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Abstract
Syntax definitions are pervasive in modern software sys-
tems, and serve as the basis for language processing tools
like parsers and compilers. Mainstream parser generators
pose restrictions on syntax definitions that follow from their
implementation algorithm. They hamper evolution, main-
tainability, and compositionality of syntax definitions. The
pureness and declarativity of syntax definitions is lost. We
analyze how these problems arise for different aspects of
syntax definitions, discuss their consequences for language
engineers, and show how the pure and declarative nature of
syntax definitions can be regained.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory — Syntax;
D.3.4 [Programming Languages]: Processors — Parsing;
D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms Design, Languages

Prologue
In the beginning were the words, and the words were trees,
and the trees were words. All words were made through
grammars, and without grammars was not any word made
that was made. Those were the days of the garden of Eden.
And there where language engineers strolling through the
garden. They made languages which were sets of words by
making grammars full of beauty. And with these grammars,
they turned words into trees and trees into words. And the
trees were natural, and pure, and beautiful, as were the gram-
mars.

Among them were software engineers who made soft-
ware as the language engineers made languages. And they
dwelt with them and they were one people. The language en-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2010, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0236-4/10/10. . . $10.00

gineers were software engineers and the software engineers
were language engineers. And the language engineers made
language software. They made recognizers to know words,
and generators to make words, and parsers to turn words
into trees, and formatters to turn trees into words.

But the software they made was not as natural, and pure,
and beautiful as the grammars they made. So they made soft-
ware to make language software and began to make language
software by making syntax definitions. And the syntax def-
initions were grammars and grammars were syntax defini-
tions. With their software, they turned syntax definitions into
language software. And the syntax definitions were language
software and language software were syntax definitions. And
the syntax definitions were natural, and pure, and beautiful,
as were the grammars.

The Fall Now the serpent was more crafty than any other
beast of the field. He said to the language engineers,

Did you actually decide not to build any parsers?

And the language engineers said to the serpent,

We build parsers, but we decided not to build others
than general parsers, nor shall we try it, lest we loose
our syntax definitions to be natural, and pure, and
beautiful.

But the serpent said to the language engineers,

You will not surely loose your syntax definitions to be
natural, and pure, and beautiful. For you know that
when you build particular parsers your benchmarks
will be improved, and your parsers will be the best,
running fast and efficient.

So when the language engineers saw that restricted parsers
were good for efficiency, and that they were a delight to the
benchmarks, they made software to make efficient parsers
and began to make efficient parsers by making parser defini-
tions. Those days, the language engineers went out from the
garden of Eden. In pain they made parser definitions all the
days of their life. But the parser definitions were not gram-
mars and grammars were not parser definitions. And by the
sweat of their faces they turned parser definitions into effi-
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cient parsers. But the parser definitions were not natural, nor
pure, nor beautiful, as the grammars had been before.

The Plagues Their software was full of plagues. The first
plague were grammar classes. Only few grammars could be
turned directly into parser definitions. And language engi-
neers massaged their grammars all the days of their life to
make them fit into a grammar class. And the parser defini-
tions became unnatural, and impure, and ugly. And there was
weeping and mourning.

The second plague was disambiguation. Their new parsers
were deterministic. So the language engineers encoded
precedence in parser definitions. And the parser definitions
became unnatural, and impure, and ugly.

The third plague was lexical syntax. The new software
could not handle lexical syntax definitions. So the language
engineers made another software to turn lexical syntax def-
initions into scanners. But lexical syntax definitions were
less expressive than the grammars they used before. And
they were separated from parser definitions, as were scan-
ners from parsers. And there was weeping and wailing.

The fourth plague was tree construction. The language
engineers wanted the efficient parsers to turn words into
trees, as their old parsers did. So they added code to their
parser definitions. And the parser definitions became unnat-
ural, and impure, and ugly. And those who were oblivious
to the working of the efficient parsers made parsers that turn
the right words into the wrong trees.

The fifth and sixth plague were evolution and composi-
tion. Once the language engineers added a new rule to their
parser definitions, those tended to break. And they massaged
them by the sweat of their faces to make them fit again
into the grammar class. And they were not able to compose
two parser definitions to a single parser definition because
of grammar classes and separate scanners. And there was
weeping and groaning.

The seventh plague was the restriction to parsers. The
language engineers turned parser definitions into recognizers
and into parsers. But they could not turn them into generators
or formatters. That was because parser definitions were not
grammars.

Dedication Many have undertaken to compile a narrative
of the things that have been accomplished among us. It
seemed good to us also, having followed all things closely
for some time past, to write an orderly account for you that
you may have certainty concerning the things you have been
taught. So this is the story about the loss of the garden of
Eden and about the pain and the sweat and the plagues of
parser definitions. But it is also the story about the promised
land and about the naturalness and the pureness and the
beauty of syntax definitions. And it is the story about the
stiff-necked people of language engineers which ignores the
promised land and sticks to the pain and the sweat and the
plagues.

N → D N
N → D
D → "0"
D → "1"

Figure 1. A generative grammar for binary numbers.

So in this paper, we show the consequences of giving
up the declarativity of natural syntax definitions. We show
how practical issues and trade-offs have lead to grammars
plagued with restrictions. We show how upholding and pro-
tecting pure and declarative syntax definition really can
make grammars full of beauty. We show how no compromise
must be made: stray even slightly from the straight and nar-
row path and fall afoul of the maintainability and usability of
declarative syntax definition. We base our story on lessons
learned from 20 years of experience with SDF [28, 52], a
syntax definition formalism that has withstood the tempta-
tions of impurity and stayed true to the way of declarative
syntax definition.

1. The Beauty of Grammars and Trees
Grammars are a simple yet powerful formalism. Most of
their beauty comes from this simplicity of power. Let us
discover this beauty from different perspectives.

Words were made through grammars. Chomsky empha-
sizes that a linguistic theory needs to provide finite mod-
els for the infinite productivity of language. The oldest of
such models handed down to us is the As.t.ādhyāyı̄ [40, 41], a
model of the morphology of Sanskrit. Written in the 4th cen-
tury BC by Pān. ini, an Ancient Indian Sanskrit grammar-
ian, it includes 3,959 rules for the generation of well-formed
Sanskrit words.

In the 1950’s, Chomsky formalized generative gram-
mars [13] as a finite set of terminal symbols, non-terminal
symbols, and production rules. Terminal symbols are the
elementary building blocks words in the language are con-
structed from. Non-terminal symbols are syntactic variables
used to generate words. Production rules specify which sym-
bols can be used in place of a non-terminal. At their left-hand
side they specify a non-terminal and at the right-hand side
they specify the symbols it generates. We can read these
rules as rewrite rules: the left-hand side of a rule can be
rewritten to its right-hand side.

Consider the grammar given in Figure 1. It uses the termi-
nal symbols 0 and 1 and the non-terminal symbols D and N to
generate strings of binary numbers. For example, to generate
the word 1 0, we can start with symbol N and apply the rule
N → D N, giving

D N

then N → D can be applied, giving

D D

then D → "1" can be applied, giving
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E → E "+" E
E → E "*" E
E → NUM

(a) In productive form.

E "+" E → E
E "*" E → E
NUM → E

(b) In reductive form.

E

E + E

E

E * E

E

NUM

(c) As tree construction rules.

Figure 2. A grammar for arithmetic expressions

1 D

and finally D → "0" gives

1 0

Note that the same word can often be generated in multiple
different ways. For example, a sequence of production rule
applications of the form N; D N; 1 N; 1 D; 1 0 also gener-
ates the word 1 0.

It is common practice in linguistics to discuss the struc-
ture of words (morphology) and the structure of sentences
(syntax) separately. This practice found its way to computer
science as well. Generative grammars are useful in both
cases: in the same way that we can generate words from a
vocabulary of letters (i.e., an alphabet), we can generate sen-
tences from a vocabulary of words. Computer scientists are
interested in both cases, but the stronger emphasis is on sen-
tences made out of words. As such, we focus on sentences
from now on and return to words made out of letters later.
As an example of a generative grammar that focuses on sen-
tences rather than words, consider Figure 2(a). It uses non-
terminal symbol E and terminals + and *. The NUM symbol
represents decimal numbers. At the sentence level, NUM is
considered a terminal symbol, and the individual letters it is
constructed from are ignored.

They made languages by making grammars. Grammars
as proposed by Chomsky provide an intuitive, natural means
to describe languages. A grammar is a perfect language de-
scription if it generates all the sentences of the language —
and only these. Conversely, grammars can also be employed
to prescribe new languages. In this case, a sentence is part of
the language if it can be generated with the grammar. Other-
wise, it is not. The grammar is the only truth.

So how can we determine if a sentence complies to a
grammar, i.e. if it can be generated by a grammar? A naive
approach would be to generate sentences until we find the
one in question. A better approach is to consider gram-
mars from a different perspective, no longer viewing them
as a generative device, but as an oracle that determines if

a sentence complies to it. To illustrate this view, Figure 2(b)
shows our expression grammar again, now with the left-hand
and right-hand sides rules switched. This emphasizes an al-
ternative reading of the grammar rules as reduction rules:
the symbols from the left-hand reduce to the non-terminal
symbol of the right-hand side. Grammars in practical appli-
cations are written in one of the two forms depending on
conventions and the grammar engineering software used. In
the remainder of this paper we show grammars in the reduc-
tive form.

Relying on the reductive reading of a grammar, we can
try to rewrite a sentence to a single non-terminal symbol. If
this works, the sentence is part of the language, otherwise it
is not. We start with a sentence and repeatedly interpret the
reduction rules as rewrite rules:

3 * 4 + 5

given this sentence, we can apply NUM → E successively:
E * 4 + 5
E * E + 5
E * E + E

given the last sentence, we can apply E "*" E → E:

E + E

and finally reducing that to

E

Again note that multiple different ways can be used to re-
duce this sentence to a non-terminal symbol. The result is
always E.

Generation and reduction are symmetric processes. If we
can generate a sentence from a non-terminal symbol by
applying a sequence of production rules, we can reduce this
sentence to the non-terminal symbol by applying the same
rules in reversed order — and vice versa.

They turned words into trees and trees into words. Often,
we are not only interested in recognizing whether sentences
are part of the language, but also in the grammatical structure
of sentences. This structure can naturally be represented us-
ing trees. Even in primary school where we learned to recog-
nize word classes like nouns and adjectives as well as higher-
level concepts like clauses and phrases, ultimately trees were
the basis for analyzing sentences in natural language. Each
node of a tree corresponds to a syntactic construct, made up
by the constructs represented by its child nodes. The leaves
of the tree correspond to the terminals of the grammar, and
the words in a sentence.

Like grammars, trees are simple yet powerful. We can
combine these two beautiful formalisms by reading grammar
production rules as tree construction rules. Figure 2(c) shows
the grammar we know already from Figures 2(a) and 2(b).
In this notation, production rules are represented as trees of
depth 1. The leaves of each tree indicate the symbols that
match the tree construction rule. Before, these symbols were
rewritten simply to the non-terminal symbol at the root of
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the tree. Now, they are rewritten to the tree representing the
production rule.

Let us see how this works for the sentence

3 * 4 + 5

again, we apply the last production rule successively:

E

3 * 4 + 5;

E

3 *

E

4 + 5;

E

3 *

E

4 +

E

5

given the last tree, we can apply the multiplication rule:

E

E

3 *

E

4 +

E

5

and finally the addition rule:

E

E

E

3 *

E

4 +

E

5

Turning trees back into words is conceptually very simple.
We just need to collect the terminal symbols at the leaves of a
tree from left to right. This gives us the sentence represented
by the tree structure. Things will become more complicated
when we take layout into account, something we will discuss
later.

They made software to make language software. Gram-
mars can be employed in a variety of different ways. So
far we discussed how grammars can be used to generate,
recognize, and build trees from sentences. These and more
tasks are automated by language software: generators pro-
duce sentences, recognizers decide wether a sentence is part
of a language or not, parsers turn words into trees, and for-
matters turn trees into words. These components are essen-
tial for building compilers, interpreters, documentation gen-
erators, and other tools.

Since the formalisation of grammars by Chomsky, com-
puter scientists came up with generic tools to turn gram-
mars into language software. They made syntax definitions
that encode a grammar for use by these tools. Syntax def-
initions can only be applied for the complete spectrum of
language software if they maintain the virtue of declarativ-
ity that grammars provide. Grammars are declarative as they
only describe what language software should do, not nec-
essarily how to do it. This description does not have to be
specifically written or altered with any one of the applica-
tions in mind.

Tools to construct language software have to address
many practical issues, and, as we discuss in the following

sections1, there are many potential pitfalls where declara-
tivity is lost due to imprudent design decisions. Many tool
vendors are tempted to leave the righteous path of declarativ-
ity and incorporate various facets of the implementation of
language software into syntax definitions. Unfortunately, by
deviating from the path, the declarativity of grammars is lost.
This loss always comes at a price, incurring limitations in the
way syntax definitions can be used, or requiring additional
effort in the specification of syntax definitions. An early ex-
ample of the loss of declarativity is the As.t.ādhyāyı̄: Though
it is known as one of the most consolidated descriptions of
human knowledge, the description is highly algorithmic and
technical. Due to the focus on brevity, its structure is quite
unintuitive, reminiscent of contemporary machine code.

2. Parser Generation
Parsers can be implemented by hand or generated using a
parser generator. Handwritten parsers tend to use left-to-
right scanning of the input, constructing a leftmost derivation
of a parse tree. In contrast, generated parsers can use a
variety of efficient algorithms that may not be easy to write
by hand.

Grammar subclasses Most parsing algorithms work only
for a subclass of the set of all context-free grammars, such as
LL(1), LL(k), LR(1), LR(k), LALR(1), LALR(k), etc. We
recall that the first L in these abbreviations stands for left-
to-right scanning. Instead of keeping the whole sentence in
memory, efficient parsers process them word by word. The
constant k indicates the number of words of lookahead that
is available. The second L in LL and the R in LR stand for a
leftmost respectively rightmost derivation.

To prospective users, grammar class restrictions can seem
quite arbitrary. For instance, LL grammars do not sup-
port recursion in the left-most symbol of production pat-
terns [37]. This means that the expression grammar of Fig-
ure 2 is not supported. From an implementation point of
view, the restrictions make sense for the algorithms used
for these parsers. Left recursion in an LL-style recursive de-
scent parser would lead to non-termination. However, from
a usability point of view, they reveal a leaky abstraction:
the implementation directs and restricts the way in which
grammars can be written.

LL parsers In 1968, Lewis and Stearns [37] described
a class of grammars that could be efficiently parsed us-
ing a simple top-down algorithm that constructs a left-most
derivation. Variations of the algorithm are still in popular use
today, notably in the ANTLR parser generator [42]. The dis-
tinguishing feature of the class of grammars supported by
these LL parsers is that they do not support recursion in the
left-most symbol of productions. While they do not support

1 Examples include handling ambiguous grammars, supporting layout and
comments that may interleave syntactic constructs, constructing trees with
a particular API, and ensuring acceptable performance.
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Term ("+" Term)* → E
Fact ("*" Fact)* → Term
NUM → Fact

Figure 3. A left-factored expression grammar.

the natural grammar from Figure 2, language engineers can
manually left factor the grammar, eliminating all left recur-
sion, to allow it to be parsed using an LL parser. The result-
ing grammar2 in Figure 3 no longer corresponds to the nat-
ural grammar and becomes harder to maintain. Consider for
example what happens when new operators such as minus or
modulo need to be introduced. Other forms of left recursion
may be indirect, which makes it harder to pinpoint and solve
the problem.

As the grammar loses its naturalness, so do the trees con-
structed by the parser. Consider the sentence 3 + 4 + 5.
Using the natural grammar, we can construct the following
tree3:

E

E

E

3 +

E

4 +

E

5

This tree perfectly captures the left-associativity of the + op-
erator. In contrast, the only possible tree according to the
left-factored grammar from Figure 3 looks like this:

E

Term

Fact

3

*

+

Term

Fact

4

*

+

Term

Fact

5

Here, the pattern ("+" Term)* introduces right-associative
structure for each repetition. By eliminating left recursion
from the grammar, the tree structure does not capture the
associativity of the operators. The tree no longer incorpo-
rates logical subtrees for the subexpressions (3 + 4) and
(3 + 4) + 5. This complicates the work of compilers and
other language processing tools that operate on the tree. Ad-
ditional work is required to construct trees that have a more
natural form, a topic we revisit in Section 5.

2 Note that we employ the Kleene star (*) operator in this grammar to define
repetitive syntactic structures more concisely.
3 Note that our natural grammar can also be used to construct a right-
associative tree for this input sentence. We discuss how to select the desired
tree in Section 3.

LR parsers LR(k) parsers, introduced by Knuth in
1965 [36], can handle a strictly larger set of grammars than
LL(k) parsers and are able to cope with left recursion. Un-
like LL parsers, they can provisionally match multiple pro-
ductions with the same left-hand side at the same time. Like
LL parsers, they rely on a strictly deterministic algorithm.
For every symbol that is consumed, the parser must decide
to either consume more input (shift) or to apply a partic-
ular production rule (reduce). A state in which the parser
cannot decide whether to shift or reduce is said to have a
shift/reduce conflict; if it cannot decide which production to
apply it has a reduce/reduce conflict. In order to employ LR
parser generators, users have to eliminate such conflicts by
factorization.

LALR parsing is a common variation of LR parsing that
slightly restricts the set of supported grammars in order to
allow for more efficient implementation [18]. Well-known
LALR(1) parser generators are YACC and the very similar
Bison4. A recent case study by Malloy et al. [38] gives an
interesting insight into the typical development process of
a Bison-based LALR parser for the C# language. The case
study started with a grammar from the C# language defi-
nition, and described how over the course of 19 revisions
it was painstakingly factored to eliminate all 40 shift/reduce
and 617 reduce/reduce conflicts that were reported for it. Ac-
cording to Malloy et al., this is not a surprising number of
conflicts for a grammar not specifically designed for the tar-
geted grammar class. In their efforts to resolve all conflicts,
they encountered various limitations of the parser: for ex-
ample, using only 1 symbol for lookahead, their parser had
problems distinguishing array types of the form int[][]

and the form [,]. Another notable problem they ran into is
the use of context-sensitive keywords: for example, the add
keyword used for properties is not reserved in C#. In general,
they had to make a large number of small changes for aspects
of the original, natural grammar that were not supported by
Bison.

Lookahead Using lookahead increases the recognition
power of a parser. LL parsers are particularly dependent
on lookahead [43]. Programmers can manually left-factor
common prefixes of competing productions in order to de-
crease the required lookahead. However, at best this process
leads to unnatural grammars since grammars using LL(k)
or LR(k) with k > 1 are often more natural than with
k = 1 [43]. At worst, it may be insufficient as there are
languages that are LL(k) but not LL(k − 1) [22]. While
traditionally the importance of the lower memory consump-
tion and performance overhead of LL(1) and LR(1) was
emphasized, modern parser generators such as ANTLR can
automatically select an appropriate lookahead k for a given
grammar.

4 In fact, on many systems yacc is an alias of bison.
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Consequences of restricted grammar classes Based on
parsing algorithms such as LL and LR, which only support
a subset of all context-free grammars, language engineers
are forced to focus on the accidental complexity of the in-
ner workings of parser implementation. Instead of focusing
on language design, they have to get absorbed into the id-
iosyncrasies of parsing algorithms. Factorization and “mas-
saging” of syntax definitions leads to specifications that have
little correspondence to the high-level declarative descrip-
tion of a natural grammar for the language. It leads to a loss
of obliviousness: a property used in the aspect-oriented pro-
gramming community [21] that says that software engineers
should be able to reason about something while being un-
concerned or even unaware about the implementation de-
tails. Without obliviousness, language engineers are forced
to write parser definitions instead of declarative syntax def-
initions, describing the parsing process instead of the lan-
guage while destroying declarativity of natural grammars.
Paradise lost indeed.

Parser definitions are a step back from natural syntax def-
initions. To maintain the declarativity of natural grammars
and to ensure obliviousness in language design, syntax defi-
nitions should be freed from the shackles of restricted gram-
mar classes. Only parser generators that support the full class
of context-free grammars should be used.

Generalized parsers In order to keep to the straight and
narrow path of declarative syntax definition, generalized
parsing algorithms that extend or substitute LL and LR must
be used. Parsing algorithms that can handle the full class of
context-free grammars instead of being restricted to a partic-
ular subclass. Unfortunately, a naive implementation of such
a parsing algorithm using backtracking risks exponential ex-
ecution time.

The CYK algorithm, independently proposed by Cocke,
Younger, and Kasami [14, 31, 54] in the 1960s, was histor-
ically the first generalized parsing algorithm that operated
in polynomial (cubic) time. The algorithm required gram-
mars to be written in or converted to Chomsky normal form.
Another algorithm introduced in the late 1960s was Ear-
ley’s algorithm [19], which did not require this normal form.
In 1985, Tomita designed a generalized form of LR pars-
ing [49], of which many variations and improvements have
been developed since [7, 30, 44].

Of these, Tomita’s generalized LR (GLR) has the attrac-
tive property that it runs in linear time for unambiguous
grammars and gracefully copes with ambiguities. In prac-
tice, most programming languages have few or no ambigui-
ties, ensuring good performance with a GLR parser. A recent
variation of GLR is generalized LL [47], which acts much
like a recursive descent parser but uses GLR machinery to
handle ambiguities. It achieves linear execution time for LL
grammars, and cubic execution time in the worst case.

Parser generators based on generalized parsing algo-
rithms have a number of major advantages. They can con-

struct a working parser for any context-free grammar, and
do not require massaging, ensuring that the syntax definition
reflects the natural, intended structure of the language, ensur-
ing maintainability and preservation of obliviousness. Fur-
thermore, the full class of context-free grammars is closed
under composition, allowing for modular grammars and
reuse, a topic we revisit in Section 6.

3. Ambiguity Handling
Some grammars allow us to turn the same words into differ-
ent trees. Such grammars are called ambiguous. The expres-
sion grammar from Figure 2 is ambiguous. For instance, for
the sentence 3 + 4 + 5, there are two possible trees:

E

E

E

3 +

E

4 +

E

5

E

E

3 +

E

E

4 +

E

5

In this section we discuss different ways of handling ambi-
guities and their effects on the declarativity of syntax defini-
tions. We first revisit deterministic parsing algorithms such
as LL and LR, where ambiguities result in conflicts. Next,
we discuss parsing expression grammars, a class of gram-
mars that by definition does not allow ambiguous grammars.
Finally, we discuss how ambiguity is embraced by gener-
alized parsing algorithms. We then show how to amend an
ambiguous grammar with disambiguation rules in a way that
preserves the naturalness and the declarativity of syntax def-
initions.

Ambiguity as conflicts LL and LR parsers are determinis-
tic parsers: they can only return one parse tree for a given
string. This means that they cannot handle ambiguous gram-
mars. Detecting whether a context-free grammar is ambigu-
ous is a classical undecidable problem in formal language
theory [11, 25]. However, based on the restrictions of the LL
and LR grammar classes, conflicts can give an indication of
ambiguity. Tools can statically tell if there is a conflict. Ab-
sence of such conflicts indicates an unambiguous grammar.

The restrictions posed by LL and LR parsers are far from
a panacea for ambiguity handling. For one thing, they are
restricted to only a subset of the unambiguous grammars.
Grammars in these classes also do not enjoy good closure
properties: often, many new, non-local conflicts are intro-
duced when modifying the grammar. This can make modifi-
cations tedious as a grammar evolves. Few reported conflicts
actually indicate ambiguities. Recall the over 600 conflicts
encountered in the case study by Malloy et al. [38]. Each
had to be resolved by hand. In general, to address all con-
flicts can require significant changes to a parser definition to
the point that the original structure is lost and the definition
becomes harder to maintain.

923



E "+" Term → E
Term → E
Term "*" Fact → Term
Fact → Term
NUM → Fact

Figure 4. Encoding of operator precedence in grammar pro-
ductions.

One way to resolve ambiguities in grammars is by encod-
ing precedence and associativity directly in the productions
(Figure 4). Precedences can be encoded by introducing an
extra level of indirection, and associativity can be enforced
by restricting the production patterns. Unfortunately, by en-
coding precedences and operator associativity directly in the
grammar, we lose the declarativity and conciseness of the
natural grammar in Figure 2.

Ambiguity ignored A recent addition to the spectrum of
parser generators is that of packrat parsers [23]. Like LL
parsers, these belong to the family of recursive descent
parsers, but they implement a form of backtracking by means
of memoization, allowing them to consider multiple candi-
date productions rather than just one with LL.

Packrat parsers are based on parsing expression gram-
mars (PEGs) [24], and are an adaptation of the TS formal-
ism originally conceived in the 1970s [3]. Parsing expres-
sion grammars are a distinct class of grammars: they cannot
be used to express all context-free grammars (CFGs), but
are also not a strict subset of this class. PEGs are based on
greedy matching of repetitions and the idea of a strict order-
ing between all productions: the first alternative that matches
“wins.” As such, they use an ordered choice operator (/) in-
stead of the unordered choice operator (|) of BNF. By virtue
of disallowing any kind of non-deterministic choice, ambi-
guity is ignored and effectively defined away in PEGs.

Grammars with disjoint production patterns describe the
same language in both PEGs and CFGs. For non-disjoint pat-
terns, this is not the case: in CFGs, ab|a→A and a|ab→A,
as well as a→A ab→A, describe the language {ab, a}.
However, for PEGs, ab/a→A describes {ab, a}, whereas
a/ab→A describes {a}. Detection of disjointness of pro-
ductions is undecidable [24].

As an example, consider the if statement in a context-
free grammar:

"if" E "then" E → E
"if" E "then" E "else" E → E

which has the notorious “dangling else” ambiguity: for a
nested if statement, it is not clear whether the else clause
belongs to the inner or the outer if. In PEGs, production
ordering forces one alternative to be selected:

"if" E "then" E "else" E /
"if" E "then" E → E

causing the outer if to “win.” Programmers may not al-
ways be aware of the effects of such orderings, especially for
larger, modular grammars with injection productions. Incor-

rect orderings can cause subtle errors, where a tree different
from the intended tree is selected. No conflicts are reported
for such grammars, and the alternative trees are never shown.
Errors in orderings can also cause parse errors at runtime, as
we show next. Consider the following grammar:

"if" E "then" E /
"if" E "then" E "else" E → E

Intuitively, this variation would now cause the inner if to
“win.” However, because the prefix of a statement of the
form if e1 then e2 else e3 matches the first produc-
tion, the second is never considered. A parse error is then
reported at the else keyword, which can be confusing to
programmers that are oblivious to the subtle semantics of
PEGs that are essential for efficient packrat parsing.

Ambiguity embraced Generalized parsers take a funda-
mentally different approach to ambiguity handling. They
can handle the full class of context-free grammars, includ-
ing those that are ambiguous. As such, they can return
all possible derivations for an input: a parse forest rather
than a parse tree. This parse forest can be used to visu-
alize ambiguities that may not be obvious from mere in-
spection of a grammar. As an example, for a statement
if e1 then if e2 then e3 else e4, there are two pos-
sible interpretations:

E

if

E

e1 then

E

if

E

e2 then

E

e3 else

E

e4

and
E

if

E

e1 then

E

if

E

e2 then

E

e3 else

E

e4

For each ambiguity in an input sentence, the parse forest
branches at that point, combining all possible trees into a
single, larger forest, as shown in Figure 5. To some, the no-
tion of parse forests can seem intimidating, as something that
adds to the complexity of language engineering. We argue
that parse forests reduce the complexity, by showing am-
biguities in terms of the grammar, rather than in terms of
the implementing algorithm. Language engineers can remain
oblivious about the implementation of a parser, and only deal
with grammars and trees. Using a textual or visual represen-
tation of the parse forest, language engineers can simply in-
spect any ambiguity and decide which is the intended tree.

Disambiguation rules As early as 1975, Aho and John-
son recognized [1] that the most natural grammar of a lan-
guage is often not accepted by the parser generators that are
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Figure 5. A parse forest for the “dangling else” ambiguity. Note that parse forests can be efficiently represented in memory
by sharing identical subtrees.

used in practice, since the grammar does not fall in the sub-
class of context-free grammars for which the generator can
efficiently produce a parser. They proposed to define lan-
guages using an ambiguous grammar instead – indeed, em-
bracing ambiguity – supplemented with a set of disambigua-
tion rules that are consulted to resolve parsing conflicts. This
approach was first implemented in the YACC [29] parser
generator.

Unfortunately, most of the work on disambiguation rules
has been guided by parser implementation algorithms [5].
Disambiguation rules were simply a way to control (shift/re-
duce) actions of the parser. This resulted in an efficient im-
plementation, but also resulted in very subtle, sometimes un-
expected semantics. To use them, language engineers still
needed to understand the underlying implementation. Once
again, obliviousness was lost. Therefore, in practice, many
language specifications tend to encode precedence rules di-
rectly in grammars instead, to ensure the semantics are clear
and well-understood [5].

Disambiguation rules are only effective if they are de-
signed from the ground up to be declarative and natural of
form. Any premature optimization should be avoided and
obliviousness must be maintained. To avoid tie-in to parsing
algorithms, they can be implemented as a generic filtering
mechanism that simply picks the intended tree from a parse
forest. Then, and only then, should optimizations be consid-
ered for a particular algorithm. For the disambiguation rules
we describe here, it turns out most can be encoded in a gener-
ated GLR parse table, eliminating the overhead of post-parse
filtering [50].

Declarative disambiguation rules can take different forms
[35, 45, 46], such as follow restrictions (a form of longest
match), exclusion/reject rules, priority and associativity
rules, and preference attributes for selecting a default among
several alternatives. As an example, the “dangling else” am-
biguity can be resolved in SDF by placing a preference at-
tribute on either production [35]:

"if" E "then" E → E {prefer}
"if" E "then" E "else" E → E

Similarly, we can disambiguate the grammar of Figure 2 us-
ing the following priority rule and associativity annotations:

E "*" E → E {left} >
E "+" E → E {left}

which specifies that the multiplication rule has priority over
the addition rule, and that the operators should be treated as
left-associative.

By embracing ambiguity, any undesired ambiguities
that are not captured by ambiguity rules can be addressed
through other means, such as non-context-free disambigua-
tion strategies. For example, a fall-back disambiguation
strategy can be to simply select the first alternative (much
like the strategy of packrat parsers). Another strategy can be
to employ semantic information for disambiguation, as seen
in [4] for the C language.

Testing Standard software engineering practices are essen-
tial for creating robust parsers [34]. Version management
and automated testing are particularly important. Grammar
testing has an important role in all three approaches to am-
biguity handling: testing against regressions as a grammar is
factored to fit a certain class (as described for C# in [38]),
testing against inconsistencies because of possible ordering
errors in PEGs, and direct testing against ambiguities with
generalized parsers.

Only using generalized parsers can ambiguities in failing
tests be visualized and explicitly resolved. They are also the
only class of parsers that maintain the declarativity of natu-
ral grammars when handling ambiguities, by separating the
concern of disambiguation into separate rules and annota-
tions.

4. From Terminals to Lexical Syntax
So far we have focused on parsing sentences, in the form
of sequences of terminals. For practical applications, we
also need to consider the individual characters associated
with each terminal. A lexical syntax definition describes the
structure of terminals.
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[\ \t\n] → LAYOUT
"//" ~[\n]* [\n] → LAYOUT

Figure 6. Lexical syntax for whitespace and comments.

Lexical syntax is often specified using regular grammars.
As such, regular expressions form the basis of lexical syntax
specifications. For example

[0-9]+ -> NUM

specifies the lexical production for integer numbers.
Lexical syntax is also used to recognize whitespace and

comments. These are not considered by the productions of
the context-free syntax. As an example, consider an expres-
sion with a C++-style comment:

3 * // 4 +
5

When parsed using the context-free syntax of Figure 2, only
the terminals 3*5 are considered. Whitespace and comments
are only relevant for the lexical syntax of the language.
Figure 6 defines the lexical syntax of these constructs.

Scanners and parsers Character-level grammars often re-
quire arbitrary length lookahead to parse, as non-terminals
can be separated by arbitrary length layout and comments.
This means that conventional LL(1), LR(1) or even LR(k)
parsers cannot cope with grammars that incorporate a lexi-
cal syntax definition [7]. Instead, conventional parser imple-
mentations separate the processing of lexical and context-
free syntax into a separate scanner and parser. The scanner
(or “lexer”) then uses regular grammars to tokenize the in-
put, and the parser operates on these tokens.

Separating lexical and context-free analysis poses a num-
ber of restrictions on syntax definitions. First, it requires
two different syntax definition languages, with different ex-
pressive power (e.g., Lex and YACC). Using only regular
grammars, constructs such as nested comments cannot be
expressed. Another restriction is that a separate scanner can-
not consider the context in which a token occurs. For exam-
ple, consider a sentence "array [1..10] of integer"

in Pascal, a language that to some degree was designed to be
easy to parse. The range 1..10 can be tokenized either as the
real 1. followed by the real .10, or as an integer 1 followed
by the range operator .. and another integer. Similarly, the
modern C# language has several non-reserved keywords that
can be used as an identifier in some contexts. Only based on
the syntactic context could a scanner decide which to select.
One solution is to introduce lexical state, letting the scanner
and parser interact (as done with the infamous “lexer hack”
for parsing C), but this complicates the implementation and
is usually detrimental to the declarativity of syntax defini-
tions.

Scannerless parsers A scannerless parser [45, 46] elimi-
nates the need for a separate scanner to tokenize the input.

Instead, it parses directly at the level of characters. Scanner-
less parsers use a single syntax definition for both lexical and
context-free syntax, and can be used to parse languages with
a sophisticated lexical syntax such as C [4] and AspectJ [10],
without resorting to hacks. Scannerless parsers can only be
implemented using generalized parsing algorithms. Scanner-
less GLR (SGLR) [7, 51] combines scannerless parsing with
GLR parsing, and is used for parsing SDF. Other scannerless
parsers include the parser of TXL [15] (based on recursive
descent backtrack parsing), and various implementations of
packrat parsing [23].

5. From Parse Trees to Abstract Syntax Trees
So far, we have considered parse trees to represent tree struc-
tures. Abstract syntax trees abstract over these trees, hid-
ing details such as whitespace, grouping parentheses, and
keywords. Only elements with semantic value are main-
tained. For example, for the “if” construct of Section 3, a
tree node can be constructed with only the condition and the
two branches as its children, ignoring any layout, comments,
and literals such as if which are part of the parse tree. Ab-
stract syntax trees are useful for subsequent processing of
the input, such as semantic analysis and transformations.

Semantic actions One way of constructing an abstract syn-
tax tree is by use of semantic actions. Semantic actions
are functions that are called once a production successfully
matches (or sometimes before that point). They can be used
to construct an abstract syntax tree by calling tree construc-
tion functions. They can encode properties of the abstract
syntax tree that are not encoded by the grammar. For exam-
ple, they can use functions to construct left-associative data
structures for the + operator from the left-factored grammar
of Figure 3.

Liberal use of semantic actions can constrain the imple-
mentation of parsing algorithms. Semantic actions are bound
to a particular implementation language (e.g., C in YACC),
reducing the portability of grammars. Semantic actions can
include side effects, which means that they can become de-
pendent on a particular evaluation order. Users oblivious to
the way such an algorithm is implemented can be caught
by surprise when an implementation does not evaluate the
functions in the order they would expect. Any changes to
the parsing algorithm – such as optimization, generalization,
or adding error recovery – has the potential to break existing
grammars that depend on semantic actions. Semantic actions
also tie a grammar to syntax recognition, whereas a declar-
ative grammar can also be used for other purposes such as
pretty printing.

While syntax tree construction is a common reason for
parser generators to support semantic actions, another use
case is disambiguation. Predicate functions can be used
to resolve conflict states in a parser algorithm. However,
compared to declarative disambiguation rules, they have the
same disadvantages as other semantic actions. Rather than
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module Expressions
exports context-free syntax

E "+" E → E {cons("Plus")}
E "*" E → E {cons("Mul")}
NUM → E {cons("Num")}
"(" E ")" → E {bracket}
"if" E "then" E → E {cons("If"),prefer}
"if" E "then" E "else" E → E {cons("IfElse")}

context-free priorities
E "*" E → E {left} >
E "+" E → E {left}

lexical syntax
[0-9]+ → NUM
[\ \t\n] → LAYOUT
"//" ~[\n]* [\n] → LAYOUT

Figure 7. The full SDF grammar for the expression lan-
guage.

“polluting” declarative grammars with semantic actions, we
argue that declarative disambiguation rules should be used
to address this concern for context-free languages. For other,
non-context-free languages such as C++, semantic postpro-
cessing can be used, separating the syntax definition from
the semantics.

Declarative tree construction An alternative to full-fledged
semantic actions is to add small, declarative annotations with
information for constructing abstract syntax trees. In SDF,
productions can be annotated with a {cons(n)} annotation
to map a production to a node constructor n. Productions
for grouping parentheses can use the {bracket} annota-
tion, and lexical productions and injections do not need to
be annotated. Figure 7 shows the full SDF grammar for our
expression language as given so far, including priorities, lex-
ical syntax, and constructor annotations. It also introduces a
new production for parenthesized expressions.

Based on the constructors in the language, an abstract
syntax tree of the following form can be created for SDF
grammars:

t ::= "..." // terminals

| c(t1,...,tn) // constructor applications

| [t1,...,tn] // lists of terms

By including only terminals, constructor applications, and
lists, only those elements that have semantic value are in-
cluded in the tree. As an example, an expression 3*4+5 in
abstract syntax has the form

Plus(Mul("3","4"),"5")

and an expression 3*(4+5) becomes

Mul("3",Plus("4","5"))

Declarative tree construction is most effective for gram-
mars with a natural structure. The usefulness of these semi-
automatically constructed trees decreases as grammars are

massaged to fit a certain grammar class (Figure 3) or are
changed to encode precedence and associativity (Figure 4).

Declarative tree construction does not dictate a particular
implementation technology. For SGLR, a simple tree walker
is used that creates abstract syntax tree nodes that are effi-
ciently stored using the ATerm library [6]. Other implemen-
tations can use their own tree walker or factory class (when
using the Java version of SGLR [48]) that transforms the
parse tree to an abstract syntax tree using the annotations on
the productions.

6. Language Evolution and Composition
Languages evolve over time [20], based on new domain
insights, new applications, and new technological develop-
ments. Syntax definitions should be flexible and allow for
change and reuse.

A typical example of language evolution is language ex-
tension. Languages can be extended to meet new require-
ments. For instance, we may want to add comparison ex-
pressions to our expression language:

E "==" E → E
E "<" E → E
E ">" E → E

When using a conventional parser generator, actually inte-
grating these constructs to the parser definition requires lan-
guage engineers to factorize the productions to fit the gram-
mar class. The new expressions also have to be integrated
into the existing sequence of encoded priorities, and have to
be restricted to encode associativity.

Unfortunately, when extending a grammar G1, even a
fully factorized and massaged grammar extension G2 can
cause conflicts when added together: G1 ∪ G2 may have
additional overlapping left-hand sides and other conflicts.
These problems arise as subclasses of the context-free gram-
mars such as LL(k) or LR(k) are not closed under compo-
sition. More often than not, compositions need to be mas-
saged to conform to the class again. In some cases, it may not
even be possible to express the combined language using the
grammar subclass. These problems make parser definitions
rather fragile artifacts.

Separate scanners Using a separate scanner and parser in-
creases problems with extensibility and compositionality of
parsers. Tokens introduced by language extensions are added
to the global set of tokens for the grammar. This can lead to
conflicts. These conflicts are particularly prevalent for larger
extensions or combinations of languages. For example, ex-
tending the Java language with (AspectJ) aspects is simply
not possible with a stateless scanner [10].

Separate scanners do not always lead to full-blown break-
ing problems. Introducing new tokens can also simply mean
that they are reserved from being used as an identifier. Con-
sider for example the enum keyword introduced in Java 5.
Before it was introduced, it could be used as an identifier.
In fact, as it expresses a useful programming concept, its oc-
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public boolean authenticate(String user, String pw) {
SQL stm = <| SELECT id FROM Users

WHERE name = ${user}
AND password = ${pw} |>;

return executeQuery(stm).size() != 0;
}

Figure 8. An extension of Java with SQL queries, adapted
from [9].

module Java-SQL
imports Java SQL
exports context-free syntax

"<|" Query "|>" → Expr {cons("ToSQL")}
"${" Expr "}" → SqlExpr {cons("FromSQL")}

Figure 9. Syntax of Java with embedded SQL queries,
adapted from [9].

currence was not rare in Java programs. Still, because Java is
parsed using a conventional, stateless scanner, the language
designers had to concede and reserve keywords, breaking
backward compatibility. Using a scannerless parser instead,
they could simply use these keywords in the declarative syn-
tax definition without it implicitly causing such harmful side
effects. Rather, any uses of enum as identifier could be dep-
recated and phased out as desired.

Using disambiguation rules, keywords can be explicitly
marked reserved when needed:

"if" | "then" | "else" -> ID {reject}

Composite and embedded languages Declarative syntax
definitions can be reused by grouping reusable productions
into modules. Based on modules, we can even build com-
plete, reusable language components. Using declarative syn-
tax definitions, we can combine independent languages, such
as Java and SQL. Consider Figure 8, which shows such an
embedding. In this Java method, SQL is embedded using
<| ... |> brackets. In turn, Java expressions are embedded
in the SQL query using ${ ... } brackets. Figure 9 defines
the syntax for this composite language by importing the def-
initions of Java and SQL and adding additional productions
for the embedding constructs.

Unfortunately, when combining entire modules of lan-
guages, the composition problems of conventional parser
generators are greatly amplified. The entire, combined lan-
guage must then be factorized to fit into a grammar subclass.
Likewise, a stateless scanner for the grammar of Figure 9
would run into problems with the added <| ... |> brackets,
which in standard Java would be recognized as comparison
signs and pipes. A stateless scanner would also reserve all
keywords in both languages, including keywords such as
SELECT in Java or this in SQL. Another challenge to the
definition of a composite scanner is that identifiers in both
languages have subtly different definitions, but only one can
be supported by a combined scanner.

7. Error Recovery
To use a language in an interactive development environment
(IDE), a parser with error recovery is essential. Using error
recovery, parsers can create a (partial) abstract syntax tree
for incomplete or erroneous inputs. Such inputs are common
when programmers are actively editing a file. Using the
(partial) tree, IDEs can still provide editor services such
as the error markers and content completion, even when
programs are not in a syntactically valid state.

LL, LR, and GLR parsers have the valid prefix property,
which means that the prefix string parsed at any point can
always form a syntactically valid program. When a syntax
error is encountered, the state of the parser at the point of
failure can be used to recover from the error. A common
approach to error recovery is to insert or delete symbols at
or near the point of failure, in order to return the parser in a
syntactically correct state and continue parsing. Sometimes,
the parse failure is caused by a mistake in the prefix – maybe
an extra closing bracket that closed a method prematurely –
which means that symbols have to be inserted or deleted in
the prefix.

Using a declarative syntax definition is essential for flex-
ibility in the implementation of error recovery. For example,
a backtracking algorithm may be added to a parser, which
inserts and deletes symbols at a point earlier in the input. If
syntax definitions use semantic actions that control the be-
havior of the parser or manipulate the global state, such an
approach is not viable.

Automated error recovery can often be improved with
help of the language engineer. Some parser generators use
semantic actions as an imperative “exception handling”
mechanism in parser definitions. While very flexible, this
ties syntax definitions that use them to a particular platform
and implementation algorithm. Worse yet, is also destroys
obliviousness.

A declarative approach to describe error recovery strate-
gies is by using error recovery rules [2, 27]. Using auto-
mated analysis of a grammar it is even possible to derive
such rules [12, 17, 32]. Derivation of rules is based on recog-
nizing typical programming language patterns, such as scope
structures or string literals, for which recovery rules can be
formulated. For such an analysis to work, it is essential that
a syntax definition uses a declarative formalism, free from
semantic actions that influence its meaning. The grammar
should also have a natural structure that makes it easier to
use heuristics to derive recovery rules.

8. Beyond Parsers
So far we focused on grammars as a way to declaratively
construct parsers. Indeed, as a software artifact, grammars
are primarily used to construct parsers. However, as a declar-
ative formalism, grammars can also be used for other appli-
cations.
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Complementary to parsing, grammars can also be used
for unparsing or pretty printing of trees. Using a formatting
language such as the Box language [8], parse trees and ab-
stract syntax trees can be formatted and printed according to
a set of pretty printing rules. Using a declarative syntax def-
inition, such rules can be automatically derived [16]. Auto-
matically derived rules can be adapted by hand or composed
with handwritten rules for improved results.

Similar to unparsing, sentence generation is a technique
for constructing sentences using just the grammar of a lan-
guage, following all paths or a selection of paths from a non-
terminal symbol. One use case of generated sentences is au-
tomated testing, as done with the DGL tool [39]. Generated
tests can ensure coverage of language features in processing
tools such as code generators. Sentence generation can also
be used for detecting ambiguities in grammars [25, 26].

Languages, tools, and frameworks for language process-
ing tools generally operate on the tree structure defined by
a syntax definition. Using a declarative syntax definition, it
is possible to automatically generate statically typed classes,
data structures, and type signatures for use in different tools.
This may not be feasible if the grammar is encoded in a
parser definition for a particular parser generator. Some
meta-programming languages and syntax-aware template
engines can also embed the concrete syntax of a language,
to allow for concise specifications of transformation and
code generation [53].

In IDEs we can distinguish syntactic and semantic editor
services. Syntactic editor services are based purely on the
syntax of a language, and are closely tied to its definition,
whereas semantic services typically use a description of the
semantics of a language defined using a meta-programming
language or framework. Examples of syntactic editor ser-
vices are syntax highlighting, the outline view, code folding,
and syntactic code completion. These services can be declar-
atively described using annotations in the grammar or using
separate descriptor languages. Based on heuristic analysis of
the structure of a grammar, default specifications can be au-
tomatically derived [33]. Similar to derived error recovery
and pretty printing rules, this works best for a natural gram-
mar. Derived specifications can be adapted and composed
with handwritten rules.

9. Discussion
In the preceding sections, we have shown how pure and
declarative syntax definitions have significant advantages
over parser definitions. Generalized parsing algorithms can
be used to parse such syntax definitions, supporting the full
class of context-free grammars and preserving obliviousness
about the parser implementation. They can smoothly handle
ambiguity by building parse forests instead of trees, while
declarative disambiguation rules can be specified separately
rather than requiring the syntax to be changed. Scannerless
parsing algorithms allow for the seamless integration of lex-

ical and context-free syntax. Declarative annotations on pro-
ductions can be used to construct abstract syntax trees with-
out polluting syntax definitions with imperative semantic ac-
tions that rely on specific parser implementations. Modular
syntax definitions ease language evolution and composition.
Pure and declarative syntax definitions also allow error re-
covery rules to be derived or to be specified as separate rules.
Finally, unlike parser definitions, declarative syntax defini-
tions are not restricted to parser generation but can be used
to generate a variety of software artifacts, such as pretty-
printers, sentence generators, and IDE services.

Despite their advantages, techniques that support declara-
tive syntax definition without restriction have not yet become
mainstream. Most current parser generators still use re-
stricted grammar classes, separate scanners, encoded prece-
dence and associativity, and semantic actions. Only a few
parser generators allow truly declarative syntax definitions.
SGLR for the modular syntax definition SDF is one of these,
and may be the most used scannerless GLR implementation.

Adoption The rather unfortunate state of the practice is
that general parsing technology and declarative syntax defi-
nitions have seen a lack of adoption by both users and devel-
opers of parser generators.

In part, practical issues can be blamed for lack of adop-
tion by prospective users. Bravenboer et al. [10] recently
analyzed some of these issues. First, the implementation of
SGLR was in C, targeting the Unix/Linux platform. With
the development of JSGLR [48], this issue has recently been
addressed. A second issue they listed was the lack of good
syntax error handling. This issue has also been recently ad-
dressed, supporting error recovery and integrating SGLR
into the Eclipse platform [17, 32, 48]. A third issue they
listed was the lack of tool support for analyzing ambiguities,
which has unfortunately not yet been addressed for scanner-
less GLR. Finally, they mentioned that the syntax of produc-
tions in SDF may be awkward and unappealing to develop-
ers used to BNF-style rules. This is certainly something to
consider for a potential successor to SDF.

Tool developers have focused for the most part on LL and
LR parser generators. These algorithms are reasonably sim-
ple to implement, and do no require the investment in time
and effort that general algorithms such as (S)GLR or Earley
do. This allows tool developers to focus on peripheral is-
sues, such as supporting different languages, integrating into
meta-programming frameworks, and providing tool support.
While these are all important areas – indeed, SGLR adop-
tion may have suffered from a lack of attention in this area
– only adopting general parsing algorithms can truly change
the way these tools are used.

Education Even LL, LR, and LALR are not simple algo-
rithms that can be easily explained to the lay programmer.
Implementations of these algorithms, generated by parser
generators, can be quite large to the point of being intimi-
dating. Still, to eliminate left recursion, reduce lookahead,
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and resolve shift/reduce and reduce/reduce conflicts, a cer-
tain level of understanding of these algorithms is compul-
sory. Not all language engineers fully understand – or even
aspire to understand – what the real meaning of these issues
is. More often than not parser implementation is a process
of trial-and-error: users simply torture the parser definition
until it confesses.

The requirement of understanding the parsing process for
working with parser generators has lead to the misunder-
standing that simpler algorithms are easier to use. Writing
a parser in recursive descent style is still doable, and even
straightforward. Then why not use an LL parser generator
that automates this? Why would one use a LALR parser
generator that parses programs in bottomup order based on
some unfathomable compressed parse table? Let alone a
more complicated algorithm that can handle larger grammar
classes?

Current computer science curricula tend to focus on the
implementation of parsing algorithms. Students implement
their own LL(1) or LR(1) parser and are familiarized with
tools such as ANTLR and YACC that give an order of mag-
nitude in productivity gain over manual implementations. At
the same time, they reinforce the line of thinking that pro-
grammers need to understand the inner workings of parsers
to work with grammars. Instead, we feel courses should fo-
cus on language engineering topics as described in [34] and
grammar design involving modularity, composition, and am-
biguity.

Epilogue
Since the days language engineers had left the garden of
Eden, they carried heavy burdens. When they built parsers
they suffered from the plagues of parser definitions. They
were slaves to parser generators and their lives were bitter
with turning grammars into parser definitions and parser def-
initions into parsers. And the people of language engineers
groaned because of their slavery and cried out for help.

The promised land The advent of scannerless, generalized
parsing delivered language engineers out of the slavery to
parser generators. It brought them up out of that to a good
and broad land, a land flowing with milk and honey.

In this land, there are no grammar classes. Grammars are
syntax definitions and syntax definitions are grammars. And
syntax definitions are parser definitions and parser defini-
tions are syntax definitions. And the syntax definitions are
natural, and pure, and beautiful.

In this land, there is declarative disambiguation. And the
syntax definitions stay natural, and pure, and beautiful.

In this land, there are no separate scanners. Lexical and
context-free syntax definitions are one definition. And scan-
ners and parsers one tool.

In this land, there is declarative tree construction. The
parsers turn the right words into the right trees. And the

trees are natural, and pure, and beautiful, as are the syntax
definitions.

In this land, there is language evolution and composition
without pain. Language engineers can add new rules to their
syntax definitions. And the syntax definitions stay natural,
and pure, and beautiful. And they can compose two syntax
definitions to a single syntax definition because there are
neither grammar classes nor separate scanners.

In this land, there is no restriction to parsers. Syntax
definitions are parser definitions and parser definitions are
syntax definitions. And syntax definitions are grammars and
grammars are syntax definitions. And language engineers
turn syntax definitions into recognizers, and into generators,
and into parsers, and into formatters.

Exodus But the language engineers did not follow, be-
cause of their broken spirit and harsh slavery. Only few went
out of the house of slavery, into the promised land. Those
few made new software to make parsers and began to make
parsers by making syntax definitions again. And the syntax
definitions were grammars again and grammars were syntax
definitions again. And the syntax definitions were natural,
and pure, and beautiful again, as were the grammars.

The other language engineers feared greatly. And the
people of language engineers cried out,

Leave us alone that we may make parser definitions.
For it would have been better for us to serve the parser
generators.

But here is our answer,

Fear not! Stand firm! See the naturalness, and the
pureness, and the beauty of declarative syntax defi-
nitions, which will work for you. For the parser defi-
nitions that you see today, you shall never see again.

Go out to the promised land! Make new software to
make parsers and begin to make parsers by making
syntax definitions again. Let the syntax definitions be
grammars again and grammars be syntax definitions
again. And the syntax definitions will be natural, and
pure, and beautiful again, as will the grammars.
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