
GM source

Normalization

Compilation Equivalent
Java

Parser

1

Desugaring

Static
analysis

2

34

5

Statements.tmpl

 OptIterRef.VarRef = <@<ID>>
 OptIterRef = <<NONE>>

 Sentence.LimitReduceAssign = [<[Ref], [Ref*; separator=", "]> [MinMaxAssign] <[Expr],
[Expr*; separator=", "]> [OptIterRef];]
 Sentence.LimitReduceAssign = [<[Ref]; [Ref*; separator=", "]> [MinMaxAssign] <[Expr];
[Expr*; separator=", "]> [OptIterRef];]
 Sentence.LimitReduceAssign = [[Ref] <[Ref*; separator=", "]> [MinMaxAssign] [Expr]
<[Ref*; separator=", "]> [OptIterRef];]

 MinMaxAssign.Max = <max=>
 MinMaxAssign.Min = <min=>

templates

 Sentence.For = <For (<ID> : <IterSource>) <Filter> <Sentence>>
 Sentence.ForEach = <Foreach (<ID> : <IterSource>) <Filter> <Sentence>>

 IterSource.IterSource = <<IterExpr>>
 IterExpr.QualifiedCall = <<DirectionRef>.<IterRange><OptCallArgs>>

Page 2

Statements.tmpl

 InReverse = <<NONE>>
 InReverse.InReverse =
 <InReverse <Filter>
 <Sentence>
 >
 InReverse.InReverse =
 <InPost <Filter>
 <Sentence>
 >

templates

 Sentence.IfThen =
 <
 If (<Expr>)
 <Sentence>
 >

 Sentence.IfThenElse =
 <

Page 4

Statements.tmpl

 If (<Expr>)
 <Sentence>
 Else
 <Sentence>
 >

 Sentence.While =
 <
 While (<Expr>)
 <Sentence>
 >

 Sentence.DoWhile =
 <
 Do
 <Sentence>
 While (<Expr>)
 >

templates

Page 5

Adoption of big data analytics relies on techno-
logical solutions to the problem of data scale,
and depends on increased accessibility for data
analysts who are not expert programmers.

Languages specific to the domain of data ana-
lytics can be more intuitive to analysts. These
domain specific languages must abstract over
the vastness of the data and allow analysts to
work independently.

SPOOFAX

The Spoofax Language Workbench [1] reduces the
development effort of software languages. This
gives language designers the time to focus on de-
sign decisions and language semantics.

Syntax definition, type systems, static analyses,
model transformation, and code generation are
specified using high-level declarative meta-lan-
guages provided by Spoofax. These abstract from
the low-level implementation details of editor ser-
vices and compilers for domain-specific languag-
es.

Spoofax-based languages have automatically gen-
erated IDEs based on Eclipse. The IDEs are fully-
featured an customisable. Languages built with
Spoofax are also directly usable from command
line interfaces.

Languages can have multiple textual or graphical
concrete representations. These are automatically
synchronised in real-time [2]. The synchronisation
recovers from errors during parsing and text-to- Spoofax based IDE for Green-Marl

Eelco VisserVlad Vergu

Runtime composition of language specifications

1.1. Example of syntax definition of Green-
Marl statements in SDF3

1.2. Generated syntax highlighting for Green-Marl 1.3. Generated editor with parser, error reporting and error
recovery

1.4. Outline view for a Green-Marl procedure

2.2 Green-Marl code with syntactic sugar

5.1. Compilation transformation for Green-Marl variable and property assignments

2.3 Green-Marl code with syntactic sugar eliminated

2.1 Desugaring transformations in Stratego

1.5. Quick-outline view for Green-Marl procedure

SYNTAX DEFINITION

Green-Marl syntax is specified in SDF3 (Syntax Definition For-
malism, version 3 [4]). SDF3 captures both the syntactic rules
for the language and the layout preferences of the language.
Spoofax derives from an SDF3 specification an Eclipse based
editor with syntax highlighting, a parser with error reporting
and recovery, a syntactic completion engine, outline views and
a language specific pretty-printer.

DESUGARING

Software languages can have many syntactic representations for equivalent se-
mantic constructs, e.g. balanced and unbalanced If-Then-Else constructs. This
syntactic sugar is eliminated (desugared) to reduce the variability in syntax and
simplify the implementation of other language features.

Desugaring transformations in Spoofax are implemented in the Stratego [9]
program transformation language.

NORMALISATION

A subset of Green-Marl - a core - can be identified. All other semantic con-
structs can be rewritten in terms of this subset. Reduction of programs to this
core (normalisation) helps to keep other parts of the compiler lighter and easier
to implement. Normalisation is context-sensitive: scopes, types and names in-
fluence the transformation.

Normalisation transformations in Spoofax are implemented in Stratego. They
have access to results from the name and type analyses. Spoofax’s analysis
framework ensures that names introduced during normalisation do not cause
conflicts. COMPILATION

The Green-Marl compiler translates
correct input programs to functionally
equivalent Java programs. Code gen-
eration transformations in Spoofax are
implemented in Stratego.

Transformation rules in Stratego al-
lows the consumed and emitted code
to be written in concrete syntax. In
the Green-Marl case, the left hand
side of compilation rules uses concrete
Green-Marl syntax and their right
hand side uses concrete Java syntax.
Use of concrete syntax in transforma-
tions simplifies specification and im-
proves readability.

RAPID LANGUAGE ENGINEERING FOR GREEN-MARL,
A DSL FOR HIGHLY PARALLEL GRAPH ANALYSIS
VLAD A. VERGU
EELCO VISSER

2

4

1

5

pagerank.gm

Procedure pagerank(G: Graph, e,d: Double, max: Int;
 pg_rank: Node_Prop<Double>)
{
 Double diff;
 Int cnt = 0;
 Double N = G.NumNodes();
 G.pg_rank = 1 / N;
 Do {
 diff = 0.0;
 Foreach (t: G.Nodes) {
 Double val = (1-d) / N + d*
 Sum(w: t.InNbrs) {
 w.pg_rank / w.OutDegree()} ;

 diff += | val - t.pg_rank |;
 t.pg_rank <= val @ t;
 }
 cnt++;
 } While ((diff > e) && (cnt < max))
}

Page 1

pagerank.gm

Procedure example(G: Graph, p: Node_Prop<Int>)
{

Int i = 0;
i++;

If(i > 0) {
i = -i;

}

Foreach(n : G.Nodes) (n.p < 0) {
i = i + n.p;

}

i = Count(n : G.Nodes)(n.p > 0);
}

Page 1

pagerank.gm

Procedure example(G: Graph, p: Node_Prop<Int>)
{

Int i = 0;
i = i + 1;

If(i > 0) {
i = -i;

} Else {}

Foreach(n : G.Nodes) {
If (n.p < 0) {

i = i + n.p;
}Else {}

}

i = Sum(n : G.Nodes)(n.p > 0) { 1 };
}

Page 1

desugar.str

 extra := []
 else
 extra := Decl(type, names, exp)
 end

 desugar: |[exp++;]| -> |[exp += 1;]|
 desugar: |[If (exp) sentence]| -> |[If (exp) sentence Else {}]|
 desugar: |[Count (name : itersrc) filter]| -> |[Sum (name : itersrc) filter {1}]|

 desugar: |[For (name : itersrc) (exp) sentence]| -> |[For (name : itersrc) If
(exp) sentence]|
 desugar: |[Foreach (name : itersrc) (exp) sentence]| -> |[Foreach (name : itersrc) If
(exp) sentence]|

Page 3

statements.str

 gm2j-statement:
 |[name = exp;]| -> bstm* |[_.x_name = e_exp;]|
 with
 x_name := <gm2j-name> name;
 e_exp := <gm2j-expression> exp

 gm2j-statement:
 |[exp0.name = exp1;]| -> bstm* |[e_graph.x_setter(e_member, e_exp1);]|
 where
 name-ty := <nabl-collect-one-resolved-def; type-of> name;
 name-gr := <graph-of> name-ty
 with
 e_graph := <gm2j-expression> name-gr;
 x_setter := <gm2j-setter-name> name;
 e_member := <gm2j-expression> exp0;
 e_exp1 := <gm2j-expression> exp1

Page 3

4.2 Green-Marl code before normalisation 4.3 Green-Marl code after normalisation

4.1 Normalisation transformation for the Green-Marl batch assignment statementpagerank.gm

Procedure example(G: Graph, prop : N_P<Float>)
{

Node_Set(G) nodes;
nodes.prop = 3.14;

}

Page 1

pagerank.gm

Procedure example(G: Graph, prop : N_P<Float>)
{

Node_Set(G) nodes;
Foreach(_safe_name_0 : nodes.Items) {

_safe_name_0.prop = 3.14;
}

}

Page 1

assignments.str

 gm-to-gmcore-collection-group-assignment:
 |[exp0 = exp1;]| -> gm |[Foreach(name2 : name1.Items) { name2.name0 = exp2; }]|
 where
 PropRef(collection@VarRef(name1), name0) := exp0;
 collection-ty := <type-of> collection;
 <type-is-collection-set> collection-ty
 with
 name2 := <variable-future>;
 exp2 := <alltd(?|[name1.name3]|;!|[name2.name3]|)> exp1

 gm-to-gmcore-collection-group-assignment:
 |[exp0 = exp1;]| -> gm |[For(name2 : name1.Items) { name2.name0 = exp2; }]|
 where

Page 3

7.1 Relative LOC per language specification item for Green-Marl

TEST DRIVEN DEVELOPMENT

Spoofax supports TDD of languages. Unit tests for
the various IDE/compiler components are written
using the Spoofax Testing Language [7]. This sup-
ports tests for the parser, static analyses, name res-
olution and code completions. Test reports are pre-
sented in the Eclipse editor or in a JUnit style.

EVALUATION

The Spoofax-based specification for Green-Marl required 2.5 months of devel-
opment for an experienced Spoofax user. The entire specification is 3.5 KLOC in
a mix of SDF3, NaBL and Stratego. Spoofax’s highly-specialised meta-DSLs for
syntax and name binding definition reduced the development effort of the parser
and name analysis. Only 13% and 4% of the implementation are due to syntax
and name analysis, respectively. The fact that 32% of the codebase implements
Green-Marl’s type system justifies using a meta-DSL for type systems in the fu-
ture.

Green-Marl did not previously have an IDE. The Spoofax-based IDE/compiler
covers approximately 80% of the Green-Marl language features. As full coverage
is achieved this new implementation will become the de facto Green-Marl refer-
ence implementation. It will eventually replace the 38 KLOC of C/C++ code of
the existing compiler.

[1] Kats, Lennart CL, and Eelco Visser. “The spoofax language workbench: rules for declarative specification of languages and IDEs.” ACM Sigplan Notices. Vol. 45. No. 10.
ACM, 2010.
[2] van Rest, Oskar, et al. “Robust real-time synchronization between textual and graphical editors.” Theory and Practice of Model Transformations. Springer Berlin Heidel-
berg, 2013. 92-107.
[3] Erdweg, Sebastian, et al. “The state of the art in language workbenches.” Software Language Engineering. Springer International Publishing, 2013. 197-217.
[4] Vollebregt, Tobi, Lennart CL Kats, and Eelco Visser. “Declarative specification of template-based textual editors.” Proceedings of the Twelfth Workshop on Language De-
scriptions, Tools, and Applications. ACM, 2012.
[5] Konat, Gabriël, et al. “Declarative name binding and scope rules.” Software Language Engineering. Springer Berlin Heidelberg, 2013. 311-331.
[6] Hong, Sungpack, et al. “Green-Marl: a DSL for easy and efficient graph analysis.” ACM SIGARCH Computer Architecture News. Vol. 40. No. 1. ACM, 2012.
[7] Kats, Lennart CL, Rob Vermaas, and Eelco Visser. “Integrated language definition testing: enabling test-driven language development.” ACM SIGPLAN Notices. Vol. 46.
No. 10. ACM, 2011.
[8] Wachsmuth, Guido H., et al. “A Language Independent Task Engine for Incremental Name and Type Analysis.” Software Language Engineering. Springer International
Publishing, 2013. 260-280.
[9] Bravenboer, Martin, et al. “Stratego/XT 0.17. A language and toolset for program transformation.” Science of Computer Programming 72.1 (2008): 52-70.

model synchronisation, preserves textual and
graphical layout, and provides synchronised edi-
tor services such as selection sharing and navi-
gation between editors.

GREEN-MARL

A community edition of Oracle’s Green-Marl
DSL [6] for graph analysis has been implement-
ed in Spoofax in partnership with Oracle Labs.
The DSL allows graph analysis algorithms in
their textbook form to be directly translated to
Green-Marl programs. Parallelism and workload
distribution are implicit in Green-Marl programs
eliminating the need for the programmer to rea-
son about them.

The Spoofax based IDE and compiler for Green-
Marl have been implemented during a three
month internship at Oracle Labs. They are set
to be open sourced and become the reference
Green-Marl implementation. They will eventually
replace the existing 38KLOC implementation in
C/C++ with more extendible and maintainable
specifications.

3.3 Green-Marl editor with reported name and type errors

3.2 Typing rule for Green-Marl assignment

3.1 Partial name binding rules for Green-Marl in NaBL

NAME AND TYPE ANALYSIS

In Spoofax, name binding rules for languages are declaratively specified in the NaBL meta-DSL
[5]. This separates the semantics specification from the actual name resolution algorithm. Spoofax
automatically generate a name analysis, resolution and context-sensitive autocompletions from
a specification in NaBL. The generated analysis is automatically incremental ensuring the respon-
siveness of the IDE for larger projects [8].

Green-Marl’s type system is implemented in the Stratego program transformation language. A new
declarative meta-DSL for type systems will allow this implementation to be replaced with a declar-
ative specification.

Results from the static analyses (messages, resolution paths, types, properties) are stored in a
project’s data store and are made available to subsequent analysis and transformation phases.

3

names.nab

module names

imports

 include/Green-Marl

namespaces

 Procedure
 Variable

properties

 kind of Procedure : ProcKind
 in-param-types of Procedure : List(Type)
 out-param-types of Procedure : List(Graph)
 graph of Type : OptGraphRef
 isiterated of Variable : Boolean
 isargument of Variable : Boolean
 istraversed of Variable : Boolean
 uri of Term : Term

Page 1

names.nab

module names

imports

 include/Green-Marl

namespaces

 Procedure
 Variable

properties

 kind of Procedure : ProcKind
 in-param-types of Procedure : List(Type)
 out-param-types of Procedure : List(Graph)
 graph of Type : OptGraphRef
 isiterated of Variable : Boolean
 isargument of Variable : Boolean
 istraversed of Variable : Boolean
 uri of Term : Term

Page 1

names.nab

binding rules

 Unit(_, _):
 scopes Procedure

 Block(_):
 scopes Variable

 Proc(ProcHeader(k, p, InArgs(in*), OutArgs(out*), Return(ret)), sentence*):
 defines
 Procedure p

 of kind k
 of type ret
 of in-param-types in-ty*
 of out-param-types out-ty*

 where in* has type in-ty*
 where out* has type out-ty*
 scopes Variable

 Arg([arg], t):

Page 2

names.nab

 defines
 Variable arg
 of type t
 of graph g
 of isiterated False()
 of isargument True()
 of istraversed False()
 where
 t has graph g

 Decl(t, [var], _):
 defines
 Variable var
 of type t
 of graph g
 of isiterated False()
 of isargument False()
 of istraversed False()
 in subsequent scope
 where
 t has graph g

Page 3

names.nab

 defines
 Variable arg
 of type t
 of graph g
 of isiterated False()
 of isargument True()
 of istraversed False()
 where
 t has graph g

 Decl(t, [var], _):
 defines
 Variable var
 of type t
 of graph g
 of isiterated False()
 of isargument False()
 of istraversed False()
 in subsequent scope
 where
 t has graph g

Page 3

names.nab

 VarRef(var):
 refers to
 Variable var

 PropRef(exp, prop):
 refers to
 Variable prop
 of graph g
 where
 exp has type t
 where
 t has graph g

 Call(proc, _, _):
 refers to Procedure proc

 ForEach(var, iter, filter, body):
 defines
 Variable var
 of type t

Page 4

statements.str

module types/statements

imports
 include/Green-Marl
 lib/types/-
 lib/nbl/-
 lib/task/-
 lib/editor/-
 types/coercion
 types/types
 types/booleans
 types/comparison
 names

overlays

 INCOMPATIBLETY() = "incompatible type"

rules

 type-of(|ctx):

Page 1

statements.str

 |[exp0 assignop exp1;]| -> <fail>
 where
 <?Assign() + ?Defer()> assignop
 with
 lhs-ty := <type-task(|ctx)> exp0;
 rhs-ty := <type-task(|ctx)> exp1;
 w-ty := <type-match(|ctx, Coerce())> [rhs-ty, lhs-ty];
 <task-create-error-on-failure(|ctx, w-ty, INCOMPATIBLETY())> exp1

 type-of(|ctx):
 |[exp0 assignop exp1;]| -> <fail>
 where
 <not(?Assign())> assignop;
 <not(?Defer())> assignop
 with
 lhs-ty := <type-task(|ctx)> exp0;
 expr-ty := <type-task(|ctx)> <assignop-to-binexpr> (assignop, exp0, exp1);
 asgn-ty := <type-match(|ctx, Coerce())> [expr-ty, lhs-ty];
 <task-create-error-on-failure(|ctx, asgn-ty, INCOMPATIBLETY())> exp1

 type-of(|ctx):

Page 2

language Green-Marl	
!
test parsing Sum [[
 	
 Proc foo(G: Graph, A:N_P<Int>(G))	
	 {	
	 Int x;	
	 x = Sum (t: G.Nodes) {t.A} ; // Test of parsing Sum	
	 }	
!
]] parse succeeds	
!
test comparable nodes [[
 Local foobar9(G : Graph, p : N_P<Int>(G)) {	
 Node v, w;	
 Bool b;	
 b = v >= w;	
 }	
]] 0 errors	
!
!
!
!
!
!

test name resolve [[
	 Local foo(G : Graph, [p] : N_P<Int>(G)) {	
	 	 Node n;	
	 	 Int i;	
	 	 i = n.[p];	
	 }	
]] resolve 2 to 1	
!
!
! 6.1. Parsing, analysis and name resolution tests in SPT

