
PixieDust: Declarative Incremental User Interface Rendering
Through Static Dependency Tracking

Nick ten Veen
Delft University of Technology, Delft,

The Netherlands
n.tenveen@student.tudelft.nl

Daco C. Harkes
Delft University of Technology, Delft,

The Netherlands
d.c.harkes@tudelft.nl

Eelco Visser
Delft University of Technology, Delft,

The Netherlands
e.visser@tudelft.nl

ABSTRACT
Modern web applications are interactive. Reactive programming
languages and libraries are the state-of-the-art approach for declara-
tively specifying these interactive applications. However, programs
written with these approaches contain error-prone boilerplate code
for efficiency reasons.

In this paper we present PixieDust, a declarative user-interface
language for browser-based applications. PixieDust uses static de-
pendency analysis to incrementally update a browser-DOM at run-
time, without boilerplate code. We demonstrate that applications
in PixieDust contain less boilerplate code than state-of-the-art ap-
proaches, while achieving on-par performance.

ACM Reference Format:
Nick ten Veen, Daco C. Harkes, and Eelco Visser. 2018. PixieDust: Declarative
Incremental User Interface Rendering Through Static Dependency Tracking.
In WWW ’18 Companion: The 2018 Web Conference Companion, April 23–27,
2018, Lyon, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3184558.3185978

1 INTRODUCTION
Modern web applications are interactive. Data edits do not trigger
page reloads, but in-place DOM updates. These DOM updates could
be written by hand, but this is a tedious and error-prone exercise.
A declarative, but naive, solution would be to rebuild the entire
DOM from a declarative render function on each edit. However,
DOM operations are slow, so this approach leads to unresponsive
interfaces for large applications. Furthermore DOM elements would
lose their local state (such as focus and event handlers). Current
state-of-the art declarative solutions maintain a virtual DOM, and
patch the browser DOM based on the diffs between virtual DOM
renders. When data is edited, these solutions compare the view
before and after the data edit and apply DOM updates to patch the
difference. Since calculating the minimal difference between two
trees isO(n3) [5], these solutions useO(n) non-minimal tree-diffing
algorithms. Possible scalability issues with non-minimal tree diffing
can be mitigated by identifying which sub-trees need to be updated
on a change. However, the programmer is responsible for correctly
identifying these sub-trees, which leads to boilerplate code.

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’18 Companion, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5640-4/18/04.
https://doi.org/10.1145/3184558.3185978

In this paper we present PixieDust, a web programming language
that enables concise declarative definition of user interfaces by au-
tomatic derivation of code to compute incremental view updates
based on compile-time static dependency analysis. The contribu-
tions of this paper are:

• The design of the PixieDust language supporting concise
and declarative definition of data model and view.
• A static dependency analysis of the impact of model updates
to views.
• A mapping of PixieDust programs to an implementation
in JavaScript of incremental view updates using the React
framework as basis.
• An evaluation showing that the performance of the approach
is on-par with state-of-the-art approaches, with a factor 2
reduction in code size.

We proceed as follows. In the next section we analyze the state-
of-the-art solutions, to see where error-prone boilerplate code is
introduced. In Section 3 we propose an approach for static depen-
dency tracking to identify sub-trees for rerendering. In Section 4
we present the PixieDust language for specifying data models and
declarative views which incorporates this static dependency track-
ing. In Section 5 we formally define the dependency analysis for
PixieDust. In Section 6 we formally define the operational semantics
of PixieDust, detailing its interaction with the browser. In Section 7
we evaluate our language design, and in Section 8 we compare
related work to PixieDust.

2 EXISTING APPROACHES
In this section we analyze techniques for efficient DOM updates
used by state-of-the-art approaches and we identify problems with
these techniques.

state 1 state 2

div

h1 p

div

h1 pdiv

Figure 1: By default, the diffing algorithm of existing frame-
works compare children in order. Adding a child node at the
front causes all children to be completely rerendered. This
issue can be fixed bymanually adding identities to children.

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

721

https://doi.org/10.1145/3184558.3185978
https://doi.org/10.1145/3184558.3185978
https://doi.org/10.1145/3184558.3185978

{ this.props.todos.map(todo =>

<li key={todo.id}>
<TodoView todo={todo}/>

}

Figure 2: Identities (keys) on children increase performance,
but add boilerplate code inMobX. This applies to all state-of-
the-art solutions.

Linear Tree Diffing. All state-of-the-art approaches use linear
tree diffing (for example React [2]). Linear tree diffing algorithms
compare old and new virtual DOM trees recursively per level. If the
tag of a node is equal to the previous version, the browser DOM
node remains intact. The attributes of intact nodes are compared,
and any differences are patched in the DOM. The children of these
nodes are traversed in the next level. If the tags are different, the
entire node with its children are removed from the DOM and is
rebuilt from scratch.

When children of a node are reordered, a linear diff algorithm
cannot determine the new position of children. This means that
instead of reordering the children, the children are replaced by
each other. This can be very inefficient, for example when a child is
added as first child (Figure 1). Adding identities to children enables
reordering in linear time (Figure 2). However, it is the responsibility
of the programmer to find suitable identities for the data structures
that are being used and bind them to their sub-trees.

Identifying which parts of the DOM-tree need updating. It is un-
necessary to diff the entire tree structure when entire parts of the
tree do not depend on the changes that were made. If a sub-tree is
parameterized by the set of values it depends on, that information
can be used to only diff when these values changed. There are
multiple approaches to achieve this.

The first approach is to use immutable data. Elm [4] and Redux
[3] use this approach. With immutable data structures and pure
view functions, reference equality can be used to determine whether
a sub-tree needs to be rerendered. When a value changes, only the
node where that value is displayed, and the spine to the root of
the tree are recalculated. Since immutable data structures cannot
contain cycles, programmers need to use a tree structured data
model. Since immutable data cannot be updated in place, solutions
with immutable data use message passing to encode updates. These
messages are dispatched to a pure function calculating the new
state based on the previous state. This optimization does come
with a lot of boilerplate: each action needs to be encoded in a data
structure, and when these actions are decoded, the relevant part of
the state needs to be looked up and modified (Figure 3).

An alternative approach to localize DOM diffing is to construct
a dependency graph for views. That way views can observe writes
that are made to their dependencies to trigger a rerender. Hence,
calls to setters on data are automatically reflected in the user in-
terface. MobX [1] is a framework that constructs the dependency
graph dynamically while rendering. To achieve this at runtime,
MobX relies on wrapping get and set operations of data. However,

enum TodoActionKeys{ TOGGLE_TODO = "TOGGLE_TODO"}
interface ToggleTodoAction{
type: TodoActionKeys.TOGGLE_TODO,
todoId: string

}
type TodoAction = ToggleTodoAction

function toggleTodo(todoId: string) {
return {
type: TodoActionKeys.TOGGLE_TODO,
todoId: todoId

}
}
function reducer(todos:Todo[],action:TodoAction){
switch(action.type){
case TodoActionKeys.TOGGLE_TODO:

return todos.map(todo =>
todo.id == action.todoId

? {finished: !todo.finished, ...}
: todo

);
}

}

Figure 3: Boilerplate code needed to dispatch a state update
in Redux. The action is encoded as a plain javascript object
which gets passed to a pure function by the runtime that
processes all possible actions.

model
entity TodoList {
todos : Todo* (inverse = Todo.list)

}
entity Todo {
description : String
finished : Boolean

}

view
TodoList.view = div { ul { todos.itemView } }

Todo.itemView = li {
input[type="checkbox", value=finished]
span { description }

}

Figure 4: Miniature ToDo application data model and view

this can lead to subtle bugs where a child component is passed a
value instead of the getter for that value.

Summary. In conclusion, all state-of-the-art solutions induce
error-prone boilerplate code. All solutions require identity anno-
tations on lists. The immutable data solutions (Elm and Redux)
require encoding of data modifications into action objects, and the
mutable data solution (MobX) traps getters and setters (which can
accidentally be circumvented in JavaScript).

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

722

3 STATIC DEPENDENCY TRACKING
The state-of-the-art client-side application frameworks induce error-
prone boilerplate code and their assumptions can be accidentally
violated leading to subtle bugs.We propose to use static dependency
tracking as a solution to these issues. Static dependency tracking
does not trap getters and setters at runtime (such as MobX), but in-
stead (over)approximates the dependency structure at compile-time.
View definitions reference parts of the data model. These references
can be statically determined, and this can be used to decide which
views should be rerendered after a data modification.

To illustrate how to statically derive dependencies, we consider
a miniature ToDo application (Figure 4). A TodoList holds zero or
more Todos. A Todo has a description and a finished flag. The
view for a TodoList is a div containing a ul with a li for every
item. Every Todo is rendered as a checkbox for the finished status
and a span for the description.

By analyzing the body of the views, we can collect all refer-
enced paths. The itemView references both fields of the Todo. The
TodoList.view references the itemView of its todos. This means
that this view needs to be updated bothwhen a referenced itemView
changes and when the todos list changes itself. Together, the ap-
plication contains the following dependencies:

Todo.itemView <− finished

Todo.itemView <− description

TodoList.view <− todos

TodoList.view <− todos.itemView

These dependencies can be inverted to get the data flow of the appli-
cation. To be able to invert dependencies that reference todos, we
need an inverse. Figure 4 defines the inverse of todos as Todo.list.
When we invert dependencies we obtain the following data flow:

Todo.finished −> itemView

Todo.description −> itemView

TodoList.todos −> view

Todo.itemView −> list.view

This data flow can be used to trigger rerendering of views on data
modifications. Moreover, since views are parameterized by an entity,
we can automatically assign keys to collections, without unneces-
sary boilerplate code.

We have designed and implemented PixieDust, a new language
for declarative definition of user interfaces in the browser based on
this dependency analysis. We will formalize this dependency anal-
ysis in Section 5, but first we will discuss the design of PixieDust.

4 PIXIEDUST
PixieDust is a language for specifying data models and browser-
based user interfaces that separates the concerns of model and view,
literally by keywords (for example Figure 4). Everything defined in
the data model is visible in the view, but not vice versa.

Data Model. For the data model we use the existing IceDust
data modeling language [7, 8]. In IceDust, a data model consists
of entities with fields. All fields have a type and a multiplicity. The
multiplicities in IceDust are 1, ?, ∗, and + (similar to regular ex-
pressions and highlighted in red in examples). If multiplicities are
omitted, they default to 1. Fields with an entity-type have an in-
verse. Whenever an object refers from such a field to another object,

view
TodoList {
view : View = div {

header
ul { visibleTodos.itemView }
footer

}

header : View = div {
h1 { "Todos" }
input[type="checkbox", value = allFinished,

onClick = toggleAll]
StringInput[onClick = addTodo](input)

}

footer : View = div {
todosLeft "items left"
ul{
visibilityButton(this, "All")
visibilityButton(this, "Finished")
visibilityButton(this, "Not finished")

}
if(count(finishedTodos) > 0)
button[onClick = clearFinished]

}
}
Todo {
itemView : View = li { div {

BooleanInput(finished)
span { task }
button[onClick=deleteTodo] { "X" }

}}
}

Figure 5: TodoList views: the TodoList view has a header
with an input field for adding new todos; a list of all todos;
and a footer with the number of todos left, a filter for which
todos to show, and a button for removing finished todos.

view
TodoList {
input : String = (init = "")
show : String = (init = "All")

finishedTodos : Todo* =
todos.filter(todo => todo.finished)
(inverse = Todo.inverseFinishedTodos?)

visibleTodos : Todo* =
switch {
case show == "All" => todos
case show == "Finished" => finishedTodos
default => todos \ finishedTodos

}
(inverse = Todo.inverseVisibleTodos?)

}

Figure 6: TodoList view state: the view state contains a field
to store the input for adding new items, a field for filtering
visible items, and fields for computing visible items.

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

723

view
Todo {

actions {
toggleTodo: finished := !finished
deleteTodo: list := null

}
}
TodoList {

actions {
addTodo:
todos += {description = input

finished = false}
input := ""

toggleAll: todos.finished := !allFinished
clearFinished: todos −= finishedTodos
setVisibility(to: String): show := to

}
}

Figure 7: ToDo application actions: items can be toggled,
deleted and added; and for a list all items can be toggled, all
finished items can be deleted, and the filter can be changed.

the other object refers back from its inverse field. Lastly, IceDust
features derived value fields: fields for which the value is calculated.
For example, we can extend the TodoList in Figure 4 with a field
indicating whether all todos are finished and how many are left:

entity TodoList {

allFinished : Boolean = conj(todos.finished)

todosLeft : Int = countFalse(todos.finished)

}

View. In PixieDust we define views in the context of an entity
(Figure 5). The View type is a (virtual) DOM node. Inside a view, the
fields of the context entity can be concisely accessed by referring
to them. Other views of the same entity also can be referenced
directly, and views of other entities can be referenced by member
access. This makes for concise definitions of views in PixieDust.

The view of a model might contain state. In our example we
have the state of the input field for adding new todos. To separate
the concerns of data model and view, we do not add this state to
the data model, but introduce view state. View state fields can be of
any type and are scoped by a context entity (Figure 6). View state
supports the same kind of derived values as the data model. For
example we derive the visible todos collection in Figure 6.

User interfaces should support user interaction with the applica-
tion. In PixieDust, actions declaratively describe data modification
(Figure 7). Actions are also scoped by an entity, this makes for con-
cise definitions. Both the data model and view state can be accessed
within actions. Moreover, new objects can be created (see addTodo)
and old objects can be left for garbage collection (see deleteTodo).

Often an input element reads and writes to a specific field of
an entity. One could program an action for each field, but that is
tedious. For concise UI specifications, a language should support
bidirectional mappings between user interface and data model.
PixieDust provides built-in bidirectional mappings for primitive

functions
visibilityButton(l:TodoList, to:String):View =
li[onClick = l.setVisibility(to)] { to }

countFalse(bs : Boolean*) : Int =
count(bs.filter(b => !b))

Figure 8: Functions in ToDo application facilitate reuse

data types (BooleanInput and StringInput in Figure 5). In future
work we would like to explore user-defined bidirectional mappings.

Example. Figures 4-7 contain an almost complete specification of
a full ToDo application in PixieDust. The only thing missing is the
definition of two functions (Figure 8). Together, these figures form
a concise specification of a complete ToDo application. Moreover,
this application is incremental: derived values are only recalculated
and views are only rerendered when needed.

5 DEPENDENCY AND DATA-FLOW ANALYSIS
In Section 3 we introduced static dependency tracking as a way to
get rid of error-prone dynamic dependency boilerplate code. In this
section we formalize this static dependency analysis. The analysis
is based on the dependency analysis of IceDust [7]. In this paper
we extend it with analysis for functions and views.

Dependencies between Fields in Data Model. First, we recap the
analysis of dependencies between fields from IceDust. To illustrate
the analysis we extend Figure 4 with allFinished which is the
conjunction of the finished fields:

allFinished : Boolean = conj(todos.finished)

The dependencies of a field are all fields which are needed to com-
pute the derived value of that field. The dependencies are reachable
from the entity containing the field via a path. A dependency is
denoted by (Ent .Field ← π), where Ent .Field is a field and π is the
path to a field.

Computing the dependencies requires extracting paths from
expressions defining field values. The path-based abstract inter-
pretation relation (Figure 9) defines the dependency paths of an
expression. We use the notation (Expr ↘ {π }{ρ}), where Expr is
the expression that is abstractly interpreted, and {π } and {ρ} are
the sets of paths defined by the abstract interpretation. The paths
in {π } are extended by surrounding expressions, while the paths
in {ρ} are not. The if only extends paths in the second and third
operand, so Π1 is passed to {ρ}. All paths start with this [This] or
with navigation [NavStart]. When navigating by means of e.m all
dependency paths in {π } are extended with .m [Nav]. Operators
just pass on all paths [UnOp, BinOp], and literals do not contain any
paths [Literal]. Path-based abstract interpretation of the expression
defining allFinished produces a set with a single path:

{ todos.finished }

The dependencies relation (Figure 9) defines the dependencies of
a field and a full program. We use the notation Field |Proд ↘↘
{(Ent .Field ← π)} where Field |Proд is a field or full program, and
{(Ent .Field ← π)} is a set of dependencies. When a field depends
on the value at the end of a path, it also depends on the relations en

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

724

Path-based abstract interpretation Expr ↘ {π }{ρ }

m ↘ {m }{}
[NavStart]

e ↘ Π P

e .m ↘ {π .m | π ∈ Π} P
[Nav]

this ↘ {this}{}
[This]

e ∈ Literal

e ↘ {}{}

[Literal]

⊕ ∈ UnOp e ↘ Π P

⊕ e ↘ Π P
[UnOp]

⊕ ∈ BinOp e1 ↘ Π1 P1 e2 ↘ Π2 P2

e1 ⊕ e2 ↘ Π1 ∪ Π2 P1 ∪ P2
[BinOp]

e1 ↘ Π1 P1 e2 ↘ Π2 P2 e3 ↘ Π3 P3

e1 ?e2 :e3 ↘ Π2 ∪ Π3 Π1 ∪ P1 ∪ P2 ∪ P3
[If]

⊕ ∈ {filter, find, orderBy} e1 ↘ Π1 P1 e2 ↘ Π2 P2
Π′2=replace-id*(Π2, x, Π1) P′2=replace-id*(P2, x, Π1)

e1 . ⊕ (x => e2) ↘ Π1 Π′2 ∪ P1 ∪ P
′
2

[Col]

f .expr↘ Πf Pf ei ↘ Πi Pi
Pe =

⋃
i=1. .n Pi Πnamed

e = {(f .args[i], Πi) | i ∈ 1..n }
Π′f =replace-ids(Πf , Π

named
e) P′f =replace-ids(Pf , Π

named
e)

f (e1, . . . , en) ↘ Π′f P′f ∪ Pe
[Fun]

replace-id(x .π , x, π2) = π2 .π
replace-id(π , x, π2) = π
replace-id*(Π1, x, Π2) = {replace-id(π1, x, π2) | π1 ∈Π1, π2 ∈Π2 }

replace-ids(Π1, []) = Π1
replace-ids(Π1, [(x, Π2) |t]) = replace-ids(replace-id*(Π1, x, Π2), t)

Dependencies F ield |Proд ↘↘ {(Ent .F ield ← π)}

m .expr↘ Π P e =m .entity
Π2 =

⋃
{trans-pref(remove-this(π)) | π ∈ Π ∪ P}

m ∈ F ield ↘↘ {(e .m ← π) | π ∈ Π2 }
[Field]

Π =
⋃
{dep |m ↘↘ dep, m ∈ e .fields, e ∈ p .entities}

p ∈ Proд ↘↘ Π
[Prog]

remove-this(this . π) = π
remove-this(m . π) = m . π
trans-pref(π . m) = {π . m} ∪ trans-pref(π)
trans-pref(m) = {m}

Figure 9: Dependency relation by path extraction

route. So the rule for fields [Field] takes the transitive prefix of the
paths of its expression. As paths are concatenated later, the this is
removed from paths. The paths for our example are:

(TodoList.allFinished ← todos.finished)

(TodoList.allFinished ← todos)

The data flow from a field is the set of all fields that depend on it
to compute their value. The data flow relation is the inverse of the
dependency relation. We use (Ent .Field → π) to denote the data

Dependency inversion (Ent .F ield ← π) ↗ (Ent .F ield → π)

e2 =m .entity

(e1 .m1 ← π .m2) ↗ (e2 .m2 → inv-path(π) .m1)
[InvDep]

inv-path(π . m) = m−1 . inv-path(π)
inv-path(m) = m−1

inv-path(null) = null

Data flow Proд ↗↗ {(Ent .F ield → π)}

p ↘↘ Dep

p ∈ Proд ↗↗ {df | dep ↗ df , dep ∈ Dep }
[Prog]

Figure 10: Data flow relation by inverting dependencies

flow relation from the source, Ent .Field , to the target, the end of
the path π .

The dependency inversion relation, (Ent .Field ← π) ↗ (Ent
.Field → π), in Figure 10 defines the inverse of a dependency. A
dependency is inversed by swapping source and target, and invert-
ing the path π to get the path from target to source. The function
inv-path(π) inverts the names on the path, and inverts their order.
Name inversion is selecting the name on the opposing side of a
bidirectional relation. The resulting data flow in our example is:

(TodoList.todos → allFinished)

(Todo.finished → list.allFinished)

Dependencies with Filter, Find, andOrderBy. Note that IceDust 2 [8]
introduced filter, find, and orderBy, but did not document the
dependency analysis for these. To illustrate the analysis of these,
consider adding the following to TodoList:

numLeft:Int = count(todos.filter(x=>!x.finished))

The rule [Col] (Figure 9) covers these expressions containing a
lambda. The occurrence of the parameter x in the paths of the body
of the lambda are replaced with the paths of the argument. For our
example replacing the x in x.finished with {todos} yields:

{ todos.finished }

Dependencies with Functions. In this paper we extend the de-
pendency analysis with support for functions. As an example for
functions we use our specification of todosLeft by using a func-
tion for counting the number of elements equal to false:

todosLeft : Int = countFalse(todos.finished)

function countFalse(bs : Boolean*) : Int =

count(bs.filter(b => !b))

Rule [Fun] in Figure 9 covers user-defined functions. The depen-
dency paths of a function call are defined as the dependency paths
of the function definition expression, with all occurrences of ar-
gument names replaced by the paths of the arguments at the call
site. Note that these are all sets of paths, so functions replace-id*
and replace-ids operate on sets. If we apply the analysis to our
example, the paths of the function body are:

{ bs }

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

725

Σ ∈ Entity : EntityRef × F ield 7→ (val 7→ [Value], cache 7→ [Value], dirty 7→ Boolean, subs 7→ [ComponentRef])

C ∈ Component : ComponentRef 7→ (o 7→ EntityRef , f 7→ F ield, mounted 7→ Boolean)

Q ∈ Queue : {ComponentRef }

F ∈ Frame : ObjectRef
V alue : EntityRef | Pr imitiveV alue | V ir tualDOMElem

Figure 11: The PixieDust runtime has four stores. The entity store (Σ) maps object fields to user value, cached value, dirty flag,
and subscribed components. The component store (C) maps components to object fields and a mounted flag. The queue (Q) is
a global list of elements that need to be rerendered, and the frame (F) is a reference to a requested animation frame.

The call from numLeft has the following named paths:
(bs => { todos.finished })

Applying replacement yields the dependencies for numLeft:
{ todos.finished }

Note that this is identical to our original definition of numLeft.
PixieDust does not support direct recursive functions. In order to

provide incremental behavior each recursive step should be cached.
So recursion is supported through materializing the intermediate
results in a field. For example,

entity Node {

children : Node* (inverse = Node.parent?)
cnt : Int = count_descendants(this)

}

function count_descendants(n : Node) : Int =

count(n.children) + sum(n.children.cnt)

Dependencies between Views. In Section 4 we introduced view
state and Views as a new data type for fields in the view state. The
dependency analysis treats view state fields equal to data model
fields. However, views (fields of type View) that are related through
containment, do not depend on each other. Views are updated in
place inside the DOM, so ’parent’ views do not have to be notified
of change. We will cover this in more detail in the next section.

6 OPERATIONAL SEMANTICS
In this section we describe the dynamic semantics of rendering
PixieDust applications. Our compiler (PixieDust-to-JavaScript) uses
the React rendering framework. Analogously, our semantics use
semantic functions which correspond to the React and browser APIs
calls and callbacks at runtime. Our semantics extend the IceDust 2
semantics for incremental calculation [8]. (Semantic functions are
typeset in bold, and IceDust 2 calls are typeset in italic.)

We specify the operational semantics of PixieDust using big-step
semantics. The reduction rules modify four stores (Figure 11). The
first store (Σ) is the IceDust data store. We extend this store to
include a list of components which should be notified of change per
field: subscriptions. Note that we also store view state and rendered
virtual DOMs in this store. The second store (C) contains meta data
for React Components: which view-state field contains the rendered
virtual DOM, and whether the component is currently mounted.
The third store (Q) is a queue of views scheduled for rerendering,
and the fourth store (F) refers to the next requested animation frame.

Σ2 = Σ[o, f , dirty 7→ true]
[schedule(c) ⇓ | c ∈ Σ[o, f].subs]

o .flagDirty(f)/Σ ⇓ /Σ2
[FlagDirty]

Q2 = Q ∪ {c } subscribe() ⇓

schedule(c)/Q ⇓ /Q2

[Schedule]

F = null F2 = requestAnimationFrame(s))

subscribe()/F ⇓ /F2
[SubFrame1]

F , null

subscribe() ⇓
[SubFrame2]

Figure 12: Evaluation rules for modifications to data

[c .forceUpdate() ⇓ | c ∈ Q, C[c, mounted]= true]
Q2 = ∅ unsubscribe() ⇓

onAnimationFrame(s)/Q ⇓ /Q2

[Render]

F,null cancelAnimationFrame(F) F2=null

unsubscribe()/F ⇓ /F2
[UnsubFrame1]

F = null

unsubscribe() ⇓
[UnsubFrame2]

Figure 13: Evaluation rules for render

In our rules we omit stores if they are not modified. When a store
is omitted, it is implicitly threaded from left to right.

The evaluation rules are designed such that we only rerender
views when needed, and only rerender them at most once per data
modification. The rules in Figure 12 define what to do on data
modifications. We override IceDust’s [FlagDirty] rule to schedule
renders on all subscriptions as soon as a field is marked as dirty.
This does not rerender those views directly, but schedules them
in the queue [Schedule]. Moreover, if this was the first view to
be scheduled for rerender, we schedule a browser rerender with
requestAnimationFrame. This method tells the browser that we
want to perform an action before the next frame will be painted. In
this way we can batch all effects of data modifications on the UI,
avoiding double rerendering.

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

726

C2 = C[c, mounted 7→ true] c .o .subDirty(c .f , c) ⇓

c .componentDidMount()/C ⇓ /C2
[Mount]

C2 = C[c, mounted 7→ false] c .o .unsubDirty(c .f , c) ⇓

c .componentWillUnmount()/C ⇓ /C2
[Unmt]

c .o , o2 c .o .unsubDirty(c .f , c) ⇓
C2 = C[c, o 7→ o2] o2 .subDirty(c .f , c) ⇓

c .componentWillReceiveProps(o2)/C ⇓ /C2
[Props1]

c .o = o2

c .componentWillReceiveProps(o2) ⇓
[Props2]

[v .addSubscriber(f2, c) ⇓ |v ∈ V , o ⊢ expr ⇓ V ,

expr .f2 ∈ f .depends, ¬isView(f2)]

o .subDirty(f , c) ⇓
[Subscribe]

Σ2 = Σ[o, f , subs 7→ Σ[o, f].subs ∪ [c]]

o .addSubscriber(f , c)/Σ ⇓ /Σ2
[AddSub]

[v .removeSubscriber(f2, c) ⇓ |v ∈ V , o ⊢ expr ⇓ V ,

expr .f2 ∈ f .depends, ¬isView(f2)]

o .unsubDirty(f , c) ⇓
[UnSub]

Σ2 = Σ[o, f , subs 7→ Σ[o, f].subs \ [c]]

o .removeSubscriber(f , c)/Σ ⇓ /Σ2
[RemoveSub]

V = c .o .get(c .f)

c .render() ⇓ V
[Render]

Figure 14: Evaluation rules for component life cycle

The rules in Figure 13 define what to do on a render. When the
browser wants to display the next frame, it will call onAnima-
tionFrame. On this call, the PixieDust runtime forces all mounted
React components to be rerendered with forceUpdate [Render].
React then updates the browser DOMwith the diffs from the virtual
DOM, before the next frame is rendered.

In this process, React will call various life cycle callbacks on
components. Figure 14 defines what happens on various life cycle
callbacks. The goal of these rules is to maintain a precise list of
which data from the entity store is visible through views. First, rules
[Mount, Unmt] keep track of whether components are currently
mounted in the browser-DOM. Non-mounted components are not
forced to update on a render [Render]. Second, the rules in Figure 14
maintain the subs fields in the entity store. The subs fields only
contain components which depend on the field, and which are
mounted. Note that we never have subscribers for view-typed fields
[AddSub], since views are updated in place in the DOM (as discussed
in Section 5). This way, only the minimal number of components is
scheduled for rerendering when data is modified.

Finally, when React wants to update a view it calls render. This
call is forwarded to IceDust’s incremental evaluation for derived
values which computes the virtual DOM for that view [Render].

PixieDust MobX/React React React/Redux Elm
LOC 74 193 259 276 300

Table 1: Lines of code for different todo list implementations.
Implementations are stripped of features that are not shared
between other implementations.

Together, these evaluation rules minimize the amount of reren-
dering. In the next section we will evaluate the performance of our
implementation. In this semantics we did not cover how actions
work. However, the execution of actions is fairly straightforward,
and we want to focus this paper on incremental rendering.

7 EVALUATION
We evaluate PixieDust with respect to two criteria: (1) reduction
of error-prone boilerplate code, and (2) performance relative to
state-of-the-art approaches. Our running example in this paper has
been a ToDo application. More precisely, it is exactly the applica-
tion from todomvc.com. TodoMVC compares frameworks through
implementations of this ToDo application. We use this application
to compare conciseness and performance.

Conciseness. The goal of PixieDust is to remove error-prone boil-
erplate code. To asses this, we look at the number of lines of code
of the todo application in different approaches. We have taken the
reference implementations for TodoMVC ofMobX and vanilla React
from todomvc.com, the implementation for Redux from their repos-
itory1, and the implementation for Elm from the author of Elm2.
Since not all implementations have the same features, we stripped
off features that are not shared between all todo implementations.
We used cloc for counting the lines of code, except for PixieDust
which we had to count by hand.

The results are compiled in Table 1. Indeed, the PixieDust pro-
grams are more concise than the same programs in the state-of-the-
art approaches. This is expected, as PixieDust is a domain-specific
language with tailored syntax, while the state-of-the-art approaches
are JavaScript libraries or general purpose languages.

Performance. The todomvc performance benchmarks is an ex-
isting online benchmark suite for TodoMVC3. This benchmark adds
50 tasks to a single todo list, marks all of them completed one by
one and deletes them afterwards. We added an entry for a PixieDust
implementation of the Todo application. The results of this bench-
mark can be seen in Figure 15. PixieDust has on-par performance
according to this benchmark.

Unfortunately, the TodoMVC benchmark does not benchmark
all features. Moreover, the implementations of the various state-
of-the-art systems have not been kept up to date (last commit
November 2015). So, we created a new benchmark that considers
more features4. To make the benchmark more representative for
larger applications we extended the ToDo application to support
todo items which are lists themselves. A list is finished if all child
lists and items are finished:

1https://github.com/reactjs/redux/tree/master/examples/todomvc
2https://github.com/evancz/elm-todomvc
3https://github.com/featurist/todomvc-perf-comparison
4https://github.com/besuikerd/rendering-options

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

727

todomvc.com
todomvc.com
https://github.com/reactjs/redux/tree/master/examples/todomvc
https://github.com/evancz/elm-todomvc
https://github.com/featurist/todomvc-perf-comparison
https://github.com/besuikerd/rendering-options

Figure 15: TodoMVC online performance benchmark shows
PixieDust performs comparable.

entity TodoList {

children : TodoList*(inverse=TodoList.parent?)
allFinished : Boolean =

conj(children.allFinished) and

conj(todos.finished)

}

None of the TodoMVC entries featured nested todo lists. SinceMobX
is closest in conciseness and also based on mutable data structures,
we’ve extended its implementation with nested lists to compare
against. Our test can be parameterized by several properties that
influences the size and shape of the nested todo list:

• Depth defines the depth of nested todo lists from the root.
• Children defines how many child lists are added per list.
• Todos defines how many todos are added per list.

We run the benchmark on five data sets (Table 2). A test trace
executes the following steps. The input field of the root list is
selected. For each todo that needs to be added, three alphabetic
characters are entered and the enter key is pressed to add it to
the list. Next, the toggle all button is pressed twice to select and
deselect all todos of the list and its children. After that, half of the
todos of the list are finished one by one, and then one third of the
todos are deleted individually. After this, all the filters are selected
once, and the "Clear finished todos" button is pressed. Finally, if
we have not yet reached the required depth, the specified amount
of child lists is added to the list and this procedure is recursively
repeated for each child.

To ensure that no renders are skipped, each action awaits the
next animation frame before executing. The timings are recorded
with the Chrome runtime performance recorder which reports
scripting (executing JavaScript), rendering (the browser painting),
and other (not categorized). During a test, the number of times
a specific view component is rendered is counted. The todo list
application has four components:Header, Footer, List, and Todo.
The benchmarks were performed on a 2017 Macbook Pro laptop
with Intel Core i7 2,6Ghz, 4 cores (8 threads), and 16 GB memory.

The results of the benchmark are compiled in Figures 16 and 17.
In general, most tests have the same total execution time between
frameworks, but the rerenders counts vary.

Framework Depth Children Todos #Actions
Balanced 4 3 5 1120
Deep 10 1 5 280
Deeper 25 1 5 700
Wide 2 100 2 1414
Leaves 1 1 100 475

Table 2: Test properties for benchmarking (depth, degree,
and number of leaves of nested ToDo tree) and total num-
ber of user interactions performed during execution trace.

0 1 2 3 4 5 6 7 8
Average time / action (ms)

Balanced

Deep

Deeper

Wide

Leaves

Render
Script
Other

Figure 16: Average time per action on tests from Table 2.
Solid bars are PixieDust, striped bars are MobX/React.

0 1000 2000 3000 4000 5000 6000 7000 8000
Total number of renders

Balanced

Deep

Deeper

Wide

Leaves

Header
Footer
List
Todo

Figure 17: Total number of renders on tests from Table 2.
Solid bars are PixieDust, striped bars are MobX/React.

First, MobX renders the Todo view significantly more often than
PixieDust. Whenever a new task is added to a list, all todo items
are rendered again. This is caused by the fact that while rendering
the list header, the derived value allFinished is calculated,
which calls the getter on the finished field of each todo through the
finishedTodos derived value. In the ’Leaves’ test, MobX also
spends significantly more time processing JavaScript, presumably
for this very reason.

Second, PixieDust renders the header component significantly
more often when the depth is larger. This is caused by dirty flagging
allFinished transitively along the spine of the tree whenever a
modification is done in a todos list. Even when the value stays the
same, a render is triggered. This is a limitation of lazy incrementality.
In future work we might explore eager incremental evaluation
which can detect if a dirty flagged value stays the same.

In conclusion, PixieDust outperforms MobX in some situations,
and is outperformed by MobX in other situations. In general, Pix-
ieDust’s performance is on-par with MobX while reducing lines of
code.

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

728

8 RELATEDWORK
The related work is organized in two groups: reactive user-interface
languages and incremental computing. The first group we divided
in functional (immutable data) and declarative approaches.

Functional Reactive UIs. Elm is a functional reactive language for
graphical user interfaces [4]. Newer versions of Elm dropped the
support for signals in favor of a simpler model. An application is
split up in three parts: The model, the view and the update logic.
The update logic takes events that might be triggered by the view
or other sources and recompute the next state. While this model
gives a clear separation of concerns, it does involve boilerplate code
to achieve this.

Redux [3] embraces the same pattern but integrates it in React
and Javascript as a library. It has the same advantages and disad-
vantages as Elm. We covered the issues with these approaches in
detail in Section 2.

Flapjax is a Javascript library for defining web applications us-
ing behaviors and event streams [10]. In Flapjax data flow can be
manually constructed by combining event sources and piping these
to sinks. This model enables reactive programming, but hooking up
reactive values to the DOM is still manual. Furthermore, the pro-
grammer is responsible for identifying where to hook up reactive
values, which is error prone.

Reynders et.al. implemented a FRP library in Scala [11]. They
analyze different design trade-offs for FRP libraries that interact
with the DOM. Based on these trade-offs, they implement a DOM
UI library that uses push-pull FRP. Our approach also uses push-
pull, push for marking things dirty, and pull for calculating by
need. However, in our approach this behavior is hidden behind a
declarative language.

UI.Next [6] is a UI library in F#. It connects data sources to views
by creating a dynamic data flow graph. The monoidal structure of
its DOM elements enables composition of views. It requires higher-
order functions to compose, which makes the code less declarative.

Declarative Reactive UIs. MobX [1] is a state management library.
By annotating the variables in a data structure which change over
time, MobX can construct a dependency graph at runtime. In con-
trast, our approach does static runtime dependency tracking. We
covered MobX extensively in Section 2.

Reactive variables [13] aim to reduce the boilerplate in program-
ming with signals by adding syntactic sugar for reactive variables.
These reactive variables are similar to our approach in the sense
that they hide the fact that these variables have a Signal<T> type.
Their approach is also compiled to JavaScript, but they do not detail
how to interact with the DOM.

Mobl [9] is a language to declaratively construct interactive mo-
bile applications. The data model defines entities and bidirectional
relations between entities, similar to the data model we use. Views
can be parameterized by these entities which can be modified via
input events. However, their interface language is geared toward
phone screens, while ours is focused on browser-DOMs.

Incremental Computing. IceDust [7, 8] is a declarative data mod-
eling language with derived values and bidirectional relations. It
features incremental calculation for derived values. However, it

does not have any support for views. In this paper we have ex-
tended their approach for incremental computing to cover views in
the browser.

Functional Reactive programming can be used for incremen-
tal computing. In FRP implementations, like REScala [12], signals
propagate through their dependencies. That means that when a
value changes, only relevant parts of the data flow are recalculated.
However, this approach does not suffice for browser-based views.
Because the DOM is a tree structure, composed viewswill propagate
their signals up the spine of the tree, which triggers unnecessary
rerenders.

9 CONCLUSION
In this paper we have presented PixieDust, a declarative user-
interface language for browser-based applications. PixieDust uses
static dependency analysis to incrementally update a browser-DOM
at runtime. We have demonstrated that applications in PixieDust
contain less boilerplate code than state-of-the-art approaches, while
achieving on-par performance.

Our research also raises new research questions. First, can we
refine our approach so it will perform better?Will eager incremental
calculation of views, with the ability to short-circuit updates if
values stay the same, perform better? And second, what would be
a good language design for user-defined bidirectional mappings
between data model and user interface?

ACKNOWLEDGMENTS
This research was partially funded by the NWO VICI Language
Designer’s Workbench project (639.023.206).

REFERENCES
[1] 2017. MobX. https://web.archive.org/web/20171008145333/https://mobx.js.org/.

(2017). Accessed: 2017-11-04.
[2] 2017. React. https://web.archive.org/web/20171104234320/https://reactjs.org/.

(2017). Accessed: 2017-11-04.
[3] 2017. Redux. http://web.archive.org/web/20171104000918/https://redux.js.org/.

(2017). Accessed: 2017-11-04.
[4] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional reactive pro-

gramming for GUIs. In PLDI. 411–422. https://doi.org/10.1145/2491956.2462161
[5] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. 2009.

An optimal decomposition algorithm for tree edit distance. TALG 6, 1 (2009).
https://doi.org/10.1145/1644015.1644017

[6] Simon Fowler, Loïc Denuzière, and Adam Granicz. 2015. Reactive Single-Page
Applications with Dynamic Dataflow. In PADL. 58–73. https://doi.org/10.1007/
978-3-319-19686-2_5

[7] Daco Harkes, Danny M. Groenewegen, and Eelco Visser. 2016. IceDust: Incre-
mental and Eventual Computation of Derived Values in Persistent Object Graphs.
In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2016.11

[8] Daco Harkes and Eelco Visser. 2017. IceDust 2: Derived Bidirectional Relations
and Calculation Strategy Composition. In ECOOP. https://doi.org/10.4230/LIPIcs.
ECOOP.2017.14

[9] Zef Hemel and Eelco Visser. 2011. Declaratively programming the mobile web
with Mobl. In OOPSLA. 695–712. https://doi.org/10.1145/2048066.2048121

[10] Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper, Michael
Greenberg, Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: a pro-
gramming language for Ajax applications. In OOPSLA. 1–20. https://doi.org/10.
1145/1640089.1640091

[11] Bob Reynders, Dominique Devriese, and Frank Piessens. 2017. Experience Report:
Functional Reactive Programming and the DOM. In Programming. https://doi.
org/10.1145/3079368.3079405

[12] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala: bridging
between object-oriented and functional style in reactive applications. In AOSD.
25–36. https://doi.org/10.1145/2577080.2577083

[13] Christopher Schuster and Cormac Flanagan. 2016. Reactive programming with
reactive variables. In AOSD. 29–33. https://doi.org/10.1145/2892664.2892666

Track: Web Programming WWW 2018, April 23-27, 2018, Lyon, France

729

https://web.archive.org/web/20171008145333/https://mobx.js.org/
https://web.archive.org/web/20171104234320/https://reactjs.org/
http://web.archive.org/web/20171104000918/https://redux.js.org/
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.1007/978-3-319-19686-2_5
https://doi.org/10.1007/978-3-319-19686-2_5
https://doi.org/10.4230/LIPIcs.ECOOP.2016.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.4230/LIPIcs.ECOOP.2017.14
https://doi.org/10.1145/2048066.2048121
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/3079368.3079405
https://doi.org/10.1145/3079368.3079405
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2892664.2892666

	Abstract
	1 Introduction
	2 Existing Approaches
	3 Static dependency tracking
	4 PixieDust
	5 Dependency and Data-Flow Analysis
	6 Operational Semantics
	7 evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

