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1. INTRODUCTION

Integrated Development Environments (IDEs) increase programmer productivity by
combining a rich toolset of generic language development tools with services tailored
for a specific language. These services provide programmers rapid, interactive feed-
back based on the syntactic structure and semantics of the language. High expecta-
tions with regard to IDE support place a heavy burden on the shoulders of developers
of new languages.

One burden in particular for textual languages is the development of a parser. Mod-
ern IDEs use a parser to obtain the syntactic structure of a program with every change
that is made to it, ensuring rapid syntactic and semantic feedback as a program is
edited. As programs are often in a syntactically invalid state as they are edited, parse
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error recovery is needed to diagnose and report parse errors, and to construct a valid
Abstract Syntax Tree (AST) for syntactically invalid programs. Thus,to successfully
apply a parser in an interactive setting, proper parse error recovery is essential.

The development and maintenance costs of complete parsers with recovery sup-
port are often prohibitive when general-purpose programming languages are used for
their construction. Parser generators address this problem by automatically generat-
ing a working parser from a grammar definition. They significantly reduce the develop-
ment time of the parser and the turnaround time for changing it as a language design
evolves.

In this article we show how generated parsers can both be general—supporting
the full class of context-free languages — and automatically provide support for error
recovery. Shortly we elaborate on these aspects, describe the challenges in addressing
them together, and give an overview of our approach.

Generalized parsers. A limitation of most parser generators is that they only sup-
port certain subclasses of the context-free grammars, such as LL(k) grammars or
LR(k) grammars, reporting conflicts for grammars outside that grammar class. Such
restrictions on grammar classes make it harder to change grammars—requiring
refactoring—and prohibit the composition of grammars as only the full class of context-
free grammars is closed under composition [Kats et al. 2010b].

Generalized parsers such as generalized LR support the full class of context-free
grammars with strict time complexity guarantees1. By using Scannerless GLR (SGLR)
[Visser 1997b], even scanner-level composition problems such as reserved keywords
are avoided.

Error recovery. To provide rapid syntactic and semantic feedback, modern IDEs in-
teractively parse programs as they are edited. A parser runs in the background with
each key press or after a small delay passes. As the user edits a program, it is often
in a syntactically invalid state. Users still want editor feedback for the incomplete
programs they are editing, even if this feedback is incomplete or only partially correct.
For services that apply modifications to the source-code such as refactorings, errors
and warnings can be provided to warn the user about the incomplete state of the pro-
gram. These days, the expected behavior of IDEs is to provide editor services, even for
syntactically invalid programs.

Parse error recovery techniques can diagnose and report parse errors, and can con-
struct a valid AST for programs that contain syntax errors [Degano and Priami 1995].
The recovered AST forms a speculative interpretation of the program being edited.
Since all language-specific services crucially depend on the constructed AST, the qual-
ity of this AST is decisive for the quality of the feedback provided by these services.
Thus, to successfully apply a parser in an interactive setting, proper parse error recov-
ery is essential.

Challenges. Three important criteria for the effectiveness and applicability of
parser generators for use in IDEs are: (1) the grammar classes they support, (2) the
performance guarantees they provide for these grammar classes, and (3) the quality
of the syntax error recovery support they provide. Parse error recovery for general-
ized parsers such as SGLR has been a long-standing open issue. In this article we
implement an error recovery technique for generalized parsers, thereby showing that
all three criteria can be fulfilled.

1Generalized LR [Tomita 1988] parses deterministic grammars in linear time and gracefully copes with
nondeterminism and ambiguity with a cubic worst-case complexity.
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The scannerless, generalized nature of SGLR parsers poses challenges for the diag-
nosis and recovery of errors. We have identified two main challenges. First, general-
ized parsing implies parsing multiple branches (representing different interpretations
of the input) in parallel. Syntax errors can only be detected at the point where the last
branch failed, which may not be local to the actual root cause of an error, increasing
the difficulty of diagnosis and recovery. Second, scannerless parsing implies that there
is no separate scanner for tokenization and that errors cannot be reported in terms of
tokens, but only in terms of characters. This results in error messages about a single
erroneous character rather than an unexpected or missing token. Moreover, common
error recovery techniques based on token insertion and deletion are ineffective when
applied to characters, as many insertions or deletions are required to modify complete
keywords, identifiers, or phrases. Together, these two challenges make it harder to
apply traditional error recovery approaches, as scannerless and generalized parsing
increases the search space for recovery solutions and makes it harder to diagnose syn-
tax errors and identify the offending substring.

Approach overview. In this article we address the preceding challenges by intro-
ducing additional “recovery” production rules to grammars that make it possible to
parse syntax-incorrect inputs with added or missing substrings. These rules are based
on the principles of island grammars (Section 3). We show how these rules can be
specified and automatically derived (Section 4), and how with small adaptations to
the parsing algorithm, the added recovery rules can be activated only when syntax
errors are encountered (Section 5). By using the layout of input files, we improve the
quality of the recoveries for scoping structures (Section 6), and ensure efficient pars-
ing of erroneous files by constraining the search space for recovery rule applications
(Section 7).

Contributions. This article integrates and updates our work on error recovery for
scannerless, generalized parsing [de Jonge et al. 2009; Kats et al. 2009a] and draws
on our work on bridge parsing [Nilsson-Nyman et al. 2009]. We implemented our ap-
proach based on the modular syntax definition formalism SDF [Heering et al. 1989;
Visser 1997c] and JSGLR2, a Java-based implementation of the SGLR parsing algo-
rithm. The present article introduces general techniques for the implementation of an
IDE based on a scannerless, generalized parser, and evaluates the recovery approach
using automatic syntax error seeding to generate representative test sets for multiple
languages.

2. COMPOSITE LANGUAGES AND GENERALIZED PARSING

Composite languages integrate elements of different language components. We dis-
tinguish two classes of composite languages: language extensions and embedded lan-
guages. Language extensions extend a base language with new, often domain-specific
elements. Language embeddings combine two or more existing languages, allowing
one language to be nested in the other.

Examples of language extensions include the addition of traits [Ducasse et al. 2006]
or aspects [Kiczales et al. 1997] to object-oriented languages, enhancing their support
for adaptation and reuse of code. Other examples include new versions of a language,
introducing new features to an existing language, such as Java’s enumerations and
lambda expressions.

Examples of language embeddings include database query expressions integrated
into an existing, general-purpose language such as Java [Bravenboer et al. 2010]. Such

2http://strategoxt.org/Stratego/JSGLR/
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Fig. 1. An extension of Java with SQL queries.

Fig. 2. Program transformation using embedded object language syntax.

an embedding both increases the expressiveness of the host language and facilitates
static checking of queries. Figure 1 illustrates such an embedding. Using a special
quotation construct, an SQL expression is embedded into Java. In turn, the SQL ex-
pression includes an anti-quotation of a Java local variable. By supporting the notion
of quotations in the language, a compiler can distinguish between the static query and
the variable, allowing it to safeguard against injection attacks. In contrast, when us-
ing only a basic Java API for SQL queries constructed using strings, the programmer
must take care to properly filter any values provided by the user.

Language embeddings are sometimes applied in metaprogramming for quotation
of their object language [Visser 2002]. Transformation languages such as Stratego
[Bravenboer et al. 2008] and ASF+SDF [van den Brand et al. 2002b] allow fragments of
a language that undergo transformation to be embedded in the specification of rewrite
rules. Figure 2 shows a Stratego rewrite rule that rewrites a fragment of code from a
domain-specific language to Java. The rule uses metavariables (written in italics) to
match “action” constructs and rewrites them to Java methods with a similar signa-
ture. SDF supports metavariables by reserving identifier names in the context of an
embedded code fragment.

2.1. Parsing Composite Languages

The key to effective realization of composite languages is a modular, reusable language
description, which allows constituent languages to be defined independently and then
composed to form a whole.

A particularly difficult problem in composing language definitions is composition
at the lexical level. Consider again Figure 2. In the embedded Java language, void

is a reserved keyword. For the enclosing Stratego language, however, this name is
a perfectly legal identifier. This difference in lexical syntax is essential for a clean
and safe composition of languages. It is undesirable that the introduction of a new
language embedding or extension invalidates existing, valid programs.

The difficulty in combining languages with a different lexical syntax stems from the
traditional separation between scanning and parsing. The scanner recognizes words
either as keyword tokens or as identifiers, regardless of the context. In the embedding
of Java in Stratego this would imply that void becomes a reserved word in Stratego
as well. Only using a carefully crafted lexical analysis for the combined language,
introducing considerable complexity in the lexical states to be processed, can these
differences be reconciled. Using scannerless parsing [Salomon and Cormack 1989,
1995], these issues can be elegantly addressed [Bravenboer et al. 2006].

The Scannerless Generalized-LR (SGLR) parsing algorithm [Visser 1997b] realizes
scannerless parsing by incorporating the generalized-LR parsing algorithm [Tomita
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1988]. GLR supports the full class of context-free grammars, which is closed under
composition, unlike subsets of the context-free grammars such as LL(k) or LR(k). In-
stead of rejecting grammars that give rise to shift/reduce and reduce/reduce conflicts in
an LR parse table, the GLR algorithm interprets these conflicts by efficiently trying all
possible parses of a string in parallel, thus supporting grammars with ambiguities, or
grammars that require more look-ahead than incorporated in the parse table. Hence,
the composition of independently developed grammars does not produce a grammar
that is not supported by the parser, as is frequently the case with LL- or LR-based
parsers.3

Language composition often results in grammars that contain ambiguities. Gener-
alized parsing allows declarative disambiguation of ambiguous interpretations, imple-
mented as a filter on the parse tree, or rather the parse forest. As an alternative to
parsing different interpretations in parallel, backtracking parsers revisit points of the
file that allow multiple interpretations. Backtrack parsing is not generalized pars-
ing since a backtracking parser only explores one possible interpretation at a time,
stopping as soon as a successful parse has been found. In the case of ambiguities,
alternative parses are hidden, which precludes declarative disambiguation.

Nondeterminism in grammars can negatively affect parser performance. With tra-
ditional backtracking parsers, this would lead to exponential execution time. Packrat
parsers use a form of backtracking with memoization to parse in linear time [Ford
2002]; but, as with other backtracking parsers, they greedily match the first possi-
ble alternative instead of exploring all branches in an ambiguous grammar [Schmitz
2006]. In contrast, GLR parsers explore all branches in parallel and run in cubic time
in the worst case. Furthermore, they have the attractive property that they parse
the subclass of deterministic LR grammars in linear time. While scannerless pars-
ing tends to introduce additional nondeterminism, the implementation of parse filters
during parsing rather than as a pure postparse filter eliminates most of this overhead
[Visser 1997a].

2.2. Defining Composite Languages

The syntax definition formalism SDF [Heering et al. 1989; Visser 1997c] integrates
lexical syntax and context-free syntax supported by SGLR as the parsing algorithm.
Undesired ambiguities in SDF2 definitions can be resolved using declarative dis-
ambiguation filters specified for associativity, priorities, follow restrictions, reject,
avoid and prefer productions [van den Brand et al. 2002a]. Implicit disambiguation
mechanisms such as “longest match” are avoided. Other approaches, including PEGs
[Ford 2002], language inheritance in MontiCore [Krahn et al. 2008], and the composite
grammars of ANTLR [Parr and Fisher 2011], implicitly disambiguate grammars by
forcing an ordering on the alternatives of a production: the first (or last) definition
overrides the others. Enforcing explicit disambiguation allows undesired ambiguities
to be detected and explicitly addressed by a developer. This characteristic benefits the
definition of nontrivial grammars, in particular the definition of grammars that are
composed from two or more independently developed grammars.

SDF has been used to define various composite languages, often based on main-
stream languages such as C/C++ [Waddington and Yao 2007], PHP [Bravenboer et al.
2007], and Java [Bravenboer and Visser 2004; Kats et al. 2008]. The example gram-
mar shown in Figure 3 extends Java with embedded SQL queries. It imports both the
Java and SQL grammars, adding two new productions that integrate the two. In SDF,

3Note that Schwerdfeger and Van Wyk [2009] have shown that for some LR grammars it is possible to stat-
ically determine whether they compose. They claim that if one accepts some restrictions on the grammars,
the composition of the “independently developed grammars” will not produce conflicts.
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Fig. 3. Syntax of Java with embedded SQL queries, adapted from Bravenboer et al. [2010]. The “cons”
annotation defines the name of the constructed ATerm.

grammar productions take the form p1...pn -> s and specify that a sequence of strings
matching symbols p1 to pn matches the symbol s. The productions in this particular
grammar specify a quotation syntax for SQL queries in Java expressions, and vice
versa an anti-quotation syntax for Java expressions inside SQL query expressions.
The productions are annotated with the {cons(name)} annotation, which indicates
the constructor name used to label these elements when an abstract syntax tree is
constructed.

3. ISLAND GRAMMARS

Island grammars [Moonen 2001, 2002; van Deursen and Kuipers 1999] combine
grammar production rules for the precise analysis of parts of a program and selected
language constructs with general rules for skipping over the remainder of an input.
Island grammars are commonly applied for reverse engineering of legacy applications,
for which no formal grammar may be available, or for which many (vendor-specific)
dialects exist [Moonen 2001]. In this article we use island grammars as inspiration
for error recovery using additional production rules.

Using an island grammar, a parser can skip over any uninteresting bits of a file
(“water”), including syntactic errors or constructs found only in specific language di-
alects. A small set of declarative context-free production rules specifies only the inter-
esting bits (the “islands”) that are parsed “properly”. Island grammars were originally
developed using SDF [Moonen 2001; van Deursen and Kuipers 1999]. The integration
of lexical and context-free productions of SDF allows island grammars to be written in
a single, declarative specification that includes both lexical syntax for the definition of
water and context-free productions for the islands. A parser using an island grammar
behaves similar to one that implements a noise-skipping algorithm [Lavie and Tomita
1993]. It can skip over any form of noise in the input file. However, using an island
grammar, this logic is entirely encapsulated in the grammar definition itself.

Figure 4 shows an SDF specification of an island grammar that extracts call state-
ments from COBOL programs. Any other statements in the program are skipped and
parsed as water. The first context-free production of the grammar defines the Module

symbol, which is the start symbol of the grammar. A Module is a sequence of chunks.
Each Chunk, in turn, is parsed either as a patch of WATER or as an island, in the form of
a Call construct. The lexical productions define patterns for layout, water, and identi-
fiers. The layout rule, using the special LAYOUT symbol, specifies the kind of layout (i.e.,
whitespace) used in the language. Layout is ignored by the context-free syntax rules,
since their patterns are automatically interleaved with optional layout. The WATER

symbol is defined as the inverse of the layout pattern, using the ˜ negation operator.
Together, they define a language that matches any given character stream.

The parse tree produced for an island is constrained using disambiguation filters
that are part of the original SDF specification [van den Brand et al. 2002a]. First,
the {avoid} annotation on the WATER rule specifies a disambiguation filter for these
productions, indicating that the production is to be avoided, for example, at all times,
a nonwater Chunk is to be preferred. Second, the lexical restrictions section specifies
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Fig. 4. An island grammar for extracting calls from a legacy application; adapted from Moonen [2001].

Fig. 5. The unfiltered abstract syntax tree for a COBOL statement, constructed using the ExtractCalls
grammar.

a restriction for the WATER symbol. This rule ensures that water is always greedily
matched, and never followed by any other water character.

The following example illustrates how programs are parsed using an island
grammar.
CALL CKOPEN USING filetable, status

Given this COBOL fragment, a generalized parser can construct a parse tree—or
rather a parse forest that includes all valid interpretations of this text. Internally,
the parse tree includes the complete character stream, all productions used, and their
annotations. In this article, we focus on abstract syntax trees (derived from the parse
trees) where only the {cons(name)} constructor labels appear in the tree. Figure 5 shows
the complete, ambiguous AST for our example input program. Note in particular the
amb node, which indicates an ambiguity in the tree: CALL CKOPEN in our example can
be parsed either as a proper Call statement or as WATER. Since the latter has an {avoid}

annotation in its definition, a disambiguation filter can be applied to resolve the ambi-
guity. Normally, these filters are applied automatically during or after parsing.

4. PERMISSIVE GRAMMARS

As we have observed in the previous section, there are many similarities between a
parser using an island grammar and a noise-skipping parser. In the former case, the
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Fig. 6. Part of the standard Java grammar in SDF; adapted from Bravenboer et al. [2006].

water productions of the grammar are used to “fall back” in case an input sentence
cannot be parsed, in the latter case, the parser algorithm is adapted to do so. While the
technique of island grammars is targeted only towards partial grammar definitions,
this observation suggests that the basic principle behind island grammars may be
adapted for use in recovery for complete, well-defined grammars.

In the remainder of this section, we illustrate how the notion of productions for
defining “water” can be used in regular grammars, and how these principles can be
further applied to achieve alternative forms of recovery from syntax errors. We are
developing this material in an example-driven way in Sections 4.1 to 4.3. Then, in
Section 4.4, we explain how different forms of recovery can be combined. Finally, in
Section 4.5 we discuss automatic derivation of recovery rules from the grammar, while
Section 4.6 explains how the set of generated recovery rules can be customized by the
language developer.

Without loss of generality, we focus many of our examples on the familiar Java
language. Figure 6 shows a part of the SDF definition of the Java language. SDF
allows the definition of concrete and abstract syntax in a single framework. The
mapping between concrete syntax trees (parse trees) and abstract syntax trees is
given by the {cons(name)} annotations. Thus, in the given example, the {cons("If")}

and {cons("IfElse")} annotations specify the name of the constructed abstract syntax
terms. Furthermore, the abstract syntax tree does not contain redundant information
such as layout between tokens and literals in a production. The {avoid} annotation
in the second context-free production is used to explicitly avoid the “dangling else
problem”, a notorious ambiguity that occurs with nested if/then/else statements. Thus,
the {avoid} annotation states that the interpretation of an IfElse term with a nested
If subterm must be avoided in favor of the alternate interpretation, that is, an If term
with a nested IfElse subterm. Indeed, Java can be parsed without the use of SGLR,
but SGLR has been invaluable for extensions and embeddings based on Java such as
those described in Bravenboer and Visser [2004] and Bravenboer et al. [2006].

4.1. Chunk-Based Water Recovery Rules

Island grammars rely on constructing a grammar based on coarse-grained chunks that
can be parsed normally or parsed as water and skipped. This structure is lacking in
normal, complete grammars, which tend to have a more hierarchical structure. For ex-
ample, Java programs consist of one or more classes that each contain methods, which
contain statements, etc. Still, it is possible to impose a more chunk-like structure on
existing grammars in a coarse-grained fashion: for example, in Java, all statements
can be considered as chunks.

Figure 7 extends the standard Java grammar with a coarse-grained chunk structure
at the statement level. In this grammar, each Stm symbol is considered a “chunk,”
which can be parsed as either a regular statement or as water, effectively skipping
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Fig. 7. Chunk-based recovery rules for Java
using avoid. Fig. 8. Chunk-based recovery rules using recover.

over any noise that may exist within method bodies. To ensure that water is always
greedily matched, a follow restriction is specified (-/-), expressing that the WATER
symbol is never followed by another water character.

From Avoid to Recover Productions. As part of the original SDF specification,
the {avoid} annotation is used to disambiguate parse trees produced by grammar
productions. An example is the “dangling else” disambiguation shown in Figure 6.
In Figure 7, we use the {avoid} annotation on the water production to indicate that
preference should be given to parsing statements with regular productions. The key
insight of permissive grammars is that this mechanism is sufficient, in principle, to
model error recovery.

However, in practice, there are two problems with the use of {avoid} for declaring
error recovery. First, {avoid} is also used in regular disambiguation of grammars. We
want to avoid error recovery productions more than “normal” {avoid} productions. Sec-
ond, {avoid} is implemented as a postparse filter on the parse forest produced by the
parser. This is fine when ambiguities are relatively local and few in number. However,
noise-skipping water rules such as those in Figure 7 cause massive numbers of ambi-
guities; each statement can be interpreted as water or as a regular statement, that is,
the parse forest should represent an exponential number of parse trees. While (S)GLR
is equipped to deal with ambiguities, their construction has a performance penalty
which is wasteful when there are no errors to recover from.

Thus, we introduced the {recover} annotation in SDF to distinguish between the two
different concerns of recovery and disambiguation (Figure 8). The annotation is similar
to {avoid}, in that we are interested in parse trees with as few uses of {recover} pro-
ductions as possible. Only in case all remaining branches contain recover productions,
a preferred interpretation is selected heuristically by counting all occurrences of the
{recover} annotation in the ambiguous branches, and selecting the variant with the
lowest count. Parse trees produced by the original grammar productions are always
preferred over parse trees containing recover productions. Furthermore, {recover}

branches are disambiguated at runtime, and, to avoid overhead for error-free pro-
grams, are only explored when parse errors occur using the regular productions. The
runtime support for parsing and disambiguation of recover branches is explained in
Section 5.

Throughout this section we use only the standard, unaltered SDF specification lan-
guage, adding only the {recover} annotation.

Limitations of Chunk-Based Rules. We can extend the grammar of Figure 8 to in-
troduce a chunk-like structure at other levels in the hierarchical structure formed by
the grammar, for example, at method level or at class level, in order to cope with
syntax errors in different places. However, doing so leads to a large number of pos-
sible interpretations of syntactically invalid (but also syntactically valid) programs.
For example, any invalid statement that appears in a method could then be parsed
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as a “water statement.” Alternatively, the entire method could be parsed as a “water
method.” A preferred interpretation can be picked based on the number of occurrences
of the {recover} annotation in the ambiguous branches.

The technique of selectively adding water recovery rules to a grammar allows any
existing grammar to be adapted. It avoids having to rewrite grammars from the
ground up to be more “permissive” in their inputs. Grammars adapted in this fashion
produce parse trees even for inputs with syntax errors that cannot be parsed by the
original grammar. The WATER constructors in the ASTs indicate the location of errors,
which can then be straightforwardly reported back to the user.

While the approach we presented so far can already provide basic syntax error re-
covery, there are three disadvantages to the recovery rules as presented here. First,
the rules are language specific and are best implemented by an expert of a particular
language and its SDF grammar specification. Second, the rules are rather coarse-
grained in nature; invalid subexpressions in a statement cause the entire statement
to be parsed as water. Last, the additional productions alter the abstract syntax of the
grammar (introducing new WATER terminals), causing the parsed result to be unusable
for tools that depend on the original structure.

4.2. General Water Recovery Rules

Adapting a grammar to include water productions at different hierarchical levels is a
relatively simple yet effective way to selectively skip over “noise” in an input file. In
the remainder of this section, we refine this approach, identifying idioms for recovery
rules.

Most programming languages feature comments and insignificant whitespace that
have no impact on the logical structure of a program. They are generally not consid-
ered to be part of the AST. As discussed in Section 3, any form of layout, which may
include comments, is implicitly interleaved in the patterns of concrete syntax produc-
tions. The parser skips over these parts in a similar fashion to the noise skipping of
island grammars. However, layout and comments interleave the context-free syntax
of a language at a much finer level than the recovery rules we have discussed so far.
Consider for example the Java statement

if (temp.greaterThan(MAX) /*API change pending*/)
fridge.startCooling();

in which a comment appears in the middle of the statement.
The key idea discussed in this section is to declare water tokens that may occur

anywhere that layout may occur. Using this idea, permissive grammars can be de-
fined with noise skipping recovery rules that are language independent and more fine-
grained than the chunk-based recovery rules given before. To understand how this
can be realized, we need to understand the way that SDF realizes “character-level
grammars”.

Intermezzo: Layout in SDF. In SDF, productions are defined in lexical syntax or in
context-free syntax. Lexical productions are normal context-free grammar productions,
that is, not restricted to regular grammars. The only distinction between lexical
syntax and context-free syntax is the role of layout. The characters of an identifier
(lexical syntax) should not be separated by layout, while layout may occur between
the sub-phrases of an if-then-else statement, defined in context-free syntax.

The implementation of SDF with scannerless parsing entails that individual char-
acters are the lexical tokens considered by the parser. Therefore, lexical productions
and context-free productions are merged into a single context-free grammar with char-
acters as terminals. The result is a character-level grammar that explicitly defines all
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Fig. 9. Water recovery rules.

the places where layout may occur. For example, the If production is defined in Kernel-
SDF [Visser 1997c], the underlying core language of SDF, as follows4.

syntax
"if" LAYOUT? "(" LAYOUT? Expr LAYOUT? ")" LAYOUT? Stm -> Stm {cons("If")}

Thus, optional layout is interleaved with the regular elements of the construct. It
is not included in the construction of abstract syntax trees from parse trees. Since
writing productions in this explicit form is tedious, SDF produces them through a
grammar transformation, so that, instead of the explicit rule given before, one can
write the If production as in Figure 6.

context-free syntax
"if" "(" Expr ")" Stm -> Stm {cons("If")}

Water as Layout. We can use the notion of interleaving context-free productions
with optional layout in order to define a new variation of the water recovery rules we
have shown so far. Consider Figure 9, which combines elements of the comment def-
inition of Figure 6 and the chunk-based recovery rules from Figure 8. It introduces
optional water into the grammar, which interleaves the context-free syntax patterns.
As such, it skips noise on a much finer-grained level than our previous grammar in-
carnation. To separate patches of water into small chunks, each associated with its
own significant {recover} annotation, we distinguish between WATERWORD and WATERSEP

tokens. The production for the WATERWORD token allows to skip over identifier strings,
while the production for the WATERSEP token allows to skip over special characters that
are neither part of identifiers nor whitespace characters. The latter production is de-
fined as an inverse pattern, using the negation operator (˜). This distinction ensures
that large strings, consisting of multiple words and special characters, are counted
towards a higher recovery cost.

As an example input, consider a programmer who is in the process of introducing a
conditional clause to a statement.

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Still missing the closing bracket, the standard SGLR parser would report an error
near the missing character, and would stop parsing. Using the adapted grammar,
a parse forest is constructed that considers the different interpretations, taking into
account the new water recovery rule. Based on the number of {recover} annotations,
the following would be the preferred interpretation.

if (temp.greaterThan)
fridge.startCooling();

4We have slightly simplified the notation that is used for nonterminals in Kernel-SDF.
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In the resulting fragment both the opening ( and the identifier MAX are discarded, giv-
ing a total cost of 2 recoveries. The previous, chunk-based incarnation of our grammar
would simply discard the entire if clause. While not yet ideal, the new version main-
tains a larger part of the input. Since it is based on the LAYOUT symbol, it also does
not introduce new “water” nodes into the AST. For reporting errors, the original parse
tree, which does contain “water” nodes, can be inspected instead.

The adapted grammar of Figure 9 no longer depends on hand-picking particular
symbols at different granularities to introduce water recovery rules. Therefore, it is
effectively language independent, and can be automatically constructed using only the
LAYOUT definition of the grammar.

4.3. Insertion Recovery Rules

So far, we have focused our efforts on recovery by deletion of erroneous substrings.
However, in an interactive environment, most parsing errors may well be caused by
missing substrings instead. Consider again our previous example.

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Our use case for this has been that the programmer was still editing the phrase, and
did not yet add the missing closing bracket. Discarding the opening ( and the MAX iden-
tifier allowed us to parse most of the statement and the surrounding file, reporting an
error near the missing bracket. Still, a better recovery would be to insert the missing ).

One way to accommodate for insertion-based recovery is by the introduction of a
new rule to the syntax to make the closing bracket optional.

"if" "(" Expr Stm -> Stm {cons("If"), recover}

This strategy, however, is rather specific for a single production, and would signifi-
cantly increase the size of the grammar if we applied it to all productions. A better
approach would be to insert the particular literal into the parse stream.

Literal Insertion. SDF allows us to simulate literal insertion using separate produc-
tions that virtually insert literal symbols. For example, the lexical syntax section in
Figure 10 defines a number of basic literal insertion recovery rules, each inserting a
closing bracket or other literal that ends a production pattern. This approach builds
on the fact that literals such as ")" are in fact nonterminals that are defined with a
production in Kernel-SDF.

syntax
[\41] -> ")"

Thus, the character 41, which corresponds to a closing brace in ASCII, reduces to the
nonterminal “)”. A literal insertion rule extends the definition of a literal nonterminal,
effectively making it optional by indicating that they may match the empty string.
Just as in our previous examples, {recover} ensures these productions are deferred.
The constructor annotation {cons("INSERT")} is used as a labeling mechanism for error
reporting for the inserted literals. As the INSERT constructor is defined in lexical syntax,
it is not used in the resulting AST.

Insertion Rules for Opening Brackets. In addition to insertions of closing brackets
in the grammar, we can also add rules to insert opening brackets. These literals start a
new scope or context. This is particularly important for composed languages, where a
single starting bracket can indicate a transition into a different sublanguage, such as
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Fig. 10. Insertion recovery rules for literal symbols.

the |[ and <| brackets of Figure 1 and Figure 2. Consider for example a syntax error
caused by a missing opening bracket in the SQL query of the former figure.
SQL stm = // missing <|

SELECT password FROM Users WHERE name = ${user}
|>;

Without an insertion rule for the <| opening bracket, the entire SQL fragment could
only be recognized as (severely syntactically incorrect) Java code. Thus, it is essential
to have insertions for such brackets.
lexical syntax

-> "<|" {cons("INSERT"), recover}

On Literals, Identifiers, and Reserved Words. Literal insertion rules can also be used
for literals that are not reserved words. This is an important property when consider-
ing composed languages since, in many cases, some literals in one sublanguage may
not be reserved words in another. As an example, we discuss the insertion rule for the
end literal in the combined Stratego-Java language.

In Stratego, the literal end is used as the closing token of the if ... then ... else

... end construct. To recover from incomplete if-then-else constructs, a good inser-
tion rule is as follows.
lexical syntax

-> "end" {cons("INSERT"), recover}

In Java, the string end is not a reserved word and is a perfectly legal identifier. In Java,
identifiers are defined as follows.5

lexical syntax
[A-Za-z\ \$][A-Za-z0-9\ \$]* -> ID

This lexical rule would match a string end. Still, the recovery rule will strictly be
used to insert the literal end, and never an identifier with the name “end”. The reason
why the parser can make this distinction is that the literal end itself is defined as an
ordinary symbol when normalized to kernel syntax.
syntax

[\101] [\110] [\100] -> "end"

The reason that SDF allows this production to be defined in this fashion is that in the
SGLR algorithm, the parser only operates on characters, and the end literal has no
special meaning other than a grouping of character matches.

The literal insertion recovery rule simply adds an additional derivation for the "end"

symbol, providing the parser with an additional way to parse it, namely by matching
the empty string. As such, the rule does not change how identifiers (ID) are parsed,
namely by matching the pattern at the left-hand side of the production rule for the

5In fact this production is a simplified version of the actual production. Java allows many other (Unicode)
letters and numbers to appear in identifiers.
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Fig. 11. Insertion recovery rules for lexical symbols.

ID symbol. With a naive recovery strategy that inserts tokens into the stream, iden-
tifiers (e.g., end in Java) could be inserted in place of keywords. With our approach,
these effects are avoided since the insertion recovery rules only apply when a literal is
expected.

Insertion Rules for String and Comment Closings. Figure 11 specifies recover rules
for terminating the productions of the StringLiteral and Comment symbols, first seen in
Figure 6. Both rules have a {recover} annotation on their starting literal. Alterna-
tively, the annotation could be placed on the complete production.

lexical syntax
"\"" StringPart* "\n" -> StringLiteral {cons("INSERTEND"), recover}

However, the given formulation is beneficial for the runtime behavior of our adapted
parser implementation, ensuring that the annotation is considered before construction
of the starting literal. The recovery rules for string literals and comments match ei-
ther at the end of a line or at the end of the file as appropriate, depending on whether
newline characters are allowed in the original, nonrecovering productions. An alterna-
tive approach would have been to add a literal insertion production for the quote and
comment terminator literals. However, by only allowing the strings and comments to
be terminated at the ending of lines and the end of file, the number of different possi-
ble interpretations is severely reduced, thus reducing the overall runtime complexity
of the recovery.

Insertion Rules for Lexical Symbols. Insertion rules can also be used to insert lexi-
cal symbols such as identifiers. However, lexical symbols do have a representation in
the AST, therefore, their insertion requires the introduction of placeholder nodes that
represent a missing code construct, for example a NULL() node. Since placeholder nodes
alter the abstract syntax of the grammar, their introduction adds to the complexity of
tools that process the AST. However, for certain use cases such as content completion
in an IDE, lexical insertion can be useful. We revisit the topic in Section 8.

4.4. Combining Different Recovery Rules

The water recovery rules of Section 4.2 and the insertion rules of Section 4.3 can be
combined to form a unified recovery mechanism that allows both discarding and inser-
tion of substrings.

module Java-15-Permissive
imports

Java-15-Permissive-Water
Java-15-Permissive-LiteralInsertions
Java-15-Permissive-LexicalInsertions

Together, the two strategies maintain a fine balance between discarding and inserting
substrings. Since the water recovery rules incur additional cost for each water sub-
string, insertion of literals will generally be preferred over discarding multiple sub-
strings. This ensures that most of the original (or intended) user input is preserved.
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4.5. Automatic Derivation of Permissive Grammars

Automatically deriving recovery rules helps to maintain a valid, up-to-date recovery
rule set as languages evolve and are extended or embedded into other languages. Par-
ticularly, as languages are changed, all recovery rules that are no longer applicable are
automatically removed from the grammar and new recovery rules are added. Thus, au-
tomatic derivation helps to maintain language independence by providing a generic,
automated approach towards the introduction of recovery rules.

SDF specifications are fully declarative, which allows automated analysis and trans-
formation of a grammar specification. We formulate a set of heuristic rules for the
generation of recovery rules based on different production patterns. These rules are
applied in a top-down traversal to transform the original grammar into a permissive
grammar. The heuristics in this section focus on insertion recovery rules, since these
are language specific. The water recovery rules are generally applicable and added to
the transformed grammar without further analysis. The heuristics discussed in this
section are based on our experience with different grammars.

So far, we only focused on a particular kind of literals for insertion into the grammar,
such as brackets, keywords, and string literals. Still, we need not restrict ourselves to
only these particular literals. In principle, any literal in the grammar is eligible for use
in an insertion recovery rule. However, for many literals, automatic insertion can lead
to unintuitive results in the feedback presented to the user. For example, in the Java
language “synchronized” is an optional modifier at the beginning of a class declaration.
We don’t want the editor to suggest to insert a “synchronized” keyword. In those cases,
discarding some substrings instead may be a safer alternative. The decision whether
to consider particular keywords for insertion may depend on their semantic meaning
and importance [Degano and Priami 1995]. To take this into account, expert feedback
on a grammar is needed.

Since we have aimed at maintaining language independence of the approach, our
main focus is on more generic, structure-based properties of the grammar. We have
identified four different general classes of literals that commonly occur in grammars.

— Closing brackets and terminating literals are for context-free productions.
— Opening brackets and starting literals are for context-free productions.
— Closing literals terminate lexical productions where no newlines are allowed (such

as most string literals).
— Closing literals terminate lexical productions where newlines are allowed (such as

block comments).

Each has its own particular kind of insertion rule, and each follows its own particular
definition pattern. We base our generic, language-independent recovery technique on
these four categories.

By grammar analysis, we derive recovery rules for insertions of the categories men-
tioned before. With respect to the first and second category, we only derive rules for
opening and closing terminals that appear in a balanced fashion with another literal
(or a number of other literals). Insertions of literals that are not balanced with another
literal can lead to undesired results, since such constructs do not form a clear nesting
structure. Furthermore, we exclude lexical productions that define strings and com-
ments, for which we only derive more restrictive insertion rules given by the third and
fourth category.

Insertion rules for the first category, closing bracket and terminating literal inser-
tions, are added based on the following criteria. First, we only consider context-free
productions. Second, the first and last symbols of the pattern of such a production
must be a literal, for example, the closing literal appears in a balanced fashion.
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Fig. 12. A selection of context-free productions that appear in the Java grammar.

Finally, the last literal is not used as the starting literal of any other production. The
main characteristic of the second category is that it is based on starting literals in
context-free productions. We only consider a literal a starting literal if it only ever ap-
pears as the first part of a production pattern in all rules of the grammar. For the third
category, we only consider productions with identical starting and end literals where
no newlines are allowed in between. Finally, for the fourth category we derive rules for
matching starting and ending literals in LAYOUT productions. Note that we found that
some grammars (notably the Java grammar of Bravenboer et al. [2006]) use kernel
syntax for LAYOUT productions to more precisely control how comments are parsed.
Thus, we consider both lexical and kernel syntax for the comment-terminating rules.

As an example, consider the context-free productions of Figure 12. Looking at the
first production, and using the heuristic rules given earlier, we can recognize that }
qualifies as a closing literal. Likewise, ) satisfies the conditions for closing literals we
have set. By programmatically analyzing the grammar in this fashion, we collected
the closing literal insertion rules of Figure 10 which are a subset of the complete set
of closing literal insertion rules for Java. From the productions of Figure 12 we can
further derive the { and ( opening literals. In particular, the while keyword is not con-
sidered for deriving an opening literal insertion rule, since it is not used in conjunction
with a closing literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuristic, an example can be
constructed where it fails. We have encountered a number of anomalies that arose
from our heuristic rules. For example, based on our heuristic rules, the Java class

keyword is recognized as a closing literal6, which follows from the “void” class literal
production of Figure 12, and from the fact that the class keyword is never used as a
starting literal of any production. In practice, we have found that these anomalies are
relatively rare and in most cases harmless.

We evaluated our set of heuristic rules using the Java, Java-SQL, Stratego,
Stratego-Java, and WebDSL grammars, as outlined in Section 10. For these gram-
mars, a total number of respectively 19 (Java), 43 (Java-SQL), 37 (Stratego), 47
(Stratego-Java), and 32 (WebDSL) insertion rules were generated, along with a con-
stant number of water recovery rules as outlined in Figure 9. The complete set of
derived rules is available from Kats et al. [2011].

4.6. Customization of Permissive Grammars

Using automatically derived rules may not always lead to the best possible recovery
for a particular language. Different language constructs have different semantic
meanings and importance. Different languages also may have different points where
programmers often make mistakes. Therefore a good error recovery mechanism is
not only language independent, but is also flexible [Degano and Priami 1995]. That
is, it allows grammar engineers to use their experience with a language to improve

6Note that for narrative reasons, we did not include an insertion rule for this keyword in Figure 10.
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recovery capabilities. Our system, while remaining within the realm of the standard
SDF grammar specification formalism, delivers both of these properties.

Language engineers can add their own recovery rules using SDF productions sim-
ilar to those shown earlier in this section. For example, a common “rookie” mistake
in Stratego-Java is to use [| brackets |] instead of |[ brackets ]|. This may be re-
covered from by standard deletion and insertion rules. However, the cost of such a
recovery is rather high, since it would involve two deletions and two insertions. Other
alternatives, less close to the original intention of the programmer, might be preferred
by the recovery mechanism. Based on this observation, a grammar engineer can add
substitution recovery rules to the grammar.

lexical syntax
"[|" -> "|[" {recover, cons("INSERT")}
"|]" -> "]|" {recover, cons("INSERT")}

These rules substitute any occurrence of badly constructed embedding brackets with
the correct alternative, at the cost of only a single recovery. Similarly, grammar en-
gineers may add recovery rules for specific keywords, operators, or even placeholder
identifiers as they see fit to further improve the result of the recovery strategy.

Besides composition, SDF also provides a mechanism for subtraction of languages.
The {reject} disambiguation annotation filters all derivations for a particular set of
symbols [van den Brand et al. 2002a]. Using this filter, it is possible to disable some of
the automatically derived recovery rules. Consider, for example, the insertion rule for
the class keyword, which arose as an anomaly from the heuristic rules of the previous
subsection. Rather than directly removing it from the generated grammar, we can
disable it by extending the grammar with a new rule that disables the class insertion
rule.

lexical syntax
-> "class" {reject}

It is good practice to separate the generated recovery rules from the customized
recovery rules. This way, the generated grammar does not have to be adapted and
maintained by hand. A separate grammar module can import the generated defini-
tions, while adding new, handwritten definitions. SDF allows modular composition of
grammar definitions.

5. PARSING PERMISSIVE GRAMMARS WITH BACKTRACKING

When all recovery rules are taken into account, permissive grammars provide many
different interpretations of the same code fragment. As an example, Figure 13 shows
many possible interpretations of the string i=f(x)+1;. The alternative interpretations
are obtained by applying recovery productions for inserting parentheses or removing
text parts. This small code fragment illustrates the explosion in the number of am-
biguous interpretations when using a permissive grammar. The option of inserting
opening brackets results in even more possible interpretations, since bracket pairs can
be added around each expression that occurs in the program text.

Conceptually, the use of grammar productions to specify how to recover from errors
provides an attractive mechanism to parse erroneous fragments. All possible inter-
pretations of the fragment are explored in parallel, using a generalized parser. Any
alternative that does not lead to a valid interpretation is simply discarded, while the
remaining branches are filtered by disambiguation rules applied by a postprocessor on
the created parse forest. However, from a practical point of view, the extra interpreta-
tions created by recovery productions negatively affect time and space requirements.
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Fig. 13. Interpretations of i=f(x)+1; with insertion recovery rules (underlined) and water recovery rules.

With a generalized parser, all interpretations are explored in parallel, which signifi-
cantly increases the workload for the parser, even if there are no errors to recover from.

In this section we address the performance problems introduced by the multiple
recover interpretations. We extend the SGLR algorithm with a selective form of back-
tracking that is only applied when actually encountering a parsing error. The per-
formance problems during normal parsing are simply avoided by ignoring the recover
productions.

5.1. Backtracking

As it is not practical to consider all recovery interpretations in parallel with the nor-
mal grammar productions, we need a different strategy to efficiently parse with per-
missive grammars. As an alternative to parsing different interpretations in parallel,
backtracking parsers revisit points of the file that allow multiple interpretations (the
choice points). Backtrack parsing is not a correct implementation of generalized pars-
ing, since a backtracking parser only produces a single possible parse. However, when
applied to error recovery, this is not problematic. For typical cases, parsing only a sin-
gle interpretation at a time suffices; ultimately, only one recovery solution is needed.

To minimize the overhead of recovery rules, we introduce a selective form of back-
tracking to (S)GLR parsing that is only used for the concern of error recovery. We
ignore all recovery productions during normal parsing, and employ backtracking to
apply the recovery rules only once an error is detected. Backtracking parsers exhibit
exponential behavior in the worst case [Johnstone et al. 2004]. For pathological cases
with repetitive backtracking, the parser is aborted, and a secondary, noncorrecting
recovery technique is applied.

5.2. Selecting Choice Points for Backtracking

A parser that supports error recovery typically operates by consuming tokens (or
characters) until an erroneous token is detected. At the point of detection of an error,
the recovery mechanism is activated. A major problem for error recovery techniques
is the difference between the actual location of the error and the point of detection
[Degano and Priami 1995]. Consider for example the erroneous code fragment in
Figure 14. The superfluous closing bracket (underlined) after the foo(); statement
is obviously intended as a closing bracket for the if construct. However, since the if

construct misses an opening bracket, the closing bracket is misinterpreted as closing
the method instead of the if construct. At that point, the parser simply continues,
interpreting the remaining statements as class-body declarations. Consequently, the
parser fails at the reserved while keyword, which can only occur inside a method body.
More precisely, with a scannerless parser, it fails at the unexpected space after the
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Fig. 14. The superfluous closing bracket is detected at the while keyword.

characters w-h-i-l-e; the character cannot be shifted and all branches (interpretations
at that point) are discarded.

In order to properly recover from a parse failure, the text that precedes the point of
failure must be reinterpreted using a correcting recovery technique. Using backtrack-
ing, this text is inspected in reverse order, starting at the point of detection, gradually
moving backwards to the start of the input file. Using a reverse order helps maintain
efficiency, since the actual error is most likely near the failure location.

As generalized LR parsers process different interpretations in parallel, they use a
more complicated stack structure than regular LR parsers. Instead of a single, linear
stack, they use a Graph-Structured Stack (GSS) that efficiently stores the different
interpretation branches, which are discarded as input tokens or characters are shifted
[Tomita 1988]. All discarded branches must be restored in case the old state is revis-
ited, which poses a challenge for applying backtracking.

To make it possible to resume parsing from a previous location, the complete stack
structure for that location is stored in a choice point. We found that it is prohibitive (in
terms of performance) to maintain the complete stack state for each shifted character.
To minimize the overhead introduced, we only selectively record the stack structure.
Lines have meaning in the structure of programs as units of editing. Typically, parse
errors are clustered in the line being edited. We base our heuristic for storing choice
points on this intuition. In the current implementation, we create one backtracking
choice point for each line of the input file.

5.3. Applying Recovery Rules

A parse failure indicates that one or more syntax errors reside in the prefix of the
program before the failure location. Since it is unlikely that the parser can consume
many more tokens after a syntax error, these errors are typically located near the
failure location. To recover from multiple errors, multiple corrections are sometimes
required. To recover from syntax errors efficiently, we implement a heuristic that
expands the search space with respect to the area that is covered and with respect to
the number of corrections (recover rule applications) that are made.

Figure 15 illustrates how the search heuristic is applied to recover the Java frag-
ment of Figure 14. The algorithm iteratively explores the input stream in reverse or-
der, starting at the nearest choice point. With each iteration of the algorithm, different
candidate recoveries are explored in parallel for a restricted area of the file and for a
restricted number of recovery rule applications. For each following iteration the size of
the area and the number of recovery rule applications are increased.

Figure 15(a) shows the parse failure after the while keyword. The point of failure
is indicated by the triangle. The actual error, at the closing bracket after the if state-
ment, is underlined. The figure shows the different choice points that have been stored
during parsing using circles in the left margin.

The first iteration of the algorithm (Figure 15(b)) focuses on the line where the
parser failed. The parser is reset to the choice point at the start of the line, and
enters recovery mode. At this point, only candidate recoveries that use one recovery
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Fig. 15. Applying error recovery rules with backtracking. The initial point of failure and the start of the
recovery search space is indicated by a triangle. The entire search space is indicated using dashed lines,
where the numbers to the side indicate the number of recovery rules that can be applied at that line.

production are considered; alternative interpretations formed by a second recovery
production are cut off. Their exploration is postponed until the next iteration. In this
example scenario, the first iteration does not lead to a valid solution.

For the next iteration, in Figure 15(c), the search space is expanded with respect to
the size of the inspected area and the number of applied recovery rules. The new search
space consists of the line that precedes the point of detection, plus the error detection
line where the recovery candidates with two changes are considered, resuming the
interpretations that were previously cut off.

In Figure 15(d), the search space is again expanded with the preceding line. This
time, a valid recovery is found: the application of a water recovery rule that discards
the closing bracket leads to a valid interpretation of the erroneous code fragment.
Once the original line where the error was detected can be successfully parsed, normal
parsing continues.

5.4. Algorithm

The implementation of the recovery algorithm requires a number of (relatively mi-
nor) modifications of the SGLR algorithm used for normal parsing. First, productions
marked with the {recover} attribute are ignored during normal parsing. Second, a
choice point is stored at each newline character. And finally, if all branches are dis-
carded and no accepting state is reached, the Recover function is called. Once the recov-
ery is successful, normal parsing resumes with the newly constructed stack structure.

Figure 16 shows the recovery algorithm in pseudocode. The Recover function con-
trols the iterative search process described in Section 5.3. The function starts with
some initial configuration (line 2–3), initializing the candidates variable, and select-
ing the last inserted choice point. The choice points are then visited in reverse order
(line 4–7), until a valid interpretation (nonempty stack structure) is found (line 7).

For each choice point that is visited, the ParseCandidates function is called. The
ParseCandidates function has a twofold purpose (line 16, 17): first, it tries to construct
a valid interpretation (line 16) by exploring candidate recover branches; second, it
collects new candidate recover branches (line 17) the exploration of which is postponed
until the next iteration. Candidate recover branches are cut-off recover interpretations
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Fig. 16. A backtracking algorithm to apply recovery rules.

of a prefix of the program. The ParseCandidates function reparses the fragment that
starts at the choice point location and ends at the accept location (line 19–26). We
heuristically set the ACCEPT INTERVAL on two more lines and at least twenty more
characters being parsed after the failure location. For each character of this fragment,
previously cut-off candidates are merged into the stack structure (line 23) so that they
are included in the parsing (line 24), while new candidates are collected by applying
recover productions on the stack structure (line 24–25, line 31).

The main idea, implemented in line 23–25 and the ParseCharacter function (line 28–
32), is to postpone the exploration of branches that require multiple recover pro-
ductions, thereby implementing the expanding search space heuristic described in
Section 5.3.

After the algorithm completes and finds a nonempty set of stacks for the parser,
it enters an optional disambiguation stage. In case more than one valid recovery is
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Fig. 17. Missing }.

found, stacks with the lowest recovery costs are preferred. These costs are calculated
as the sum of the cost of all recovery rules applied to construct the stack. We employ
a heuristic that weighs the application of a water recovery rule as twice the cost of
the application of an insertion recovery rule, which accounts for the intuition that it is
more common that a program fragment is incomplete during editing than that a text
fragment was not intended and therefore should be deleted. Ambiguities obtained by
application of a recovery rule annotated with {reject} form a special case. The reject
ambiguity filter removes the stack created by the corresponding rule from the GSS,
thereby effectively disabling the rule.

6. LAYOUT-SENSITIVE RECOVERY OF SCOPING STRUCTURES

In this section, we describe a recovery technique specific for errors in scoping struc-
tures. Scoping structures are usually recursive structures specified in a nested fash-
ion [Charles 1991]. Omitting brackets of scopes, or other character sequences marking
scopes, is a common error made by programmers. These errors can be addressed by
common parse error recovery techniques that insert missing brackets.

However, as scopes can be nested, there are often many possible positions where
a missing bracket can be inserted. The challenge is to select the most appropriate
position. As an example, consider the Java fragment in Figure 17. This fragment
could be recovered by inserting a closing bracket at the end of the line with the second
opening bracket, or at any line after this line. However, the use of indentation suggests
the best choice may be just before the int x; declaration.

One approach to handle this problem is to take secondary notation like indentation
into account during error recovery. Bridge parsing, introduced by Nilsson-Nyman et al.
[2009]7, uses this particular approach. This scope recovery approach can be combined
with the permissive grammar approach presented in the previous section.

6.1. Bridge Parsing

Bridge parsing provides a technique specifically targeted at improved recovery of scope
errors using secondary notation such as indentation. The technique as such is inde-
pendent of any specific parsing formalism. It may be used as a standalone processor
of erroneous files where recovery otherwise fails: given an erroneous file, or section
of a file, the bridge parser analyses the content and provides suggestions on where
to insert missing brackets. Based on a set of rules that describe the typical relation
between scopes and layout for Java, a bridge parser can correctly recover cases such
as the example given before.

Internally, a bridge parser contains three parts: a tokenizer, a model builder, and
a repairer. The tokenizer provides a list of interesting tokens from an input text.
Tokens starting and ending scopes are referred to as islands; tokens interesting for
construction of scopes, or recovery of scopes, are referred to as reefs; and remaining
tokens are considered to be water. The terms island and water are used in the same
fashion as in island grammars [van Deursen and Kuipers 1999; Moonen 2001, 2002].

7Emma Nilsson-Nyman, the first author of the cited bridge parser paper, has changed her name to Emma
Söderberg and is one of the authors of this article.
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Fig. 18. A tokenization of the example program in Figure 17 where text is mapped to islands (double edges),
water (W), and reefs (R(n)). The number n in a reef R(n) represents the indentation level of the reef.

Fig. 19. A bridge parser model with bridges (arches) between matching islands (double-edged nodes). Is-
lands missing a bridge correspond to broken scopes (broken). The bridge repairer will try to recover such
scopes by insertion of new matching islands (recovery).

Reefs, added for bridge parsing, are tokenwise like islands, but have a different role in
the model constructed from the token list. Figure 18 shows an example of a token list
for the program fragment in Figure 17. Each part of the fragment is mapped to either
an island, reef, or water. For the benefit of the model builder algorithm, the token list
is padded with some additional tokens at the start and end.

After tokenization, the model builder constructs scopes based on information in the
token list. For instance, each reef in the token list in Figure 18 has a number indicat-
ing indentation level.8 This indentation information is key to construction of scopes,
represented as bridges, connecting two islands, in the model. The model builder de-
cides which two islands to connect using an algorithm that considers patterns of tokens
surrounding islands, and rules for when patterns match. For instance, in Figure 19
bridges have been added to the token list in Figure 18. The added bridges connect
the start and end of the fragment, and two of the islands, while one island remains
unmatched. In this example, islands are matched based on the indentation of the first
reef to their left. For the two matched islands their corresponding reef shares the same
indentation, while there is no such match for the island without a bridge. Islands like
this one, without a bridge, are considered broken and representatives of broken scopes.

After construction of bridges, the repairer takes over. The purpose of the repairer
is to recover broken scopes based on a set of patterns and rules. The purpose of the
patterns is to identify appropriate so-called construction sites for a recovery. Once
such a construction site has been found, the rules are used to decide how to insert
a matching so-called artificial island and create a bridge. For instance, in Figure 19
a construction site is found based on a pattern identifying indentation shifts, and an
artificial island is inserted to match the broken island and recover the scope error.
Insertion of islands, like in this example, correspond to the recovery suggestions a
bridge parser provides after it is done.

A more complete description of the algorithm, incrementally constructing multiple
bridges, is given by Nilsson-Nyman et al. [2009].

8Note that in our implementation, we determine the indentation level by counting the number of spaces,
treating tabs as a fixed number of spaces. The relation between tabs and spaces could also be determined
from the editor settings.
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6.2. Combining Permissive Grammars and Bridge Parsing

As a recovery technique, bridge parsing forms a supplementary approach that can be
used together with permissive grammars introduced in Section 4. Permissive gram-
mars and bridge parsing share their inspiration from island grammars [van Deursen
and Kuipers 1999; Moonen 2001, 2002], with the difference that a bridge parser em-
ploys a scanner.

The use of a scanner in bridge parsing may appear contrary to the scannerless na-
ture of SGLR. One could imagine that a scannerless version of a bridge parser would
be better suited for an integration to SGLR. That is, based on an accurate (scannerless)
lexical analysis, additional reefs could be identified using the keywords of a language.
However, previous results showed that doing so only marginally improves recovery
quality [de Jonge et al. 2009]. Also, practical experience has shown that a bridge
parser is most time and memory efficient when independent from a specific grammar,
focusing just on the scoping structures of the language. For this reason and for sim-
plicity, the bridge parsers used in this article only include scope tokens and layout
reefs.

This combined approach has limitations with regard to embedded languages, where
a token may have different syntactic meanings: { might be a scope delimiter in one
language and an operator in another. Still, the layout-sensitive bridge model gives
an approximation of the scoping structure in those cases, which can improve recovery
results when used in combination with recovery rules. As a layout-sensitive technique,
bridge parsing served as an inspiration to the layout-sensitive regions discussed in the
next section.

7. LAYOUT-SENSITIVE REGION SELECTION

In this section we describe a layout-sensitive region recovery algorithm that improves
recovery efficiency and helps cope with pathological cases not easily addressed with
only permissive grammars, backtracking, and bridge parsing. Relying on the increas-
ing search space of permissive grammars and backtracking, it is not always feasible
to provide good recovery suggestions in an acceptable time span. Problems can arise
when the distance between the error location and the detection location is exception-
ally large, or when the recovery requires many combined recovery rule applications.
The latter can occur when multiple errors are tightly clustered, or when no suitable
recovery rule is at hand for a particular error. In general, a valid parse can be found
after expanding the search space, but at a risk of a high performance cost, and poten-
tially resulting in a complex network of recovery suggestions that do not lead to useful
feedback for programmers. Section 4.3 discusses an example in which an entire SQL
fragment would be parsed as (severely incorrect) Java code.

To address these concerns, this section introduces an approach to identify the region
in which the actual error is situated. By constraining the recovery suggestions to a
particular part of the file, region selection improves the efficiency as well as the quality
of the recovery, avoiding suggestions that are spread out all over the file.

In some cases it is better to ignore a small part of the input file, rather than to
try and fix it using a combination of insertions and discarded substrings. As a second
application of the regional approach, region skipping is used as a fallback recovery
strategy that discards the erroneous region entirely in case a detailed analysis of the
region does not lead to a satisfactory recovery.

7.1. Nested Structures as Regions

Language constructs such as statements and methods are elements of list structures.
List elements form free-standing blocks, in the sense that they can be omitted without
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Fig. 20. Indentation closely resembles the hierarchical structure of a program.

influencing the syntactic interpretation of other blocks. It follows that erroneous free-
standing blocks can simply be skipped, providing a coarse recovery that allows the
parser to continue. We conclude that list elements are suitable regions for regional
error recovery.

The bridge parsing technique discussed in Section 6 exploits layout characteristics
to detect the intended nesting structure of a program. In this section, we present a
region selection technique that, inspired by bridge parsing, uses indentation to detect
erroneous structures. Indentation typically follows the logical nesting structure of a
program, as illustrated in Figure 20. The relation between constructs can be deduced
from the layout. An indentation shift to the right indicates a parent-child relation,
whereas the same indentation indicates a sibling relation. The region selection tech-
nique inspects the parent and sibling structures near the parse failure location to
detect the erroneous region.

Indentation usage is not enforced by the language definition. Proper use of layout
is a convention, being part of good coding practice. We generally assume that most
programmers apply layout conventions, which is reinforced by the application of auto-
matic formatters. Furthermore we assume that indentation follows the logical nesting
structure. However, we should keep in mind the possibility of inconsistent indentation
usage which decreases the quality of the results. The second assumption we make is
that programs contain free-standing blocks, that is, that skipping a region still yields
a valid program. Most programming languages seem to meet this assumption. If both
assumptions are met, layout-sensitive region selection can improve the quality and
performance of a correcting technique, and offer a fallback recovery technique in case
the correcting technique fails.

7.2. Regions Based on Indentation

We view the source text as a tree-structured collection of lines, whereby the parent-
child relations between lines are determined by indentation shifts. Thus, given a line
l, line p is the parent of l if and only if l is strictly more indented than p, and line l
succeeds line p, and no lines exist between l and p that have less indentation than l.
Lines with the same parent are siblings of each other. Figure 21 illustrates the parent-
child relation for some small code fragments. The line if(true){ in the left fragment
is the parent of the sibling lines foo(); and bar();. The mid and right fragment il-
lustrate how the parent-child relation applies in case of inconsistent indentation; by
definition, child nodes are more indented than their parent, however, the siblings in
these fragments do not all have the same indent value.

A parent-child relation between two lines is a strong indication that the code con-
structs associated to these lines are also in parent-child relation. Similarly, a sibling
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Fig. 21. Parent-child relations between lines with consistent layout (left) and inconsistent layout (mid,
right). if(true){ is the parent line of the siblings foo(); and bar(); (left, mid, right), and the inconsis-
tently indented } (right).

Fig. 22. Multiline Java constructs with various indentation patterns. The solid bars indicate layout regions
that correspond to code regions, the hatched bars indicate layout regions that are in fact unwished artifacts.

relation between two lines indicates that either their associated code constructs are
siblings as well, or that both lines belong to the same multiline construct. Figure 22
provides some examples of multiline constructs with various indentation patterns.
For all constructs in the figure it holds that a parent-child relation between two
lines reflects a parent-child relation between the code constructs associated to these
lines. The shown constructs are different with respect to the number of siblings (of
the first line) that are part of the construct. Another type of multiline constructs
are constructs that wrap over to the subsequent, more indented line. In that case, a
parent-child relation exists between two lines that actually belong to the same con-
struct. This is an example of a small inconsistency that is not harmful to the overall
approach.

We decompose a code fragment into candidate regions, based on the assumption
that parent-child relations between lines reflect parent-child relations between the
associated constructs, for example, if a line is contained in a region then its child
lines are also contained in that region. Unfortunately, indentation alone does not pro-
vide sufficient information to demarcate regions exactly. The main limitation is the
ambiguous interpretation of sibling lines, which, by assumption, either belong to the
same code construct or to separate constructs that are siblings. Given a single line,
we construct multiple indentation-based regions: the smallest region consists of the
line plus its child lines, the alternate regions are obtained by subsequently includ-
ing sibling lines, including their children. The bars in Figure 22 show the different
regions that are constructed for the first line of the given fragments. Only the re-
gions corresponding to the solid bars represent actual code constructs or (sub)lists of
code constructs. The other bars are unwanted artifacts that, based on indentation
alone, cannot be distinguished from real regions. Notice that most of these ambigui-
ties could be solved by using language-specific information, for example, about the use
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Fig. 23. A candidate region is validated and successfully discarded.

Fig. 24. Iterative search for a valid region.

of curly braces in Java; lines that start with a curly brace are most likely to be part of
the region being constructed. However, we implemented the algorithm in a language-
independent way.

7.3. Region Selection

We follow an iterative process to select an appropriate region that encloses a syntax
error. In each iteration, a different candidate region is considered. This candidate
is then validated and either accepted as erroneous or rejected; in case of a rejected
candidate, another candidate is considered.

The selection of candidate regions faces two challenges: First, the start line of
the erroneous code construct is not known, second, multiple unsuitable regions are
constructed because of the ambiguous interpretation of sibling lines. We adopt a prag-
matic approach, subsequently selecting candidate regions for a different start line lo-
cation with a different number of sibling lines. We start with validating small regions
near the failure location, then we continue with validating regions of increased size as
well as regions that are located further away from the failure location. More details
are provided in Section 7.4 that describes the region selection algorithm.

A region is validated as erroneous in case discarding of that region solves the
syntax error, for example, parsing continues after the original failure location. We
show example scenarios in Figure 23 and Figure 24. Figure 23 shows a syntax error
and the point of detection, indicated by a triangle (left). A candidate region is selected
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based on the alignment of the void keyword and the closing bracket (middle figure),
and validated by discarding the region. Since the parsing of the remainder of the
fragment is successful (right), the region is accepted as erroneous. Figure 24(a) shows
an example where a candidate region is rejected. Based on the point of detection, an
obvious candidate region is the m2 method (middle), which is discarded (right). How-
ever, the attempt to parse the succeeding construct leads to a premature parse failure
(right), therefore the region is rejected. In Figure 24(b) an alternative candidate
region is selected. This region is validated as erroneous.

The region validation criterion should balance the risk of evaluating a syntacti-
cally correct candidate region as erroneous, and the risk of evaluating an erroneous
candidate region as syntactically correct. Both cases lead to large regions and/or spu-
rious syntax errors, which should be avoided. The underlying problem are multiple
errors; it is not possible to distinguish a secondary parse failure from a genuine syn-
tax error that happens to be close-by. We address the issue of multiple syntax er-
rors by implementing a heuristic accept criterion. The criterion considers a candidate
region as erroneous if discarding results in two more lines of code parsed correctly.
The criterion is established after some experimentation and has shown good practical
results.

7.4. Algorithm

Figure 25 shows the region selection algorithm in pseudocode. The function
SelectErroneousRegion takes as input the failure line and returns as output the er-
roneous region described by its start line and end line. The nested for loops (line 6,7)
implement the iterative search process described in Section 7.3. The iteration starts
with the smallest region (line 6, sibCount=0) that can be constructed for the failure line
(line 7, bwSibIndex=0). In the first iteration (line 7), regions are selected at increasing
distance from the failure location. The second iteration (line 6) increases the size of
the selected regions. The iteration stops in case a selected region is validated as erro-
neous (lines 11–13). If no erroneous region is found, the search process continues by
recursively visiting the parent of the failure line (line 16). For performance reasons,
we restrict the maximum size of the visited regions (line 4) and the maximum number
of backtracked lines (line 5). Good practical results were obtained with a maximum
size of 5 sibling lines and 5 backtracking steps.

Figure 26 illustrates the region selection procedure applied to a small code fragment
with a parse failure at the marked line. The vertical bars represent the regions that
are subsequently visited by increasing the backtracking distance (bwSibIndex) and the
region size (sibCount). The rightmost bar represents the parent region visited in the
recursion step.

7.5. Practical Considerations

Separators and Operators. Region selection works for structures that form free-
standing blocks in the grammar, for example, list elements and optional elements
such as the else block in an if-else statement. A practical consideration are sepa-
rators and operators that may reside between language constructs. For example, the
constructs FAILED and score <= 8 in this Java fragment can only be discarded if the
separator (,), respectively the operator (&&) that connects these constructs with their
preceding constructs are discarded as well. To address this issue, we have extended
the region selection schema with a candidate region consisting of the original region
plus the lexical token at the end of the preceding sibling line.
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Fig. 25. Algorithm to select a discardable region that contains the syntax error.

public enum Grade {
EXCELLENT ,
PASSED ,

FAILED
}

Grade getGrade(){
...
if(

6 <= score &&

score <= 8
) return Grade.PASSED;
...

}

Multiline Comments and Strings. The selection procedure can generally select er-
roneous regions that are not located at the failure location. However, if the distance
between the error and the failure location is too large, the region selection schema fails
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Fig. 26. Candidate regions subsequently tested for the indented code fragment at the left. Candidate re-
gions are selected by backtracking (bwSibIndex) and by extending the number of sibling lines that are
contained in the region (sibCount). Finally, the parent line is visited in the recursion step.

to locate the error. A particularly problematic case commonly seen in practice are un-
closed flat structures such as block comments or multiline strings. After the opening
of the block comment (/*), the parser accepts all characters until the block comment is
ended (*/) or the end of the file is reached.

/* Comments ...
int foo(){

...
}
...
EOF

As a consequence, a missing block comment ending is typically detected at a large dis-
tance from the error location. The stack structure of the parser in these scenarios is
characterized by a reduction that involves many characters starting from the charac-
ters that open the flat construct (/*). If this stack structure is recognized, a candidate
region is selected from the start of the reduction, making it possible to cope with flat
multiline structures such as block comments for which errors may cause a parse fail-
ure far from the actual error location.

8. APPLYING ERROR RECOVERY IN AN INTERACTIVE ENVIRONMENT

A key goal of error recovery is its application in the construction of IDEs. Modern
IDEs rely heavily on parsers to produce abstract syntax trees that form the basis for
editor services such as the outline view, content completion, and refactoring. Users ex-
pect these services even when the program has syntactic errors, which is very common
when source code is edited interactively. Experience with modern IDEs shows that for
most services it is not a problem to operate on inaccurate or incomplete information
as a consequence of syntax errors; for some services such as refactorings, errors and
warnings can be presented to the user. In this section, we describe the role of error re-
covery in different editor services and show language-parametric techniques for using
error recovery with these services.

8.1. Efficient Construction of Languages and Editor Services

While IDEs for languages have been constructed and used for several decades, only
recently did they become significantly more sophisticated and indispensable for pro-
ductivity of software developers. In early 2001, IntelliJ IDEA [Saunders et al. 2006]
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revolutionized the IDE landscape [Fowler 2005b], setting a new standard for highly
interactive and language-specific IDE support for textual languages. Since then, pro-
viding good IDE support for new languages has become mandatory, posing a significant
challenge for language engineers.

As IDEs become both more commonplace and more sophisticated, it becomes in-
creasingly important to lower the threshold of creating new languages and develop-
ing IDEs for these languages. In order to make this possible, language workbenches
have been developed that combine the construction of languages and editor services.
Language workbenches improve the productivity of language engineers by providing
specialized languages, frameworks, and tools [Fowler 2005a]. Examples of language
workbenches for textual languages include EMFText [Heidenreich et al. 2009], Monti-
Core [Grönniger et al. 2008; Krahn et al. 2008], Spoofax [Kats and Visser 2010], TCS
[Jouault et al. 2006], and Xtext [Efftinge and Voelter 2006].

The central artifact that language engineers define in a language workbench is the
grammar of a language, which is used to generate a parser. The generated parser runs
in the background with each key press or after a small delay passes, and provides a
basis for all interactive editor services. Traditionally, IDEs used handwritten parsers
or only did a lexical analysis of source code for syntax highlighting in real time. By
using a generated parser that runs every time the source code changes, they have
access to more accurate, more up-to-date information, but they also crucially depend
on the parser’s performance and its support for error recovery.

8.2. Guarantees on Recovery Correctness

Using permissive grammars, bridge parsing, and regional recovery, the parser can
construct ASTs for syntactically incorrect inputs. These trees can be constructed us-
ing generated or handwritten recovery rules, and may have gaps for regions that could
not be parsed. Ultimately, error recovery provides a speculative interpretation of the
intended program, which may not always be the desired interpretation. As such, it is
both unavoidable and not uncommon that editor services operate on inaccurate or in-
complete information. Experience with modern IDEs shows that this is not a problem
in itself, as programmers are shown both syntactic and semantic errors directly in the
editor.

While error recovery is ultimately a speculative interpretation of an incorrect input,
our approach does guarantee well-formedness of ASTs. That is, it will only produce
ASTs with tree nodes that conform to the abstract structure imposed by production
rules of the original (nonpermissive) grammar. This property is maintained for all our
recovery techniques. With respect to permissive grammars (Section 4 and 5), water re-
covery rules (Section 4.2) and literal insertion recovery rules (Sections 4.3 and 4.5) do
not contribute AST nodes, while insertion recovery rules for lexical productions (Sec-
tions 4.3 and 4.5) only contribute lexical tree nodes that correspond to the recovered
lexicals. Bridge parsing (Section 6) and region recovery (Section 7) do not compromise
the well-formedness property of the parse result since both techniques only modify the
input string, respectively, by adding a literal and by skipping over a text fragment.

The property of well-formedness of trees significantly simplifies the implementation
and specification of editor services, as they do not require any special logic to handle
badly parsed constructs with missing nodes or special constructors. This approach also
ensures separation of concerns: error recovery is purely performed by the parser, while
editor services do not have to treat syntactically incorrect programs differently. This
separation of concerns means that all editor services could be implemented without
any logic specific for error recovery. Still, there are a number of editor services that
inherently require some interaction with the recovery strategy, which we discuss next.
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Fig. 27. An editor for Stratego with embedded quotations of Java code.

8.3. Syntactic Error Reporting

Syntax errors are reported to users by means of an error location and an error message.
In traditional compilers, the error location was reported as a line/column offset, while
modern IDEs use the location for the placement of error markers in the editor. We use
generic error messages that depend on the class of recovery (Section 4.5). For water
recovery rules and for region recoveries, we use “[string] not expected,” for insertion
rules we use “expected: [string],” and for insertion rules that terminate a construct
we use “construct not terminated.” The location at which the errors are reported is
determined by the location at which a recovery rule is applied, rather than by the
location of the parse failure. For region recoveries, where no recovery rule is applied,
the start and end location of the region, plus the original failure location is reported
instead.

Figure 27 shows a screenshot of an editor for Stratego with embedded Java. The
shown code fragment contains two syntax errors. Due to error recovery, the editor
can still provide syntax highlighting and other editor services, while it marks all the
syntax errors inline with red squiggles.

8.4. Syntax Highlighting

Syntax highlighting has traditionally been based on a purely lexical analysis of pro-
grams. The most basic approach is to use regular expressions to recognize reserved
words and other constructs and assign them a particular color. Unfortunately, for
language engineers the maintenance of regular expressions for highlighting can be te-
dious and error prone; a more flexible approach is to use the grammar of a language.
Using the grammar, a scanner can recognize tokens in a stream, which can be used to
assign colors instead.

More recent implementations of syntax highlighting do a full context-free syntax
analysis, or even use the semantics of a language for syntax highlighting. For example,
they may assign Java field accesses a different color than local variable accesses.

Scannerless syntax highlighting. When using a scannerless parser such as SGLR,
a scanner-based approach to syntax highlighting is not an option; files must be fully
parsed instead. This makes it important that a proper parse tree is available at all
times, even in case of syntactic errors. To illustrate this, consider the following incom-
plete Java statement.

Tree t = new

Using a scanner, the word new can be recognized as one of the reserved keywords and
can be highlighted as such. In the context of scannerless parsing, a well-formed parse

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 4, Article 15, Publication date: December 2012.



Natural and Flexible Error Recovery for Generated Modular Language Environments 15:33

tree must be constructed for the keyword to be highlighted. In situations like this one,
that may not be possible, resulting in no highlighting for the new keyword.

Fallback syntax highlighting. Syntax highlighting is equally or possibly more im-
portant for syntactically incorrect programs than for syntactically correct programs,
as it indicates how the editor interprets the program as a programmer is editing it. A
fallback syntax highlighting mechanism is needed to address this issue.

A natural way of implementing fallback syntax highlighting is by using a lexical
analysis for those cases where the full context-free parser is unable to distinguish the
different words to be highlighted. This analysis can be performed by a rudimentary
tokenizer that can recognize separate words such that they can be distinguished for
colorization. Simple coloring rules can then be applied to any tokens that do not be-
long to recovered tree nodes, for example, highlighting all the reserved keywords and
string literals. Consequently, programmers get highly responsive syntax highlighting
as they are typing, even if the program is not (yet) syntactically correct. A limitation
of the approach is that with a tokenizer it cannot distinguish between keywords in dif-
ferent sublanguages, making the approach only viable as a fallback option. We use the
fallback syntax highlighting for discarded regions and in case the combined recovery
technique fails, for example, no AST is constructed for the erroneous program.

8.5. Content Completion

Content completion, sometimes called content assist, is an editor service that provides
completion proposals based on the syntactic and semantic context of the expression
that is being edited. Where other editor services should behave robustly in case of in-
complete or syntactically incorrect programs, the content completion service is almost
exclusively targeted towards incomplete programs. Content completion suggestions
must be provided regardless of the syntactic state of a program: an incomplete expres-
sion “blog.” does not conform to the syntax, but for content completion it must still
have an abstract representation.

Completion recovery rules. In case context completion is applied to an incomplete
expression, the syntactic context of that expression must be recovered. This is es-
pecially challenging for language constructs with many elements, such as the “for”
statement in the Java language. Even if only part of such a statement is entered by a
user, it is important for the content completion service that there is an abstract repre-
sentation for it. Based on the recovery rules of Section 4 this is not always the case.
Water recovery rules interpret the incomplete expression as layout. As a consequence,
the syntactic context is lost. Insertion recovery rules can recover some incomplete
expressions, but only insert missing terminal symbols.

We introduce specific recovery rules for content completion that specify what ab-
stract representation to use for incomplete syntactic constructs. These rules use the
{ast(p)} annotation of SDF to specify a pattern p as the abstract syntax to construct.
Figure 28 shows examples of these rules. The first rule is a normal production rule for
the Java “for each” construct. The second rule indicates how to recover this statement
if the Stm nonterminal is omitted, using a placeholder pattern NULL() in place of the
abstract representation of the omission. The third rule handles the case where both
nonterminals are omitted.

The completion recovery rules are automatically derived by analyzing the original
productions in the grammar, creating variations of existing rules with omitted
nonterminals and terminals marked as optional patterns. For best results, we gen-
erate rules that use placeholder patterns that reflect the signature of the original
production. Since these rules preserve the well-formedness property, they are also
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Fig. 28. Java ForEach production and its derived completion rules.

Fig. 29. Java ForEach completion rule with placeholder pattern that matches the signature of the original
production.

applicable for normal error recovery. For example, in the second rule of Figure 28,
the pattern Block([]) can be used instead of the NULL() placeholder (Figure 29).
Sensible placeholder patterns are constructed by recursively analyzing the produc-
tion rules for the omitted nonterminals. In the given example, the production rule
"{" Stm* "}" -> Stm {cons("Block")} provides the pattern Block([]) as a placeholder
for the Stm nonterminal, using the the empty list [] as the basic default for list
productions.

Runtime support. Completion recovery rules are designed to support the special sce-
nario of recovering the expression where content completion is requested. The cursor
location provides a hint about the location of the (possible) error. Instead of back-
tracking after an error is found, we apply completion recovery rules if they apply to a
character sequence that overlaps with the cursor location. This approach adequately
completes constructs at the cursor location and minimizes the overhead of completion
rules in normal parsing and other recovery scenarios. It also ensures that the com-
pletion recovery rules have precedence over the normal water and insertion recovery
rules for the content completion scenario.

9. IMPLEMENTATION

We implemented our approach in Spoofax [Kats and Visser 2010], which is a language
development environment that combines the construction of languages and editor ser-
vices. Using SDF and JSGLR9, Spoofax has the distinguishing feature that it supports
language compositions and embeddings. In this section we give an overview of the
general system and we discuss the adaptations we made for error recovery.

Figure 30 gives a general overview of the tool chain that handles parsing in Spoofax
with integrated support for error recovery. Given a grammar definition in SDF, the
make-permissive tool generates a permissive version of this grammar, for which a parse
table is constructed by sdf2table. This parse table is used by the JSGLR parser, which
constructs a parse tree for a (possible erroneous) input file. The parse tree is first
disambiguated by applying postparse filters, and then imploded into an AST.

The make-permissive tool was added to the tool chain specifically for the concern
of error recovery. The tool implements a grammar-to-grammar transformation that
applies the heuristic rules described in Section 4.5 and Section 8.5 that guide the
generation of recovery rules. The tool is implemented in Aster [Kats et al. 2009b], a

9http://strategoxt.org/Stratego/JSGLR/
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Fig. 30. Overview tool chain. Make-permissive generates a permissive version of the original grammar, for
which a parse table is constructed by sdf2tbl. The (permissive) parse table is used by JSGLR to construct a
parse tree for a (possible erroneous) input file, which is then imploded into an AST.

language for decorated attribute grammars that extends the Stratego transformation
language.

We adapted the JSGLR parser implementation so that it can efficiently parse cor-
rect and incorrect syntax fragments using the productions defined by the permissive
grammar. For this reason, we implemented a selective form of backtracking speci-
ficly for recover productions. Furthermore, we implemented two additional recovery
techniques, namely, bridge parsing and region selection. All mentioned techniques are
implemented in Java and integrated in the JSGLR implementation. To summarize,
we made the following adaptations to the Java-based JSGLR parser:

— ignore productions labeled with the recover annotation during normal parsing;
— ignore productions labeled with the completion annotation, unless the production

applies to a character sequence that overlaps with the cursor location, and the com-
pletion service is triggered by the user;

— runtime disambiguation filter that selects the branch with the lowest number of
recover/completion productions, preferring insertions over water productions;

— implementations for the different recovery techniques described in Sections 5, 6,
and 7;

— some code to integrate the different recovery techniques, as described next article.

Integrating recovery techniques. We combine the different techniques described in
this article in a multistage recovery approach (Figure 31). Region Selection (RS) is
applied first to detect the erroneous region. In case region selection fails to select
the erroneous region, the whole file is selected instead. In the second stage, the er-
roneous region is inspected by one of the correcting techniques, Bridge Parsing (BP)
or permissive parsing (PG). Since bridge parsing provides the most natural recoveries
from a user perspective, it is applied first. The bridge parser returns a set of recov-
ery suggestions based on bracket insertions, which are applied during a reparse of the
erroneous region. In case the bridge parser suggestions do not lead to a successful re-
covery, the permissive grammars approach described in Sections 4 and 5 is used, where
backtracking is restricted to the erroneous region. In case both correcting techniques
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Fig. 31. Overview integrated recovery approach implemented in JSGLR.

fail, the erroneous region is skipped (Region Recovery, RR) as a fallback recovery
strategy.

10. EVALUATION

We evaluate our approach with respect to the following properties.

— Quality of recovery: How well does the environment recover from input errors?
— Performance and scalability: What is the performance of the recovery technique? Is

there a large difference in parsing time between erroneous and correct inputs? Does
the approach scale up to large files?

— Editor feedback: How well do editor services perform based on the recovered ASTs?

In the remainder of this section we describe our experimental setup, experimentally
select an effective combination of techniques and recovery rules, and show the quality
and performance results of the selection.

10.1. Setup

In this section we describe our experimental setup; we explain how we construct a
realistic test set, and how we measure recovery quality and performance.

10.1.1. Syntax Error Seeding. The development of representative syntax error bench-
marks is a challenging task, and should be automated in order to minimize the selec-
tion bias. There are many factors involved for selecting the test inputs, such as the
type of grammar, the type of error, distribution of errors over the file, and the layout
characteristics of the test files. With these factors in mind, we have taken the approach
of generating a reasonably large set of syntactically incorrect files from a smaller set
of correct base files. We seed syntax errors at random locations in the base files, us-
ing a set of rules that cover different types of common editing errors. These rules
were established after a statistical analysis of collected edit data for different lan-
guages [de Jonge and Visser 2012]. We distinguish the following categories for seeded
errors.

— Incomplete constructs, language constructs that miss one or more symbols at the
suffix, for example, an incomplete for loop for (x = 1; x.

— Random errors, constructs that contain one or more token errors, for example, miss-
ing, incorrect, or superfluous symbols.

— Scope errors, constructs with missing or superfluous scope opening or closing
symbols.

— String or comment errors, block comments or string literals that are not properly
closed, for example, /*...*

— Large erroneous regions, severely incorrect code fragments that cover multiple lines.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 4, Article 15, Publication date: December 2012.



Natural and Flexible Error Recovery for Generated Modular Language Environments 15:37

— Language-specific errors, errors that are specific for a particular language.
— Combined errors, two or more errors from the aforementioned categories, randomly

distributed over the source file.

10.1.2. Test Oracle. To measure the quality and performance of a recovery, we com-
pare the results obtained for the recovered file against the results for the base file or
expected file. In some cases, the base file does not realistically reflect the expected re-
sult, as information is lost in the generated erroneous file. For these cases we construct
an expected result, a priori. For example, for a “for” loop with an Incomplete construct
error—such as for (x = 1; x—the original body of the construct is lost. For this “for”
loop, we complete the construct with the minimal amount of symbols possible, which
results in the expected construct for (x = 1; x; ) {}.

10.1.3. Measuring Quality. We use two methods to measure the quality of the recovery
results. First, we do a manual inspection of the pretty-printed results, following the
quality criteria of Pennello and DeRemer [1978]. Following these criteria, an excel-
lent recovery is one that is exactly the same as the intended program, a good recovery
is one that results in a reasonable program without spurious or missed errors, and
a poor recovery is a recovery that introduces spurious errors or involves excessive
token deletion. The Pennello and DeRemer criteria represent the state-of-the-art eval-
uation method for syntactic error recovery applied in, amongst others, Pennello and
DeRemer [1978], Pai and Kieburtz [1980], Degano and Priami [1995], and Corchuelo
et al. [2002].

Since human criteria form an evaluation method that is arguably subjective, as a
second method, we also do an automated comparison of the abstract syntax. For this,
we print the AST of the recovered file to text using the ATerm format [van den Brand
et al. 2000], formatted so that nested structures appear on separate lines. We then
count the number of lines that differ in the recovered AST compared to the AST of the
expected file (the “diff”). The advantage of this approach is that it is objective, and
assigns a larger penalty to recoveries for which a larger area of the text does not cor-
respond to the expected file, where structures are nested improperly, or when multiple
deviations appear on what would be a single line of pretty-printed code. Furthermore,
using this approach the comparison can be automated, which makes it feasible to apply
to larger test sets.

The scales for the figures we show are calibrated such that “no diff” corresponds to
the excellent qualification, a “small diff” (1–10 lines of abstract syntax) roughly corre-
sponds to the good qualification, and a “large diff” (> 10 lines) approximately corre-
sponds to the poor qualification. After a selection of recovery techniques and recovery
rule sets, we show both metrics together in a comprehensive benchmark in Section
10.2.3.

10.1.4. Measuring Performance. To compare the performance of the presented recovery
technique under different configurations, we measure the additional time spent for
error recovery. That is, we compute the extra time it takes to recover from one or
more errors (the recovery time) by subtracting the parse time of the correct base file or
expected file from the parse time of the incorrect variation of this file.

To evaluate the scalability of the technique, we compare the parse times for erro-
neous and correct files of different sizes in the interval 1,000–15,000 LOC.

For all performance measures included in this article, an average, collected after
three runs, is used. All measuring is done on a “preheated” JVM running on a laptop
with an Intel(R) Core(TM) 2 Duo CPU P8600, 2.40 GHz processor, 4GB memory.
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10.1.5. Test Sets. To evaluate quality and performance of the suggested recovery tech-
niques we use a test set of programs written in WebDSL, Stratego-Java, Java-SQL and
Java, based on the following projects.

— YellowGrass: A Web-based issue tracker written in the WebDSL language.10

— The Dryad compiler: An open compiler for the Java platform [Kats et al. 2008]
written using Stratego-Java.

— The StringBorg project: A tool and grammar suite that defines different embedded
languages [Bravenboer et al. 2010], providing Java-SQL code.

— JSGLR: A Java implementation of the SGLR parser algorithm.11

We selected five representative base files from each project, and generated test files
using the error seeding technique. We applied a sanity check to ensure that generated
test cases are indeed syntactically incorrect and that there are no duplicates. In total,
we generated 334 Stratego-Java test cases, 190 WebDSL test cases, 195 Java-SQL test
cases, and 329 Java test cases. In addition, we generated a second test set consist-
ing of 314 Stratego-Java test cases in the incomplete construct and erroneous context
categories specifically to evaluate the content completion editor service. Finally, for
testing of scalability, we manually constructed a test set consisting of 28 erroneous
Stratego-Java files of increasing size in the interval of 1,000–15,000 LOC.

10.2. Experiments

There are a large number of configurations to consider in evaluating the presented ap-
proach: combinations of languages, recovery rule sets, and recovery techniques. In or-
der to limit the size of the presented results, we first concentrate on one language and
experiment with different configuration of recovery rule sets and recovery techniques.
For these initial experiments we use the Stratego-Java language, a fairly complex lan-
guage embedding. After selecting an effective configuration, we perform additional
experiments with other languages.

10.2.1. Selecting a Recovery Rule Set. In this experiment we focus on selecting the
most effective recovery rule set for a permissive grammar with respect to quality and
performance. The permissive grammar technique is used in combination with region
selection, described in Section 7. That is, the recovery rules are applied on a selected
erroneous region, but the fallback region recovery technique is disabled since it ob-
scures failed recoveries obtained for the evaluated rule sets. In this experiment, we
set a time limit of 5 seconds to cut off recoveries that take an (almost) infinite time to
complete.

For the permissive grammars approach of Section 4, there are three recovery rule
sets that we evaluate in isolation and in combination: Water (W), insertion of Clos-
ing brackets (C), and insertion of Open brackets (O). Results from the experiment are
shown in Figure 32. The figure includes results for W, C, CO, WC, and WCO for a
Stratego-Java grammar. The remaining combinations, O and WO, were excluded since
it is arguably more important to insert closing brackets than to insert open brackets
in an interactive editing scenario.

The results show that the insertion of closing brackets (C) and the application of wa-
ter rules (W) both contribute to the quality of a recovery. Combined together (WC) they
further improve recovery results. The insertion of opening brackets (O) does improve
the recovery quality for insertion-only grammars, which follows from comparing C to
CO. However, when all rules are combined (WCO), the recovery quality decreases in

10http://www.yellowgrass.org/
11http://strategoxt.org/Stratego/JSGLR/
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Fig. 32. Quality and performance (recovery times) using a permissive grammar with different recovery rule
sets for Stratego-Java. W - Water, C - Insertion of closing brackets, O - Insertion of opening brackets.

comparison with the WC grammar. This slightly unexpected result is partly explained
by the fact that the insertion rules for opening brackets prove too costly with respect
to performance, which leads to failures because of exceeding of the time limit set. A
second explanation is that the combined rule set (WCO) allows many creative recover-
ies that often do not correspond to the human intended recoveries. We conclude that
WC seems to be the best trade-off between quality and performance.

In this experiment we only set a limit on the number of lines (75) that were inspected
during backtracking, and a time limit of 5 seconds to cut off recoveries that take an
(almost) infinite time to complete. The performance diagram shows that this leads
to objectionable parse times in certain cases, 4.4% > 1.0 seconds and 15.2% > 5.0
seconds (failures) for WC. For these cases, a practical implementation would opt for
an inferior recovery result obtained by applying a fallback strategy (region skipping in
our approach). We apply this strategy in the remainder of this section, setting a time
limit of 1000 milliseconds on the time spent applying recovery rules.

10.2.2. Selecting Recovery Techniques. In this experiment, we focus on selecting the
best parser configuration combining the recovery techniques presented in this arti-
cle: the Permissive Grammars and Backtracking Approach of Sections 4 and 5 (PG),
Bridge Parsing of Section 6 (BP), and the Region Selection technique of Section 7 (RS),
which can be applied as a fallback recovery technique (RR) by skipping the selected
region. We use the WC recovery rule set of Section 10.2.1. and the Stratego-Java test
set. We first applied the techniques in isolation: first Regional Recovery by skipping
regions (RR), and then parsing with Permissive Grammars (PG). Bridge parsing is
not evaluated separately, since it has a limited application scope and only works as a
supplementary method. We then evaluate the approaches together: first parsing with
permissive grammars applied to a selected region (RS-PG), then adding region recov-
ery (RR) as a fallback recovery technique (RS-PG-RR), and finally the combination of
all three techniques together (RS-BP-PG-RR). Throughout this experiment, we set a
time limit of 1 second for applying recovery rules (PG). The results from the experi-
ment are shown in Figure 33.
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Fig. 33. Quality and performance (recovery times) using combinations of techniques for Stratego-Java.
RR - Region selection and recovery, PG - Permissive grammars, RS - Region selection, BP - Bridge parsing.

Figure 33 (performance) shows the performance results for the different combina-
tions of techniques. The results show that Region Recovery (RR) gives good perfor-
mance in all cases, and that Region Selection (RS) positively affects the performance
of the permissive grammar technique (RS-PG versus PG). Furthermore, applying the
Bridge Parsing technique (BP) does not negatively affect performance according to
Figure 33 (RS-PG-BP-RR versus RS-PG-RR). Since all techniques give reasonable per-
formance, we focus on quality to find the best combination of techniques.

Considering the quality part of Figure 33 and the results of PG, we see that it has
the largest number of failed recoveries (17%), but regardless of this fact it still leads to
reasonable recoveries (< 10 diff lines) in the majority of cases (75%). Restricting PG
to a selected erroneous region (RS-PG) leads to more excellent recoveries (48% versus
44%). For regional recovery (RR), the situation is exactly the opposite. As expected,
skipping a whole region in most cases does not lead to the optimal recovery. However,
the skipping technique does provide a robust mechanism, leading to a successful parse
in most cases (94%). Combining both techniques (RS-PG-RR) improves the robustness
(96%), as well as the precision (80% small or no diff) compared to both individual
techniques.

Interestingly, Figure 33 shows little beneficial effects of the bridge parsing method
(BP). There is a strong use case for bridge parsing, as it can pick the most likely recov-
ery in case of a syntax error that affects scoping structures. However, the technique
is most effective for programs that use deep nesting of blocks, which are relatively
rare in Stratego-Java programs. Still, the approach shows no harmful effects. For
other languages its positive effects tend to be more pronounced, as we have shown in
de Jonge et al. [2009]. In this previous study, a test set with focus on scope errors
is used, showing that bridge parsing improves the results of the permissive grammar
technique in 21% of the cases where one or more scope errors occur. The cases where
the bridge parser contributes to a better recovery are cases where the region selection
technique does not detect the erroneous scope as precisely on its own, which is typical
for fragments with multiple clustered scope errors.

10.2.3. Overall Benchmark. As an overall benchmark, we compare the quality of our
techniques to the parser used by Eclipse’s Java Development Tools (JDT). It should be
noted that, while our approach uses fully automatically derived recovery specifications,
the JDT parser, in contrast, uses specialized, handwritten recovery rules and methods.
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Fig. 34. Quality of our approach compared to JDT. RS - Region selection, RR - Region recovery, PG - Per-
missive grammars, BP - Bridge parsing, JDT - Java Developer Toolkit.

We use the JDT parser with statement-level recovery enabled, following the guidelines
given by Kuhn and Thomann [2006].

Both Eclipse and our approach apply an additional recovery technique in the
scenario of content completion. Both techniques use specific completion recovery rules
that require the completion request (cursor) location as additional information, also,
these rules construct special completion nodes that may not represent valid Java
syntax. We did not include these techniques in this general benchmark section since
they specifically target the use case of content completion and do not work in other
scenarios.

Figure 34 shows the quality results acquired for the Java test set, using diff counts
and applying the criteria of Pennello and DeRemer [1978]. To ensure that all the re-
sults are obtained in a reasonable time span, we set a parse time limit of 1 second.
The results show that the SGLR recovery, using different steps and granularity, is in
particular successful in avoiding large diffs, thereby providing more precise recoveries
compared to the JDT parser. The JDT parser, on the other hand, managed to con-
struct an excellent recovery in 67% of the cases, which is a bit better than the 62% of
the SGLR parser. The SGLR parser failed to construct an AST in less than 1% of the
cases, while the JDT parser constructed an AST in all cases. However, manual inspec-
tion revealed that in most large diff cases only a very small part of the original file
was reconstructed, for example, only the import lines or the import lines plus the class
declaration whereby all declarations in the body were skipped. We conclude that our
automatically derived recovery technique is at least on par with practical standards.

10.2.4. Cross-Language Quality and Performance. In this experiment we test the appli-
cability of our approach to different languages, using the RS-BP-PG-RR configuration
and the WC rule set. For simplicity and to ensure a clear cross-language comparison,
we focus only on syntax errors that do not require manual reconstruction of the ex-
pected result, that is, random errors, scope errors, and string or comment errors. This
allows for a fully automated comparison of erroneous and intended parser outputs.
The results of the experiment are shown in Figure 35. The figure shows good results
and performance across the different languages. From the diagram it follows that the
quality of the recoveries varies for the different test sets. More specifically, the recov-
eries for Java-SQL, in general, are better than the ones for Stratego-Java. Differences
like these are both hard to explain and predict, and depend on the characteristics of a
particular language, or language combination, as well as the test programs used.
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Fig. 35. Quality and performance (recovery times) for different languages.

Fig. 36. Parse times for files of different length with and without errors. The files are written in the
Stratego-Java language and parsed with the RR-BP-PG recovery configuration.

10.2.5. Performance and Scalability. In this experiment we focus on the performance of
our approach. We want to study scalability and the potential performance drawbacks
of adding recovery rules to a grammar, that is, the effect of increasing the size of the
grammar. We use the Stratego-Java language throughout this experiment with the
RS-BP-PG-RR recovery configuration.

To test scalability, we construct a test set consisting of files of different size in the
interval 1,000–15,000 LOC, obtained by duplicating 500-line fragments from a base
file in the Stratego-Java test set. For each test file, the same number of syntax errors
are added manually, scattered in such a way that clustering of errors does not occur.
We measure parse times as a function of input size, both for syntactically correct files
and for files that contain syntax errors. The results, shown as a plot in Figure 36, show
that parse times increase linearly with the size of the input, both for correct and for
incorrect files. Furthermore, the extra time required to recover from an error (recovery
time) is independent of the file size, which follows from the fact that both lines in the
figure have the same coefficient.
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Fig. 37. Context preservation and performance (recovery times) of the Stratego-Java grammar extended
with completion rules (completion) and extended with recovery rules (WC).

As an additional experiment we study the performance drawbacks in the increased
size of a permissive grammar. The extra recovery productions added to a grammar to
make it more permissive also increase the size of that grammar, which may negatively
affect parse times of syntactically correct inputs. We measure this effect by comparing
parse times of the syntactically correct files in the test set, using the standard gram-
mar and the WC permissive grammar. The results show that the permissive grammar
has a small negative effect on parse times of syntactically correct files. The effect of
modifying the parser implementation to support backtracking was also measured, but
no performance decrease was found. We consider the small negative performance ef-
fect on parsing syntactically correct files acceptable since it does not significantly affect
the user experience for files of reasonable size.

10.2.6. Content Completion. Error recovery helps to provide editor services on erro-
neous input. Especially challenging is the content completion service, which almost
exclusively targets incomplete programs. In Section 8.5 we discussed the strengths
and limitations of our current approach with respect to content completion. To over-
come the limitations, we introduced a technique to automatically derive special com-
pletion rules that are applied near the cursor location. In this section we evaluate
how well the current approach (water and insertion rules) serve the purpose of content
completion, and how the completion rules improve on this.

We evaluated completion recovery on a set of 314 test cases that simulate the sce-
nario of a programmer triggering the content completion service. Accurate completion
suggestions require that the syntactic context, the tree node where completion is re-
quested, is available in the recovered tree. To evaluate the applicability with respect
to content completion, we distinguish between recoveries that preserve the syntactic
context required for content completion and those that do not.

Figure 37 shows the results for our recovery technique with and without the use of
completion recovery. Using the original approach (with the WC rule set), the syntactic
context was preserved in 77% of the cases, which shows that the recovery approach
is useful for content completion, but is prone to unsatisfactory recoveries in certain
cases. Furthermore, recovering large incomplete constructs can be inefficient since it
requires many water and insertion rule applications.

Both problems are addressed by the completion recovery technique, which is specif-
ically designed to handle syntax errors that involve incomplete language constructs.
Figure 37 shows the results for the completion recovery strategy of Section 8.5, using a
permissive grammar with the WC rule set plus completion rules. Using this strategy,
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the syntactic context is preserved in all cases, without noticeable time overhead. The
low recovery times are a consequence of the (adapted) runtime support that exploits
the fact that the cursor location is part of the erroneous construct.

A disadvantage of the completion rules is that they significantly increase the size
of the grammar, which can negatively affect the parsing performance for syntacti-
cally correct inputs. We compared parse times of syntactically correct inputs for the
WC/completion grammar with parse times for the WC grammar, and measured an
overhead factor of 1.2. Given that completion rules are highly effective and essential
for the content completion functionality, this overhead seems acceptable. For normal
editing scenarios, the completion rules can also be applied as an additional recovery
mechanism that is effective only at the cursor location, although we have not focused
on this capability in the experiments in this section.

10.3. Summary

In this section we evaluated the quality and performance of different rule sets for
permissive grammars, and different configurations for parsing with permissive gram-
mars, region recovery, and bridge parsing. Through experimental evaluation we found
that the WC rule set provides the best balance in quality and performance. The
three techniques each have their merits in isolation, and work best in combination.
Through additional experiments we showed that the recovery quality and performance
hold up to the standard set by the JDT, that our approach is scalable, and that it
works across multiple languages. In addition, we showed its effectiveness for content
completion.

11. RELATED WORK

The problem of handling syntax errors during parsing has been widely studied
[Barnard and Holt 1982; Corchuelo et al. 2002; Degano and Priami 1995; Fischer et al.
1980; Lévy 1971; Mauney and Fischer 1988; McKenzie et al. 1995; Pai and Kieburtz
1980; Tai 1978]. We focus on LR parsing for which there are several different error
recovery techniques [Degano and Priami 1995]. These techniques can be divided into
correcting and noncorrecting techniques.

The most common noncorrecting technique is panic mode: on detection of an error,
the input is discarded until a synchronization token is reached. When a synchronizing
token is reached, states are popped from the stack until the state at the top enables the
resumption of the parsing process. Our layout-sensitive regional recovery algorithm
can be used in a similar fashion, but selects discardable regions based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or delete
tokens nearby the location of an error, until parsing can resume [Cerecke 2002;
McKenzie et al. 1995; Tai 1978]. There may be several possible corrections of an error
which means a choice has to be made. One approach applied by Tai [1978] is to assign
a cost (a minimum correction distance) to each possible correction and then choose
the correction with the least cost. This approach of selecting recoveries based on a
minimum cost is related to recovery selection in our permissive grammars, where the
number of recovery rules used in a correction decides the order in which recoveries are
considered (Section 4).

Successful recovery mechanisms often combine more than one technique [Degano
and Priami 1995]. For example, panic mode is often used as a fallback method if
correction attempts fail. Burke and Fisher [1987] present a correcting method based
on three phases of recovery. The first phase looks for simple correction by the insertion
or deletion of a single token. If this does not lead to a recovery, one or more open
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scopes are closed. The last phase consists of discarding tokens that surround the
parse failure location. In our work we take indentation into account, for the regional
recovery technique and for scope recovery using bridge parsing. In addition, by
starting with region selection, the performance as well as the quality of the permissive
grammars approach recovery is improved.

Regional error recovery methods [Barnard and Holt 1982; Lévy 1971; Mauney and
Fischer 1988; Pai and Kieburtz 1980] select a region that encloses the point of detec-
tion of an error. Typically, these regions are selected based on nearby marker tokens
(also called fiducial tokens [Pai and Kieburtz 1980], or synchronizing symbols [Barnard
and Holt 1982]), which are language dependent. In our approach, we assign regions
based on layout instead. Layout-sensitive regional recovery requires no language-
specific configuration, and we showed it to be effective for a variety of languages.
Similar to the fiducial tokens approach, it depends on the assumption that languages
have recognizable (token or layout) structures that serve for the identification of
regions.

Barnard and Holt [1982] present an hierarchic error repair approach using phases
corresponding to lists of lines. For instance, a phase may be a set of declarations that
must appear together. These phases are similar to our regions, with the difference
that regions are constructed based on layout. Both approaches have some kind of local
repair within phases or regions, and may skip parts of the input.

The LALR Parser Generator (LPG) [Charles 1991] is incorporated into IMP [Charles
et al. 2007] and is used as a basis for the Eclipse JDT parser. LPG can derive recovery
behavior from a grammar, and supports recovery rules in the grammar and through
semantic actions. Similar to our approach, LPG detects scopes in grammars. However,
unlike our approach, it does not take indentation into account for scope recovery.

11.1. Recovery for Composite Languages

Using SGLR parsing, our approach can be used to parse composed languages and lan-
guages with a complex lexical syntax. In related work, only a study by Valkering
[2007], based on substring parsing [Rekers and Koorn 1991], offered a partial approach
to error recovery with SGLR parsing. To report syntactic errors, Valkering inspects the
stack of the parser to determine the possible strings that can occur at that point. Pro-
viding good feedback this way is nontrivial since scannerless parsing does not employ
tokens; often it is only possible to report a set of expected characters instead. Further-
more, these error reports are still biased with respect to the location of errors; because
of the scannerless, generalized nature of the parser, the point of failure rarely is a
good indication of the actual location of a syntactic error. Using substring parsing and
artificial reduce actions, Valkering’s approach could construct a set of partial, often
ambiguous, parse trees, whereas our approach constructs a single, well-formed parse
tree.

Lavie and Tomita [1993] developed GLR*, a noise skipping algorithm for context-
free grammars. Based on traditional GLR with a scanner, their parser determines
the maximal subset of all possible interpretations of a file by systematically skipping
selected tokens. The parse result with the fewest skipped words is then used as the
preferred interpretation. In principle, the GLR* algorithm could be adapted to be
scannerless, skipping characters rather than tokens. However, doing so would lead
to an explosion in the number of interpretations. In our approach, we restrict these
by using backtracking to only selectively consider the alternative interpretations,
and using water recovery rules that skip over chunks of characters. Furthermore,
our approach supports insertions in addition to discarding noise and provides more
extensive support for reporting errors.
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Composed languages are also supported by Parsing Expression Grammars (PEGs)
[Ford 2002; Grimm 2006]. PEGs lack the declarative disambiguation facilities [Visser
1997c] that SDF provides for SGLR. Instead, they use greedy matching and enforce
an explicit ordering of productions. To our knowledge, no automated form of error
recovery has been defined for PEGs. However, existing work on error recovery using
parser combinators [Swierstra and Duponcheel 1996] may be a promising direction for
recovery in PEGs. Furthermore, based on the ordering property of PEGS, a “catch all”
clause is sometimes added to a grammar, which is used if no other production succeeds.
Such a clause can skip erroneous content up to a specific point (such as a newline) but
does not offer the flexibility of our approach.

11.2. IDE Support for Composite Languages

We integrated our recovery approach into the Spoofax [Kats et al. 2010a] language
workbench. A related project, also based on SDF and SGLR, is the Meta-Environment
[van den Brand et al. 2002b, 2007]. It currently does not employ interactive parsing,
and only parses files after a “save” action from the user. Using the traditional SGLR
implementation, it also does not provide error recovery.

Another language development environment is MontiCore [Krahn et al. 2007, 2008].
Based on ANTLR [Parr and Quong 1995], it uses traditional LL(k) parsing. As such,
MontiCore offers only limited support for language composition and modular definition
of languages. Combining grammars can cause conflicts at the context-free or lexical
grammar level. For example, any keyword introduced in one part of the language is
automatically recognized by the scanner as a keyword in another part. MontiCore
supports a restricted form of embedded languages through runtime switching to a dif-
ferent scanner and parser for certain tokens. Using the standard error recovery mech-
anism of ANTLR, it can provide error recovery for the constituent languages. However,
recovery from errors at the edges of the embedded fragments (such as missing quota-
tion brackets) is more difficult using this approach. This issue is not addressed in
the papers on MontiCore [Krahn et al. 2007, 2008]. In contrast to MontiCore, our ap-
proach is based on scannerless generalized-LR parsing, which supports the full set of
context-free grammars, and allows composition of grammars without any restrictions.

11.3. Island Grammars

The basic principles of our permissive grammars and bridge parsing are based on
the water productions from island grammars. Island grammars [Moonen 2001; van
Deursen and Kuipers 1999] have traditionally been used for different reverse and
reengineering tasks. For cases where a baseline grammar is available (i.e., a complete
grammar for some dialect of a legacy language), Klusener and Lämmel [2003] present
an approach of deriving tolerant grammars. Based on island grammars, these are par-
tial grammars that contain only a subset of the baseline grammar’s productions, and
are more permissive in nature. Unlike our permissive grammars, tolerant grammars
are not aimed at application in an interactive environment. They do not support the
notion of reporting errors, and, like parsing with GLR*, are limited to skipping con-
tent. Our approach supports recovery rules that insert missing literals and provides
an extensive set of error reporting capabilities.

More recently, island grammars have also been applied to parse composite lan-
guages. Synytskyy et al. [2003] composed island grammars for multiple languages to
parse only the interesting bits of an HTML file (e.g., JavaScript fragments and forms),
while skipping over the remaining parts. In contrast, we focus on composite languages
constructed from complete constituent grammars. From these grammars we construct
permissive grammars that support tolerant parsing for complete, composed languages.
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12. CONCLUSION

Scannerless, generalized parsers support the full set of context-free grammars, which
is closed under composition. With a grammar formalism such as SDF, they can be used
for declarative specification and composition of syntax definitions. Error recovery for
scannerless, generalized parsers has previously been identified as an open issue. In
this article, we presented a flexible, language-independent approach to error recovery
to resolve this issue.

We presented three techniques for error recovery. First, permissive grammars re-
lax grammars with recovery rules so that strings can be parsed that are syntactically
incorrect according to the original grammar. Second, backtracking efficiently parses
files without syntax errors and gracefully copes with errors locally. Third, region recov-
ery identifies regions of syntactically incorrect code, thereby constraining the search
space of backtracking and providing a fallback recovery strategy. Using bridge parsing,
this technique takes indentation usage into account to improve recoveries of scoping
constructs. We evaluated our approach using a set of existing, nontrivial grammars,
showing that the techniques work best when used together, and that they have a low
performance overhead and good or excellent recovery quality in a majority of the cases.
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