
2	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

Unfortunately, integrated tool support for
multilanguage development is limited. For in-
stance, tools to check consistency between ap-
plication components expressed in different lan-
guages are either lacking or nonexistent, resulting
in errors and regressions developers discover only
at runtime. Building integrated development en-
vironments (IDEs) for mixed languages is simi-
larly complex. So, IDE support, such as in-place
error highlighting, reference resolving, and refac-
toring, is generally limited in Web development
IDEs. In addition, many languages require some
sort of simple expression language, and they each
invent their own. So, little reuse between lan-
guages occurs.

WebDSL is a domain-specific language for de-
veloping interactive Web information systems.1
Rather than using numerous separate languages,
WebDSL is linguistically integrated. It comprises

sublanguages that share a common type system
and cover the Web application’s different as-
pects (see the “WebDSL’s Sublanguages” side-
bar). WebDSL reuses sublanguage elements, such
as the expressions from the action language, in
other sublanguages, such as in the user interface
and access control language. The system fully
checks WebDSL applications at compile time or,
if the WebDSL Eclipse plug-in is in use, as the
programmer writes the program.

A Closer Look at the Problem
The Java Web framework JBoss Seam is a typical
example of a current Web development practice.2
Seam uses Java to define business logic, which the
Java compiler statistically checks. The applica-
tion’s data model is also Java-defined by annotat-
ing Java classes using Java Persistence API’s anno-
tations. While the Java compiler detects Java type

W eb application development is complex, requiring developers to be polyglot,
multiparadigm programmers. They must know numerous frameworks and
general-purpose and domain-specific languages, such as HTML, cascad-
ing stylesheets (CSS), Java Script, Flash, Java, XML, Extensible Style Sheet

Language Transformation (XSLT), Hibernate, and JavaServer Faces (JSF).

WebDSL is a domain-
specific language
for Web information
systems that
maintains separation
of concerns while
integrating its
sublanguages,
enabling consistency
checking and
reusing common
language concepts.

Danny M. Groenewegen, Zef Hemel, and Eelco Visser,
Delft University of Technology

Separation of
Concerns and
Linguistic Integration
in the WebDSL Web
Programming Language

mul t ip ar a d igm pr o gr amming

	 September/October 2010 I E E E S o f t w a r e � 3

errors in data models, Seam’s data modeling API
puts additional constraints on data model code,
which the Java type checker doesn’t enforce. For
instance, the Java compiler doesn’t detect inconsis-
tencies in the Java annotations. Therefore, such in-
consistencies appear only when the application is
in use, often resulting in long, difficult-to-interpret
stack traces.

Developers define user interfaces using JSF
combined with HTML, CSS, and Java Script.
JSF pages contain references to business logic and
the data model that a compiler doesn’t check; the
system reports such errors only at runtime. Data
model and logic references are expressed in Ex-
pression Language (EL), which looks like Java
syntactically but has different semantics. For in-
stance, the EL expression e.name, rather than ac-
cessing the e variable’s name field (the expected
Java behavior), calls the e variable’s getName()
method. Similarly, the == operator, rather than
performing an equality check on the basis of ref-
erences as Java does, uses the equals method to
compare objects. To define access control rules,
developers use a specialized JBoss Rules language
that contains references to the data model and
user interface. Again, inconsistencies surface only
at runtime.

Other Web development frameworks, in-
cluding Ruby on Rails3 and Django,4 have simi-
lar problems. Both frameworks rely heavily on
metaprogramming techniques, giving the devel-
oper the impression of working with a dedicated
domain-specific language, while in fact writing
code in Ruby or Python. When developers make
mistakes in programs, they most often discover
the errors late; moreover, the messages aren’t do-
main-specific and are difficult to trace back to
their origin.5

Linguistic Integration in WebDSL
WebDSL’s support for multilanguage integration
features a checker that performs many cross-lan-
guage checks:

■■ Do referenced properties in the user interface
exist? Check the consistency between data
model and user interface definitions.

■■ Do the pages, templates, and actions for
which the developer defined access control ex-
ist, and do their arguments match? Check ac-
cess control and user interface definitions.

■■ Do data model properties that access control
rules reference exist? Check access control
and data model definitions.

■■ Do actions referenced using a submit primitive

from the user interface exist, and does the de-
veloper pass them the right list of arguments?
Check user interface definitions and action
language.

To demonstrate how WebDSL works, we’ll de-
velop a basic blogging application. The applica-
tion has two entities in its data model: user and
post. A user has zero or more posts, and a post
links back to the user who authored it. This appli-
cation’s data model is as follows:

entity User {
	 username	 ::	 String (id)
	 password	 ::	 Secret
	 posts	 →	 Set <Post>
}
entity Post {
	 title 	 :: 	 String
	 updated 	 :: 	 DateTime
	 author 	 → 	 User (inverse = User.posts)
	 text 	 :: 	 WikiText (validate (text ! = "",
				 "Text cannot be empty."))
}

A data model definition in WebDSL features
zero or more entity declarations, which comprise a
name and a set of properties. The three property
types are value properties (indicated with ::), ref-
erence properties (->), and compound properties
(<>). Reference and compound properties can refer
to other entity types or Sets or Lists thereof.

Property annotations control more detailed be-
havior. The id annotation indicates that the prop-
erty is unique and that the system can use it to
identify an entity instance. URLs also use the id
annotated property. The inverse annotation repre-
sents one-to-one, one-to-many, and many-to-many
relationships, automatically synchronizing the two
properties. The model demonstrates this through
the author property, which defines a users’ posts
property as its inverse, thereby creating a one-to-
many relationship between users and posts. The
validate property defines a data validation invariant,

Architecture
A WebDSL application comprises numerous components:

■■ Data models are compiled to JPA-annotated Java classes.
■■ Pages and actions are compiled to Java classes and methods.
■■ A dispatch servlet is generated that dispatches requests to page or ac-
tion objects.

■■ Configuration files configure the used database and email servers.

4	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

ensuring that the text property is nonempty at all
times. Otherwise, the user will receive a validation
error message.

Figure 1 lists code that defines the user interface
of pages for viewing and editing a single post. A
page definition defines the page name (post and ed-
itPost), its arguments, and a definition of the page’s
structure. The developer defines the page’s struc-
ture using a combination of template calls, such as
main, header, and output, and user interface primitives,
such as navigate and submit. The main template is user
defined as follows:

define main () {
	 includeCSS (“blog .css”)
	 top ()
	 block [class : = “content”] {
		 elements ()
	 }
}
define top () {
	 navigate root () {“Blog”}
}

Built-in template header renders a header, and out-
put renders its argument type dependently. For in-
stance, when invoked on an expression of type Wiki-
Text, it passes the field’s contents through a wikitext
parser before rendering it on the screen. The navi-

gate primitive creates a link to another page in the
application. The first screenshot in Figure 1 shows
the post page in action.

The editPost page demonstrates WebDSL’s data
binding mechanism. The input template creates a
text area and binds the expression p.text to it. When
the user submits the form, any changes to the text
in the text area automatically propagate back to
the text property of p. Changes to data are part of
an implicit transaction committed after request
processing has completed. If an exception occurs
during the request, for instance if data validation
fails, the transaction rolls back.

The submit primitive creates a form submit but-
ton. When clicked it invokes the save action. The
developer writes this action, defined at the end of
the editPost page, using the action language. It sets
the updated property to the current time and sub-
sequently redirects the user back to the post page.
The second screenshot in Figure 1 shows the editPost
page in action. The third screenshot shows the re-
sult of clearing the post’s text and submitting the
form, activating the validation rule defined earlier.
If validation succeeds, changes made to the Post p
are automatically persisted.

Both the post and editPost pages in Figure 1 use a
custom main template. Defining a template is simi-
lar to defining a page, except the page keyword is
omitted. The main template uses includeCSS to include
a CSS to style the page. It calls another custom
template top and creates a block, which is a means
to attach a certain CSS class or id to a page section.
The special template elements() is called to inline
the elements passed to the main template as body.
In the post and editPost pages, the main template
call wraps around other template calls, which are
passed to it as elements.

Naturally, the system doesn’t allow everybody
to edit any post. The access control language pro-
vides a declarative language to specify access poli-
cies.6 The following code defines that the system
use the User entity as the access control principal:

principal is User with credentials username, password

rule page editPost (p : Post) {
	 principal == p.author
}

A simple access control rule for the editPost page
that uses expressions from the action language
specifies that the post’s author must be the prin-
cipal (the logged in user)—that is, only authors
can edit their own posts. If this isn’t the case, the
system will present the user with an access denied

(a)

(b)

(c)

de�ne page post (p : Post) {
 main {
 header{output(p.title)}
 par {output(p.text)}
 navigate editPost(p) {“[Edit]”}
 }
}

de�ne page editPost (p : Post) {
 main {
 header {output (p.title) “(Edit)”}
 form {
 input (p.text)
 submit save () {“Save”}
 }
 }

 action save () {
 p.updated : = now ();
 return post (p);
 }
}

Figure 1. A WebDSL-
based blog user
interface. The code
defines the user
interface of pages for
viewing and editing a
single post.

	 September/October 2010 I E E E S o f t w a r e � 5

page. In addition, the user interface won’t show
any links to inaccessible pages, created using the
navigate primitive.

WebDSL in Practice
WebDSL initially was an exercise in domain-
specific language design and implementation.5
Today, however, developers use WebDSL to build
Web applications for production.

Researchr (http://researchr.org) is the larg-
est and most complex WebDSL application to
date (see Figure 2a). Researchr is a digital library
with over a million publication records. It features
BibTex import and export, a reputation system,
groups, a messaging system, bibliographies and
tagging.

We used WebDSL to build the official WebDSL
website, http://webdsl.org. It features an editable
manual with revision control. TweetView (http://
tweetview.net) is a Twitter archival and search tool
that archives tweets about certain topics and at-
tempts to reconstruct conversations around them.
TweetView uses WebDSL for only the Web front
end; it uses Java to implement the communication
with Twitter and conversation reconstruction al-
gorithms. YellowGrass, built using WebDS, is is-
sue tracking software that we use internally in our
department.

The model-driven software development course
that our group teaches uses a WebDSL application
that handles the organization of the course, exam-
inations, and other processes. During this course,
students use WebDSL to build a Web application.

WebDSL is optimized for constructing form-
based interactive Web information systems. Our
and our students’ experience show that isn’t well-
suited for building applications that mainly rely on
heavy client-side Java Script/HTML/CSS work,
such as Google Docs and maps-style applications
and graphical games. Although developers can use
WebDSL to build these types of applications, they
gain little from WebDSL’s abstractions. However,
using HTML and Java Script escapes lets develop-
ers use existing client-side widgets.

Implementation
WebDSL is available as a standalone compiler
and as an Eclipse IDE plug-in. The Eclipse plug-
in, shown in Figure 3, offers syntax highlight-
ing, code folding, in-place error reporting, code
navigation, compilation, and deployment. The
WebDSL compiler compiles a WebDSL specifica-
tion to a .war file, ready to be deployed to a Java
servlet container such as Tomcat.

As Figure 4 shows, the WebDSL compila-

tion process comprises parse, check, normalize,
and generation phases. The parser turns textual
WebDSL code into an abstract syntax tree (AST),
a tree data structure the compiler uses internally.
Subsequently, the system fully checks the AST for
inconsistencies and reports errors to the user. If
the system finds no errors, it normalizes the AST
to core WebDSL, which is a smaller subset of the
language.

Normalization transformations range from
trivial to complex. For instance, core WebDSL
only has if statements with else clauses, whereas in
the “full” WebDSL language else clauses are op-
tional. Therefore, a normalization in the action
language translates an if-statement without else
clause to an if statement with an empty else clause.
The transformations that implement the access
control and workflow7 languages are examples
of more complex transformations. The system

(a)

(b)

Figure 2. WebDSL in
practice. (a) Researchr
(http://researchr.org)
is a digital library with
more than one million
publication records. (b)
YellowGrass (http://
yellowgrass.org) is a
free Web-based issue
tracker that we use it to
track WebDSL bugs.

6	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

implements both languages as abstractions on
top of core WebDSL and transforms down to
core WebDSL during normalization. The access
control transformation injects code into pages
for each access control rule, checking if the user
has access to that page. if statements are wrapped
around links that link to protected pages, check-
ing whether the user has access to that page and
hiding it otherwise.

After applying the normalizing transfor-
mations, the compiler translates the simplified
WebDSL AST into Java code (see the “Architec-
ture” sidebar). An Ant script compiles the gen-
erated Java code and packages it as a ready-to-
deploy Web archive (.war file).

Talking to the World
Although WebDSL incorporates many aspects of
Web application programming, it doesn’t have a
large ecosystem of reusable libraries like Java does.
Fortunately on the server side, developers can har-
ness Java libraries through WebDSL’s native Java
class interface. The following example shows a na-
tive interface definition to a TwitterReader class in the
nativejava package:

native class nativejava.TwitterReader as TwitterReader {
	 static getLatest (String user) : List <String>
}
define showTweets () {
	 for(s : String in TwitterReader.getLatest (“webdsl”)) {
		 output (s)
	 }
}

It declares a static method getLatest with WebDSL
types String and List<String>. This method’s imple-
mentation must take care of any conversions nec-
essary to provide the types WebDSL uses. The
showTweets template invokes the native code and dis-
plays the results.

Whereas the native Java class interface takes
care of server-side extensibility, HTML and Java
Script escapes in templates enable reuse of Java
Script libraries on the client. The following code
illustrates these extension points with a fadeInImage
template that displays an image with a fade-in ef-
fect using the Java Script jQuery library:

define fadeInImage (id : String, imageUrl : String) {
	 includeJS (“jquery.min.js”)
	 <div id = id>
		 image (imageUrl)
	 </div>
	 <script>
	 jQuery (‘~id’). hide(). fadeIn();
	 </script>
}

HTML attribute values are normal action lan-
guage expressions. To inject WebDSL expressions
in Java Script code, the system uses the ~ escape.

Most WebDSL applications don’t require these
extension points. However, these extension points
proved invaluable to applications attempting to do
things that the WebDSL developers hadn’t previ-
ously anticipated.

Comparison
The Web application development space has expe-
rienced rapid growth over the past years. Today,
Web development frameworks exist for almost ev-
ery software platform.

Internal vs. External DSLs
An internal DSL is a library that uses fluent in-
terfaces and metaprogramming techniques, such
as reflection and runtime code generation to pro-
vide an API that feels like a domain-specific lan-
guage. Ruby on Rails is a popular internal DSL
for Web development.

Parse Normalize Generate

Abstract syntax
tree (AST) JavaSimpli�ed ASTWebDSL

Figure 3. The WebDSL integrated development environment. The
Eclipse plug-in offers syntax highlighting, code folding, in-place error
reporting, code navigation, compilation, and deployment.

Figure 4. WebDSL compiler stages. The WebDSL compilation process
comprises parse, check, normalize, and generation phases.

	 September/October 2010 I E E E S o f t w a r e � 7

The advantage of implementing a language as
an internal DSL is that it easily integrates with
other libraries, as it shares a type system with
the rest of the platform. Internal DSLs are also
cheaper to develop because they’re built on ex-
isting platforms, rather than from scratch. Their
use avoids the need for an additional language to
address a language aspect, avoiding overhead in
maintaining a polyglot solution.

Internal DSLs have disadvantages as well. First
is the lack of consistency checking in frameworks
like Rails. In addition, external DSL compilers
have access to the application as a model that it
can analyze and manipulate. This analysis is use-
ful for inconsistency detection, but also for opti-
mization, aspect weaving, and generating views of
the application. Also, whereas internal DSLs are
tied to the syntax of their host language, external
DSLs can use any syntax, typically resulting in
more concise programs.

User Interface Definition
All Web frameworks have a means to define user
interfaces using a template language. Template
languages mix HTML and template-specific tags
or escapes to another language, such as Ruby, to
build the application’s user interface.

Ruby on Rails uses plaintext templates with
escapes to Ruby code to iterate and insert prop-
erty values. JavaServer Faces uses XHTML with
JSF-specific tags. The system parses and processes
the XHTML, enabling manipulation of the XML
tree. JSF uses this to implement databinding simi-
lar to WebDSL.

WebDSL user interfaces are a structure of
template calls, primitives, and HTML escapes.
WebDSL manipulates this structure internally
and generates specialized code for each compo-
nent and for each phase in a component. This al-
lows multiple passes over the template structure,
constituting data binding, validation, action han-
dling, and rendering. Specialized code helps pre-
vent security leaks—for example, only page pa-
rameters and input parameters for data binding
are taken from the request parameters, anything
else is shielded from post-data tampering. Users
can invoke actions only through a URL on the
page, where request handling automatically veri-
fies that the action could be executed by normal
usage of the page. Compare this to Ruby on Rails,
in which, for example, a generic “mass assign-
ment” operation provides a convenient way for
loading all inputs into an entity object directly
from the request parameters. However, it is also
a security leak because post-data tampering al-

lows setting any property in the entity.8 To work
around this issue, developers can shield a property
from mass assignment in the data model defini-
tion, something easily neglected and able to break
other action handlers that rely on this feature.

P olyglot and multiparadigm programming
reign in Web application development.
WebDSL shows that a Web development

tool can have the advantages of combining mul-
tiple domain-specific languages, while still main-
taining an important advantage of single-language
programming, namely the ability to statically ver-
ify applications. In our experience, the separation
of concerns and linguistic approach gives the de-
veloper the best of both worlds. To demonstrate
the wider application of this approach, we are
developing new languages in a similar manner—
specifically, a new language for developing mobile
applications called mobl (http://mobl-lang.org).

References
	 1.	 E. Visser, “WebDSL: A Case Study in Domain-Specific

Language Engineering,” Generative and Transfor-
mational Techniques in Software Engineering II,
LNCS 5235, R. Lämmel, J. Visser, and J. Saraiva, eds.,
Springer, 2008, pp. 291–373.

	 2.	 S. Kittoli, ed., Seam - Contextual Components: A
Framework for Enterprise Java, RedHat Middleware,
2008.

WebDSL’s Sublanguages
WebDSL sublanguages each cover a Web application aspect:

■■ User interface language for creating pages and reusable templates.1

■■ Data modeling language for defining the application’s data model.1

■■ Action language for defining the application’s (business) logic.1

■■ Access control language for restricting access to parts of the application
to specific user groups.2

■■ Data validation language for defining constraints on data and inputs.3

■■ Workflow language for defining business workflows in the
application.4

References
	 1.	 E. Visser, “Domain-Specific Language Engineering,” Pre-Proc. Generative and Transformational

Techniques in Software Eng. (GTTSE 07), Int’l Summer School GTTSE, 2007, pp. 265–318.
	 2.	 D.M. Groenewegen and E. Visser, “Declarative Access Control for WebDSL: Combining

Language Integration and Separation of Concerns,” Proc. 8th Int’l Conf. on WebEngineering
(ICWE 08), IEEE CS Press, July 2008, pp. 175–188.

	 3.	 D.M. Groenewegen and E. Visser, “Integration of Data Validation and User Interface Concerns
in a DSL for Web Applications,” Software Language Engineering, LNCS 5969, M. van den
Brand and J. Gray, eds., Springer, 2009, pp. 164–173.

	 4.	 Z. Hemel, R. Verhaaf, and E. Visser, “WebWorkFlow: An Object-Oriented Workflow Modeling
Language for Web Applications,” Model Driven Engineering Languages and Systems, LNCS
5301, K. Czarnecki et al., eds., Springer, 2008, pp. 113–127.

8	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

	 3.	 S. Ruby, D. Thomas, and D. Heinemeier Hansson,
Agile WebDevelopment with Rails, 3rd ed., Pragmatic
Programmers, 2009.

	 4.	 A. Holovaty and J. Kaplan-Moss, The Definitive Guide
to Django: WebDevelopment Done Right, Apress,
2007.

	 5.	 Z. Hemel, “When Rails Fails,” 2010; http://zef.
me/2308/when-rails-fails.

	 6.	 D.M. Groenewegen and E. Visser, “Declarative Access
Control for WebDSL: Combining Language Integration
and Separation of Concerns,” Proc. 8th Int’l Conf. on
Web Engineering (ICWE 08), IEEE CS Press, 2008, pp.
175–188.

	 7.	 Z. Hemel, R. Verhaaf, and E. Visser, “WebWorkFlow:
An Object-Oriented Workflow Modeling Language
for Web Applications,” Model Driven Engineering
Languages and Systems, LNCS 5301, K. Czarnecki et
al., eds., Springer, 2008, pp. 113–127.

	 8.	 R. Bates, “Hackers Love Mass Assignment,” 2007;
http://railscasts.com/episodes/26-hackers-love-mass-
assignment.

About the Authors
Danny M. Groenewegen is a PhD
student in the Software Engineering Research
Group at Delft University of Technology. His
research interests include abstractions for
the Web domain and their implementation as
domain-specific languages and code genera-
tors. Groenewegen has a master’s degree in
computer science from the Delft University of
Technology, The Netherlands. Contact him at

d.m.groenewegen@tudelft.nl.

Zef Hemel is a PhD student in the
Software Engineering Research Group at Delft
University of Technology. His research interests
include the design and implementation of
(domain-specific) languages, specifically for
the Web and mobile application domain. Hemel
has a master’s degree in computer science
from Trinity College Dublin. Contact him at
z.hemel@tudelft.nl.

Eelco Visser is an associate professor
in the Software Engineering Research Group
at Delft University of Technology. His research
interests include model-driven engineering,
domain-specific languages, program transfor-
mation, and software deployment. Visser has a
PhD in computer science from the University of
Amsterdam, The Netherlands. He is a member
of the ACM Special Interest Group Programming

Languages and IEEE. Contact him at visser@acm.org.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

how to
reach us

Writers
For detailed information on submitting articles, write for our Editorial
Guidelines (software@computer.org) or access www.computer.org/
software/author.htm.

Letters to the Editor
Send letters to

	 Editor, IEEE Software
	 10662 Los Vaqueros Circle
	 Los Alamitos, CA 90720
	 software@computer.org

Please provide an email address or daytime phone number with your letter.

On the Web
Access www.computer.org/software for information about IEEE Software.

Subscribe
Visit www.computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine subscriptions to
address.change@ieee.org. Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE and Computer Society
membership to member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a damaged copy, contact
help@computer.org.

Reprints of Articles
For price information or to order reprints, send email to
software@computer.org or fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article, contact the Intellectual Property
Rights Office at copyrights@ieee.org.

