and immpdatation techniques. Many transformation
systems are built for a particular object language, a particular type of transformation, and
for use in a particular environemt. The implementation usegegific data structures and
involves complex algorithms in order to detie maximal performance, e.g., for use in
optimizing compilers. The resulting ad hoc mditiac transformation systems are difficult
to understand, maintain, and reuse.

The aim of a broad consideration of the field is the reuse of results from subfields
to arrive at a unified high-level approach to the implementation of transformation
systems. The ultimate goal of this endeavor is a component-based approach to program
transformation in which basic transformation components can be reused in many different
compositions. The natural ‘basic components’ of the domain of program transformation are
transformation rulesexpressing a ‘one-step’ transformation on a fragment of a program.
Rule-basegrogram transformation systems support formulation of basic transformation
rules and arrange their automatic application. Thus, the ultimate perspective of research in
this area is a high-level, language parametric, rule-based program transformation system,
which supports a wide range of transformaticaimitting efficient implementations that
scale to large programs.

This goal has not yet been reached, as twiffie between different goals need to
be made The suitability of a rule-based transformation system for the implementation
of a certain type of transfaration depends on the expgsdvity in the formulation
of rules, on the strategies available for their control, and on the quality of their
implementation. A highly generic system may allow concise specification of many
different transformations, but not with thpeeed of a hand-written optimization component.

On the other hand, a dedicated tool with a restricted type of rule may be able to generate
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highly optimized transformers, but may not be applicable to a slightly different type of
transfomation.

A special concern in rule-based systems is the definiticstrategiedor the apgication
of rules. The combination of rules into complete transformations requires control over
the application of rules. While rule-based systems traditionally apply au&smatically
according to sstandard control strategyit turns out that program transformation usually
requires more careful control. Thus, rdlased transformation systems tend to adopt
mechanisms for controlling the application of rules.

To summarize, research in the area of rule-based program transformation systems is
concerned with:

e Formuldion of rule-based solutions to a wide range of transformation problems.

e Concise and reusable specification of rules and strategies.

e Generation of efficient implementations fale-based specifications (e.g., by adopting
implementation techgues from transformation systems for more specific domains).

This survey gives an overview of issues regarding rule-based program transformation
systems, focusing on the second item aboxe, the expressivity of rule-based program
transformation systems, and in particular on transformatiategiesavalable in various
approaches.

To set thescene the next section describes the wide range of applications of program
transfomation.Section 3hen destbesterm rewritingas the basis for rule-based program
transformatbn. At some appropriate level of abstraction all program transformations can
be modeled as the consecutive application of rewrites, even though this model may not
always be visible in the actual implementation where rules and strategies are blended into
a mondithic implementation for efficiency and other reasons. The basic approach to term
rewriting with standard rewriting strategies such as innermost and outermost has a number
of limitations for application in transformation systems. The remaining sections discuss
exten$ons to the basic approach.

Section 4discusses various ways of expressing properties of the syntax and semantics
of the programming language in rewrite rules. Examples include the extension of term
rewriting with concrete syntayequational matchingoound object variableslefault rules
andstrategy annotationsSection 5discusses approaches basedrer parsingin which
tree gammar rulesdefine actions to be performed on tree nodes. A tree traversal schedule
is computedased on the dependencies between rules.

Section 6 considers the development of interactive systems for the assistance of
transformatbnal programming, in which the need arose to automate reoccurring sequences
of transformations. This gave rise to systems with programmable transformation strategies.
A particular concern in the specification of straiegyis the traversal of program structures.
Section 7gives an overview of the various solutions developed in this area.

Another shortcoming of rewrite rules is their context-free nature. That is, rules only
have access to the information in the term they appl$éztion resents solions to this
problem, which include information propagating strategies and the dynamic generation of
rewiite rules.

Finally, there are many other issues thatyp role in program transformation systems
and other approaches that are beyond the scope of this article.
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2. Applicationsof program transformation

Program transformations can be classified adog to various criteria such as amount
of automation, improvement achieved, and subject langukgatlier 1987 Partsch
199Q Smaragdkis and Batory 2000. When considered along the lines of research
communities, roughly two main schools can beidguished, i.e., those concerned with
the developmenbdbf new programs and those concerned with dwveution of exiging
programs.

2.1. Program development

Program development is concerned with the transformation from requirements via
specification to implementation. Usually the initial parts of the process involve intervention
from a programmer or even a software architect, while later stages in the process are
completely automated. In the course of the last fifty years the boundary of automation has
shifted considerablyfprmulatranslation was considered an innovative automation in the
1950s, while arithmetic expressions are the assembly language (lowest level of abstraction)
for today’s programmers.

Transformational programmingPartsch 1986 Feather 1987 is amethodology for
formal development of implementations from specifications and is on the boundary of
automation, i.e.formal means that it can be mechanizedt(hot necessarily automated),
developmergntails traceability. In the course of development, design information is traded
for increased efficiency. Feathétdather1987) distinguishesneta-programming.e., the
interactive transformation of a specification into an implementaértded compilation
i.e., completely automatic compilation for a language with high-level constructs with
advice from the programmer to the compiler about a specific programpegtam
synhesis or refinement(Smith, 1990 make tranformation as automatic as possible
without limiting the specification language in any way.

Compilersprovide completely automatic transformation from a high-level language
to a low-level language Ahoetal, 1986 Appel 1998 Muchnick 1997. This
translation is usually achieved in several phases. Typically, a high-level language
is first translated into a target machine independent intermediate representation.
Instruction seletion then translates the intermediate representation into machine
instructions. Intransformdion-based compilersuchas GHC Peybn Jones and Santos
1998 a large part of thecompilation process is implemented as the application
of small transformation steps. GHC eav allows the programmer to specify
additional rules for application in the compileiPdybn etal, 200]). Application
generdors (Smaragdhkis and Batory2000 are compilers for domain-specific languages.
Examples are parser and pretty-printer generation from context-free gramharst(al,

1986 van den Band andvisser 1996. A program ogiimization(Appel 1998 Muchnick
1997 is a transformton that improves e run-time and/or space performance of a
program. Example optimizations are fusianjining, congant propagation, constant
folding, common-subexpression eliminatioead code elimination, and partial evaluation
(Jones et a].1993.
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2.2. Program evoldion

Program evolution is concerned with the understanding and maintenance of existing
legacyprograms.

Reverse engineerinfChikofski and Cross 199Q van den Band et al. 1997 is the
inverse of compilation, i.e. the goal is to extract from a low-level program a high-level
program or specification, or at least some higher-level aspects. Reverse engineering raises
the level of abstraction and is the dual githesis. Examples of reverse engineering
are decompilation in which an object programtianslated into a high-level program,
architecture extraction in which the design of a program is derived, documentation
generation, and software visualization in which some aspect of a program is depicted in an
abstract way.

In software renovatiorthe extenginal behavior of a program is changed in order to
repair an error or to bring ip to date with respect to changed requirements. Examples
are repairing a Y2K bug, or converting a program to deal with the ERedactoring
(Fowler, 1999 is renowation aimed at improving the design of a program by restructuring
it such that it becomes easier to undarsl while preserving its functionalit@bfuscation
(Collberg et al, 1999 is a transfomation that makes a progranarder to understand by
renaming variables, inserting dead code, etc. Obfuscation is done to hide the business rules
embedded in software by making it harder to reverse engineer the program.

In migration a program is transformed to another language at the same level of
abstraction. This can be a translation bedéw dialects, for example, transforming a
Fortran77 program to an equivalent Fortran90 program or a translation from one language
to another, e.g., porting a Pascal program to C.

3. Term rewriting

A complex program transformation is achieved through a number of consecutive
modifications of a program. At least at the level of design, it is useful to distinguish
transformation rules from transformation strategiestude defines a basic step in the
transformatio of a plogram. Astrategyis a plan for achieving aamplex transformation
using a set of rules.

This section first examines the conceptual notion of transformation rules and strategies,
then considers the issue of represdnta of programs, and rially describes the
implementation of transformation by means of term rewriting and its limitations.

3.1. Transformation rules and strategies

Rules ae based on the semantics of the language. A rule generally preserves the
semantics of thprogram. That is, before and after the application of a rule the program has
the same meaning. Usually tbbservable behavior of the program is preserved, but some
other aspect is changed. Optimizations, for example, try to decrease the time or space
resource usage of a program. Applying constant propagation can decrease the need for
registers, for instance. Extracting a function during refactoring can improve the readability
of the program.
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rules
InlineF :
[ let f(xs) = e in €[f(e9)] ] — [ let f(xs) = e in €[e[xs:=eg] ]
InlineV :
[ let X =ein €[X] ] — [ let X = e in €[€e] ]
Dead :
[let x=ein€ ]| - [ € ] where x¢¢€
Extract (f,Xxs)
[Lel - [ let f(xs) = e in f(xs) ]
Hoist :
[ let X = e in let f(xs)
[ let f(XxS) = e in let X
where X ¢ free-vars(€2)

& ine | —
e in e3 ]

Fig. 1. Some example transformation rules.

A rule involves recognizing a program fragment to transform and constructing a new
program fragment to replace the old one. Recognition involves matching the structure of
the program and possibly verifying somarsmtic conditions. The replacement in a rule
can consist of a simple term pattern, a function that constructs a new tree or graph, or a
semantic action with arbitrary side-effects.

Consider the transformation ruleshig. L TheInline rules definenlining of function
and variable definitions. Theead rule eliminates an unused variable definition. The
Extract rule abstracts an expression into a function. Hoeest rule defires lifting a
fundion definition out of a variable definition if the variable is not used in the function.
Using this set of rules different transfortians can be achied. For @ample, a constant
propagation strategy in an optimizer could use Ih@ineV andDead rules to ¢éiminate
constant variable definitions:

let x =3inx+y > letx=3in3+y > 3+y

On the other hand, a function extraction strategy in a refactoring browser could use the
Extract andHoist rules to abstract addition with into a new function and lift it to
top-level.

let x =3 inx +y
— let x = 3 in let addy(z) = z + y in addy(x)
— let addy(z) = z + y in let x = 3 in addy(x)

A set of transformation rules for a programming language induces a rewrite relation on
programs Dershowitzand Jouannayd 990. If the relation is confluent and terminating,
there is aunique normal form for every program. In that case it is a matter of applying
the rules in the most efficient way teeach the normal form. However, in program
transformation this is usually not the case. As illustrateBim 2, a set of tranf@rmation
rules can give ris¢o infinite branches (e.g., by inlining a recursive function), inverses in
which atransformation is undone (e.g., by distribution or commutativity rules), and non-
confluence in which a program can be transformed into two different programs.
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Fig. 2. Phenomena in composition of transformation rules: infinite branches, inverses, confluence, non-
confluence.

Depending on the goal of a transformation task, a path should be chosen in the rewrite
relation. For a specific program it is always possible to find the shortest path to the optimal
solution for a specific transformation task. However, for most transformation tasks the
process of finding a path needs to be automated and optimal solutions might only be
approximated. In this light, a strategyas algorithm for choosing a path in the rewrite
relation. Given one set of rules, there can be many strategies, each achieving a different
goal. On the other hand, a general strategy caapipdicable to many different sets of rules.

3.2. Program representation

Before examining in more detail how rulesié strategies can be defined, we need to
consider how the programs they manipulate are represented. Design decisions made at the
level of representation influence the design decisions that can be made in the definition of
rules and strategies.

Although some systems work directly on text, in general a textual representation is not
adequate for performing complex transformations. Therefore, a structured representation
is used by most systems, and pelch gstems are studd in this survey. Since programs
are written as text by programmers, parsers are needed to convert from text to structure
and unparsers are needed to convert structure to text. Since such tools are well covered
elsewhereAho et al, 1986, they are noexamired in this survey.

3.2.1. Parse trees or abstract syntax trees

A parse tee is a direct representation of the derivation of a string (the program text)
according to the rules of a grammar. Parses contain syntactic information such as
layout (white space and comments), and parentheses and extra nodes introduced by dis-
ambiguating grammar transformations. Since this information is often irrelevant for trans-
formation, parse trees are usually transformed into abstract syntax trees that do not con-
tain such information. However, for some applications (such as software renovation and
refactoring) it is necessary to restore as much as possible the original layout of the pro-
gram after transformation. This requires that layout is stored in the tree and preserved
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throughout transformation. A similar issue is the storage of source locations (line and col-
umn numbers) in order to provide useful error messages. The preservation of layout and
postion information is especially problematic; it is not clear in a generic manner where to
insert comments in a transfoed fragment of a program. Possible solutions to this prob-
lem include origin trackingWan Deuren et al, 1993 in whicha aubtree in the transformed
program is related to the subtree it ‘originates’ from in the original tree; parse-tree annota-
tions Kort and LAmme| 2003 that carry their own methods for propagation; and compar-
ing the transformednegram to the original to infer where comments can be inserted.

For otherapplications, e.g., certain optimizations and compilation, it is necessary to
carry type information in the tree. This requires the extension of the tree format to store
type information and to preserve consistency of types throughout transformation.

3.2.2. Trees or graphs

Program structure can be represented by meétiees, directed acyclic graphs (DAGS),
or full fledged graphs with cycles.

Using pure trees is costlyelsause copying of a tree (e.tpy using a variable twice
when constucting a new tree) requires creating a complete copy. Therefore, most systems
use DAGs. When copying a tree, only a pointer to the tree gets copied; thus subtrees
are shared by multiple contexts. The advantage of sharing is reduced memory usage.
In the ATerm library yan den Band et al. 20003 this gproach is taken to the extreme
by only constructing one instance for eaakbee that is constructed, thus achieving
maximd sharing and minimal memory usage. Furthermore, testing the equality of two
terms becomes an(@) operation.

Sharing saves memory, makes copyin@a, and, in the case of maximal sharing,
testing for equality is cheap as well. However, the downside of sharing is that performing
a trangormation of a tree requiregbuilding the context in which the transformed tree is
used. It would be more attractive to overwrite the root node of the subtree that is changed
with the newtree, thus updating all contexts in which the old tree was used. However, this
is not valid in general. Two ocerences of a shared tree that are syntactically the same
can have a completely different meaning depending on their context. Even if they have the
samemeaning, it is not always desirable to change both occurrences.

The same problem of occurrence arises when associating information with nodes. When
sharing is based on syntactic equivalence alone, annotations become associated with all
occurrences of the tree. Consider the examples of position information in parse trees and
type annotations in abstract syntax trees to conclude that this is usually not desirable. On
the aher hand, if annotation of a tree node results in a new tree, then equivalence becomes
equivalence with annotations, and equivele modulo annotations is no longer a constant
operation.

Finally, full fledged graphs can be useful for representing backlinks in the tree to
represent, for example, loops in a control-flow grapipgel 1998 Lacey and de Mogr
200% Muchnick 1997, or links to declarations Gzarnecki and Eisenecke2000.
Updateable graphs make it easy to attach new information to nodes, for example results
of analysis. The problem of destructive update versus copying while doing transformation
is even more problematic in graphs. Since a subgraph can have links to the entire graph,
it may be reuired to reconstruct the entire graph after a transformation if it is necessary
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to keep the original graph as well. For very specific purposes such as lazy evaluation of
functional programs, it is possible toake such graph updates transparent.

3.3. Term rewriting

Term rewriting is a good starting point for the study of program transformation systems.
Term rewriting is a simple formalism modetinmodification of trees (terms) through
a seuence of rewrite rule applications. Thus, providing a general model for program
transforméon. Any specifictransformation cabe modeled as a sequence of rewrites on
the program tree. This does not necessarily mean that such a sequence can always be seen
as the normalizing applicatiori ase of rewrite rules according to a standard strategy. That
is, term rewriting interpreted ashaustive application of a set of rulésnot an aéquate
technique for all applications of program transformation. The rest of this section describes
term rewriting and its limitations for use in program transformation. The description is
limited to the basics of term rewriting; introduetis to the vast literature on rewrite systems
include Dershowitzand Jouannau(l990, Klop (1992, Baader and Nipkow1998 and
Teresg(2003.

A term rewriting systemis a collection of rewrite rules defining one-step
transfomations ofterms Termsare symbolic representations for the structure to be
transformed. We first consider basic term rewriting with first-order terms representing trees
or DAGs. More complex term structures will be discussed in the next section.

3.3.1. Terms

An algebraic signaturedefines a family of sorted first-order terms through a set of
constructor declarationas follows: IfC : S % --- x §, — & is a constructor declaration
in the signature ant is a term of sorS,, ..., ty a term of sortS,, thenC(ty, ..., ty) is a
term ofsortS. Note hatC : Sis shorttand forC :— S.

First-order terms cabe used to describe the abstract syntax trees of programs. There is
aone-to-one correspondence between first-order terms and trees with constructors as node
labels and an ordered set of directed edges to the trees corresponding to the subterms.
Directed acyclic graphs can be used to efficiently represent sharing in t&ins3
illustrates this with a signature for the languaderopositional formulae. For instance, the
formula p A —q is represented by the teramd (Atom("p"), Not(Atom("q"))).Note
that the sorString is used to represent the set of elflaracter strings. Another syntactic
extenson of first-order terms that are indispensable in program transformation are lists
of the form [t1, . . . ,tq] which abbreviate terms of the forfit1 | [t2] ... [ty [1111],i.e.
termsover the gjnature

] : List(a)
[_1_] : a * List(a) -> List(a)

3.3.2. Rewrite rules

A rewrite ruleis a pair of term patterns written g8 -> pp. A term patternis a term
with variables A labeledrewrite rde is a named rule of the forh : p; -> pp. Arule
defines a transformation of an expression of the f@into an expression of the fornp,.
For examplethe rule
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signature
sorts Prop
constructors
False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And : Prop * Prop -> Prop
Or : Prop * Prop -> Prop
rules

DAOL : And(Or(x, y), z) -> Or(And(x, z), And(y, z))
DAOR : And(z, Or(x, y)) -> Or(And(z, x), And(z, y))
DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
DOAR : Or(z, And(x, y)) -> And(0r(z, x), Or(z, y))

DN : Not (Not(x)) -> x
DMA  : Not(And(x, y))  -> Or(Not(x), Not(y))
DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

Fig. 3. Signature and rewrite rules for propositional formulae.

AA : And(And(x, y), z) -> And(x, And(y, z))

associates conjunction to the right. Rewrite rules can be used to express basic
transformation rules and can be consideredperationalizations ahe algebraic laws of

the language. For example, the rewrite rules-ig. 3 express basic laws of propositional
logic, i.e., the distribution rules, the rule of double negation, and the De Morgan rules.

3.3.3. Reduction

AruleL : p; -> pzreducesatermt tot’, if t matchesp; with a substitutiory, i.e.,
t = o(p1), andt’ = o (p2). We saythatt is theredex(reducible expression), artdis the
reduct Thus, wth rule AA we have theeduction

And(And(Var("a"), False), Var("b"))
-> And(Var("a"), And(False, Var("b")))

since the substitutiofx := Var("a"), y := False, z := Var("b")] defines a match for
the lefthand sideAnd (And(x, y), z) of the rule, and instantiates the right-hand side
And(x, And(y, z)) tothe reduct.

A set of rewite rulesR induces ane-step rewite relationon terms. Ift reduces td’
with oneof the rules inR then we havé — R t'. In this rehtion reductions take place at
the root of terms. The relation can be extended to the relatignvhich relates two terms
with a reduction under the root. The relation is formally defined as follows:

th >Rrl2 ti =>Rrt/(1<i<n)
t1 =Rt c(ty, ..., t, ..., tn) =R C(y, ..., ti/’ e tn)’

For examplewith rule A : P(Z, x) -> x the termP(P(Z,S(Z)), S(Z)) reduces to
P(S(Z), S(Z)) by reducing the first argument of the outermpst

A termt rewritesto a termt’ with respect to a set of rewrite rulésif there is a finite
sequence of terms = t1, ..., ty = t’ swch that each; reduces (under the root) to, 1.
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This is formalized by the rewrite relatios-§, defined by the fdlowing rules:

t1 >rt2 11 =>E o t =>E t3
t =>’E t 11 =>E to 11 =>E t3

i >Rrtd=<i=<n
Clty, ... ti, . ) =Rty ..t t)
That is, the reflexive, transitive and congruent closure>gf.
Atermt is in normal formwith respect to a set of rewrite rulé if thereis no termt’

not equal td suchthatt =} t’. If the rules inR are unconditional, this is the case if there
is no sibterm oft that matches with one of the left-hand sides of a rulRin

3.3.4. Rewriting strategies

The reduction relation induced by a set of rewrite rules is a tool for mechanizing
the transformation of programs. Given & sérewrite rules, correcaccording to some
criterion, a program can be transformed by applying the rules in the order needed for the
specific transformation. Thus, rewriting can be usethéalelany specific transformation.
However, this does not provide us with a prdaee for performing such transformations
automatically; the reduction relation does imapose any order on the application of rules.

A rewriting strategyis an algorithm for pplying rules to achieve a certain goal.
Typically the goal is tanormalizea term with respect to a set of rules, that is, exhaustively
apply rules to the term until it is in normal form. One popular strategy for normalization is
innermoshormalization, as defined by the relatiesy"

L=t e, )
cty,....th) =t
>Rtz =Mt -3ty >R
1 :>1§d t3 t1 :>1§d t1

This strategy states that before applying a rule to a term, first all its subterms are
normalized. Theoutermoststrategy, in ontrast, first reduces redices closest to the root,
as defined by the relatios>%™

t1 =>'£m to t1 =R tgm to =>%m t3 1 >Rrt2

11 =>0Rm to t1 =>0Rm i3 11 =>';—gm to

=3t ety ... i, .. t) >RE G =2RTE @A <i <n)
clty, ..., ti, ... tn) =RMelty, ..., 1, ..., t) '

This strategy is the transitive closure of the relatief™, which defines the reduction of
a shgle outermost redex.

Normalization of terms with respect to a set of rewrite rules is applicable in areas
such as algebraic simplification of expressions, and is provided by many rewriting
engines, including OBJQoguen et al. 2000, ASFSDF {van Deurgn et al, 1996,
ELAN (Borovangy et al, 1996, Maude Clavelet al, 2002, Stratego{isser 2004 and
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many others. An overview of rewriting-based languages is presentéedring and Klint
(2003. Most of these systems also supporesdions of the basic rewriting paradigm.

34. Limitations of term rewriting

The advantage of term rewriting is that all that is needed for the implementation of a
transformation is the specification of a set of rewrite rules. The rewriting engine takes care
of traversing the program tree in order to find reducible expressions. In other words, term
rewriting separates rules and strategypue tothis property the size of the specification
corresponds to the size of the problem to be solved, and is independent of the complexity
of the language, i.e., the size of the signature.

However, the complete normalization approach of rewriting turns out not to be adequate
for program transformation, because rewrite systems for programming languages will often
be non-terminating and/or non-confluent. In general, it is not desirable to apply all rules at
the same time or to apply all rules under all circumstances. As an example, consider again
the set of rewrite rules iRig. 3. This rewrite system is nonteinating because rul@a0L
andDAOR enable rule®0AL andDOAR, andvice versa. If we want to define a transformation
to normalize formulae to disjunee normal form we could discard rul®9)AL andDOAR.
However, if in andber part of the transformation a conjunctive normal form is required
we need a different rewrite system. It is ipatssible to combine these rules in one rewrite
system. Another example is the following perfectly valid rule

Unroll : While(el, e2) -> If(el, Seq(e2, While(el, e2)))

defining the unrolling of a loop in an impative language. Applying such a rule
exhaustively directly leads to non-termination. It is not even possible to create a terminating
system by leavingut other rules.

Thus, the basic approach of normalizing a program tree with respect to a set of
transformation rules is not sufficient sinc@ control over the application of rules is
provided. To provide users with more control, various solutions have been adopted in
transformation systems, ranging from alternative automatic strategies to completely user-
definable strategies. We can distinguish the following approaches:

e Fixed application order. The engine applies rules exhaustively according to a built-in
strategy. Kamples are innermost and outermost reduction.

e Automatic depedency analysis. The engine determines a strategy based on an analysis
of the rules. Examples are sitess and laziness analysis.

e Goal driven. The rgine finds out how to apply rules to achieve a user-defined goal.

e Strategy menu. A strategy can be selected from a small set. For example, choose
between innermost and outermost reduction or annotate constructors with laziness
information.

e Programmable. The strategy to apply rules can be programmed in a strategy language.

In addition, there are a number of other shortcomings of basic term rewriting:

e Term gntax is not easy to read and write whearms (pogram fragments) become
large. This may seem a minor issue, but it is relevant in program transformation.
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o Basic term pattern matching is not very expressive and cannot cope with properties of
constructors such as associativity and commutativity.

e Object variables are treated as normal teamd require careful handling to avoid name
capture.

e Transformation rules often need side conditions to test the applicability of the
transfomation.

e Generic ule-based solutions do not always provide the required performance needed
for application in, say, production compilers.

o Rewrite rules are context-free, i.e., can only access information through pattern
matching the term to which the rule is applied. Often context information is needed
for transformations.

For these reasons many extensions and variations on the basic paradigm of rewriting
have been developed for the application in program transformation systems. Also program
transformation systems are built using non-rewrite systems, in which the same issues play
a role. The est of this survey examines the solutions for these problems employed in a
variety of transformation systems. Although the emphasis is on control issues, the other
problems mentioned above are discussed el since they are recurring problems in
transformation systems and gtbns may interfere with solutions for the control problem.

4. Extensionsof term rewriting

In this section we consider several extensions to basic term rewriting that make the
formalism more expressive.

4.1. Concrete syntax

Related to the internal representation of programs is the representation of program
fragmentsin the specificationof transformation rids. While abstract syntax provides a
good model for program transformation, the direct manipulation of abstract syntax trees
may not be appropriate. Abstract syntax trees are represented using the data structuring
facilities of the transformatiorahguage: records (structs) in imperative languages (C),
objects in object-oriented languagesH€, Java), algbraic data types in functional
languages (ML, Haskell), and terms in term rewriting systems.

Such representations allow the full capiies of the transfomation language to be
applied in the implementation of transformations. In particular, when working with high-
level languages that support symbolic manipulatiy means of pattern matching (e.qg.,

ML, Haskell) it is easy to compose and decompose abstract syntax trees. For transformation
systems such as cquoifers, programming with abstract syntax is adequate; only small
fragments, i.e., a few constructors per pattern, are manipulated at a time. Often, object
programs are reduced to a core language that only contains the essential constructs. The
abstract syntax can then be used as an irgdiate language, such that multiple languages

can be expressed in it, and transformations can be reused for several source languages.

However, there are manypglications of program transformation in which the use
of abstract syntax is not satisfactory sirtbe conceptual distance between the concrete
programs that we understand and the datacire access operations used for composition
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and decomposition of abstract syntax trees is too large. This is evident in the case of record
manipulation in C, where the construction atkelconstruction of patterns of more than

a ouple of constructors becomes unreadable. But even in languages that support pattern
matching on algebraic data types, the construction of large code fragments in a program
generator can become painful.

Transformation languages supportitmncrete object syntdrt theprogrammer define
transformations using the concrete syntax of the object language, while internally using
abstract syntax trees. For example, in Stratego the loop unrolling rule from the previous
section can be written as

Unroll :
| [ while el do e2 ]| -> |[ if el then (e2; while el do e2) 1|

where the|[...]| delimiters are used to embed fragments of the object language
as terms in rewrite rules. This approachsadevebped in the algebraic specification
community. Using the correspondence between a context-free grammar and an
algebraic signatureHatcher ad Rus 1976 Goguen et a].1977 Futatsugi et a).1985,

a oonstructor can be declared \mxfix operator, e.g.if el then e2 else e3 instead

of If (el,e2,e3). Although available in systems such as OBJ, ELAN, and Maude, the
approach is taken to its extreme in ABEDF Heering et al. 1989 van Deuren et al,
1996, where an actual syntax definition of thbject language is used to describe terms
(rather than just mixfix operators). €tgpproach is further generalized Wisser(2002),
Fischer and Vissef2004 andBravenboer and Vissg2004), where a general scheme for
extending a meta-language with coate object syntax is outlined.

Another line of work is that of meta-programming languages such as MetaML
(Taha and Beard 2000 and Templée Haskell Gheard and Bgon Jones2002 where
fragments of a program can be transformed or generiateéde language itself These
fragments can be written in concrete syntax rather than abstract syntax, but a fall back to
abstract syntax is available when necessary.

4.2. Extensions of pattern matching

When using a tree or term representatienmmn pattern matchingan be used. First-order
term patterns are used to decompose terms by simultaneously recognizing a structure and
binding variables to subterms, which would otherwise be expressed by nested conditional
expressions that test tags and select subterms. However, first-order patterns are not treated
as first-class citizens and their use poses limitations on modularity and reuse: no abstraction
over patterns is provided because they may occuy amthe left-hand side of a rewrite rule,
the ams of a case, or the heads of clauses; pattern matching is at odds with abstract data
types because it exposes the data repreienja first-order pattern can only span a fixed
distance from the root of the pattern to its leaves, which makes it necessary to define recur-
sive traversals of a data structure separately from the pattern to get all needed information.
For these @asons, enhancements of the basic pattern matching features have been
implemented or considered for several languages. For exanfipte matching in
ASF+SDF (van Deursn et al, 1996 is used to divide a list into multiple sublists pos-
sibly se@arated by element pattern&ssociative—commutative (AC) matchimgMaude
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(Clavelet al, 2002 andELAN (Borovangy et al, 1996 supports the treatment of lists as
multisets. Languages for XML transformation such as CDBee¥®aken et al.2003 pro-

vide recursive patternandregular expression pattern® match complex subdocuments.
Higher-order unificationin AProlog (Nadathur and Miller 1988 Pfenning and Elligt
1989 alows higher-order matching of subterms in an arbitrary cont&sdlty, 1992
Heering 1992, which in turn allows matching of subtms at arbitrarily deep levels using
higher-order variables without explicit traversal of the structure involved. The MAG trans-
formation system deMoor and Sittampalap2001) supports a restricted form of higher-
order matching to specify generic fusion rulggewsfor Haskell, as proposed iMadler,
1987, provide a way to view a data structure using different patterns than are used to
represent thenDverlaysin Stratego Yisser 1999 are pseudo-constructors that abstract
from an underlying representation using actual constructorscdhtextuabndrecursive
patterns of Stratego Yisser 1999 are infact strategiesfor tree traversal. Thus, pattern
matching and strategic control overlap.

4.3. Object variables

A patticularproblem of program transformation is the handling of variables and variable
bindings. In the common approach, variables and variable bindings in an abstract syntax
tree are treated just like any other construad ¢he transformation system has no special
knowledge of them. This requires the plementation of operations to rename bound
variables, substitution, etc. Transformations need to be aware of variables by means of
extra conditions to avoid problems such as free variable capture during substitution and
lifting variable occurraces out of bindings.

Trans@rent handling of variable bindings is desirable. In the use of De Bruijn
terms (e Bruijn 1980, bound variablenamesare replaced with indices pointing to
the kinding construct. This has the nice property that equivalence modulo renaming
becomes syntactic equivalence. However, the scheme is hard to understand when reading
program fragments. Furthermore, when transforming De Bruijn terms, the indices need
to be recorputed. Higher-order abstract syntaxgas) (de Moor and Sittampalan?007;

Huet and Lang1978 Pfenning and Elliqgt 1989 gives a slution to such problems by
encoding variable bindings as lambda abstractions. In addition to dealing with the problem
of variable capturejoAs provides higher-order matching which synthesizes new functions
for higher-order variables. One of the problems of higher-order matching is that there
can be many matches for a pattern, requiring a mechanism for choosing between them.
FreshML itts and Gabbay000 provides a weaker mechanisorfdealing vith variable
bindings that transparently refreshes variable names, thus solving the capture problem.
Substitution for variables has to be dealt with explicitly. Batbas and FreshML require

same amount of encoding for the syntactic structure to fit the lambda abstraction binding
scheme. Tis can become rather far removed frdm structure described by the grammar

for more complex binding schemes. Furthermore, implicit variable binding may be in
conflict with the ease of performing transformations, for instance, the possibility of
performing traversals over syntax trees.

Experience with variable renaming in GHC, the transformation-based Glasgow Haskell
Compiler Peybn Jones and Marlow2002), shows that transparent treatment of variable
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bindings would help oyl in afew places in the compiler. Arpblem encountered there
was to minimize the amount of variable renaming done during transformation. Rather than
using a global fresh variable store, fresh names are generated with respedntedtyee
variables only.

In applications such as refactoring and renovation it is required that the transformed
code is as close as possible to the original code. Approaches to dealing with object variables
by renaming, are in conflict with this requirement.

A problem that is not addressed by the approaches discussed above is associating
declaration information, e.g., type declarations, with usage. This usually requires
maintaining a symbol table during transformati, or distributing the information over the
tree, annotating usage occurrences of a symbol with the information in the declarations.
Either way, the information needs to be kept consistent during transformations.

4.4. Default rules

A term rewite system consists of aet of rewrite rdes. This means that there is
no inherent ordering of rules. Hence, an implementation can apply rules in any order.
Although an implementation needs to choaseorder, the programmer is not supposed
to use this ordering since that violates the deafive nature of the rules. For example, the
following rules

Meml : Member (x, []) -> False
Mem2 : Member(x, [x | xs]) -> True
Mem3 : Member(x, [y | xs]) -> Member(x, xs)

rewrite applications of thélember function by firg teging with the nonlinear rulélem2
whether the first element of the list is equal to the element looked for.MEhe rule
rewrites the application to a search in the tail of the éissuminghat the match with the
previous rule has failed. However, rutem3 is not valid by itself. A rewrite engine may
change the order of applying the rules, leading to unanticipated results.

A solution to the problem of implicitly ordenig rewrite rules, which has been adopted
in some systems such as ASEDF (van Deursn et al, 1996, isthe declaration oflefault
rules. A default rule is tried in a match only after all other (non-default) rules have been
tried at the current termThus, the rewrite rules above can be ordered by declaring rule
Mem3 as a default rule:

Mem3 : Member(x, [y | xs]) -> Member(x, xs) (default)

Note that this declaration splits the set of rules itwto sds. Default rules and non-default
rules.Priority rewriting (Baeten et a).1989 is agenerdization of rewriting with default
rules in which a partial order on rules is imposed.

4.5. Functional programming with rewrite rules

A common solution to the problem of control over the application of rules is the
adoption of a functional programming style of rewriting. This is not so much an extension
as a style of implementing transformation systems with rewrite rules. The method works
by introducing additional constructors that &sfe normalization under a restricted set of
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signature
constructors
dnf : Prop -> Prop
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF1 : dnf(True) -> True
DNF2 : dnf(False) -> False
DNF3 : dnf(Atom(x)) -> Atom(x)
DNF4 : dnf(Not(x)) -> not(dnf (x))

DNF5 : dnf(And(x,y)) -> and(dnf(x),dnf(y))
DNF6 : dnf(Or(x,y))  -> Or(dnf(x),dnf(y))

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,0r(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> X

NOT2 : not(And(x,y)) -> Or(mot(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 4. Functionalized rewrite system for disjunctive normal form.

rules. Such aenstructorsare calledunctionsand are supposed to be completely eliminated
by the rewite rules.

The approach is illustrated Irig. 4, which shows bw the rewite system of-ig. 3can
be turnedinto a terminating rewrite system that defines the normalization to disjunctive
normal form (DNF). To normalize a formula to DNF the functiemf should be applied
to it. Normalization to conjunctive normal form requires a similar definition. dhe
function mimics the innermost normalizatiotrategy by recursively traversing terms.
The auxiliary functionsnot and and are used to apply the distribution rules and the
negdion rules. In functional programming such auxiliary functions are knowaraart
constructorgElliot et al,, 2000. In the definition of the rules foind andnot it is assumed
that the arguments of these functions are alyeadlisjunctive normal form. For example,
if none of the arguments ahd is an0r term, the term itself is considered to be in DNF.

In the soltion in Fig. 4, the original rules have been owletely intertwined with
the dnf transformation. The rules for negati@cannot be reused in the definition of
normalization to conjunctive normal form. For each new transformation a new traversal
function and new smart constructors have to be defined. Many additional rules had to be
added to traverse the term to find the places to apply the rules. Instead of 5 rules, a total of
13 rules were needed. RuleBD3 andNOT4 are default rules that only apply if the other
rules do not apply. Without this mechanism even more rules would have had to be used to
handle the cases were the real transformation rules do not apply.

The kind of problem illustrated in the example above occurs frequently in all kinds
of transformations. In general, trying to overcome the problems of non-termination and
non-confluence leads tmeoding of control in terms of adibnal rewrite rules (which is
at variance with our goal to separate rules frarategies as much as ggible). This usually
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imports integers
signature
sorts Int
constructors
Fac : Int -> Int
If : Bool * Int * Int -> Int
rules
Fac : Fac(x) -> If(Eq(x,0), 1, Mul(x,Fac(Sub(x,1))))
IfT : If(True, x, y) -> X
IfF : If(False, x, y) >y

Fig. 5. Rewrite system with non-terminating reduction path.

leads to a functinal programming style of rewriting, overhead in the form of traversal rules
for each constructor in the signature, intertwining of rules and function definitions, all of
which makes reuse of rules impossible, and semdsgcifications that are much harder to
understand.

4.6. Conditional term rewriting

Transforméion rules often need more informatiadhan is preided by the match of
the left-hand sle to decide whether the rule is applicable. Thus, side conditions can be
attached for checking additional properties. Such conditions may entail computations in
a different paradigm than the transformation rules are implemented in. For example, in
Sittampalam et al(2009 regular path expressionshecking data-flow properties of the
program statement to be performed attaehed to transformation rules (sgection §.

In conditional term rewriting (Dershowitzand Jouannayd1990, however, the
rewriting mechanism itself is used tvaluate conditions. Conditions aegjuationsover
terms, and a conditional rewrite rule has the form

t ->t where tg =t; .... th = t.

When applying such a rule the equations are instantiated according to the substitution
obtained from the match of the left-hand eid'he pairs of terms are then compared for
equalityafter rewriting them to normal form with the same set of rules.

In a variation on this concept, one side of a condition may use variables not occurring
in the left-hand side of the rule. This terisithen used to matcliné normal form of the
other side of the equation against. The resulting variable bindings can be used in further
conditions and the right-hand side of the rule.

4.7. Term rewriting with strategy annotations

One problem in term rewriting is that of tes with infinite reduction paths that cannot
be resolved by removing unnecessary rules. For example, the specificdigntrdefines
the conputation of the factorial function using the conditioadl Using apure innermost
rewriting strategy, a ternFac(3) does not terminate, since the argumentsIofare
evaluated bfore rulesIfF or IfT are applied. While using an outermost strategy might
solve termination problemigke these, e cost of finding the next redex is much lower
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signature
sorts Nat List(*)
constructors
Z : Nat
S : Nat -> Nat

Cons : a * List(a) -> List(a) {strat: (1 0)}
Inf : Nat -> List(Nat)
Nth : List(a) -> a
rules
Inf(x) -> Cons(x, Inf(S(x)))
Nth(Z, Cons(x, 1)) -> x
Nth(S(x), Cons(y, 1)) -> Nth(x, 1)

Fig. 6. Specification with strategy annotatio®géta and Futatsugl997).

in innermost rewriting {an de Pal 200]). Therefore, several systems extend innermost
rewriting with strategy annotations$o delay the ealuation of arguments.

4.7.1. Just-in-time

The strategy annotations iran de Pol(200]) are degined to delay thewaludion of
arguments, but guarantee that the term redchfter evaluation is a normal form with
respect to the rewrite system, i.e., contains no redices.

A strategy annotation for a constructor is a list of argument positions and rule
names. The argument positions indicate the next argument to evaluate and the rule
names indicate a rule to apply. The innermost strategy corresponds to an annotation
strat(C) = [1,2,3,...,R1,R2,R3,...] for a constructoC and indicates that first
all its arguments should be evaluated and then the Rilshould be applied. By requiring
that all argument positions and all rules for a constructor are mentioned in the annotation, it
can be guaranteed that a normal form is reachid juist-in-time strategy is a permutation
of argument positions and rules in which rules are applied as early as possible.

Using these annotations the non-termination for the rewrite systefigins is solved
by means of the annotation

strat(If) = [1,IfT,IfF,2,3]

that declares that only the first argument should be evaluated before applyingfiTimsd
IfF.

4.7.2. E-Strategy

The just-in-time strategy cannot deal with rewrite systems that do not have normal forms
for some terms. For example, consider the ruleBig 6. Terms ofthe formInf (n), for
some naturdanumbem, donot have a normal form.

The evalation strategyof the OBJ fanly of systems Qgata andrutatsugi 1997,
Goguen et aJ. 2000 uses an extended form of strategy annotations in which not all
arguments need to be evaluated. In this style a strategy annotation is a list of argument
postions and the root positiorof. The annotation declares the order of evaluation of the
arguments. The root positiom indicates the evaluation of the term at the root. Not all
argument positions need to be declared . uideclared argument is not evaluated.
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rules
Inf(x) -> Cons(x, Thunk(L, Vecl(x)))
Nth(Z, Cons(x, 1)) -> x
Nth(S(x), Cons(y, 1)) -> Nth(x, Inst(1l))
Inst (Thunk (L, Vec1(x))) -> Inf(S(X))
Inst(x) -> x

Fig. 7. Result of translating specificatioritivlaziness annotations to eager specificatieokkink et al, 2000.

For example, the non-termination ifrig. 6 is sdved by the strategy annotation
(1 0), which indicates that first the first argument 6éns should be evaluated and
then the constructor itselo). The second argument is never evaluated. The E-normal
form of Nth(S(Z) ,Inf(Z)) is S(Z). Also the termInf (Z) has a normal form, i.e.,
Cons (Z,Inf (S(Z))).

4.7.3. Laziness annotations

The strategy annotations discussed above are interpreted by the rewrite engine. In
Fokkink et al. (2000 it is shown how rewrite systems with laziness annotations can be
compiled into rewrite systems that can be evaluated using an innermost strategy.

A laziness annotation indicates for an argument of a constructor that it is lazy, i.e.,
that no reductions should be performed for subterms of that argument, unless needed
for matching. For examplefor the rewite system inFig. 6 the laziness annotation
Lazy(Cons,2) achieves the delay of the evaluation of the second argumeniet

A rewrite system with laziness annotations can be translated to an eager rewrite system
using thunks. A thunk is an auxiliary data st that stores the structure of the term.

For examplethe termrewrite system (TRS) irFig. 6 is transformed to the eager TRS in
Fig. 7. Note hatThunk is a generic constructor for representing thunkss a constructor
for indicating the thunked pattern, anéc1 is a constructofor denoting a vector of
length 1.

Note that annotations depend on the application in which they are used. For example,
without theInf constructor there is no reason for annotating the second argumesitof
as lazy.

5. Tree parsing strategies

Tree parsing is @& dternative approach to transformation developed in the area of
code generation. In this approach rules are writtetrees gammar rulesthat are used
to parsea tree, i.e., cover the tree with applicable rules and execute corresponding actions.
This requires deriving from the specificatiohtbe rules atree traversal schedule. This
section discussefitee approaches to tree parsing. Sertpee parsing is used to generate
single-pass traversals. Botteup tree parsers are used in code generators and employ a
dynamic programming approach to compute all possible rewrites in parallel. Finally, in
attribute grammarsules assign attribute values to tree nodes; attribute evaluation involves
schealuling of the order of evaluation based on dependencies.
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5.1. Tree parsing

Tree parsing is analogous to string parsing; instead of finding structure in a string, the
goalis to find structure in a tree by covering the tree with patterns. The tree parser generator
for the ANTLR language processing systefafr etal., 2003 gererates tree walkers from
tree grammars. A tree grammar is®F-like notation for the definition of tree structures.

For example,iie grammar

exp : #(PLUS exp exp)
| INT

describes expression trees composed from integers and addition.

Tree tanslations and transformations are i@ekd by associating actions with the
grammar productions. Translations to textual output are achieved by printing actions. For
exampe, the following grammar prints expressions using infix notation.

exp : #(PLUS exp <<printf("+");>> exp)
| i:INT <<printf("%d", i);>>

Tree tansformations are achieved by recondingctrees and returning them as results.
For example,te following grammar transforms expressions by swapping the arguments
of thePLUS operator.

exp :! #(PLUS l:exp r:exp) <<#texp = #(PLUS r 1);>>
| INT

Grammar non-terminals can have arguments that can be used in the actions in productions.
Non-terminals can also return results. A tree grammar gives rise to a set of mutually
recursive functions, one for each non-terminal, that together define a one-pass traversal
over a tree. R#erns can be nested and can use ragtree expressions with optionals,
alternatives and lists.

Transformation rules in tree grammars are embedded in grammar productions.
Separation of rules and strategies and generic tree traversals are not suppeonead

5.2. Bottom-up tree parsing

If a tree grammar is ambiguous, multiple parses of a tree are possible. The parser
needs to decide which parse to take. Bysaiating costs with each production, the
disambiguation can be based on the accutadl@ost of a tree. Dynamic programming
techniques can be used to compute all possible parses in one traversal.

BURG (Fraser et a).1992ab; Proéhging, 1995 is a system for @de generation from
intermediate representatiorr] expression trees. A mapping from trees to machine
instructions is defined by means of a tree grammar. A production of the form t
(c) defines a mapping of tree pattetrio non-terminah at costc. Assaiated with each
production is an action to take when the production is selected. For exafpeyging,
1995 gives the examp granmar in Fig. 8 According to this grammar, the term
Fetch(Fetch(Plus(Reg,Int))) has two coverings corresponding to the derivations
4(4(6(5(2,3)))) and4(4(8(2))) with costs 7 and 4, respectively.
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[1] goal -> reg 0) [6] reg -> Plus(reg, reg) (2)
[2] reg -> Reg 0) [6] addr -> reg ()]
[3] reg -> Int (1) [7] addr -> Int (0)
[4] reg -> Fetch(addr) (2) [8] addr -> Plus(reg, Int) (0)

Fig. 8. Example BURG specification.

As illustrated by this example, more than one covering of a tree is possible,
corresponding to different ways to generate code. Each node can have several different
parses because of overlapping patterns arainchules. The costs associated with the
productions express the cost of executing the associated machine instruction. The goal
of a code generator is to find the lowest cost covering (i.e., lowest execution time) of an
intermediate representation expression tree.

According to bottom-up rewriting theoryB(RS) an IR tree can be translated to a
saquence of instructions using the following strategy. In a bottom-up traversal all lowest-
cost patterns that match each node are coatpaind associated with the node. This
involves matching the right-hand sidestb& productions to the tree, taking into account
earlier matches for subtrees. Instructions &entselected in a top-down traversal that is
driven by the goal non-terminal for the root of the tree.

This restricted form of rewriting can also be appli®tdebging, 1995 for simpe type
inference problems, for checking tree formats, and for tree simplifications. However, the
sape of this paradigm is restricted to one-to-one translations in which the structure of the
target is closely related to the structuretioé ource program, which is typically the case
in instruction selection.

5.3. Attribute grammars

Attribute grammarsKnuth 1968 Aho et al, 1986 provide a more general form of
tree parsing. Instead of associating actions with a fixed tree traversal, an attribute grammar
defines the computation aftribute valuesssociated with tree nodes. Typically, the values
of an attribute can be defined in terms of the values of other attributes. Thus tree traversal
is implicit, i.e., inferred from the attribute definition rules.

As an example, consider the following sétrales defining the computation of the set
of free variables of a lambda expression with variables], lambda abtraction fbs),
and application&pp):

[x]
<diff>(el.free, [x])
<union>(el.free, e2.free)

e@Var (x) : e.free
e0@Abs(x, el) : eO.free :
e0@App(el, e2) : e0.free :

The grammar consists of productions associating attribute evaluation rules with tree
constructors. The rules refer to the current node or its direct subnodes via identifiers. The
example gammar defines the attribufe-ee, which ewaluates to the set of free variables

of an expression. These attributes are so-callgihesizedttributes, since the attribute
vaue o a node is defined in terms of the attribute values of the subnodes. This example
illustrates how attribute grammars can be usedfalysis
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Higher-orderattribute grammarsvogt, 1989 can also be used fdransformationby
computing new trees as part of attribute evaluation. The following example illustrates this
in a gammar for renaming bound variables in lambda expressions:

e@Var (x) : e.rn := Var(<lookup>(x, e.env))
e0@Abs(x, el) : e0.rn := Abs(y, el.rn)
el.env := [(x,y) | e0.env]
y := <first> e0.ifresh
el.ifresh := <next> e0.ifresh
e0.sfresh := el.sfresh
e0@App(el, e2) : e0.rn := App(el.rn, e2.rn)
el.env := e0.env
e2.env := e0.env
el.ifresh := e0.ifresh
e2.ifresh := el.sfresh
e0.sfresh := e2.sfresh

This grammar defines the synthesized attrikuten, which ewaluates to the renaming of
the lanbda expression. Two auxiliary attributes are used in the definition. The attribute
e.env is aninherited attribute, which is passed to subnodes and maintains the mapping
from variables tatheir new name. The attribute. ifresh is also an inherited attribute
providing a supply of fresh names. The synthesized attributgfresh evaluats to the

state of the name supply after computing the renaming.ofhis is used tahread the
name supply through the computation.

Attribute evaluation requires dependency analysis in order to determine a traversal
schedule. Such a schedule may involve multiple traversals over the tree when an inherited
attribute depends on a synthesized attribute, which should thus be computed in an
earlier traversal. Attribute grammars are used in various systems such as the Synthesizer
Generator Reps and Teitelbaum1988 and LRC Garaiva and Kuiper1998. In the
intentiond programming project@zarnecki and Eisenecke&000 attribute grammars are
used for the definition of language extensioA#iribute grammars have been especially
successful inincrementalcomputation of attribute valge erabling rapid feedback in
an interactive environmenRgps and Teitelbauni988. Explicit schedling of attribute
evaludion is not necessary when implementing attribute grammars in a lazy functional
language Johnsson1987. Scheduling is achieved by the evaluation mechanism of the
host language. This is exploited in systems such as Elegangusteijn 1993 and
UUAG (Saraiva and Swierstra999.

The example above illustrates that attribute propagation requires numerous administra-
tive rules. In extensions of the basic formalism, reoccurring patterns sumbadcasting
threading andcollectingvalues are provided through declarations. In the proposdir&ir
class attribute grammars de Moor et al (2000, such patterns aggrogrammable

6. Programmable strategies

Systems with fixed strategies are develbper goplication in specific domains such
as instruction selection, but are not sufficias geeral purpose transformation systems.
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The inappropriateness of the standard strategy to a specific application, invariably leads to
encoding of control in rules. In previous sections we saw various extensions to rule-based
systems that allowealdaptation®f the standard strategy; however, no completely different
strategies are allowed in sucktgngs. In the areas of transformational programming and
theorem poving the tediousness of the interactive application of rules required more
automation, while retaining control. This led to the extension of rule-based systems with
tactics i.e., sgecific algorithms for applying rules. Ese systems influenced the design of
program transforntéon systems witlprogrammable strategiese., providing a basic set

of combinators from which conigx strategies can be composed. This section sketches the
development from interactive program transformation systems to systems for automatic
program transformation with programmable strategies. The next section then focuses on a
particular aspect of such strategies, namely the specificatitamroftraversal

6.1. Interactive program transformation

The transformationalapproach to software development is based on the paradigm of
top-down stepwise refinemefidijkstra, 1968 in which a hgh-level specification of a
problem is gradually refined to an efficient implementation solving that problem. The aim
is to achieve orders of magnitude improvement in programmer productR#igé 1994.

By only applyingcorrectness-preservingansformations, the resulting prograncisrrect

by constructionTrangormation from high-level speciation to low-level implementation

gives rise towide spectrum languagesontaining constructs for very high-level
specification (e.g., non-executable logic formulae) as well as low-level implementation
(e.g., assembly language instructions). Thus, all transformations are performed on the same
language. An alternative approach, pioneered in the Draco sys$teighbors 1984, is to
definedomain-specific languagébkat only cover a specific application domain and level

of abstraction, thus limiting the complexity of transformations.

First of all the approachrequired the development of theories for program
transformation Burstall and Darlington1977 Bird and Meertens 1987 consiging of
basic rules such a®ld and unfold and strategies such @®mposition generdization,
and tupling applying these rules in a certain combinatioRettorossi and Proietti
1996Hh. Using such a theory, programs can beivd mechanically from specifications.
Since maual application of rules is tedious and error-prone, automation was a
logical murse. Thus, over the last 30 years many systems have been developed
to support some variation on the transformational approach. Examples include
ZAP (Feather 1982, Programmer’s ApprenticeMaters 1982 Rich and Waters1990,

Draco (Neighbors 1984, KIDS (Smith, 1990, CIP (Partsch1990, APTS (Paige 1999,

Map (Pettorossi and Proiettil9968, and Utra (Partsch et al. 1999 Guttmann et a.

2003. Although the systems differ in the details of their implementation, the kinds

of transformation they apply, and the languages that are transformed, they have many
commonalities. First of all the systems are usually specific for a programming language.
On the basis of the semantics of this language a library of valid and usually generic
transformation rules is dev@bed. Since the declarative nature of the specifications allows
many design choices, the systems are interactive and let the user select the rules to apply
and the order in which to apply them. Thus, a basic transformation assistant is an aid to
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do the bookkeeping for applying rules. Since the complete development of a program may
require the application of hundreds or thousands of rules, assistance in applying single
rules is not sufficient, and various mechanistasticg for automaically applying certain
combinations of rules were added. Thus, instead of a fixed (exhaustive) strategy, these
systems allow therogrammer te@hoosethe strategy to apply certain rules with.

The transformational programming approach has reincarnated in a different guise in the
area of software maintenanéefactoringaims at cleaning up the design of the code rather
than producing a performance improvemero\yler, 1999. Refactoring editors such as
the Smalltalk Refactoring BrowseR¢berts et al.1997) are the nodern incarnation of the
programmer’s assistant. That is, they are interactive tools that allow the programmer to
apply specific transformation rules to selected parts of the program. Typically, however,
refactoring rules are more coarse grained than single-fold/unfold rules. Work so far
concentrates on the implementation of specific refactorings. If this line of work turns out
to be successful, refactoring editors will be extended with scripting capabilities in order to
combine refactorings into e complex refactorings.

6.2. Staging

In transformational programming a transformation is geared to the transformation of
one specific program, possibly employing reusable transformation tactiesitdmatic
program transformation used in compilers, for example, programmer intervention is not
desirable since it is not reproducible and costs a lot of time. As argued before, pure rewrit-
ing is not applicable because of interfererietween rewrite rules. A step towards pro-
grammer control over rules is the mechanismeajfuence of canonical fornaglopted in the
TAMPR — Trandormation Assisted Multiple Program Realization — systd&nyle, 1989
Boyle et al, 1997, aiming to derive implementationsrfdifferent computer architectures
from the same specification, in particular in the domain of numerical programming.

A TAMPR specification consists of a series of rewrite rules. Tia@PR rewrte
engine applies rewrite rules exhaushvt® reach a canonical form. The problem of non-
termination caused by rules that are each ithaverses is solved by organizing a large
transformation into a sequence of consecutdrictions to canonical forms under different
sets of rewrite rules. Typically such a sequence starts with several preparatory steps that
bring the program into the right form, and these are followed by the pivotal step which
achieves the actual transformation, followed in turn by some post-processing.

As an example consider the transformation of nested function calls to flat lists of
function calls as part of a compiler from a functional program to an imperative program
(inspired by an example iBoyle (1989). The following pair of program fragments
illustrates the transformation:

let var y := bar(a, b)
let var x := foo(bar(a, b)) N in let var x := foo(y)
in ... end in ... end

end

In the canonical form that is reached by thenstrmation, each function call is directly
assigned to a variable and has no nestedtfanccalls. The transformation is achieved
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rules
IntroduceTemp :
I[ £(ax) 1| -> |[ let var x := f(a*) in x end ]|
where new => x
LetFromApp :
|[ f(al*, let var x := el in e2 end, a3%) ]| ->
|[ let var x := el in f(al*, e2, a3*) end ]|
LetVarInLetVar :
I[ let var y := let var x := el in x end in e2 end ]| ->
I[ let var y := el in e2 end ]|
LetFromLet :
I[ let var y := let var x := el in e2 end in e3 end ]| ->
I[ let var x := el in let var y := e2 in e3 end end ]|
where <not(eq)>(I[ x 11, I[ e2 1)
strategies
lift-nested-calls =
one-shot (IntroduceTemp)
; transform* ({LetFromApp, LetVarInLetVar, LetFromLet})

Fig. 9. Rewrite rules and stratedyr lifting nested function calls.

by a number of simple rewrite rule&if. 9) that first assign each function call to a fresh
variable by introducing a new let binding. Then these bindings are lifted by distribution
rules pushing function applications and let bindings inside the body of the nested let
binding. Since rul&ntroduceTemp iS anon-terminating rule, some mechanism is needed
to control its application. TheAMPR approach is to organize a transformation as a
sejuence of exhaustive normalizations and ohetsule applications. Thus, the call lifting
transformation is defied by the strategyift-nested-calls, which first ties to gply
rule IntroduceTemp exactly once to all nodes in the program, and then exhaustively
applies the other rules.

In Fitzpatrick et al.(1995 the auhors st&e that: A major issue still to be addressed
in transformation systems is the control of the derivation process; i.e., the specification
of strategiedo achieve some goalhe division of a rewrite systems into separate sets
of rules which are applied exhaustively in sequence does solve some of the termination
and confluence problems of rewriting, and itely preserves the declarative nature of
individual rewrite rules. However, many problems need to be addressed by other means
within a single traversal. For such cases, th@PR approach still requires the use of
functional rewriting.

6.3. Strategy combinators

Taking the approach offampPr further requires more expressive specification of
strategies toantrol rule application, while preserving the separation of rules and strategies.
The algebraic specification languageaN (Borovangy et al, 200Q 1996 2002 1998
introduced support fouser-definablestrategies using a language of combinators for
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strategies
try(s) s <+ id
repeat(s) try(s; repeat(s))
while(c, s) try(c; s; while(c, s))

do-while(s, c)
while-not(c, s)
for(i, c, s)

s; try(c; do-while(s, c))
c <+ s; while-not(c, s)
i; while-not(c, s)

Fig. 10. Iteration strategies defined using strategy combinators.

composing strategies. The approach was also adopted in the design of the program
transformation language Strategdi gser et al.1998 Visser 2004. Despite differences

in syntax and the sets of combinators, the basic ideas underlying the strategy combinators
of ELAN and Stratego are the same. Here the iddalse approach are explained using the
Stratego syntax. Where there are real differences, these will be pointed out explicitly.

In the strategic rewritingapproach, a specification consists of a sefabkled rewrite
rulesand a set obtrategydefinitions Strateges are pograms that attempt to transform
terms into terms, at which they may succeed or fail. In the case of success the result
of such an attempt is a transformed termthie case of failure there is no result of the
transforméion. Theatomicstrategies are the labels of rewrite rules, ithentity strategy
id, which leaves the subject term unchanged and always succeeds, &aitliteestrategy
fail, which always fails. These atomic strategican be combinedtim more conplex
strategiedy means of a set of strateggmbinatorsThesequential compositiogl ; s2
of strategies1 ands2 first attempts to applg1 to the subject term and, if that succeeds,
appliess2 to the result. Thenon-deterministic choice1 + s2 of strategies1 ands2
attempts to apply eithez1 or s2. It succeeds if either succeeds and it fails if both fail;
the order in whichls1 ands2 are tried is unspecified. Thieterninistic choices1 <+ s2
of strategiess1 ands2 attempts to apply eithes1 or s2, in that order Note hat ; has
higher precedence thanand<+. Theteststrategytest (s) tries to apply he strategy.

It succeeds ik succeeds, and reverts the subject term to the original term. It fadl$aifs.
The negationnot (s) succeeds (with the identity transformationkifails and fails if s
succeeds. A recursive strategy can be defined using a recursive definition.

As an example of the versatility of these basic combinaf€éigs,10defines a number of
derived control combinatorsperesponding to various iteration schemes. To illustrate the
use of these strategies consider again the rules for evaluationieétiber function:

rules

Meml : Member(x, []) -> False

Mem2 : Member(x, [x | xs]) -> True

Mem3 : Member(x, [y | xs]) -> Member(x, xs)
strategies

member = repeat(Meml <+ Mem2 <+ Mem3)

In Section 4.4theorder of the application of these rules was enforced by makéng, a
defaultrule. Usingthe strategy combinators introduced above, the priority between rules
can be explicitly stated. Thus, thember strategyrepeatedly applies rul@gmi, Mem2,
andMem3 in thatorder.
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Note that labeled rules appht the pot of the term to which they are applied. Further-
more, the combinators introduced above also apply to the root and do not descend into the
term. This makes it impossible gpply rules below the root. IELAN this is remedied by
means of two devices. First, using so-caltmhgruence operatorgaversals over a tree
can be defined. This device will be further discussed in the next section. Second the spe-
cial strategyhormalize(Ly,..., Ly) normalizes a term withespecttorule&s, ..., Lp.

Thus, the normalizing bit of the call lifting strategy can be defined as

normalize (LetFromApp,LetVarInLetVar,LetFromLet)

The one-shot strategy requires a special traversal, which will be discussed in the next
section.

Another difference betweerLAN and Stratego is thibacktrackingmodel. The choice
operators+ and <+ of Stratego providéocal backtracking. This means that the choice is
committed after a successful alternative has been applied. Thus in the sitategy); z
if x is tried first and succeeds the choice is committedzisdapplied. Ifz fails the entire
strategy fails instead of backtracking yo which might potentially succeed and make
succeed as well. Thugx + y); zis not equal tax; z + y; 2).

In ELAN there are several choice operators eaih different backtacking properties.

The failure/success model is basedsets of resultd.e., a straggy retuns a set of possible
results, which can be implemented usiglpbal backtracking That is, ata siccessful
choice, the remaining choices are stored irecasonthuation $rategy fails. The operator
dk(el,...,en) (don't know) returns all results from all strategies. The operator
dc(el,...,en) (don't care) returns the results from one of its argument strategies as
long as it does not fail. The operattirst(el, . ..,en) returns the results of the first
thatdoes notfail. The operatods_one(el, ..., en)andfirst_one(el, ..., en)
return only one result. The operatbteratex (e) (respectivelyiterate+(e)) returns

all possible results from iterating the strategyero (respectively, one) or more times.
The operatorepeat* (e) (repeat+(e)) retums the last set of results from repeatedly
applyinge urtil it fails.

Finally, ELAN also has unlabeled rewrite rules, which are always applied using a
fixed innermost strategy, i.e., not under the control of a strategy. Another feature of
ELAN (Borovangy et al, 199§ is thereflective rewriting of strategies with rewrite rules,
which is possible since the strategy language is interpretednEloes not support generic
term traversal, a feature to bessdussedn thenext section.

7. Traversal strategies

A special concern in any implementation of program transformation is the definition of
traversalsthat determine the order in which the nodes of an abstract syntax tree are visited.
In the pure rewriting approach traversal is implicit in the strategy. However, we saw in
Section 4.%hat rewriting often degrades to functional programming with a steep penalty
for theddfinition of traversals. This penalty is especially large in program transformation,
where languages with tens to hundreds ohstructors are common. Definition of a
traversal foreachtransformation to be defined leads tery large specifications. There
are several approaches to solving this problem, which will be discussed in this section.
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signature
constructors
dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)’}
and : Prop * Prop -> Prop
not : Prop -> Prop
rules
DNF4 : dnf (Not(x)) -> not(x)
DNF5 : dnf(And(x,y)) -> and(x,y)

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,0r(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x

NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(0r(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 11. Disjunctive normal form with traversal function (Version 1).

7.1. Traversal functions

In ASF-SDF controlling the application of traftsmation rules has been recognized as
a problem for a long time. For the specification of transformations for large languages such
ascosoL the overhead of defining traversals wags as an especially problematic factor.
First this was solved by the gen&oa of default traversal rulesén den Band and Visser
1996 van den Band et al. 20008 that @uld be overridden by normal rules. In this
approach typically only a few rewrite rules have to be specified, corresponding to the non-
default behavior of the traversal. However, the number of generated rules still proves to be
a ource of overhead, albeit for the compiler, not the programmer. Furthermore, providing
a rewtraversal scheme requires the addition of a new generator.

In a recent approachvén den Band et al. 2003, traversal functions are supported
directly by the rewriting engine, avoiding the compile-time overhead of generated rules.
The transformation language TXC¢rdy et al, 1995 provides a similar approachig. 11
illustrates the approach applied to the problem of normalization to disjunctive normal form.
The specification is the same as thatFig. 4, but thednf function has been declared
a travesal function in the signature. The attributeaversal (trafo, bottom-up,
continue) declares thatinf performs a bottom-up travesl over its argument. This
means that the function is first applied to the direct subterms (and, thus, recursively to
all subterms) before it is applied at the term itself. Rules need to be declared only for those
constructs that are transformed. The default behavior is to reconstruct the term with the
original construtor. In the example this reduces the specification of the traversal from six
to two rules. In general, for a signature withconstructors onlyn of which reed to be
handled in a special way, this sawes- mrules.

There is still some overhead in the specificatiofiig. 11in the form of thedispatching
from the traversal function to the smart constructors and the default rules for the smart
constructors. A more concise specification is the ond-ign 12 in which no smart
constructors are used. In this style only onke ig needed for each ofital rule. However,
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signature
constructors
dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)}
rules
AND1 : dnf (And(Or(x,y),z) -> dnf(Or(And(x,z)),And(y,z))
AND2 : dnf(And(z,0r(x,y)) -> dnf(0r(And(z,x)),And(z,y))

NOT1 : dnf(Not(Not(x)) -> x
NOT2 : dnf(Not(And(x,y)) -> dnf(0r(Not(x),Not(y)))
NOT3 : dnf (Not(Or(x,y))  -> dnf(And(Not(x),Not(y)))

Fig. 12. Disjunctive normal form with traversal function (Version 2).

the problem with this style is that the recursive calls in the right-hand sides of the rules
will completely retraverse the tree (the arguments of which are already normalized) before
applying one of the rules.

The traversal strategy of a traversal function is based on choices in several aspects of a
traversal. First of all a traversal can b&ansformation(trafo) that cthanges the shape of
a tree ad/or aaccumuator (accu) that collects information during the traversal. Secondly
thenode visiting ordeof a traversal can be eithebp-down andbottom-up. Findly, the
traversal can stop as soon as a rule has been applied succegsfally), or can continue
(continue).

The advantage of traversal functions is that default traversal behavior does not need to
be implemented manually. This sinilar to the case of default visitors in object-oriented
programming or folds with updatable fold &lgras in functional programming. However,
the gproach has a number of limitations.

First of all, there is no separation of rules from strategies. A rule is bound to one specific
traversal via the traversal function. It is not possible to reuse rules in different traversals,
for example, to normalize under different rule sets. Furthermore, rules are intertwined with
strategies, making it hard to distinguish the basic transformation rules from the traversal
code.

Secondly, although it is possible to implement a wide range of traversals, this
requires gluing toge#r the basic traversals in an ad hoc manner. That is, traversal
schemata are not first-class citizens of ASFDF. It is not possible in the language
to give futher abstractions for alternative or composite traversal schemata, or for more
elaborate functionality involving traversals. That would require extending the rewriting
engine interpreter and compiler. Such extensibility is desirable for building libraries
with language independent strategies. Faregle, defining substitution without variable
capture is similar for many languages, given the shape of variables and variable bindings.
Extrapolating the traversal function approach, more and more such abstractions will be
captured as additional primitives in the rewrite engine. At some point it will make sense to
extend the language with a mechanism for specifying such abstractions generically.

7.2. Folds

Folds or catamorphismén functional languages are an approach to traversal that does
admit reuse and definition of new traversal schemes. Instead of redefining the traversal
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for each transformation, a higher-order definition of a traversal is defined, which can be
instantiated for different applications. For example, the fold for lists is defined as

foldr(n, ¢) : [ ->n
foldr(n, c) : [x | xs] -> <n>(x, <foldr(m, c)> xs)

and can be used for the definition of thep function, which applies a functiohto each
element of the list:

map(f) = foldr([], \ (x, xs) -> [<f>x | xs] )

Thus, a fold performs a bottom-up traversal applying to the result of traversing the
subnodes, a function corresponding to the original constructor.

This idea can be generalized to arbitrary data types. For example, the fold for lambda
expressions is defined as

foldexp(var, app, abs)
Var(x) -> <var> x
foldexp(var, app, abs)
App(el, e2) -> <app>(<foldexp(var, app, abs)> el,
<foldexp(var, app, abs)> e2)
foldexp(var, app, abs)
Abs(x, e) -> <abs>(x, <foldexp(var, app, abs)> e)

This function can be used in the definition of free variable extraction, for example

free-vars =
foldexp(id, union, \ (x,xs) -> <diff>(xs, x))

However, it is not usable for bound variable renaming, since no information is passed down
the tree.

There are other shortcomings as well. Folds and similar traversals define a full traversal
over the tree. Its not always appropriate to apply a transformation uniformly toethiére
tree. Furthermore, thfunction is parameterized with a functifor eachconstructor. This
not feasible for realistic abstract syntax trees with tens or hundreds of constructors, since it
requires the specification of replacement fiimies for each constructor in the signature of
the dataype. Updatable fold algebrasgmmel et al. 2000 are an attempt at mitigating
the number of parameters by storitg constactor functions in a record.

7.3. Traversal with congruence operators

Congruenceperators, introduced iBLAN and adopted by Stratego, provide more fine
grained primitives for composing traversals. For eaedry constructoC a congruence
strategyoperator of the fornC(s1, .. .,sn) is available. It applies to terms of the form
C(t1,...,tn), applying eachsi to the correspondingci. An exampleof the use of
congruences is the operatotp (s)

map(s) = [1 + [s | map(s)]

which applies a strategyto each element of a list.
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Congruence operators are very useful for defining traversals thaspaoific for a
language. This is used for example in the definition of a traversal that follows the control
flow in an interpreterolstra and Visser2009. For example, given ruleBeta for beta-
reduction, andubsVar, SubsApp, andSubsAbs for subditution, the strategy

eager-eval = rec e(

try(App(e, e) + Let(id, e, e))

; try((Beta + SubsVar + SubsApp + SubsAbs); e)
)

defines eager evaluation for lambda expmssj i.e., that in which inner redices are
reduced first, but where no reduction under lambdas is performed. A variation on this
strategy is

lazy-eval = rec e(

try(App(e, id) + Let(id, id, e))

; try((Beta + SubsVar + SubsApp + SubsAbs); e)
)

which defines lazy evaluaton, i.e., where no reductions of functioarguments
are performed. This approach is alsoedsin the specification of data-flow
optimizations OImos and Visser2002 andpattial evaluation Qlmos and Visser2003.
Another application of congruenaperators is in the definition oformat creckers
used to check syntactic properties of terms. For instance, the following definitions

conj(s) = And(conj(s),conj(s)) <+ s
disj(s) = Or(disj(s),disj(s)) <+ s
dnf disj(conj(Atom(id) + Not(Atom(id))))

define the strateggnf, which checks that a propositional formula is in disjunctive normal
form (Visser 1999.

The difference between folds and congruence operators is that the former define a
complete recursive traversal over a treeegvdas the latter define only a one level descent
into the subtrees. This entails that diffet traversals can be composed from the same
basic building blocks. Similarly to the folds case, however, it is still necessary to use the
congruence operators for all constructors which should be traversed.

7.4. Generic traversal strategies

The approaches to traversal discussed previously in this section all improve some aspect
of traversal specification, but have shortcomings as well. Traversal functions are generic
in the tree structure, but they are whole tresvérsals and do not admit definitions of new
traversal schemata. Folds are parametnit,rtot generic in the tree structure and define
whole tree traversals. Congruence operators are fine grained, i.e., partial tree traversals,
but are not generic in the tree structure, hence only reusable for a specific language. The
solution to traversal introduced in Stratedauttik and Vissey 1997 Visser et al.1998
Visser 2004 combines the advantages of these approaches. The key to this solution is
the notion of agenericone-level traversal operatpwhich can be used to freely compose
many differengeneric traversal strategig$ uttik and Visser 1997).
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strategies
topdown (s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s
downup (s) = s; all(downup(s)); s
downup2(sl,s2) = sl1; all(downup2(sl,s2)); s2
oncetd(s) = s <+ one(oncetd(s))
onecbu(s) = one(oncebu(s)) <+ s
alltd(s) = s <+ all(alltd(s))
sometd(s) = s <+ some(sometd(s))
somebu (s) = some(somebu(s)) <+ s
innermost(s) = bottomup(try(s; innermost(s)))

Fig. 13. Generic traversal strategies.

A generic one-level traversal operator is similar to a congruence operator, which applies
strategies to the immealie subterms of a term. The difference is that generic traversal
operators are indifferent to the constructor of the term and uniformly apply a strategy to
one or more of the subterms. For example, the traversal operbtds) appliess to all
direct subtermef a constructor applicatio®(t1, . . . ,tn). The application succeeds with
a new termc(t1’,...,tn’) constructed using the same constructor and the results of
transforming the subterms with the strategyf those transformations succeed. Otherwise,
the application fails. Similar one-level traversal operatorsoakeandsome. The stategy

one (s) appliess to onedirect subterm of a constructor applicatiofit1, . ..,tn). The
strategysome (s) appliess to some of the direct subterms of a constructor application
Cc(t1,...,tn),i.e,to atleast one and as many as possible.

The genericity and fine granularity of these operators makes it possible to define a wide
range of generic full traversals. For example, consider the traversal definitiéig. 3.

The strategytopdown (s) defines a pre-order traversal visiting terms before descending
to its subterms. The strate@pttomup (s) defines a post-order traversal, visiting a term
after visiting its subterms. The strated@ywnup (s) visits subterms on the way down and
on the way up. The strategmcetd (s) tries to findoneapplication ofs somewhere in the
term starting at the root working its way dows;<+ one (oncetd(s)) first attempts to
applys, and ifthat fails an application of is (recursively) attempted at one of the children
of the subject term. If no application is found the traversal fails. The travetdald (s)
findsall outermost applications ef and never fails.

These generic traversal strategies are parameterized with the actual transformation to
be applied to the subtermBig. 14 gives several examples of uses of the strategies of
Fig.13. The stréegiesdisj-nf and conj-nf define normalizations to disjunctive and
conjunctive normal form, respectively, using the rules fréig. 3. The eval strategy
performs constant folding on propositionatifulae using the standard truth rufegnot
shown hee). The strategied&esugar andimpl-nf define two desugarings of propositional
formulae, i.e., elirmation of implication and equivalence, and desugaring to implicative
noma form using standard elimination rules (not shown here). These definitions illustrate
how rules from the same collection can be reused in different transformations, and
likewise, a generic strategy such asnermost can be instantiated to compose different
transfomations.



864 E. Visse / Journal of Symbolic Computation 40 (2005) 831-873

rules
T : And(True, x) -> X ...
T : Or(True, x) -> False ...
DefI : Impl(x, y) -> Or(Not(x), y) ...

strategies
disj-nf = innermost(DAOL + DAOR + DN + DMA + DMO)
conj-nf = innermost(DOAL + DOAR + DN + DMA + DMO)
eval = bottomup (repeat (T))
desugar = topdown(try(Defl + DefE))
impl-nf = topdown(repeat(DefN + DefA2 + Def(01 + DefE))

Fig. 14. Various transformations on propositional formulae.

Using strategy combinators with one-level traversal operators, highly generic strategies
can be defined. The Stratego library defines a wide range of generic strategies including
the travesal strategies irFig. 13. In addition the library defines a number of higher-
level language-independent operations such as Yegiable collection, bound variable
renaming, capture-free substitution, syntactidiaation, and computing the spanning tree
of a graph. These operations are parameterized with the relevant language constructs, but
work generically otherwiseVisser 2000).

Traversalgan be combined in any way necessanr. &ample, the nested function call
lifting strategy fromSection 6.4s defined as

lift-nested-calls =
bottomup (try(IntroduceTemp) )
; innermost(LetFromApp <+ LetVarInLetVar <+ LetFromLet)

where the one-shot strategy corresponds to a one-pass bottom-up traversal and
normalization to canonical form is implemented withnermost.

A problem of some generic strategies is that they lack knowledge of the computations in
their argument strategies, which may causeribgad. For example, the innermost strategy
in Fig. 13 renormalizes arguments of left-hand sides of rules when they are used in the
right-hand side. Idohann and Vissgi2001) it is shownhow this can be repaired by fusing
the generic innermost strategy with its arguments.

The approach of generic traversal based on one-level descent operators has been
adopted in PrologL@mmel and Riedewa]d2001), Haskell Ld&mmel and Visser2002
Lammel and Peyton Jone®003, and Java\(isser 200]). An overview of thestrategic
programming approach is described ihdmmel et al. (2009. A comparison of this
approach withadaptive programmings given inLammel et al.(2003. Staic typing is
an issue in a language with generic traversal. Solutions to this problem are explored in
Lammel (2003 for the setting of rewriting strategies, andlidmmel and Vissef2002
for functional programming.

8. Context-sensitiverules

Another problem of rewriting is the contekiee nature of rewrite rules. A rule has only
knowledge of the construct it is transforming. However, transformation problems are often
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context-sensitive. For example, when iiig a function at a call site, the call is replaced

by the body of the function in which the actyzarameters have been substituted for the
formal parameters. This requires that fbemal parameters and the body of the function

are known at the call site, but these are only available higher up in the syntax tree. There
are many similar problems in program transformation, such as bound variable renaming,
typechecking, constant and copy propagation, and dead code elimination. Although the
basic transformations in all these applications can be expressed by means of rewrite rules,
they need contextual information. This section explores solutions in this area.

8.1. Parameterized strategies

The usual solution to this problem is to extend the traversal over the tree (be it hand-
written or generic) such that it distributes the data needed by transformation rules. For
exampe, traversal functions in ASFSDF (van den Band et al, 2003 can be declared to
have an accumulation parameter in whichadzdn be collected. Leguage independent
definitions of operations such as bound variable renaming in Stratégsef 2000 cap-
ture a generic tree traversal schema that takes care of distributing an environment through
atree. The disadvantage of these solutions isttieatraversal strategy becomes data heavy
instead of just handlingantrol flow. That is, all traversal functions become infected with
additional parameters carrying context information. Generic solutions break down when
multiple environments are needed, to handle multiple name spaces, for instance.

8.2. Contextual rules

Another solution is the use of contextual rulésppel and Jim 1997 Visser et a|.
19998. A contextual rule containsontext variablesof the forme1[e2] indicating an
expressionel containingan occurrence of another expressih This dlows replacing
terms deeply nested in a term structure. For example, the rule

InlineVar :
|[ let var x := el in e2[x] end 1| ->
|[ let var x := el in e2[el] end 1|

expresses the substitution of an occurrencerof a let-bound variable with its value
el.

Contextual rules@mbine the context and the local transformation in one rule by using
a local traversal that applies a rule that reuses information from the context. Indeed, in
Stratego contextual rules adesugared to rules with a local traversal. Thus, the rule above
corresponds to the non-contextual rule

InlineVar :
|[ let var x := el in e2 end 1| ->
|[ let var x := el in e2’ end ]|

where <oncetd((|[ x ]| -> |[L el 11))> e2 => e2°

The problem with this approach is that it performs an extra traversal over the abstract
syntax tree, leading to quadratic complexity in the case the contextual rule is applied as
part of a traversal over the same tree that the context accesses.
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DeclareFun =
?|[ function f(xs) : t =e 11;
rules(
InlineFun :
|[ £f(es) 1| -> |[ let ds in e end ]|
where <zip(BindVar)> (xs, es) => ds
)
BindVar :
(ILx:t]1l,e) >|[varx:t=¢el]l

Fig. 15. Dynamic definition of a function inlining rule.

8.3. Dynamic rules

In Visser(20013 theextension of rewriting strategies wistoped dynamic rewrite rules
was introduced. A dynamic rule is a normal rewrite rule that is defined at run-time and that
can access information from its definition context. For example, to define an inliner, a rule
that inlines function calls for a specific function can be defined at the point where the
fundion is declared, and used at call sites of the function, as illustrat&igirl5. The
DeclareFun strategy matches a function declaration and tthefinesa rule InlineFun,
which inherits from its context the formal parametets and the body of the function
definition e. Thus, when applying thénlineFun rule to a call of the specific function
£ for which the rule was defined it is replacedth a let expression binding the actual
parametersds) to the famal parameterscg) in the body of the functiow.

Dynamic rules are first class. Their application is under control of a normal strategy.
Thus dynamic rules can be applied as part of a global tree traversal. Rules can override
the definition of previously defined rules. Testrict the application of a dynamic rule to
acertain part of the tree, the live range of a rule can be determined by rule scopes. A rule
temporarily overmdden in a scope becomes visible again at the end of that scope. To hide
rules defined in outer scopes, rules can be undefined. Rules from outer scopes can also be
permanently overridden.

Dynamic rules turn out to be a very expressive extension of programmable
rewriting strategies and has many applications. Bravenboer and Visse(2002 it
is shown how the combination of user-definable, generic traversals in combination
with dynamic rules can be used to define the instruction selection strategies provided
by BURG. In Olmos and Visser(2002 it is hown how dynamic rules can be
used to define data-flow sensitive transformations on imperative programs. Other
applications include interpretatio@Istra and Visser2002), type checking, and partial
evaludion (Olmos and Visser2003

8.4. Regular path expressions

Another approach to context-sensitive rules is the usegflar path expressionas
conditions in rewrite rulesSjttampalam et gl.2004. For example, e fdlowing rule
expresses constant propagation:

ConstProp :
Iy :=elx] 11 > I[y :=-elc] 11



E. Visse / Journal of Symbolic Computation 40 (2005) 831-873 867

where fromentry ({}*;
{?I1[ x := c 1|; <comnst> c};
{not (def (x)) }*;
{use(x)})

by defining a rewrite on an assignment with an occurrence of a variable which is assigned
a wngant. This fact is expressed by the path expression in the condition of the rule, which
states that there is a path from entry to the current node with an assignment assi¢gming
x and no redefinition of in any node in between.

The applicability of such rewrite rules depends on an analysis of the entire procedure in
which the asginment is embedded. In the approach describ&ittampalam et a(2004
this is done automatically by the transformation system while traversing the tree. On every
application of a rule the analysis needs to be recomputed. To make this feasible the analysis
is performed incrementally, by maintainifigr each node in the tree the partial matches
to the regular epression. Thus, the reanalysis needs only to be performed on the path to
the ot of the tree. For this purpose the generic traversal strategies use the zipper data
structure Huet 1997 for the tree representation to allow flexible navigation through the
tree.

9. Discussion
9.1. Related work

Program transformation is a large researamawith a long history. This survey gives
an overview from the perspective of strategies in rule-based program transformation
systems. In this overview many related aspects have been touched on. For each
of these aspects more thorough surveys exist. Introductions to term rewriting in
general includeDershowitzand Jouannaud1990, Baader and Nipkow(1998 and
Terese (2003. A survey of rewriting-based languages and systems is given in
Heering and Klint (2003. The use of equations and rewriting for transformation is
discwssed in Field et al. (1998. There are special surveys for application areas of
program transformation such as transformational programntiegther 1987 Partsch
1990, reverse engineeringChikofski and Cross 199Q van den Band et al. 1997,
and application generatiorS(aragdkis and Batory 2000. Patsch and Steinbriiggen
(1983 is asuvey of early transformation systems. The 1999 Workshop on Software
Transfomaion Systems $ant’Anna et al. 1999 contains a series ofricles reflecting
on past experience with transformation systems. The Program Transformation Wiki
(Visser et al. 2009 gives an overview of many types of program transformations, a
list of transformation systems, arfhs elaborate special sections @ecomidation and
reverse engineeringvan Deuren and Visser2002. Then there are areas that are not
discussed in this survey, including graph transformation systems, abstract interpretation,
reflective and generative approaches, and typing and correctness of transformation rules
and strategies. Finally, this survey has concentratedhathanismsfor transformation
not on specific transformations. An earlier version of this survey appeared as
Visser(2001h).
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9.2. Conclusion

Rule-based program transformation is giin the right direction. With recent
developments in transformation languagesertgpes of transformations can be expressed
in rule-based formalisms. Recent additionstsas dynamic rules and regular path queries
drastically extend the expressiveness. Thus, an increasing number of transformation
problems can be expressed concisely in a rule-based setting. Specification of control over
rules while maintaining separation of rules anttagegy is crucial. This does not mean
that these solutions can always be used in production compilers, say, since dedicated
implementations are still much faster. However, with the improvement of implementation
techniques, but also just with the increase in computing power available, the size of
problems that can be addressed by rule-based solutions increases. The main challenge
for research in rule-based program transformation is the further expansion of the types
of transformations that can be addressed in a natural way by accumulating the right
abstractions.
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