
Deep Priority Conflicts in the Wild: A Pilot Study

Luís Eduardo de Souza
Amorim

Delft University of Technology

The Netherlands

l.e.desouzaamorim-1@tudelft.nl

Michael J. Steindorfer
Delft University of Technology

The Netherlands

m.j.steindorfer@tudelft.nl

Eelco Visser
Delft University of Technology

The Netherlands

e.visser@tudelft.nl

Abstract

Context-free grammars are suitable for formalizing the syn-

tax of programming languages concisely and declaratively.

Thus, such grammars are often found in reference manuals of

programming languages, and used in language workbenches

for language prototyping. However, the natural and concise

way of writing a context-free grammar is often ambiguous.

Safe and complete declarative disambiguation of operator

precedence and associativity conflicts guarantees that all

ambiguities arising from combining the operators of the

language are resolved. Ambiguities can occur due to shallow
conflicts, which can be captured by one-level tree patterns,

and deep conflicts, which require more elaborate techniques.

Approaches to solve deep priority conflicts include grammar

transformations, which may result in large unambiguous

grammars, or may require adapted parser technologies to

include data-dependency tracking at parse time.

In this paper we study deep priority conflicts łin the wildž.
We investigate the efficiency of grammar transformations

to solve deep priority conflicts by using a lazy parse table

generation technique. On top of lazily-generated parse tables,

we define metrics, aiming to answer how often deep priority

conflicts occur in real-world programs and to what extent

programmers explicitly disambiguate programs themselves.

By applying our metrics to a small corpus of popular open-

source repositories we found that in OCaml, up to 17% of

the source files contain deep priority conflicts.

CCS Concepts · Software and its engineering → Syn-

tax; Parsers;

Keywords Disambiguation, operator precedence, declara-

tive syntax definition, grammars, empirical study.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE’17, October 23ś24, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00

https://doi.org/10.1145/3136014.3136020

ACM Reference Format:

Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco

Visser. 2017. Deep Priority Conflicts in the Wild: A Pilot Study.

In Proceedings of 2017 ACM SIGPLAN International Conference on

Software Language Engineering (SLE’17). ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3136014.3136020

1 Introduction

In software engineering, the Don’t Repeat Yourself (DRY)

principle means that łevery piece of knowledge must have
a single, unambiguous, authoritative representation within a
systemž [11]. While in theory context-free grammars come

close to fulfilling this principle for declaratively formaliz-

ing the syntax of a programming language, they still fail to

deliver it in practice [13].

Natural and concise ways of writing a context-free gram-

mar are often ambiguous and lead toWrite Everything Twice

(WET) solutions, i.e., the direct opposite of DRY. For example,

the reference manual of the Java SE 7 edition [6] contains

a natural and concise context-free reference grammar that

describes the language, but a different grammar is used as the

basis for the reference implementation. The refined Java SE 8

specification [7] contains a single unambiguous grammar, at

the price of losing conciseness and readability.

A long-standing research topic in the parsing commu-

nity is how to declaratively disambiguate concise expression

grammars of programming languages. To address this issue,

formalisms such as YACC [12] or SDF2 [22] extend context-

free grammars with precedence and associativity declara-

tions. In YACC, precedence is defined by a global ranking on

the tokens of operators, and interpreted as choosing an al-

ternative that solves a conflict in a parse table (i.e., a conflict

should be resolved in favor of a specific action given a cer-

tain lookahead token). SDF2, on the other hand, constructs

a partial order among productions using priority relations,

deriving filters that reject conflicting patterns from the re-

sulting tree. Because it supports the full class of context-free

grammars and character-level grammars to enable modular

syntax definitions and language composition, the YACC so-

lution cannot be applied, which poses additional challenges

when developing a solution to disambiguate SDF2 grammars.

Two desired properties for declarative disambiguation of

precedence and associativity conflicts using SDF2 priorities

are safety and completeness. To strive towards safety and

55

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3136014.3136020
https://doi.org/10.1145/3136014.3136020

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

completeness, recent proposals rely either on grammar-to-

grammar transformation techniques [3, 5], or they rely on

data-dependent formalisms [2] that deflect performance over-

head to run-time. On one hand, grammar-to-grammar trans-

formations have the advantage to output (well-researched)

pure context-free grammars. On the other hand, they blow

up the resulting grammar by extensively duplicating produc-

tions,1 which may result in large LR parse tables.

In this paper, we aim to investigate the efficiency and use-

fulness of grammar-to-grammar transformations for solving

(deep) priority conflicts. We address the efficiency issue by

inspecting how much of the resulting grammars are used

and respectively, how much of their parse tables are exer-

cised. To reason about usefulness, we investigate to what

extent deep priority conflicts occur in real code and whether

conflicts are explicitly disambiguated, looking into declar-

ative disambiguation from the programmers’ perspective.

In particular we empirically address the following research

questions concerning coding practices:

RQ1 To what extent do deep priority conflicts in declarative

language specifications occur in real-world programs?

RQ2 How do deep priority conflicts impact the efficiency

of declarative disambiguation techniques that rely on

grammar transformations?

RQ3 To what extent do programmers use brackets for dis-

ambiguation of priority conflicts explicitly?

We study the aforementioned research questions for declara-

tive context-free grammars of two programming languages

Ð OCaml and Java Ð that inherently feature deep priority

conflicts. In a pilot study, we empirically examine the top 10

trending open-source projects of each language on GitHub.

Contributions. We performed an empirical pilot study that

investigates deep priority conflicts łin the wildž. In particular:

• We contribute a research method for measuring deep

priority conflicts and for obtaining coverage metrics.

• We provide initial results on the frequency and cir-

cumstances under which deep priority conflicts occur.

• We present insights about explicit disambiguation of

deep and shallow priority conflicts using brackets.

With our pilot study, we provide an indication on how much

deep priority conflicts are an issue when parsing real-world

code. We investigate the causes of deep priority conflicts,

and provide guidance for subsequent studies.

The remainder of this paper is organized as follows. In Sec-

tion 2 we provide background on (deep) priority conflicts and

declarative disambiguation. Section 3 develops the research

method necessary to empirically reason about deep priority

conflicts. Section 4 presents the results of our empirical pilot

study. We discuss threats to validity in Section 5. Finally, we

present related work in Section 6, before concluding.

1Grammar transformations create copies of original productions, modifying

only specific non-terminals.

2 A Primer on Declarative Disambiguation

Safe and complete disambiguation is a precondition for pre-

cisely reasoning about deep priority conflicts. Thus, we dis-

cuss the necessary background on the nature of (deep) pri-

ority conflicts, declarative disambiguation of such conflicts,

and explain associated safety and completeness properties.

What is a priority conflict? Context-free grammars al-

low to declaratively and concisely define the syntax of a

programming language. E.g., the following example defines

productions rules for an expression grammar supporting

integer literals, addition and multiplication:

Exp.Add = Exp "+" Exp

Exp.Mul = Exp "*" Exp

Exp.Int = INT

Although this grammar describes the basic syntax of arith-

metic expressions properly, it fails to mention that multiplica-

tion binds stronger than addition, or that such operators are

left associative. As a result, the input string 1 + 2 * 3 is am-

biguous, because it could be parsed or interpreted as either

(1 + 2) * 3 or 1 + (2 * 3). Generalized parsers [1, 21, 22]

typically derive all possible derivations and capture them in

so-called ambiguity nodes:

AmbiguityList(

Mul(Add(Int("1"), Int("2")), Int("3")),

Add(Int("1"), Mul(Int("2"), Int("3")))

)

The ambiguity node represents a variable-length list of alter-

native interpretations, in our case for the string 1 + 2 * 3.

How to declaratively disambiguate priority conflicts?

In order to designate unambiguous parse interpretations,

reference manuals of programming languages traditionally

describe precedence and associativity relationships among a

language’s operators in supplementary tables. Syntax defini-

tion formalisms translate these tables into declarative con-

structs for determining the correct parse when combining

such operators [8, 12, 22]. More recent context-free grammar

formalisms directly integrate precedence and associativity

using associativity attributes and priority relations, such as:

Exp.Mul = Exp "+" Exp {left}

Exp.Mul = Exp "*" Exp {left}

Exp.Mul > Exp.Add

These declarations, written in SDF3 [23] syntax, specify that

addition and multiplication are left associative, and that mul-

tiplication binds stronger than addition. Technically, associa-

tivity attributes and priority relations define patterns used

by a parse tree filter [14] to prohibit conflicts to occur. The

filter defined using the priority and the precedence attribute

in the example prohibits an addition to occur as a direct child

of a multiplication, or additions (multiplications) to occur

as a direct rightmost child of another additions (multiplica-

tions), respectively. Even though this approach is enough to

56

Deep Priority Conflicts in the Wild: A Pilot Study SLE’17, October 23ś24, 2017, Vancouver, Canada

support the operator precedence and associativity of many

programming languages, it is not safe nor complete [3].

What is safe and complete disambiguation? Ideally, a

parser is assumed to deterministically produce exactly one

valid parse tree for any valid input string of a language.

When considering concise but ambiguous grammars, declar-

ative disambiguation shifts the responsibility of resolving

ambiguities due to operator precedence and associativity

from the language engineer to the parser generator. Safe
disambiguation denotes that valid inputs strings are not re-

jected by the parser, i.e., if an input string belongs to the

language covered by the grammar, then the parser should

produce at least one tree. Complete disambiguation states

that the declarative priority relations specified together with

the grammar can disambiguate all combinations of operators,

i.e., for any input constructed combining the operators from

the grammar, at most one tree is produced.

What is a deep priority conflict? Most priority conflicts

can be solved by looking at the direct expansions of the sym-

bols within a production, ruling out trees containing invalid

patterns. Such conflicts will henceforth be called shallow
priority conflicts. The previous example, of multiplication

binding stronger than addition, is such a shallow conflict,

as the priority relation states that an addition cannot be a

direct child of a multiplication. In contrast, conflicts that

cannot be solved via parent-child relations of productions

are henceforth referred to as deep priority conflicts. Deep

priority conflicts can occur arbitrarily nested due to indi-

rections (e.g., intermediate productions) that hide directly

conflicting productions. In the following, we will discuss the

three types of deep priority conflicts by example.2

Deep Priority Conflict #1: Operator-Style. To illustrate

deep conflicts with operator precedence,3 we add if-else-

expressions to our example expression grammar:

Exp.IfElse = "if" Exp "then" Exp "else" Exp

Exp.Add > Exp.IfElse

The declarative disambiguation rule on the last line spec-

ifies that addition binds stronger than if-else-expressions.

Yet, parsing the string 1 + if e then 2 else 3 + 4 could

produce two different interpretations:

1 + if e then 2 else (3 + 4)

(1 + if e then 2 else 3) + 4

If we consider disambiguation of shallow conflicts, the prior-

ity declaration Exp.Add > Exp.IfElse states that an if-else-

expression cannot occur as a direct child of an addition.

Safe disambiguation guarantees that an if-else-expression

2The formalization of deep priority conflicts [5] includes a description of

the symmetric versions of the conflicts presented in this paper.
3The notion of operators has been extended to sentential forms in recur-

sive productions. E.g., "if" Exp "then" Exp "else" is a prefix operator in a

production Exp.IfElse = "if" Exp "then" Exp "else" Exp.

can still occur as the right child of an addition, i.e., the string

1 + if e then 2 else 3 should not be rejected as it is un-

ambiguously accepted by the grammar. In general, operator-

style conflicts may occur whenever nesting prefix operators

and post-fix operators4 of different precedences, and their

precedence cannot be checked with a parent-child relation

due to indirections. In our example, a deep conflict occurs

because the if-else-expression can still occur as left child

of the addition, hidden by another addition. When writing

Exp.Add > Exp.IfElse, one would like to indicate that any

addition to the right of the if-else-expression should always

have higher precedence. That is, the correct interpretation

should be only the first one: 1 + if e then 2 else (3 + 4).

Deep Priority Conflict #2: Dangling Else. To illustrate

dangling-else conflicts, we add if-expressions without else-

branches to our running example, the expression grammar:5

Exp.If = "if" Exp "then" Exp

Exp.IfElse = "if" Exp "then" Exp "else" Exp

Exp.IfElse > Exp.If

The dangling-else conflict, which is present in grammars of

many programming languages, arises when an if-expression

is nested inside an if-clause of another if-else-expression,

such as in the string if e1 then if e2 then 3 else 4. This

input string results in two possible parses:

if e1 then (if e2 then 3 else 4)

if e1 then (if e2 then 3) else 4

The else-branch could be either connected to the first or the

second if-expression. The root cause of the dangling-else con-

flict is that two productions of the same non-terminal share

a common prefix, with the smaller production being right-

recursive. The disambiguation rule Exp.IfElse > Exp.If in-

dicates that an else-branch must be connected to the closest

if-expression (cf. first interpretation). Note that even though

the ambiguity above could be solved as a shallow conflict,

dangling else conflicts are also deep conflicts, as the inner

if-expression could be nested inside another expression.

Deep Priority Conflict #3: Longest Match. Longest match

conflicts are caused when nesting lists of the same sym-

bols inside each other. For example, consider the built-in

match-expression of a language such as OCaml that has the

following form:

Exp.Match = "match" Exp "with" Pattern+

Pattern.Case = "|" Pattern "->" Exp

An ambiguity ariseswhen a case-clause of amatch-expression

has an inner match-expression with multiple case-clauses.

4Infix operators are considered both as prefix, and post-fix. A deep priority

conflict does not occur between two infix operators, since in this case, the

conflict can be disambiguated with filters based on one-level tree patterns.
5The if-else-expression was copied from the previous listing to emphasize

that both if-variants share the same prefix.

57

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

In that situation, the parser cannot distinguish to which

expression the subsequent case-clauses are connected to:

match value with

| pattern -> result

| pattern -> match value with

| pattern -> result

| pattern -> result

match value with

| pattern -> result

| pattern -> match value with

| pattern -> result

| pattern -> result

The standard disambiguation of this conflict consists of ex-

panding the list of case-clauses of the innermatch-expression

as much as possible, i.e., producing the longest match. Thus,

in the previous example the first interpretation is correct.

3 Reasoning about Deep Priority Conflicts

In the previous section, we presented examples of three

common types of (deep) priority conflicts that may arise in

declarative context-free grammar specifications. This section

incrementally introduces a method that we subsequently use

to measure and analyze declarative disambiguation of deep

priority conflicts in practice.

Although declarative disambiguation is widely used in

syntax definition formalisms such as SDF, only recently,

shortcomings concerning safe and complete disambiguation

were reported [3]. That raises the question, why those short-

comings remained undetected for more than a decade? If

and to what extent are deep priority conflicts indeed an issue

in real-world grammars and programs? Not much is known

about deep priority conflicts in the wild. In Section 3.1 we will
discuss contextual grammars to quantify RQ1: To what extent
do deep priority conflicts in declarative language specifications
occur in real-world programs?
One may question the usefulness of declarative disam-

biguation techniques, as no research has been performed

into deep priority conflicts in real-world settings. In partic-

ular, solving deep priority conflicts with grammar transfor-

mations has a cost attached, potentially resulting in large

context-free grammars with many productions that are not

used in practice. In Section 3.2 we will discuss lazy parse ta-
ble generation to quantify RQ2: How do deep priority conflicts
impact the efficiency of declarative disambiguation techniques
that rely on grammar transformations?

Aside from the technical limitation, deep priority conflicts

that are inherent to grammars of programming languages

may impact common programming practice. One may ask if

programmers need to be aware of the notion of deep priority

conflicts, and if programmers are exposed to limitation of the

disambiguation techniques respectively? Programmers can

usually fall back to explicit disambiguation with brackets, in

case the precedence rules are not clear or the parser is unable

to parse an input string due to ambiguities. In Section 3.3 we

will discuss a method for detecting explicit disambiguation

to quantify RQ3: To what extent do programmers use brackets
for disambiguation of priority conflicts explicitly?

3.1 Contextual Grammars

As mentioned in Section 2, generalized parsers produce a

parse forest containing ambiguity nodes corresponding to

the possible interpretations of a program. Ideally, a filter

should be able to select only one correct interpretation and

return it as result. Filtering ambiguities that arise from opera-

tor precedence and associativity after parsing is not practical

though, as the number of ambiguities can grow exponen-

tially with the number of operators in an expression. Thus,

priority conflicts should preferably be solved either at parser

generation time or at parse time.

To solve deep priority conflicts, we use a technique based

on contextual grammars [5]. This approach consists of a

grammar transformation that generates additional produc-

tions forbidding deep conflicting patterns before parser gen-

eration. Furthermore, this technique enables precisemeasure-

ments of the number of deep conflicts by only duplicating the

productions that contribute to solving a certain conflict. For

example, the contextual grammar to solve the operator-style

conflict described in Section 2, has the following form:

Exp.Add = ExpIfElse "+" Exp

Exp.IfElse = "if" Exp "then" Exp "else" Exp

Exp.Int = INT

ExpIfElse.Add = ExpIfElse "+" ExpIfElse

ExpIfElse.Int = INT

The contextual symbol ExpIfElse indicates that any expres-

sion derived by this symbol cannot have an if-else-expression

as its rightmost child. This semantics is implemented when

duplicating the productions of the non-terminal Exp, pass-

ing the context IfElse to the respective rightmost symbols

and forbidding the contextual symbol ExpIfElse to derive an

IfElse production itself.

To count the number of deep priority conflicts of a specific

type, we use a contextual grammar that solves all-but-one

type of priority conflict. For example, to measure the num-

ber of operator style conflicts, we use a contextual grammar

G{DE,LM} as a contextual grammar G that solves dangling

else and longest match conflicts, i.e., G{DE,LM} does not con-
tain the additional productions to solve operator-style con-

flicts. Thus, parsing programs using this grammar produces

an ambiguity whenever this program contains an operator-

style conflict. Similarly, the contextual grammars G{OS,LM} ,

which solves only operator-style and longest match con-

flicts, and G{OS,DE} , which solves only operator-style and

dangling else conflicts, can be used to detect dangling else

and longest match conflicts, respectively. To guarantee that

58

Deep Priority Conflicts in the Wild: A Pilot Study SLE’17, October 23ś24, 2017, Vancouver, Canada

all ambiguities that arise in a program are related to deep pri-

ority conflicts, we use a contextual grammarG{OS,DE,LM}that

solves all conflicts, verifying that the same program parses

unambiguously.

3.2 Lazy Parse Table Generation

Transformation to contextual grammars can produce large

grammars when considering languages containing a large

number of deep priority conflicts and many different produc-

tions that refer to conflicting symbols. We derive contextual

grammars from SDF3 [23] syntax definitions, using them

in combination with a scannerless generalized LR parser

(SGLR) [22]. In this case, the number of states in the gener-

ated parse tables can also grow considerably, because states

are split to handle each possible interpretation of a conflict.

Since we suspect that a considerable portion of states gen-

erated from contextual productions is not used in practice,

we adopted lazy parse table generation [9]. With that tech-

nique, the parser generates parse states on demand and as a

result, only those states actually needed for parsing a pro-

gram or a series of programs are generated. In addition to

improving the performance of parse table generation, this

technique provides an alternative to measure parse table

coverage of a program or corpus of programs.

grammar

parse table
generator

parser

parse
table

input tree

(a) Conventional Table Generator

grammar

lazy parse
table generator

parser

parse
table

input tree

unknown

visible

processed

(b) Lazy Table Generator

Figure 1. Table-driven parser with a conventional and a lazy

parse table generator, as presented in [9].

A common scenario for most table-driven parsers is de-

scribed in Figure 1a. A (complete) parse table is generated

from the grammar, and a generic parser reads the actions

in the parse table to process the input. The table stays the

same as long as the grammar has no changes, but whenever

compiling a modified grammar, the table generator produces

a new full parse table containing all processed states. That

is, for larger grammars with many states, generating and

loading a large parse table in which only a few states are

used, is inefficient.

In a lazy parser generation scenario, whenever the parser

requests a state, a lazy generator either processes a new state

or returns an already processed state to the parser. Processing

a state may create actions that refer to unprocessed states,

making them visible. The processed and visible states from

all previous parses are cached until the grammar has been

changed, and the subsequent parses of the same program do

not have any impact on parser generation time. Thus, if most

of the programs do not exercise the full grammar, the parser

can be regenerated without a big penalty in performance as

parser generation time is amortized over parsing many input

programs. Figure 1b illustrates the scenario of a table-driven

parser in combination with a lazy table generator. Note that

all states that are not processed or visited remain unknown.

Applying the conventional SDF3 parser generator and a

lazy parser generator to the contextual grammar presented

before (replacing ExpIfElse by Exp1) produces a parse table

defined by the automaton of Figure 2. The complete automa-

ton is generated by the conventional parse table generator,

whereas only the highlighted states are processed when us-

ing the lazy table generator to parse the program 1 + 2.

We measure the coverage of contextual grammars by the

number of all states visible and processed in the parse tables

generated by our lazy generator. We use two different tables:

a fresh parse table to parse each separate program and a

different table that accumulates the number of (visible and

processed) states when parsing all the programs for each

corpus. We also measure the number of productions that

have been used considering both scenarios.

3.3 Explicit Disambiguation

Programmers might use brackets to explicitly specify the

precedence of operators when writing a program. For ex-

ample, when writing a program (1 + 2) * 3, a programmer

uses brackets to explicitly state that in this expression the

addition should have higher precedence over the multipli-

cation. However, writing a program 1 + (2 * 3), does not

change the actual precedence of the operators, since the mul-

tiplication already has higher precedence over the addition.

In the last case, the brackets are redundant as they do not

change the shape of the resulting abstract syntax tree (AST).

Programmers might also use brackets to disambiguate

deep priority conflicts explicitly. For example, the brackets

in the following two expressions result in ASTs that would be

forbidden by the original contextual grammar, if we consider

the same expressions without brackets:

(1 + if e then 2 else 3) + 4

1 + (if e then 2 else 3) + 4

In both expressions, the brackets specify a different operator

precedence from the one defined in the grammar. To measure

the number of brackets used for explicit disambiguation, we

investigate the unambiguous ASTs produced by the contex-

tual grammar G{OS,DE,LM} . Because brackets do not appear

explicitly in the AST, we added an attribute to AST nodes to

indicate whether a node is surrounded by brackets.

59

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

Exp.IfElse = "if" ● Exp "then" Exp "else" Exp

Exp.Add = ● Exp1 "+" Exp

Exp.IfElse = ● "if" Exp "then" Exp "else" Exp

Exp.Int = ● INT

Exp1.Add = ● Exp1 "+" Exp1

Exp1.Int = ● INT

3

INT

Start = ● Exp EOF

Exp.Add = ● Exp1 "+" Exp

Exp.IfElse = ● "if" Exp "then" Exp "else" Exp

Exp.Int = ● INT

Exp1.Add = ● Exp1 "+" Exp1

Exp1.Int = ● INT

0

Start = Exp ● EOF 1

Exp.Add = Exp1 ● "+" Exp

Exp1.Add = Exp1 ● "+" Exp1

2 Exp1.Int = INT ●

Exp.Int = INT ●

4

Exp.Add = Exp1 "+" ● Exp

Exp1.Add = Exp1 "+" ● Exp1

Exp.IfElse = ● "if" Exp "then" Exp "else" Exp

Exp.Int = ● INT

Exp1.Int = ● INT

5

Exp.IfElse = "if" Exp ● "then" Exp "else" Exp
6

Exp.Add = Exp1 "+" Exp ● 7Exp1.Add = Exp1 "+" Exp1 ● 8

Exp.IfElse = "if" Exp "then" ● Exp "else" Exp

Exp.Add = ● Exp1 "+" Exp

Exp.IfElse = ● "if" Exp "then" Exp "else" Exp

Exp.Int = ● INT

Exp1.Add = ● Exp1 "+" Exp1

Exp1.Int = ● INT

9

Exp.IfElse = "if" Exp "then" Exp ● "else" Exp
10

Exp.IfElse = "if" Exp "then" Exp "else" ● Exp

Exp.Add = ● Exp1 "+" Exp

Exp.IfElse = ● "if" Exp "then" Exp "else" Exp

Exp.Int = ● INT

Exp1.Add = ● Exp1 "+" Exp1

Exp1.Int = ● INT

11

Exp.IfElse = "if" Exp "then" Exp "else" Exp ●
12

INT

INT

INT

INT

"if"

"if"

"if"

"if"

"then"

"else"

"+"

Exp1.Add

Exp1.Int

Exp.Add

Exp.IfElse

Exp.Int

Exp1.Add

Exp1.Int

Exp.Add

Exp.IfElse

Exp.Int

Exp.Add

Exp.IfElse

Exp.Int

Exp1.Add

Exp1.Int

Exp1.Int Exp.IfElse

Exp.Int

Exp.Add

Exp.IfElse

Exp.Int

Exp1.Add

Exp1.Int

Figure 2. States generated by the conventional and lazy table generation algorithms when applied to the contextual grammar

of Section 3.1. The states with striped lines are the ones still unknown by the lazy generator after parsing 1 + 2. Note that state

3 is visible but has not been processed yet.

First, we collect all nodes that have a bracket attribute,

calculating the total number of the (pairs of) brackets present

in the program. Then, we navigate through the program’s

AST searching for conflicting patterns, as such patterns are

forbidden by the grammar and can only occur inside brackets.

We remove the bracket nodes found this way from the initial

list, counting the ones that disambiguate deep conflicts and

the ones that disambiguate shallow conflicts. The remaining

bracket nodes are marked as redundant.

Note that brackets can disambiguate a shallow and a deep

conflict at the same time, as illustrated in the example below:

1 + (2 + if e then 2 else 3) + 4

The brackets are used to disambiguate a deep conflict in-

volving an addition and an if-else-expression, and a shallow

conflict which states that the addition inside the brackets

should be right associative with respect to the outer one. In

cases where brackets disambiguate deep and shallow con-

flicts, we opted to consider the brackets used in these cases

to disambiguate only a deep priority conflict.

4 Evaluation

In the previous section, we devised measurement techniques

that enable empirical investigation into how deep priority

conflicts occur in practice. In this section, we are applying

our method to answer to what extent deep priority conflicts

do actually occur in real programs. This pilot study specifi-

cally focuses on the syntax of two programming languages Ð

OCaml and Java Ð that have inherently different attributes.

TheOCaml syntax is for themost part expression-oriented,

and a large number of deep priority conflicts originate from

the expression part. We have used the grammar from the

OCaml reference manual, which contains all three types

of deep priority conflicts that were discussed in Section 2:

operator-style, dangling else and longest match.

In contrast to OCaml, Java is a predominantly statement-

oriented programming language. Dangling-else conflictsmay

apply to if-statements, while expressions are the main sub-

ject to operator-style priority conflicts. The Java grammar

does not contain longest-match constructs.

Based on the inherently different syntaxes of the two lan-

guages, we present our hypotheses of the expected results,

grouped according to the research questions.

Hypotheses for RQ1: The first research question is related

to the number of conflicts that occur in real programs:

H1 We expect more ambiguities triggered by the expression-

oriented grammar of OCaml than by Java’s grammar.

H2 The majority of OCaml deep conflicts are longest-match,

because many expressions can have pattern matches.

H3 Deep priority conflicts are expected to be sparse in Java

programs, as most priority conflicts are shallow.

H4 Overall, deep priority conflicts are sparse and do not

occur frequently across programs of both languages.

60

Deep Priority Conflicts in the Wild: A Pilot Study SLE’17, October 23ś24, 2017, Vancouver, Canada

Hypothesis for RQ2: The second research question consid-

ers the efficiency of grammar transformation approaches

to solve deep priority conflicts. Our hypothesis is based on

the coverage of contextual grammar productions (and parse

table states respectively) that are used to solve deep conflicts.

H5 For both languages we expect that only a minor part of

grammar productions and parse table states is exer-

cised, even after parsing all programs in the corpus.

Hypotheses for RQ3: The third research question is con-

cerned with explicit disambiguation. Our expectations are:

H6 Due to its expression-oriented syntax, OCaml programs

use considerably more brackets than Java programs.

H7 The majority of the brackets in Java and OCaml are nec-

essary for disambiguating shallow priority conflicts.

4.1 Experimental Setup

We directly transcribed the declarative context-free gram-

mar of the OCaml version 4.04 reference manual6 to SDF3.

The natural and ambiguous OCaml grammar contains 1793

productions.7 The original Java SE 8 reference grammar8

encodes conflict resolution in the grammar itself. To make

deep priority conflicts of Java detectable with our method,

we have replaced the syntax for expressions by a natural

(and ambiguous) syntax, defining operator precedence and

associativity by means of SDF3 priorities. The resulting Java

grammar contains 1327 productions.

In our pilot study we examine the top 10 trending open-

source projects on GitHub for each language.9 Two out of

the top 10 OCaml projects were misclassified by GitHub, i.e.,

not containing any OCaml file at all. We removed the mis-

classified projects and added the subsequent projects from

the list. Furthermore, we had to clean one project in order

to avoid data duplication. The bucklescript repository dupli-

cated the whole ocaml project into a subfolder. We removed

the subfolder from bucklescript, because the ocaml project
itself is part of our pilot study corpus of OCaml projects.

4.2 Results of the OCaml Case Study

Our pilot study corpus contains 3296 OCaml source files,

from which 95.9% (i.e., 3161 files) were successfully parsed

with our grammar while 4.1% (i.e., 135 files) could not be

parsed due to language extensions that we do not support.10

Table 1 summarizes our findings with respect to occur-

rences of deep priority conflicts and bracket usage consid-

ering each project in the OCaml corpus. The table presents

the number of affected files of each project, the number of

6http://caml.inria.fr/pub/docs/manual-ocaml/language.html
7We consider the number of productions after SDF3 normalization.
8https://docs.oracle.com/javase/specs/jls/se8/html/index.html
9https://github.com/trending/ accessed on May 19, 2017.
10The grammar currently does not support some language extensions de-

fined in http://caml.inria.fr/pub/docs/manual-ocaml/extn.html.

deep priority conflicts found and how frequent each type oc-

curs. The table also shows information about brackets usage,

highlighting the number of brackets that have been used

for disambiguation in each project. Note that the remaining

percentage of brackets for each project corresponds to re-

dundant brackets. In the following paragraphs we discuss

data points from the aforementioned table.

Affected Files. 530 OCaml files (i.e., 16.8% of all files) con-

tained deep priority conflicts. Concerning the individual cat-

egories, the most frequent priority conflict type was longest

match (in 356 files), followed by operator-style conflicts (in

278 files) and dangling-else conflicts (in 7 files).

When looking at combinations of categories, our data

shows that 79.6% of files with deep priority conflicts con-

tained conflicts of just a single category, whereas 19.8%mixed

two conflict categories, and 0.6% contained three categories.

Deep Priority Conflicts. In total, we discovered 1657 deep

priority conflicts in all files. From these, 48% are operator-

style conflicts, 51.5% are longest match and only 0.5% are

dangling else. When looking at the number of conflicts per

project, six projects contained more longest match conflicts,

whereas four projects contained a majority of operator-style

conflicts. Three out of ten projects had dangling else con-

flicts. On a per file basis, the maximum number of conflicts

observed were 38 operator-style conflicts, 21 longest match

conflicts, and 2 dangling-else conflicts.

Disambiguation with Brackets. We observed a total num-

ber of 248830 pairs of brackets. From these, 31.3% are redun-

dant, i.e., removing them does not affect the resulting tree.

The remaining 68.7% of the brackets account for resolving

priority conflicts (67.1% shallow and 1.6% deep conflicts).

Discussion. When looking at the files with most conflicts,

we found that the most common patterns of operator-style

conflicts have the following form:

exp1 op fun param -> exp2 op2 exp3

exp1 op function pattern -> exp2 op2 exp3

In most cases, op and op2 are user-defined operators such as

>>? and >>=?, whereas fun and function are function defini-

tions in the OCaml language.

For most dangling else conflicts, we noticed that the prob-

lematic if was hidden by an inner let expression, such as:

if exp1 then let binding1 in

if exp2 then exp3

else exp4

One interesting remark is that all dangling else conflicts were

indented in a way that is consistent with how the conflict is

solved by the contextual grammar.

61

http://caml.inria.fr/pub/docs/manual-ocaml/language.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://github.com/trending/
http://caml.inria.fr/pub/docs/manual-ocaml/extn.html

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

Table 1. Overview of Deep Priority Conflicts and Bracket Usage in OCaml Corpus.

Project Affected Files
Deep Priority Conflicts Disambiguation with Brackets

Total

Number

Operator

Style

Dangling

Else

Longest

Match

Deep Conflicts Shallow Conflicts

FStar 6 / 160 (3.8%) 6 33.3% 0.0% 66.7% 607 (1.7%) 12487 (35.7%)

bincat 5 / 26 (19.2%) 26 57.7% 0.0% 42.3% 28 (0.8%) 2735 (81.3%)

bucklescript 85 / 885 (9.6%) 305 50.2% 1.3% 48.5% 924 (2.1%) 29238 (65.3%)

coq 158 / 417 (37.9%) 441 35.4% 0.5% 64.2% 1039 (1.3%) 56083 (69.9%)

flow 52 / 305 (17.0%) 117 36.8% 0.0% 63.2% 278 (1.6%) 13374 (78.9%)

infer 33 / 234 (14.1%) 52 23.1% 0.0% 76.9% 376 (2.5%) 10720 (70.6%)

ocaml 112 / 909 (12.3%) 275 28.4% 0.7% 70.9% 737 (1.6%) 35010 (77.4%)

reason 4 / 36 (11.1%) 14 7.1% 0.0% 92.9% 25 (1.5%) 1194 (73.2%)

spec 4 / 40 (10.0%) 5 100.0% 0.0% 0.0% 15 (1.0%) 1293 (86.1%)

tezos 71 / 149 (47.7%) 416 79.3% 0.0% 20.7% 130 (1.6%) 6969 (84.3%)

All 530 / 3161 (16.8%) 1657 48.0% 0.5% 51.5% 4159 (1.6%) 169103 (67.1%)

●●●

●

●

●

●

●

●

●

●
●●
●

●

●

0
1
0

2
0

3
0

4
0

C
o
n
te

x
tu

al
 G

ra
m

m
ar

 P
ro

d
u
ct

io
n
 C

o
v
er

ag
e

(i
n
 %

)

Programs without

Deep Priority Conflics

Programs with

Deep Priority Conflicts

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

(a) Grammar Coverage

●●

●●

●

●

●

●
●

●●●

●●●
●●
●●●●●●●●

●●
●

●

●

●

●

●

●

●

●●●

●

●
●
●

0
1
0

2
0

3
0

4
0

P
ro

ce
ss

ed
 S

ta
te

s
o
f

L
az

y
 P

ar
se

 T
ab

le
 (

in
 %

)

Programs without

Deep Priority Conflics

Programs with

Deep Priority Conflicts

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

(b) Lazy Parse Table Coverage

Figure 3. Comparison of Grammar and Parse Table Coverage between OCaml Programs with / without Deep Priority Conflicts.

Longestmatch conflicts did not follow a unique form. How-

ever, occasionally pattern-matching constructs that contain

match, function, or try expressions caused conflicts of the

following form:

begin function (e, info) -> match e with

| pattern1

| pattern2

end

In the example above, the indentation does not clarifywhether

pattern2 belongs to function (e, info) or match e.

4.3 Results of the Java Case Study

From 9935 Java source files we successfully parsed 97.3%

with our grammar. Manual inspection of the failing 2.7%

files (i.e., 268 files) revealed that they indeed had syntax

errors. All these files contained only snippets of Java code

and belonged to a testData folder from the kotlin repository.

Table 2 presents the information about deep priority conflicts

and bracket usage in Java, for each project we studied.

Affected Files. In total, only 2 Java files from the corpus

contained deep priority conflicts.

62

Deep Priority Conflicts in the Wild: A Pilot Study SLE’17, October 23ś24, 2017, Vancouver, Canada

Table 2. Deep Priority Conflicts and Bracket Usage in Java.

Project Affected Files
Disamb. with Brackets

Deep

Conflicts

Shallow

Conflicts

Matisse 0 / 41 (0.0%) 0 (0.0%) 33 (94.3%)

RxJava 0 / 1469 (0.0%) 0 (0.0%) 398 (78.3%)

aurora-imui 0 / 55 (0.0%) 0 (0.0%) 57 (74.0%)

gitpitch 0 / 45 (0.0%) 0 (0.0%) 1 (1.6%)

kotlin 0 / 3854 (0.0%) 0 (0.0%) 4892 (53.3%)

leetcode 0 / 94 (0.0%) 0 (0.0%) 30 (44.8%)

litho 0 / 510 (0.0%) 0 (0.0%) 297 (66.3%)

lottie-android 0 / 109 (0.0%) 0 (0.0%) 134 (87.6%)

spring-boot 2 / 3444 (0.06%) 0 (0.0%) 630 (55.4%)

vlayout 0 / 46 (0.0%) 0 (0.0%) 285 (76.2%)

All 2 / 9667 (0.02%) 0 (0.0%) 6757 (56.1%)

Table 3. Grammar and Parse Table Coverage Statistics.

Grammar Parse Table

Prod. Used # States Lazy Expansion

Proc. Visible

OCaml 3420 59.3% 20200 36.4% 45.8%

Java 1916 54.8% 4674 49.0% 56.8%

Deep Priority Conflicts. The pilot study revealed in total

two operator-style conflicts involving lambda expressions.

The conflicts adhered to the following form:

(CastType) () -> exp1 == exp2

Lambda expressions have lower priority than expressions

for equality comparison (==). In turn, cast expressions have

the highest priority amongst the three operators in the pre-

vious example. Incomplete disambiguation would allow two

different interpretations:

((CastType) () -> exp1) == exp2

(CastType) () -> (exp1 == exp2)

Our experimental setup made this conflict measurable with

context-free grammars that use declarative disambiguation.

Explicit Disambiguation with Brackets. The total num-

ber of observed pairs of brackets was 12049. None of these

brackets actually avoided deep priority conflicts, however

56.08% of brackets account for resolving shallow priority

conflicts. The remaining 43.92% of brackets are redundant.

4.4 Grammar and Parse Table Coverage Statistics

Table 3 lists the statistics for parsing the corpus with the

transformed contextual grammars and resulting parse tables.

OCaml. The transformed contextual grammar, capable of

resolving all three categories of conflicts that we investigate,

expands to 3420 productions. In terms of grammar coverage,

parsing all files together exercised 59.3% of the productions.

From the grammar productions, a lazy parse table was

generated that could extend to 20200 states, i.e., the number

of states that a conventional SDF3 parse table generator

would produce. From the possible number of states, 36.4% of

the states were processed during parsing, and 45.8% of the

states were visible, using the lazy parse table generator.

When looking at individual files, the mean coverage ob-

served was 9.5% (range 0.2ś36.1%). Figure 3a splits coverage

data between programs free of deep priority conflicts and

programs exhibiting deep priority conflicts. We observed

that programs free of deep conflicts use on average 8.1% of

contextual productions per file, while programs with deep

conflicts use, in average, 16%. Figure 3b shows the corre-

sponding data for processed states of the lazy parse table

that was generated from the contextual grammar. We ob-

served that programs free of deep priority conflicts exercise

on average 2.7% of all possible states compared to 6.17% of

programs that do have deep conflicts.

Java. The transformed contextual grammar consists of 1916

productions. Parsing the whole Java corpus exercised 54.8%

of the productions. When looking at individual files, the

mean coverage measured was 12.95% (range 0.52ś34.08%).

The corresponding full parse table has 4674 states. Parsing

all Java files with the lazy parse table generator resulted

in 49% processed states and 56.8% visible states. Due to the

low number of deep priority conflicts found in Java, we

omitted separate statistics for programs with and without

deep priority conflicts.

4.5 Recapitulation of Hypotheses

Based on the pilot study results reported in previous subsec-

tions, we do conclude:

Confirmation of Hypothesis 1: Parsing the OCaml cor-

pus with OCaml’s expression-oriented grammar trig-

gered deep priority conflicts in about one out of six

files. In contrast, parsing the Java corpus resulted in

total in only two deep priority conflicts.

Confirmation of Hypothesis 2: With 51.5%, the majority

of deep priority conflicts were of type longest match.

To our surprise, with 48%, operator-style conflicts were

almost as frequent as longest match conflicts.

Confirmation of Hypothesis 3: Deep priority conflicts

are sparse when parsing Java with grammars that use

declarative disambiguation. Deep conflicts exclusively

occurred in the context of lambda expressions.

63

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

Rejection of Hypothesis 4: We did not expect that deep

priority conflicts would occur in about one out of

six files when parsing OCaml, nor that all projects
would have files with deep priority conflicts. With a

frequency of 16.8% those conflicts can be considered

common case, requiring support for (declarative) dis-

ambiguation.

Confirmation of Hypothesis 5: The results indicate that

there is indeed a high cost attached to declarative dis-

ambiguationwith grammar transformation techniques.

On a per-file basis, our expectations were met. E.g.,

parsing OCaml files yielded a mean coverage of contex-

tual productions of 12.95% (range 0.52ś34.08%). Con-

trary to our intuition, parsing all files exercised more

than 50% of the contextual productions but processed

slightly less than 50% of the parse table states in both

languages.

Confirmation of Hypotheses 6 and 7: Brackets aremore

excessively used in OCaml than in Java. In both lan-

guages brackets are mainly used to disambiguate (shal-

low) priority conflicts. However, 1.6% of bracket pairs

in OCaml are used to disambiguate deep priority con-

flicts, suggesting that language users are exposed to

deal explicitly with deep conflicts, and also that they

rely on the disambiguation policy of the language for

disambiguating deep priority conflicts.

Considering both languages, even though only up to 17%

of the files contained deep priority conflicts, such conflicts

do occur, and there is a need for supporting efficient disam-

biguation in combination with readable, concise, but inher-

ently ambiguous context-free grammars. One may question

whether it is a good language design practice to allow deep

priority conflicts to occur in the first place, due to the prob-

lems they cause.

If we consider the efficiency of grammar transformation

techniques to solve deep priority conflicts, we can conclude

that there is room for improvement. Producing an unambigu-

ous grammar that disallows deep conflicts results in many

duplicate productions that do not seem to be used, even after

parsing a considerable number of programs. This conclu-

sion should lead to follow-up studies that can improve the

efficiency of these grammar transformations.

From the programmer’s point of view, deep priority con-

flicts can be even more confusing, as it is necessary to really
understand the operator precedence specified with the gram-

mar. Deep priority conflicts could even contribute to the

decision of whether to use or learn a language, if we con-

sider this extra burden imposed on novice programmers.

Therefore, now that we have an indication that deep priority

conflicts occur in real code, we can ask: are programmers

aware of such conflicts?

From our study, we observed that programmers use brack-

ets relatively often, but that up to 40% of the brackets were

redundant. Therefore, we may ask if programmers use re-

dundant brackets for readability or because they did not fully

understand the precedence of the language. Considering this

aspect, language design may also play a role in how often

programmers need to use brackets explicitly. Future empiri-

cal studies could lead to more insights that connect language

design, declarative disambiguation and how both of them

affect programmers.

5 Threats to Validity

In our pilot study, we have decided to examine the number of

occurrences of deep priority conflicts by the number of am-

biguities that occur when we turn off the solutions for such

conflicts. Because ambiguities may occur nested within each

other, this number corresponds to an under-approximation

of the number of deep priority conflicts.

As we mentioned before, a program 1 + if e then 2

else 3 + 4 contains an ambiguity that cannot be solved by a

parent-child relation on the addition and if-then-else expres-

sions, causing a deep conflict. Such conflict is captured by

our approach via the top-level ambiguity node of the whole

expression. However, any operator-style conflict that occurs

inside the expression e will not be counted, since it is hidden

inside the top-level ambiguity of the outer expression.

Furthermore, we do not validate the ASTs produced when

parsing each program in our test suite. In order to test the

correctness of our grammars, we have used Java and OCaml

program snippets that compare expected ASTs with the (un-

ambiguous) ASTs produced when parsing such programs

with contextual grammars. These tests stress syntactic ele-

ments of each language, including cases of deep conflicts.

When counting brackets that disambiguate deep conflicts,

we do not include brackets that would produce the same AST

if removed from the program. For example, in the program

1 + (if e then 2 else 3 + 4) the brackets disambiguate a

deep conflict, choosing explicitly how the program should

be interpreted. However, when removing the brackets and

parsing the same program with a contextual grammar that

solves operator-style conflicts, the same AST is produced,

i.e., the brackets are redundant.

Operator-style conflicts in Java only occur due to lambda

expressions. However, these expressions are relatively new

in the Java language, being introduced in Java SE 8. It may be

the case that lambda expressions are not yet used frequently

by programmers or are only used in newer projects, which

could explain the low number of deep priority conflicts we

found in Java programs.

Finally, the size of our empirical study could hinder the

conclusions we draw in this paper. However, we still believe

that this study can give significant insights to the research

questions we raised.

64

Deep Priority Conflicts in the Wild: A Pilot Study SLE’17, October 23ś24, 2017, Vancouver, Canada

6 Related Work

In this section we highlight previous work on parsing and

related work on empirical studies (based on corpus analysis).

6.1 Safe and Complete Disambiguation

Grammar-to-grammar transformations. Afroozeh et al.

[3] proposed a new semantics for SDF2 priorities [14] that

is safe and complete. The approach consists of rewriting the

grammar, duplicating the productions for the non-terminals

such that shallow and deep conflicting patterns cannot be

produced. Even though this approach produces an unambigu-

ous context-free grammar as result, the size of the resulting

grammar can be quite large for languages containing many

conflicts. Furthermore, the approach does not handle dan-

gling else nor longest match conflicts.

Contextual grammars [5] is a grammar transformation

that extends the approach from Afroozeh et al. [3]. The

grammar productions are only duplicated to handle deep

conflicts, and the technique also solves dangling else and

longest match ambiguities. However, the resulting contex-

tual grammars can still have many duplicated productions

for languages with many deep conflicts.

Data-dependent grammars. A dynamic solution to safe

and complete disambiguation is presented by Afroozeh and

Izmaylova [2]. Instead of producing pure and unambiguous

context-free grammars, this approach consists of producing a

data-dependent grammar that checks for priority conflicts at

parse time. Priorities are automatically translated into data-

dependent productions that passes the precedence levels of

the expression currently being parsed and checks whether it

produces a priority conflict. This solution does not handle

longest match nor dangling else conflicts, and it is used with

a top down parser that supports data-dependency tracking.

6.2 Lazy Parser Generation

IPG. The incremental parser generator IPG [9] was devel-

oped with the purpose of speeding-up parser generation

in a highly interactive environment. At the early stages of

language design, the language’s syntax is constantly being

changed, invalidating the current parse table. In incremental

table generation, only the parts of a partial table that are

affected by a change in the grammar are reconstructed at

parse time. We have only adopted the lazy generation of IPG,

i.e., when the grammar changes, our generator starts from

scratch with an empty table. Lazy parse table generation

allowed us to measure the coverage of contextual grammars.

ANTLR. A top-down approach to lazy parser generation

is used in the Adaptive LL(*) parsing algorithm [18]. ANTLR

4 generates ALL(*) parsers that adapts to the input sentences
presented to it at parse time. The parser dynamically con-

structs a prediction automaton that matches the lookahead

of input being parsed deciding which production rule to

expand. Intermediate results are memoized, i.e., the parser

incrementally constructs the prediction automaton by need.

6.3 Corpus Analysis and Grammar Coverage

Empirically studying source code allows researchers to learn

from real-world programs, for example to uncover coding

practices [10, 17] or to evaluate the performance of tools and

analyses. Studies do either reuse existing corpuses of various

sizes, or construct corpuses that are suitable for answering

their research questions. E.g., Landman et al. refuted com-

mon knowledge about the correlation of two source code

metrics [16] by constructing and analyzing large corpuses.11

In contrast to large scale empirical studies, we conducted

a pilot study for getting an intuition of how deep priority

conflicts occur in the wild. The outcomes of this pilot study

pinpoint and characterize real-world issues that arise with

deep priority conflicts, guiding future large scale studies.

Context-dependent branch coverage [15] can give more in-

sights on the coverage of contextual grammars. In our exper-

iment, we adopted a rather simplistic approach by counting

the number of productions used by the parser. However, our

approach also includes information about the coverage of

lazily generated tables in order to investigate the efficiency

of grammar transformations to solve deep priority conflicts.

6.4 Code Readability and Programming Style

Buse and Weimer [4] define source code readability as łas a
human judgment of how easy a text is to understandž and pro-
posed a metric for measuring readability. Stefik and Siebert

[20] and Sedano [19] provide an overview on empirical stud-

ies concerning code readability and programming style.

Instead of focusing on the human judgement perspective,

we investigated deep priority conflicts that may hamper

unambiguous parsing of source code. We studied how often

brackets are used for readability purpose or to disambiguate

(deep) priority conflicts. There is empirical evidence that

if-statements that remove parentheses and braces are easier

to comprehend by novice programmers [20], however such

syntaxes are more likely to trigger (deep) priority conflicts.

7 Conclusion and Future Work

We have presented an experiment to analyze deep priority

conflicts in real-world programs. Our experiment uses con-

textual grammars to produce unambiguous grammars that

solve deep conflicts. By turning off the generation of produc-

tions to solve each type of conflict, we were able to categorize

and count occurrences of each type. Furthermore, we used

lazy parse table generation to investigate the efficiency of

contextual grammars when solving deep conflicts. We have

also looked into explicit disambiguation, i.e., counting and

analyzing the number of brackets in each program.

11One Java corpus containing 17.6M methods that are spread out over 1.7M

files, and one C corpus containing 6.3M functions extracted from 462K files.

65

SLE’17, October 23ś24, 2017, Vancouver, Canada Luís Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco Visser

Our experiment indicates that deep conflicts do occur

often in real programs. However, when looking into the effi-

ciency of grammar transformations to solve deep conflicts,

we observed that many productions and parse states result-

ing from the grammar transformation are not used after

parsing corpuses of real-world programs.

We also observed that a large percentage of deep conflicts

are explicitly disambiguated by brackets, which suggests

that the default precedence of the language does not cor-

respond to how programmers typically use the language

constructs. The analysis of explicit disambiguation also gave

us the insight that brackets are not used exclusively for dis-

ambiguation purposes. Further investigation is necessary to

understand the actual intention of the programmer when

using redundant brackets.

As future work, we propose extending the case study to

other languages, i.e., including other SDF3 grammars, and to

consider larger corpuses. Based on our findings, we propose

further investigation on grammar transformation techniques

used for declarative disambiguation, analyzing the reasons

for the lack of coverage, and aiming to improve their effi-

ciency when solving deep priority conflicts.

Acknowledgments

The work presented in this paper was partially funded by

CAPES (Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior - Brazil) and by the NWO VICI Language
Designer’s Workbench project (639.023.206).

References
[1] Ali Afroozeh and Anastasia Izmaylova. 2015. Faster, Practical GLL

Parsing. In Compiler Construction - 24th International Conference, CC

2015, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-

ings (Lecture Notes in Computer Science), Björn Franke (Ed.), Vol. 9031.

Springer, 89ś108. DOI:http://dx.doi.org/10.1007/978-3-662-46663-6_5

[2] Ali Afroozeh and Anastasia Izmaylova. 2016. Operator precedence for

data-dependent grammars. In Proceedings of the 2016 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation, PEPM 2016,

St. Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig and Tiark

Rompf (Eds.). ACM, 13ś24. DOI:http://dx.doi.org/10.1145/2847538.

2847540

[3] Ali Afroozeh, Mark G. J. van den Brand, Adrian Johnstone, Eliza-

beth Scott, and Jurgen J. Vinju. 2013. Safe Specification of Operator

Precedence Rules. In Software Language Engineering - 6th International

Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Pro-

ceedings (Lecture Notes in Computer Science), Martin Erwig, Richard F.

Paige, and Eric Van Wyk (Eds.), Vol. 8225. Springer, 137ś156. DOI:

http://dx.doi.org/10.1007/978-3-319-02654-1_8

[4] Raymond P.L. Buse andWestley R.Weimer. 2008. AMetric for Software

Readability. In Proceedings of the 2008 International Symposium on

Software Testing and Analysis (ISSTA ’08). ACM, New York, NY, USA,

121ś130. DOI:http://dx.doi.org/10.1145/1390630.1390647

[5] Luis Eduardo de Souza Amorim, Timothée Haudebourg, and Eelco

Visser. 2017. Declarative Disambiguation of Deep Priority Conflicts.

Technical Report TUD-SERG-2017-014. Delft University of Technology.

[6] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha, and Alex Buck-

ley. 2013. The Java Language Specification, Java SE 7 Edition.

[7] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.

2014. The Java Language Specification. Java SE 8 Edition.

[8] Jan Heering, P. R. H. Hendriks, Paul Klint, and Jan Rekers. 1989. The

syntax definition formalism SDF - reference manual. SIGPLAN Notices

24, 11 (1989), 43ś75. DOI:http://dx.doi.org/10.1145/71605.71607

[9] Jan Heering, Paul Klint, and Jan Rekers. 1989. Incremental Generation

of Parsers. In PLDI. 179ś191.

[10] Mark Hills, Paul Klint, and Jurgen Vinju. 2013. An Empirical Study

of PHP Feature Usage: A Static Analysis Perspective. In Proceedings

of the 2013 International Symposium on Software Testing and Analysis

(ISSTA 2013). ACM, New York, NY, USA, 325ś335. DOI:http://dx.doi.

org/10.1145/2483760.2483786

[11] Andrew Hunt and David Thomas. 1999. The Pragmatic Programmer:

From Journeyman to Master. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

[12] S. C. Johnson. 1975. YACCÐyet another compiler-compiler. Technical

Report CS-32. AT & T Bell Laboratories, Murray Hill, N.J.

[13] Lennart C. L. Kats, Eelco Visser, and GuidoWachsmuth. 2010. Pure and

declarative syntax definition: paradise lost and regained. In Proceed-

ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2010,

William R. Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM,

Reno/Tahoe, Nevada, 918ś932. DOI:http://dx.doi.org/10.1145/1869459.

1869535

[14] Paul Klint and Eelco Visser. 1994. Using Filters for the Disambigua-

tion of Context-free Grammars. In Proceedings of the ASMICS Work-

shop on Parsing Theory. Tech. Rep. 126ś1994, Dipartimento di Scienze

dell’Informazione, Università di Milano, Milano, Italy.

[15] Ralf Lämmel. 2001. Grammar Testing. In Fundamental Approaches to

Software Engineering, FASE 2001 (Lecture Notes in Computer Science),

Heinrich Hußmann (Ed.), Vol. 2029. Springer, 201ś216. DOI:http://dx.

doi.org/link/service/series/0558/bibs/2029/20290201.htm

[16] Davy Landman, Alexander Serebrenik, Eric Bouwers, and Jurgen J.

Vinju. 2016. Empirical analysis of the relationship between CC and

SLOC in a large corpus of Java methods and C functions. Journal

of Software: Evolution and Process 28, 7 (2016), 589ś618. DOI:http:

//dx.doi.org/10.1002/smr.1760 JSME-15-0028.R1.

[17] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Chal-

lenges for Static Analysis of Java Reflection: Literature Review and

Empirical Study. In Proceedings of the 39th International Conference

on Software Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA,

507ś518. DOI:http://dx.doi.org/10.1109/ICSE.2017.53

[18] Terence John Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive

LL(*) parsing: the power of dynamic analysis. In Proceedings of the 2014

ACM International Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,

OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein

(Eds.). ACM, 579ś598. DOI:http://dx.doi.org/10.1145/2660193.2660202

[19] T. Sedano. 2016. Code Readability Testing, an Empirical Study. In 2016

IEEE 29th International Conference on Software Engineering Education

and Training (CSEET). 111ś117. DOI:http://dx.doi.org/10.1109/CSEET.

2016.36

[20] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation

into Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article

19 (Nov. 2013), 40 pages. DOI:http://dx.doi.org/10.1145/2534973

[21] Masaru Tomita. 1985. An Efficient Context-Free Parsing Algorithm

for Natural Languages. In IJCAI. 756ś764.

[22] Eelco Visser. 1997. Syntax Definition for Language Prototyping. Ph.D.

Dissertation. University of Amsterdam. Advisor(s) Paul Klint.

[23] Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. 2012. Declara-

tive specification of template-based textual editors. In International

Workshop on Language Descriptions, Tools, and Applications, LDTA ’12,

Tallinn, Estonia, March 31 - April 1, 2012, Anthony Sloane and Suzana

Andova (Eds.). ACM. DOI:http://dx.doi.org/10.1145/2427048.2427056

66

http://dx.doi.org/10.1007/978-3-662-46663-6_5
http://dx.doi.org/10.1145/2847538.2847540
http://dx.doi.org/10.1145/2847538.2847540
http://dx.doi.org/10.1007/978-3-319-02654-1_8
http://dx.doi.org/10.1145/1390630.1390647
http://dx.doi.org/10.1145/71605.71607
http://dx.doi.org/10.1145/2483760.2483786
http://dx.doi.org/10.1145/2483760.2483786
http://dx.doi.org/10.1145/1869459.1869535
http://dx.doi.org/10.1145/1869459.1869535
http://dx.doi.org/link/service/series/0558/bibs/2029/20290201.htm
http://dx.doi.org/link/service/series/0558/bibs/2029/20290201.htm
http://dx.doi.org/10.1002/smr.1760
http://dx.doi.org/10.1002/smr.1760
http://dx.doi.org/10.1109/ICSE.2017.53
http://dx.doi.org/10.1145/2660193.2660202
http://dx.doi.org/10.1109/CSEET.2016.36
http://dx.doi.org/10.1109/CSEET.2016.36
http://dx.doi.org/10.1145/2534973
http://dx.doi.org/10.1145/2427048.2427056

	Abstract
	1 Introduction
	2 A Primer on Declarative Disambiguation
	3 Reasoning about Deep Priority Conflicts
	3.1 Contextual Grammars
	3.2 Lazy Parse Table Generation
	3.3 Explicit Disambiguation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results of the OCaml Case Study
	4.3 Results of the Java Case Study
	4.4 Grammar and Parse Table Coverage Statistics
	4.5 Recapitulation of Hypotheses

	5 Threats to Validity
	6 Related Work
	6.1 Safe and Complete Disambiguation
	6.2 Lazy Parser Generation
	6.3 Corpus Analysis and Grammar Coverage
	6.4 Code Readability and Programming Style

	7 Conclusion and Future Work
	Acknowledgments
	References

