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a b s t r a c t

Stratego/XT is a language and toolset for program transformation. The Stratego language
provides rewrite rules for expressing basic transformations, programmable rewriting
strategies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations, thus supporting the development of
transformation components at a high level of abstraction. The XT toolset offers a collection
of flexible, reusable transformation components, and tools for generating such components
from declarative specifications. Complete program transformation systems are composed
from these components.

This paper gives an overview of Stratego/XT 0.17, including a description of the Stratego
language and XT transformation tools; a discussion of the implementation techniques and
software engineering process; and a description of applications built with Stratego/XT.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Automatic program transformation and generative programming aimat increasing programmer productivity by automating
programming tasks using some form of automatic program generation or transformation, such as code generation from a
domain-specific language, aspect weaving, optimization, or specialization of a generic program to a particular context. Key
for achieving this aim is the construction of tools that implement the automating transformations. If generative programming
is to become a staple ingredient of the software engineering process, the construction of generative tools itself should be
automated as much as possible. This requires an infrastructure with support for the common tasks in the construction of
transformation systems.

Stratego/XT is a generic infrastructure for creating stand-alone transformation systems [47,52]. It combines Stratego, a
language for implementing transformations based on the paradigm of programmable rewriting strategies, with XT, a
collection of reusable components and tools for the development of transformation systems. In general, Stratego/XT is
intended for the analysis, manipulation and generation of programs, though its features make it useful for transforming any
structured documents.

Reusability at all levels of granularity has been a leading principle in the design and implementation of Stratego/XT [47].
First, the focus on transformation components strongly promotes reuse of large-grained components. In many cases, users of
Stratego/XT do not start with the development of a parser, but can immediately get started with the actual transformation.
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Fig. 1. Reuse layers in Stratego/XT.

Stratego/XT has a varied selection of actively developed front-ends (Section 5). Second, the use domain-specific languages
(DSLs) for different phases of a transformation system is a substantial time saver. In addition to the Stratego language itself,
which is a DSL for transformation proper, Stratego/XT provides and/or integrates DSLs for aspects such as syntax definition,
pretty-printing, term schemas, and unit testing. In this way, implementations are more abstract, easier to maintain, and
easier to read. Third, the extensive Stratego library, with its generic traversals, generic transformations for scoping, control-
flow and data-flow and many other convenience functions for program transformation allows developers to write their
transformations concisely.

The component layers in Fig. 1 illustrate the organization of Stratego/XT from the point of view of reusability, featuring
five levels of components ranging from completely generic via language specific to application specific.

(1) At the bottom layer is the substrate for a transformation system, that is the data representation and exchange format,
forwhichweuse the Annotated TermFormat (ATerm) [36] as basis, andXMLwhere necessary to communicatewith external
tools.

(2) The foundations of any transformation system are syntax definition and parsing, pretty-printing, program
transformation, and tool composition. The syntax definition formalism SDF provides modular syntax definition and parsing,
supporting easy combination of languages. The pretty-printing package GPP supports rendering structured program
representations as program text. The program transformation language Stratego supports concise implementation of
program transformations bymeans of rewrite rules and programmable strategies for control of their application. Finally, the
XTC library supports composition of transformations implemented as independently executable tools. These are all generic
facilities that are needed in any transformation for any language.

(3) In the middle is a library of transformations and transformation utilities that are not specific for a language, but not
usable in all transformations either. The Stratego Libraries provide a host of generic rewriting strategies and utilities for
generating parts of a transformation system.

(4) Near the top are specializations of the generic infrastructure to specific object languages. Such a language-specific
environment consists of a syntax definition for a language along with utilities such as semantic analysis, variable renaming,
and module flattening.

(5) Finally, at the top are the actual transformation systems, such as compilers, language extensions, static analysis tools,
and aspect weavers. These tools are implemented as compositions of tools from the lower layers extendedwith components
implementing the specific transformation under consideration.

Stratego/XT has been used to build many types of transformation system, including compilers, interpreters, static
analyzers, domain-specific optimizers, code generators, source code refactorers, documentation generators, and document
transformers. These systems involved numerous types of transformation, including desugaring of syntactic abstractions;
assimilation of language embeddings [17]; bound variable renaming; optimizations, such as function inlining; data-
flow transformations, such as constant propagation, copy propagation, common-subexpression elimination, and partial
evaluation [14,34]; instruction selection [16]; and several analyses including type checking [15] and escaping variables
analysis.

This paper gives an overview of the design, implementation, and use of Stratego/XT 0.17. Section 2 outlines the technical
foundations of the Stratego language and describes the compiler and interpreter that implement it. Section 3 describes
the transformation infrastructure provided by the XT tool set. Section 4 examines the implementation techniques and
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methods used in the construction of Stratego/XT, which is used to implement itself. Furthermore, the tool supported
software engineering process, including automatic release management and user support, is described. Section 5 outlines
the experiencewith using Stratego/XT in concrete projects. Section 6 discusses previous and relatedwork. It should be noted
that this paper provides an overview of a large system. A detailed and complete technical discussion is beyond the scope of
this paper. Where applicable, we refer to previous work for more details.

2. The Stratego language

In transformation systems built with Stratego/XT, transformation components are implemented using the Stratego
language [51,47,14]. Stratego provides rewrite rules for expressing basic transformations, programmable rewriting
strategies for controlling the application of rules, concrete syntax for expressing the patterns of rules in the syntax of the
object language, and dynamic rewrite rules for expressing context-sensitive transformations.

2.1. Terms

Stratego programs transform first-order terms. In particular, Stratego programs transform ATerms [36], a term format
designed for exchange of structured data between transformation programs, which is supported by libraries for internal
(in memory) representation of terms. Essentially, Stratego terms are isomorphic with structures according to the following
definition:

t := c(t1, . . . , tn)

that is, a term is an application of a constructor c to zero or more terms ti. In practice, the syntax is a bit richer, i.e., terms (or
rather pre-terms) are defined as

pt := s|i|f |c(t1, . . . , tn)|[t1, . . . , tn] | (t1, . . . , tn)

including special notation for string (s), integer (i), and float (f) constants, and for lists ([]), and tuples (()). Furthermore,
terms can be extended with a list of annotations, which are themselves terms.

t := pt|pt{t1, . . . , tn}.

Annotations can be used to add additional (semantic) information to a term.
Terms are equivalent to trees, i.e., directed acyclic graphs with ordered outgoing edges, and are used to represent

parse or abstract syntax trees of programs, or any other structured documents. For example, Call("square",
[Plus(Var("x"), Int(3))]) is a typical term representation of an expression square(x + 3). Stratego is agnostic
to the producers and consumers of terms, i.e., Stratego is not concerned with turning programs into terms, or vice versa. In
the next section we discuss how the XT tools support the creation of parsers and pretty-printers, which can be connected
to Stratego transformations.

Stratego requires the declaration of term constructors used in a program bymeans of a signature. A signature defines for
each constructor the result type (sort) and the types (sorts) of its arguments. For example, the following signature declares
a couple of constructors typical in an expression language:

signature
sorts Id Exp
constructors

Var : Id -> Exp
Plus : Exp * Exp -> Exp
If : Exp * Exp * Exp -> Exp.

The current version of Stratego only checks that constructors are declared and have the right arity. Argument types are not
checked statically. Stratego also supports overlays, a mechanism for declaring pseudo-constructors [43]. That is, constructors
defined in terms of other constructors. For example, the definition of a short-circuit disjunction operator, Or, can be defined
in terms of the If constructor by means of the following overlay definition:

overlays
Or(e1, e2) = If(e1,True(),e2).

This is essentially a macro definition for constructors.
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2.2. Term rewrite rules

Rewrite rules are the basic units of transformation. A rewrite rule has the form R : p1 → p2, where R is the name of the
rule, p1 the left-hand side pattern of the rule and p2 the right-hand side pattern. A pattern is a termwith variables. For example,
the rule

PlusZero : Plus(e, Int(0)) -> e

defines that 0 is a right unit for addition. Here e is a term variable.
Applying a rule R to a term t entails matching p1 against t, binding the variables in the pattern. If they match, the rule

replaces t with the instantiation of the right-hand side p2, replacing its variables with the terms found during matching.
Pattern matching in Stratego is basic first-order matching (one way unification).

Conditional rewrite rules impose a further constraint on the applicability of a rule. A conditional rule R : p1 → p2 where s
applies to a term if the left-hand side p1 matches and the condition s succeeds. An example of a conditional rule is the
following constant folding rule:

EvalBinOp : Plus(Int(i), Int(j)) -> Int(k) where k := <add>(i,j)

which evaluates the arguments of an addition operator, replacing the additive expression with the result of the evaluation.

2.3. Concrete object syntax

While terms are a fine representation for programs, termpatterns for realistic program fragmentsmay become unwieldy.
Therefore, Stratego supports the use of concrete syntax [46] in the patterns of rewrite rules. That is, rather than expressing
abstract syntax tree patterns using nested constructor applications, one can use the concrete syntax of the object language.
For example, the rewrite rules we saw above can be written as follows using concrete syntax:

PlusZero : |[ e + 0 ]| -> |[ e ]|
EvalBinOp : |[ i + j ]| -> |[ k ]| where k := <add>(i, j).

To realize concrete syntax embedding, the syntax of Stratego is extended with the syntax of the object language. This
embedding is completely configurable, including the notation for quotation, and can be declared to the compiler as a plugin
using the declarative syntax definition formalism SDF. The embedding may also include the declaration of meta-variable
schemes, such as used in the example above, where e is a meta-variable for expressions, and i, j, and k are meta-variables
for integer constants. The compiler translates rules using concrete syntax to regular rules using abstract syntax terms.

2.4. Programmable rewriting strategies

Traditional term rewriting is the exhaustive application of a set of rewrite rules to a term until no more rules apply.
However, this procedure is usually not adequate for program transformation. One rulemay be the inverse of another, leading
to non-termination, or different rule application ordersmay give different results (non-confluence). Stratego sidesteps these
issues by allowing the programmer to declare the order of application using programmable rewriting strategies [51].

A strategy is an algorithm for traversing a term and applying selected rules in selected places in a selected order. The basic
strategy is a single rule application, indicated by the name of the rule, which transforms a term at the root. When traversal
comes into play, ‘the root’ at which a strategy applies shifts. Therefore, in Stratego we use the notion of ‘the current term’
to indicate the (sub-) term at which the algorithm is currently focusing. Since a rule may fail to apply to a particular term
(when the left-hand side does not match or the condition fails), a strategy may fail as well.

Rules are combined intomore complex strategies bymeans of combinators. The fundamental combinators are sequential
composition and deterministic choice. Sequential composition s1; s2 applies first s1 to the current term and then s2 to the
result. Deterministic choice s1 <+ s2 first tries to apply strategy s1 and if that fails, applies strategy s2. The basic strategies
id, which always succeeds, and fail, which always fails, are useful in combination with these combinators. Stratego
programs can introduce new user-defined combinators through strategy definitions. For example, consider the following
two definitions:

try(s) = s <+ id
repeat(s) = try(s; repeat(s)).

Thetry(s) strategy tries to apply a strategys or else defaults to the identity strategy. Therepeat(s) strategy repeatedly
applies s to the current term until it is no longer applicable. Note that strategy definitions can be recursive. Furthermore,
note that the current term the strategies apply to is implicit in these definitions.

In order to traverse a term and control where in a term transformations should be applied, Stratego provides traversal
combinators. The basic idea underlying generic term traversal is the provision of one-level traversal combinators, which apply
a strategy to the direct subterm of a term. The most prominent of these is the all combinator, which applies its argument
strategy to all direct subterms of a term. It is typically used in definitions such as the following:

topdown(s) = s; all(topdown(s)).
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This definition introduces the generic traversal topdown(s), which traverses an entire term and applies strategy s in
pre-order to its subterms. If s fails at any point, so does topdown. topdown(s <+ id) will traverse the tree, apply s
wherever possible, and ignore any failures.

Rules are not really the atomic strategies of Stratego; they are rather strategy molecules, which are broken down into
the atomic operations of matching a term against a pattern (?t) and instantiating (building) a pattern (!t). The Stratego
compiler translates higher-level constructs such as rewrite rules into these lower-level operations. However, they are also
directly available to the Stratego programmer.

Stratego is not the only language which uses the concept of strategies. Visser’s survey of strategies in rule-based
transformation systems provides an overview of various approaches to programmable strategies [49].

2.5. Dynamic rewrite rules

Rewrite rules are context-free, i.e., only have access to the term to which they are applied. To express context-sensitive
transformations, Stratego has introduced dynamic rewrite rules [14,34], which allow the definition of rewrite rules at run-
time. Such rules can inherit information from the context inwhich they are defined and propagate this to the locationwhere
they are applied. For example, consider the following definition:

subs-assign = ?|[ x := e ]|; rules( Substitute : |[ x ]| -> |[ e ]| ).

The subs-assign strategy first matches the current term against a term pattern for an assignment, binding the meta-
variables x and e. Subsequently, a new dynamic rule Substitute is defined, rewriting the variable in the left-hand side
of the assignment to the expression in its right-hand side. When the Substitute rule is later (in a different location in
the term) applied to an occurrence of the variable x, it is replaced by the expression e. In addition to the definition of new
rules, Stratego supports a number of other operations on dynamic rules including the undefinition of rules, and limiting the
scope of rule definitions. For a discussion of these features see [14,34].

2.6. Example

The features of Stratego are illustrated in Fig. 2, which defines a flow-sensitive, intraprocedural constant propagation
transformation for an imperative language with assignments and structured control-flow, as illustrated by the
transformation in Fig. 3. The rewrite rules EvalBinOp and EvalIf express constant folding, that is, replace operator
applications with (partially) constant arguments with the result of their evaluation. Typically, a constant propagation
transformation will have a large number of such rules.

The propconst strategy traverses the statements in a function body in order to realize constant propagation. The key
operation is the application of the PropConst rule to replace variable occurrences by their statically constant value, if
they have one. PropConst is a dynamic rule defined by the propconst-assign strategy, as will be discussed shortly.
If the current term is not a constant valued variable, the other alternatives of the propconst strategy are applied. The
first three are special cases, which will be discussed shortly. The final case is the default, which applies a generic traversal
combinator in order to applypropconst to all subterms. Eventually, this has the effect of a bottom-up traversal of the term.
After this recursive traversal, an application of the evaluation rules is used to achieve constant folding. The other elements
of the choice handle special cases. The propconst-assign strategy defines the dynamic rule PropConst to rewrite
occurrences of the variable x to the constant right-hand side of the assignment. In case the expression is not a constant, the
rule is undefined to prevent propagation of another value.

The propconst-if and propconst-while strategies define flow-sensitive propagation through control-flow
constructs [14,34]. The key combinator here is dynamic rule intersection s1 /R\ s2, which applies the strategies s1 and s2
sequentially to the current term, each with a copy of the dynamic rule set for R. After applying both strategies, the resulting
rulesets for R are intersected. In propconst-if this is used to apply the propconst strategy to the two branches of the
if-then-else with the same initial ruleset.

2.7. Modules and reuse

Stratego has a simplemodule system that allows programs to be divided into reusable chunks.Modules define signatures,
rules, and strategies and can import other modules via an import clause (Fig. 2). Modules can be organized into hierarchies.
For example, Fig. 4 shows the structure of the Stratego Library. Version 0.17 does not support hiding of rules and strategies
(other than using local let bindings). Namespace management is planned for one of the next releases.

Modules provide a coarse-grained method for dividing a program into files. Reuse with finer granularity is provided
by the separation of rules and strategies. Modules can be used to provide collections of useful rules and strategies,
which can be combined in many different compositions. Since rules are named, they can be selected separately in any
transformation. Generic strategies capture a particular transformation strategy that can be instantiated with appropriate
transformation rules. For example, the constant propagation strategy in Fig. 2 can be refactored into a generic forward data-
flow transformation strategy, parameterized with the specifics of a transformation [34].
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Fig. 2. Flow-sensitive constant propagation.

Fig. 3. Example of flow-sensitive constant propagation.

2.8. Stratego compiler

The primary method for running Stratego programs is via compilation. The Stratego Compiler strc translates Stratego
programs to C programs and uses gcc to compile these to executable programs. The C programs generated by strc rely
on the ATerm library [36] for the internal and external representation of terms, and for garbage collection. strc is a whole
program compiler, which entails that all importedmodules are read and translated to C. To reduce compile-time and the size
of compiled programs, Stratego supports a formof separate compilation through the use of external definitions, which declare
strategies that are implemented in a separately linked library. The compiler has a separate mode for compiling a collection
of modules to a shared library and a module with external definitions to be imported by client applications (or libraries).
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Fig. 4. Structure of packages in the Stratego/XT library.

2.9. Stratego shell

Compilation is the normal mode for development of transformation systems with Stratego. Indeed, we usually do not
invoke the compiler from the command-line ‘by hand’, but have an automated build system based on (auto)make to build
all programs in a project at once. For learning to use the language this can be somewhat laborious. Therefore, we have
also developed the Stratego Shell, an interactive interpreter for the Stratego language. The shell allows users to type in
transformation strategies on the command-line and directly see their effect on the current term. While this does not scale
to developing large programs, it can be instructive to experiment while learning the language.

2.10. Stratego library

The Stratego Library was designed to contain a good collection of strategies, rules and data types for manipulating
programs. However, the library also defines standard data types, such as lists, strings, hashtables, sets, file and console
I/O, directory manipulation and more. The organization of the Stratego Library is hierarchical. At the coarsest level of
organization, it is divided into packages, named with paths such as collection/list. Each package in turn consists
of one or several modules. A module is a leaf in the hierarchy. It maps to one Stratego (.str) file, and contains definitions for
strategies, rules, constructors, and overlays.

Fig. 4 shows the package structure of the Stratego Library. The collection package implements standard collection
data structures. Thelang package provides support for high-level constructswhich are translated by the compiler to lower-
level constructs in combination with library calls. For example, dynamic rule definitions and invocations are translated to
regular Stratego code with calls to the dynamic rules library. The strategy package implements a large number of generic
strategies, including a large library of standard traversals. The system package implements the interface to external system
functionality such as input/output andprocessmanagement. Thetermpackage provides strategies for genericmanipulation
of terms. Finally, the util package provides assorted utilities.

The library consists of over 10 K lines of code divided over more than 60 modules defining over 1000 strategies and 300
rules, with an additional 4 K lines of code for unit tests. API documentation is automatically generated from the sources of the
library by xDoc1 and browsable online. The Stratego Library is available to programmers as a separately compiled shared
library. In addition to the base library, Stratego/XT makes available several other libraries implementing infrastructural
functionality for transformation systems. These libraries are the basis of the XT transformation components discussed in
the next section.

3. The XT transformation tools

In the previous sectionwe discussed the Stratego language used to implement transformations on (abstract syntax) trees.
XT complements Stratego with a set of small languages and tools needed to realize the other aspects of transformation
systems [27]. Each language and supporting tool set targets one clearly defined task, and is used to build components which
compose with each other to form a complete transformation system.

3.1. Syntax definition

Syntax definitions play a central role in XT, as they are used to specify the syntax of programming languages in a
declarative way, constituting the primary method for defining the structure of the data transformed by Stratego programs.
Several code generators found in XT take the syntax definition as input, derivingmultiple artifacts from the same definition.
Fig. 5 illustrates how various XT tools are used to derive (1) a parser which directly constructs an AST from a source code
file, (2) a Stratego signature (data declaration) for the AST, (3) a format checker for such ASTs (used to determine the
correctness of subsequent transformations on the AST), and (4) a pretty-printer for turning ASTs back into text. The Parser
and Pretty-Printer in the pipeline of Fig. 5 are entirely derived from the SDF definition. The Transform component
(which may be a series of components) is typically written in the Stratego language.

1 xDoc is a generic documentation generation system implemented in Stratego [41]. The tool is not part of the Stratego/XT distribution.
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Fig. 5. Transformation infrastructure.

The XT collection uses the syntax definition formalism SDF [42]. The SDF parsing technology provides a parser generator
and the scannerless, generalized-LR parser SGLR [42,39].2 SDF is different from most other grammar formalisms in that
it is highly modular and declarative. This allows the formalism to easily scale to large language declarations, but more
interestingly, it also allows for easy language composition and embedding (see Section 5 for a discussion). The following
module illustrates a few of the features of SDF:

module Expressions
exports

sorts Id Exp
lexical syntax

[A-Za-z][A-Za-z0-9]* -> Id
context-free syntax

Id -> Exp {cons("Var")}
Exp "+" Exp -> Exp {cons("Plus"),left}
"if" Exp "then" Exp "else" Exp "end" -> Exp {cons("If")}.

First, the language is modular, that is, syntax definitions can be divided into separate modules, which may be reused
independently. Next, the definition of lexical and context-free syntax are integrated into a single formalism. Finally,
constructor annotations on productions are used to define the mapping from concrete syntax trees to abstract syntax trees.

The XT collection extends the SDF tool set with a small, declarative language for unit testing syntax definitions, called
ParseUnit. For example, the following ParseUnit specification defines a test for the expression language defined above.

testsuite Expressions
options topsort Exp
test simple addition

"x + y" -> Plus(Var("x"),Var("y")).

The test defines the input string and the abstract syntax tree that should result from parsing it.

3.2. Exchange formats

The components in XT exchange data using one common format, Annotated Terms, or ATerms [36]. ATerms are used to
represent the parse trees produced by the SGLR parser,3 aswell as the abstract syntax trees exchanged between components
written in Stratego. In normal operation, the terms are exchanged and stored in compressed binary form, but they can be
converted to a textual representation which is readable to humans. Additionally, the XT collection contains tools which can
convert XML documents to ATerms and vice versa, which allows for interoperation with external tools.

3.3. Pretty-printing

We refer to the conversion of ASTs back into source code as pretty-printing. In principle, pretty-printing is the inverse of
parsing, and the construction of pretty-printers starts from the syntax definition. Pretty-printing consists of two stages. In

2 SDF and SGLR are developed at the CWI in Amsterdam, The Netherlands.
3 Parse trees contain information, such as whitespace, comments, and references to the grammar productions, that is not present in abstract syntax

trees. Stratego programs can manipulate any form of ATerm, including parse trees. Indeed, the transformation from parse tree to abstract syntax tree is
expressed in Stratego.
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the first stage an abstract syntax tree is converted to a declarative layout in the Box language [19]. The second stage is the
formatting of Box expressions to text (or some other display format such as HTML or LATEX). This last stage is implemented by
the standard box2text XT component. The first stage can be expressed in plain Stratego, or by means of a pretty-printing
table, effectively a DSL for pretty-printing. For example, the following rules define a pretty-printer for the Expressions
language:

[ Var -- _1,
Plus -- H[_1 KW["+"] _2],
If -- V[ V is=2 [ H[KW["if"] _1 KW["then"]] _2 ]

V is=2 [ KW["else"] _3 ]
KW["end"] ] ].

For each constructor in the abstract syntax amapping to a Box expression is defined, using numberedplaceholders such as_1
to refer to arguments of the constructor. Typical Box operators are H for horizontal composition, V for vertical composition,
and KW for keywords.

Fig. 5 indicates that a basic pretty-print table can be derived from a syntax definition. In order to achieve a pretty result,
the rules need to be adjusted; it is a rather hard problem to automatically create a set of formatting rules that is considered
to be pretty by humans. When the syntax definition is changed, a new pretty-printer must be generated. In order to reduce
the maintenance problem this causes, the new basic pretty-print table can be automatically merged with the old adjusted
pretty-print table, in order to keep all original rules that are not affected by the changes.

The declarative nature of SDF is also helpful in other aspects of pretty-printing. Priorities of operators are declared
explicitly, instead of encoded into the grammar productions. By using the parenthesizer generator in XT, accurate rules for
correctly parenthesizing source code text from ASTs can be automatically generated. As a result the pretty-printed source
code contains the minimal number of parentheses needed to preserve the semantics (operator ordering) of the AST.

As noted above, abstract syntax trees normally do not preserve whitespace and comments. For applications in which
source code is transformed and returned to the programmer (e.g., refactorings), layout preservation is generally important.
TheXT tools provide support for layout preservation. However, an inherent problemof any syntactic or semantic annotations
to abstract syntax trees is that their preservation throughout transformations requires attention in (potentially) all
transformation rules.

Another issue in pretty-printing is the placement of parentheses. While a conservative pretty-printer can avoid the issue
by adding excess parentheses, this leads to results that are not very readable. For example, the parentheses in (x + (3 ∗ y))
are not necessary. On the other hand, the parentheses in (x+3)∗ y cannot be removed without changing themeaning of the
expression. Parentheses are removed from the abstract syntax tree representation, since they are superfluous in a structured
representation. Therefore, they need to be reintroduced, only where needed, prior to translation to a Box expression. The
sdf2parenthesize tool generates from a syntax definition a transformation that introduces the required parentheses
to an abstract syntax tree.

3.4. Format checking

Syntax definitions are annotated with instructions for constructing abstract syntax trees from parse trees (through
constructor annotations). The syntax definition is therefore also a declaration of all valid abstract syntax trees. When
ASTs are later transformed, it is often useful to check if they are still structurally valid. The validity of tree structures
can be described using regular tree grammars [10]. A regular tree grammar describes context-free constraints over tree
structures. For example, the following regular tree grammar describes well-formed abstract syntax trees corresponding to
the Expressions language defined above:

regular tree grammar
start Exp
productions

Exp -> If(Exp,Exp,Exp)
Exp -> Plus(Exp,Exp)
Exp -> Var(Id)
Id -> <string>.

XT provides tools for deriving a regular tree grammar from a syntax definition, and a format checker which checks if a
given ATerm conforms to such a regular tree grammar. Signatures for use in Stratego programs as described in the previous
section are in turn derived automatically from regular tree grammars.

3.5. Component composition

A complete transformation system consists of a (potentially large) number of components, including parsers and pretty-
printers. Different transformations for the same programming languagemay share components. For example, Fig. 6 shows a
data-flow diagram for a Tiger interpreter and partial evaluator, which share several front-end components. Component
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Fig. 6. Composition of transformation tools into a transformation system.

composition can be realized in two ways. The preferred approach in current Stratego/XT is to define components as
separately compiled shared libraries providing a collection of transformation strategies. Such libraries can be combined
to form an application, which basically consists of a pipeline of calls to library strategies, and a command-line interface (for
which the Stratego library provides support).

Before separate compilation was available in Stratego/XT, a different approach to component composition was used,
which may still be applicable in some cases. In the transformation tool composition (XTC) approach, components are
compiled as stand-alone transformation tools (executables) that are run as separate processes. Communication between
tools is realized seamlessly using the ATermexchange format. TheXTC library provides support for calling a tool as a separate
process and arranging the exchange of terms with the called tool. The approach has two main problems. The first is that
calling components as separate processes requires knowledge of the location of the executable. (To some extent this problem
also exists for shared libraries, but the operating system infrastructure appears to be better organized for this scenario.) XTC
mitigates this problem by parameterizing a tool with a repository of tool locations, such that no absolute path names need to
be embedded in programs. Furthermore, themarshalling and unmarshalling of data for exchange is expensive. Despite these
disadvantages, the approach may still be valuable in situations where third-party tools not link-compatible with Stratego
programs need to be integrated in a transformation system. In Stratego/XT 0.17 most uses of XTC have been replaced with
shared libraries.

4. Implementation

Stratego and the XT tools are bootstrapped, that is, they are used in their own implementation. The 0.17 release of
Stratego/XT contains well over 50 K lines of Stratego code. In this section we reflect on the implementation techniques
and software engineering aspects of the project.

4.1. Domain-specific languages

Many of the tools and languages found in XT have been developed using Stratego/XT. For example, format checkers are
expressed in a regular tree grammar (RTG) language whose syntax is defined using SDF. The interpreter for this language is
implemented in Stratego, and makes heavy use of dynamic rules for run-time generation of evaluation rules. The same
story holds for the Box language and its interpreter. Not all the small languages are interpreted, however. In the case
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Fig. 7. Architecture of the Stratego Compiler.

of sdf2parenthesize, the tool which generates a parenthesizer for ASTs, the final product is always a stand-alone,
executable program. sdf2parenthesize will generate a Stratego program that, after compilation, can be applied to an
AST and produce another AST with proper parentheses added.

4.2. Bootstrapping the stratego compiler

The Stratego Compiler itself is also bootstrapped. The very first Stratego compiler was written in SML. That compiler
was then used to compile a rewrite of the compiler in Stratego. Since then the compilation of Stratego programs to C is
implemented as a series of transformations in Stratego. The syntax of Stratego is defined in SDF. Bootstrapping has proven
to be a good approach for developing the compiler and the language because it provides a realistic case study and a good
test case for the compiler. The source of the compiler comprises some 90 Stratego modules with a total size of some 9 K
lines of code. Additionally, over 140 test programs comprising 6 K lines of code are used to test the compiler.

The overall architecture of the compiler follows the traditional organization of a compiler into a front-end, optimizer,
and back-end (Fig. 7). These components are organized as a sequence of separate ‘source-to-source’ transformation tools.
Note that there aremultiple paths through the data-flow graph of the architecture, indicating that some transformations are
optional; these are applied with higher levels of optimization. The largest part of compilation consists of transformations
from Stratego code to Stratego code. Only the last transformation s2c translates Stratego Core programs to C code.

4.2.1. Front-end
The front-end of the compiler collects the code for all modules of a program, performs a number of static analyses, and

desugars the program to Stratego Core. The static analyses comprise checking whether constructors are declared, whether
variables are bound before being used in a build, whether invoked rules and strategies are defined, and some properties of
dynamic rules. Stratego is not a typed language, so typechecking is not performed. Desugaring takes place in several stages
and involves simplifying programs from the full Stratego language to the Stratego Core language, a minimal subset of the
full language. This involves various basic simplifications, such as the merging of multiple definitions with the same name,
but also a complex translation of Stratego with dynamic rules into plain Stratego. Since at various stages of compilation
different subsets of full Stratego are expected, format checking against subsets of the full regular tree grammar is used to
monitor the integrity of the compiler, especially during development and testing of the compiler. Complete format checking
can be turned on at all stages of compilation in the compiler; however, by default this is only done at a few crucial stages of
compilation.
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4.2.2. Optimizations
Before application of the back-end, several optimizations may be applied to Stratego Core programs. A collection of

simplification rules based on algebraic laws of the Stratego language are applied to all strategy expressions. Innermost
fusion is a transformation optimizing instantiations of the innermost strategy producing super-linear speed-ups [25,
26]. The optimization solves the problem of re-normalizing terms already in normal form without the overhead of tagging
or memoizing terms. Inlining of strategy definitions enables simplification across calls, and dead definition elimination
removes definitions no longer used. A number of other optimizations that used to be part of the compiler are currently
under revision.

4.2.3. Back-end
The back-end of the compiler translates Stratego Core programs to C. The translation scheme used in the back-end

has evolved from the generation of virtual machine code instructions with a dedicated stack to generation of idiomatic
C code. From the very first version, the generated code has depended on the ATerm library for the internal and external
representation of terms and for (conservative) garbage collection [9]. This library has in fact made the development of the
Stratego Compiler possible; development of a dedicated run-time systemwould have been amajor undertaking. Challenging
issues in the compilation of Stratego are the treatment of failure in strategies and dealing with bindings to variables in non-
local scopes.

Stratego’s choice operator implements local choice. That is, in the strategy expression s1 <+ s2, if s1 fails, the computation
backtracks and applies s2. However, once s1 has succeeded, the choice is committed and the continuation of the expression
never backtracks to s2. Early on in the development of Stratego, it was established that the alternative of global backtracking
was rarely needed and much more expensive to implement. In the translation scheme introduced in Stratego 0.6,
setjmp/longjmp, the built-in exception handlingmechanismof C,was introduced to handle failure and choice. Thismechanism
allows a clean translation, since it abstracts from the administration of choice points. However, since the control-flow
in Stratego programs depends heavily on failure and choice, the overhead of setjmp/longjmp is significant. Especially on
architectures with large register sets (such as the PowerPC used by Mac OS X) the cost of saving register windows has
meant a serious performance penalty. In Stratego/XT 0.16, a new translation scheme was adopted, representing failure as
a NULL ATerm pointer. On return of a strategy expression the caller needs to determine by means of a comparison with
NULL if the strategy was a success or failure, in contrast to the setjmp/longjmp solution, which entails a direct jump from
the failure point to the choice point in the code. While the latter approach would seem to be more efficient than the explicit
unwinding of the stack, the opposite turns out to be true. The explicit failure representation provide a performance boost,
especially on Mac OS X.

Stratego supports nested strategy definitions. Even though local definitions are only used sparingly in actual Stratego
code, the transformations in the compiler introduce many local functions to encapsulate strategy expressions passed as
arguments to other strategies. Startingwith Stratego 0.6, nested definitionswere implemented using a non-standard feature
of C, supported by the GCC compiler, namely nested functions. With this feature, the implementation of closures comes
for free, i.e., is delegated to the C compiler. While convenient for code generation, the use of nested functions entails a
dependency on GCC. Furthermore, GCC’s implementation of nested functions based on trampolines requires the execution
of instructions stored on the stack. For safety reasons, more and more platforms forbid execution of code on the stack
(by default), entailing reduced portability of Stratego programs. Therefore, in Stratego 0.17, the implementation of nested
definitions is changed to explicitly implement closures in the back-end of the Stratego compiler. As a result, the compiler
generates ANSI C compliant code, no longer depending on the GNU C Compiler.

While the Stratego compiler is a whole program compiler, it also supports a form of separate compilation. A collection of
modules can be compiled into a shared library and an interface declaration in the form of a module with external definitions.
Client programs can use such a library by importing the external definitions and linking against the shared library. This
approach is used for the Stratego Library, and it makes a big difference in compile time.

4.3. Software development process

Stratego/XT is developed in the open. This means first of all that the software is open source; the source code for
Stratego/XT is distributed under the GNU LGPL license. This license allows the development of closed source (commercial)
transformation systems based on Stratego/XT. Furthermore, the development process is open, i.e., both the services used
in the development, such as the issue tracker, mailing lists, wiki and build farm, and the source code itself are visible to
everyone all the time. The openness of the development process has fostered a small community around Stratego/XT, and
patches from external contributors can be found in almost every release.

4.3.1. Quality management
Testing is the cornerstone of the automated quality assurance process for Stratego/XT.Whenever a new strategy, module

or rule is added to the Stratego library or a new component is added to the XT collection, unit tests are also added. These
unit tests ensure that the intended semantics of the addition is kept in future revisions. Unit tests are also written for syntax
definitions using the Parse Unit language. The compiler is tested using a large collection of test programs. Whenever a bug
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Fig. 8. Distribution of number of commits in the Stratego/XT source tree over the last six years; 17 contributors committed 4255 times. (Not counting
commits in related projects in the same repository.)

Fig. 9. Size of subsequent Stratego/XT distributions (not including generated C sources).

is detected and fixed, new unit tests are added to avoid regression as development continues. These unit tests are exercised
by the build farm as part of the continuous integration process, described later.

4.3.2. Version and issue management
The source code for Stratego/XT and many of the dependent projects is managed using the Subversion version

management system, which allows unique identification of all files in a revision and refactoring of the source tree. The
Subversion repository is world readable, allowing anyone to do a checkout of the latest version. Trusted developers can get
write access to the repository. Fig. 8 illustrates the activity in the Stratego/XT source tree by the number of commits per
month. Fig. 9 shows the development of the size of the distribution in terms of lines of Stratego code; the steady growth of
the sources has been reversed in recent distributions by a drastic dead code removal and refactoring operation.

Bug reports, feature requests, and internal development tasks for Stratego/XT and related projects are managed using
the web-based JIRA issue management system. All reported issues are scheduled into specific future releases. In addition
to providing an easy way for Stratego/XT users to report bugs, the tracker is also an excellent way for interested parties to
follow the direction of development.

4.3.3. Continuous integration and automatic release management
For releasemanagement and continuous integration, the Stratego/XT project uses a build farm based on the Nix software

deployment system [20]. The build farm produces releases, performs integration testing, and verifies the portability of the
software for several platforms.

Continuous integration. The build farm monitors the Subversion repositories of the various Stratego/XT packages and starts
building a package on several platforms if there has been a commit in a package or one of its dependencies. The build farm
performs a full check of the package and reports errors to subscribers by email and on the web. These timely and automatic
rebuilds are crucial for catching programming errors and bugs as early as possible. Early detection, in turn, makes the errors
easier to understand and correct. The fully automated testing is in particular useful for testing if the Stratego compiler can
be bootstrapped against itself. We only upgrade the bootstrap Stratego compiler if the build farm has guaranteed that this
actually works.

Portability testing. The Nix build farm is also used to compile Stratego/XT on different operating systems and platforms,
currently being Linux, Mac OS X, and FreeBSD. Continuously testing of portability has proven to be very useful, since minor
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Fig. 10. Release history of Stratego/XT.

portability issues, such as differences in the implementation of dynamic libraries, non-portable shell scripting, and use of
non-standard functions, are caught very early in the development process and can be fixed when the developer is still
working on that issue.

Continuous release. The Nix build farm not only builds the software, but also continuously creates source and binary
distributions. In this way, the distribution process itself is tested as well (e.g., missing files in a distribution or incomplete
RPM dependencies) and users of Stratego/XT can easily obtain the latest developments, if necessary, by just downloading a
source or binary distribution from the Nix build farm. This approach of continuous release has been very fruitful, since we
receive feedback from users even before the software is actually released with a stable version number. Also, users do not
have to suffer the problems in building from Subversion.

Release management. Actually, the Nix build farm completely manages the release process of Stratego/XT. For releases, we
create branches in the Subversion repository, which are tagged as stable. After this, the Nix build farm will automatically
produce a tested source distribution, RPMs for several Linux distributions, and Nix packages for installation with the Nix
deployment system itself. This automation of the release process helps a lot in the steady production of new releases. Fig. 10
shows that a new major release of Stratego/XT is released about four times a year.

Baseline development. Several times during the development of a new Stratego/XT release, specific revisions are elevated to
a new ‘baseline’. Both Stratego/XT and the dependent projects are always built against the latest baseline. Thus, promoting
a revision from the source code repository to a new baseline requires testing that release against a substantial number of
projects, catching regressions which are otherwise difficult to catch with unit tests alone.

4.3.4. Documentation
The primary source of documentation is the manual. It offers an extensive introduction of the XT architecture, and also

a complete Stratego tutorial. The tutorial includes several program transformation examples shown on a small, imperative
language. The reference material includes complete manual pages for all the XT command-line tools, and online API
documentation of the library, which is also available for download.

4.3.5. User support
The Stratego/XT website [52] contains pointers to mailing lists for users and developers, a wiki, release pages,

documentation, build farm and the issue tracker. For live chats with the developers, join the IRC channel #stratego on
irc.freenode.net.

5. Experience

Stratego/XT is being applied in a number of research and industrial projects. The experience from these projects has been
influential on the design and implementation of Stratego/XT.

5.1. Extensions of Stratego/XT

As Stratego/XT is developed in Stratego/XT, extending the environment is quite easy. As a result, many extensions and
utilities have been built using Stratego/XT, which complement and extend the development environment. In the utilities
category, perhaps themost important of examples are the Stratego Shell and the xDoc system. Stratego Shell is an interactive
interpreter for Stratego that can also execute Stratego programs as if they were scripts. It has been used in education,
and is also a very convenient tool for quickly testing code snippets and XTC compositions during development. xDoc is
a Javadoc-like source code documentation system in the style of Javadoc, but for Stratego code [41]. The API reference
documentation for all releases of Stratego/XT has been generated using xDoc. An example of a language extension of
Stratego/XT is Aspect Stratego [29], which adds aspect-oriented features to Stratego. The extension provides Stratego with
new language primitives for specifying pointcuts and advice that are weaved into the code at compilation time.

5.2. Tiger

Andrew Appel’s compiler textbook example language Tiger [1] makes a perfect playground for experimenting with
program transformation. The language is small, whichmakes itmanageable, yet it is not trivial and includes nested functions,
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arrays and records, whichmakes it interesting. For a course on Program Transformation and a seminar on High-Performance
Compilers, we have evolved a complete compiler for Tiger that includes all aspects of compilation, from type checking,
via optimizations, to instruction selection. Many innovations in Stratego/XT were first tested using Tiger [44,16,46,14,34].
The Tiger-Base package is a subset of the full Tiger compiler package with only the syntax definition and source-to-source
transformations on Tiger programs.

5.3. BibTEX

The Stratego/XT BibTEX Tools package provides a collection of transformations on BibTEX bibliography files [48]. Themain
application is a transformation from BibTEX to sectioned bibliographies (publication lists) in HTML and PDF, which involves
external tools such aslatex,bibtex, andhevea, a LATEX toHTML translator. The transformations include an interpreter for
a little query language for selecting entries from a file, and replacing of queries embedded in a LATEX document with citations
of the selected entries. The package was developed for the automatic production of online publication lists using different
organizations (e.g., by year, by type) and links. It is used for maintenance of several such lists, including the publication lists
on the Stratego website. It provides a nice example of application of Stratego/XT to document transformation.

5.4. Java

For Java, we have developed amodular Java 1.5 syntax definition, a high-quality pretty-printer, a name resolution phase,
an extensible type checker (including generics), an extensive reflection library for use in Stratego, and tools for reading
and writing Java bytecode to terms. These tools are used in the implementation of language embeddings, a recently added
application area of Stratego/XT [17,11]. Typical case studies of language embedding are extensions of Java with domain-
specific languages for user-interfaces and regular expressions. JavaJava [15] is an advanced code generation tool, based
on the extensible type checker and the GLR parsing technology used in Stratego/XT. Also, we have developed an AspectJ
grammar, with is a modular extension of the Java syntax definition [13]. Thus, the AspectJ grammar only defines the syntax
extensions to Java provided by AspectJ, and is programmed against the public interface of the Java grammar. This sort of
language composition is possible because of the scannerless, GLR nature of the SGLR parser.

5.5. C/C++

To date, three frameworks for transforming C++ (and C) code are in construction. The Transformers project at LRDE,
EPITA, France has produced a disambiguating front-end for C99, and has come close to finishing a similar front-end for ISO
C++ 2003. Disambiguation of both languages requires semantic analysis. Disambiguation rules are implemented using an
attribute grammar system, which is an extension to SDF. This extension, with an attribute grammar evaluator, has been
implemented with Stratego/XT.

CodeBoost [2] is a source-to-source optimizer for C++ code, developed at the University of Bergen, Norway. Its main
purpose is to provide a framework for implementing domain-specific abstractions with optimizations for numerical
software. The parser is reused from the OpenC++ project, while the semantic analyzer, which covers substantial parts of
C++, is written entirely in Stratego.

The Proteus [54] project at Lucent, USA, has built a C/C++ transformation framework based on Stratego. The syntax is
defined in SDF. Transformations arewritten in a high-level transformation language, YATL, and compiled to Stratego. Proteus
uses yet another C++ front-end, which allows it to retain source code layout and also deal better with C++ pre-processor
directives.

5.6. Miscellaneous

Stratego/XT has been used to build several other compilers and front-ends.

• OctaveC is a compiler for Octave, a clone of Matlab. It includes loop vectorization, and partial evaluation [33].
• Prolog Tools provides a language front-end and DSL embedding for Prolog [23].
• Spoofax [28] is an editor for Stratego for the Eclipse IDE. It features content-aware, syntax highlighting editors for SDF

and Stratego with outlines and content assistance.
• WebDSL [50] is a domain-specific language for dynamic web applications with a rich domain model.

6. Discussion

6.1. Previous work

This paper and the Stratego/XT 0.17 releasemark amilestone in the development of Stratego/XT, with the introduction of
radically improved documentation and a robust release process implementedwith the Nix system [20]. Compared to earlier
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descriptions of Stratego/XT [27,45,47,12] we have gained new experience with the development of transformation systems
for Java, C, Octave, and BibTEX. Based on the feedback from these projects new language constructs such as dynamic rules
and concrete object syntax have matured. Stratego/XT now also provides new tools for testing, validating, and debugging,
to help in developing reliable transformation systems.

6.2. Related work

Stratego/XT lives in a larger ecosphere of program transformation systems, many of which have provided inspiration for
features found in Stratego, and some have also provided components for XT.

The closest sibling of Stratego/XT is ASF + SDF [38,40]. This is where the syntax definition language SDF discussed in
Section 3 originates. ASF is a declarative language for specifying semantics of programming languages as algebraic rewrite
rules. These conditional rewrite rules are applied to terms produced from source code using SDF, either by a rule interpreter
or after compilation to binary code. ASF+SDF does not provide programmable strategies, but the overhead of traversals can
be reduced by means of traversal functions [37]. Both the ASF and SDF language are supported by the MetaEnvironment, an
interactive environment for developing, debugging and executing program transformation systems built with ASF+ SDF. In
contrast, Stratego/XT only provides a programming environment based on command-line tools.

The ideas for the strategy operators in Stratego were inspired by the ELAN rewrite system [6], which introduced
programmable rewriting strategies and congruence operators for term traversal. Generic traversal and dynamic rules are
contributions of Stratego [32,51,44].

TXL [18] is a programming language for writing software analysis and source transformation tools, based on the tree
rewriting formalism. The language is a hybrid of the functional and rule-based paradigms, which provides unification,
implied iteration and deep patternmatching. Both the language grammar and transformation rules on programs conforming
to the grammar are written in TXL. TXL provides a fixed set of traversals and does not support the definition of generic
strategies.

The Design Maintenance System, DMS [5,4], is a commercially available collection of tools for writing custom program
transformation systems. This tool collection contains domain-specific languages for writing transformations and grammars.
From the grammars, GLR parsers and multi-pass attribute evaluators are generated. The transformations are executed by
a rewrite engine, and controlled by a meta-language called XCL. The system comes with a large collection of ready-to-use
language environments.

FermaT [56,55] is an industrial-strength formal transformation engine developed in the course of 20 years at Durham
University, SoftwareMigrations Ltd, and DeMontfort University, primarily byMartinWard. It uses formally proven program
transformations which preserve or refine the semantics of a programwhile changing its form. In the context of FermaT, the
purpose of such transformations is to restructure or simplify legacy systems, and to extract higher-level representations.
The extracted representation is guaranteed to be equivalent to the original code.

TAMPR [7,8] is one of the first program transformation systems, dating back to the early 1970s. It supports program
transformation bymeans of rewrite rules. A set of rewrite rules is used to transform the abstract syntax tree of a program to
canonical form by exhaustive application. A number of such canonicalizations can be combined by sequential composition.
This sequential composition provides a simple mechanism for control over the application of rules, which can be seen as
a subset of the combinators found in Stratego. The system has been applied to the derivation of a number of numerical
software packages, including LINPACK.

Many of the tasks performed by program transformation systems are also solvable by other approaches, such as attribute
grammar systems. JastAdd [22] is an extensible compiler construction framework based on modern attribute grammars
featuring reference attributes, equations and rewrite rules. At the heart of JastAdd is a modular, declarative attribute
grammar language which is used to express attribute computations on ASTs. These ASTs must be produced by external
parsers, as JastAdd does not come with a parser formalism of its own. The attribute grammar language allows normalizing
rewrites and desugaring to be expressed directly, but more substantial rewrites must be written in Java.

More traditionally, compiler constructor suites have been around for decades, providing frameworks and infrastructure
for constructing compilers and support tools. Eli [24] is a domain-specific programming environment, mainly aimed at
constructing compilers, but which has been used for many program transformation tasks. The development of compilers
in Eli centers around specifications of program transformations. The specifications include information about the source
language syntax, source program tree, target program tree and machine instruction set. The designer of a particular
transformation specifies an instance of the general compilation problem. Given a transformation specification, the Eli
environment selects applicable tools which are used to derive executable components. These generated components are C
programs which are integrated with standard components of Eli to produce a stand-alone program transformation system.

Extended parsing frameworks also have significant overlap with program transformation systems in the tasks they are
used for. ANTLR [35] is a popular framework for constructing parsers, compilers and transformers of formal languages, using
Java, C#, C++ or Python as implementation languages. It comes with libraries for the implementation languages which are
used for parse tree traversal, tree construction and transformation. ANTLR is centered around an LL(k) parser generator,
which gives it good error-reporting capabilities.

Finally, Stratego has provided inspiration for other systems. In particular, the approach to strategy combinators and
generic traversals has been adopted in a number of other languages. Strafunski is an implementation of generic traversal
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strategies in Haskell [31]. This work has been continued in a series of ‘scrap your boilerplate’ papers refining the
implementation of generic programming in Haskell [30]. JJTraveler is a Java library implementing a collection of visitor
combinators based on the basic Stratego strategy combinators [53]. Tom is an extension of Java with support for rewrite
rules and rewriting strategies in the style of Stratego [3].

7. Conclusion

The goal of Stratego/XT is to support a wide range of transformations and to provide a new level of abstraction for
the implementation of transformation systems by third parties. In the last couple of years Stratego/XT has considerably
matured due to intensive development and research.We have been successful in exploring the implementation of individual
transformations, and the range of transformations that we know how to encode effectively and elegantly grows. Along
the way we keep discovering better idioms and abstractions for implementing transformations. Experience shows that
external users can successfully build non-trivial transformation systems using Stratego/XT. With the refactorings and new
documentation in Stratego/XT 0.17, it should be accessible and useful to a wider audience.
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