lceDust: Incremental and Eventual Computation of
Derived Values in Persistent Object Graphs

Daco C. Harkes, Danny M. Groenewegen, and Eelco Visser
Delft University of Technology, The Netherlands
{d.c.harkes,d.m.groenewegen,e.visser}@tudelft.nl

Problem Example lceDust Specification

Object-oriented programming languages allow specification of derived entity Assignment {
values through getters that contain the code that calculates the derived

value. However, this implies calculate on (each) read. Changing to a name : : Str‘:.Lng
cached implementation requires code changes. question : String?
minimum : Float?
Relational Databases provide views, materialized and non-materialized, avgGrade - Float? = avg(submissions . gr‘ade)
for calculating derived values. However, views limit expressiveness by passPerc . Float? = sum(submissions .pass ? 1 : @) / count(submissions)

limiting recursive aggregation.

¥

Solution entity Student {
IceDust is a language which allows data modeling with derived value name : String
attributes, and provides multiple calculation strategies as compiler }

options. This provides separation of the functional specification from the

calculation strategy. entity Submission {

An IceDust specification consists of entities, attributes (base values and name : String = assignment.name + " " + student.name
derived values) of entities, and bidirectional relations between entities. answer : String?
Calculation Strategies grade : Float? = if(childPass) childGrade else null (default)
llceDust provides three calculation strategies for calculating the values pa_f,s : BOOle?n = grade ?= (assignment.minimum<+0.0) <+ false
of attributes: Calculate-on-Read, Calculate-on-Write and Calculate- childGrade : Float? = avg(children.grade)
Eventually. The high level difference between these strategies is the childPass : Boolean = conj(children.pass)
moment that derived values are calculated:
| 1 | } Legend: best : Boolean = grade == max(assignment.submissions.grade) <+ false
Calculate-on-Read W calc|r — | HTTP request }
| ! | } HTTP response
Calculate-on-Write —w|calc r ", flag dirty relation Assignment.parent ? <-> * Assignment.children
| 4 | 4 =1 write to base value relation Submission.parent ? <-> * Submission.children
Calculate-Eventually W r 7 read derived value relation Submission.student 1 <-> * Student.submissions
A | relation Submission.assignment 1 <-> * Assignment.submissions
calc calc| calc. derived val.
Example Data Dependency Analysis
alice : Student math : Assign bob : Student IceDust specifications define the value of attributes in terms of other
name = “Alice” name = “Math” name = “Bob” attributes. The Calculate-on-Write and Eventually-Consistent strategies
minimum = 6.0 require dependency and data flow information.
mathAlice : Sub avgGrade = ... mathBob : Sub
name = ... passPerc = ... name = ... Dependency analysis is done with path-based abstract interpretation.
grade = ... grade = ... For example the dependency paths of the pass attribute are:
pass = ... pass = ...
childGrade = ... childGrade = ... (Submission.pass « grade)
childPass = ... _ : _ : childPass = ... (Submission.pass « assignment.minimum)
best = ... ﬁ’;—?nrg _ASES;('gr':] %Drr;:fs“lggctical” best = ... (Submission.pass <« assignment)
question = “141=2"1 |question = “1/0=7" (Submission.pass « childPass)
minimum = 5.0 minimum = 5.0
avgGrade = ... avgGrade = ... lceDust does not have statements, and thus no control flow. As such the
examAlice : Sub labAlice : Sub passPerc = ... passPerc = ... examBob : Sub | [labBob : Sub Qata flow pa}ths are the in\{e.rses.of the de_pendgncy paths. Paths can be
name = ... name = ... name = ... name = ... inverted by inverting the bidirectional relations in the paths. For example
answer = “Good” answer = “Great” answer = “Bad” answer = “Perfect” the data flow paths to the pass attribute are:
grade = 7.0 grade = 8.0 grade = 3.0 grade = 10.0
ch!IdGrade =... ch!IdGrade = ... ch!IdGrade = ... ch!IdGrade = ... (Assignment.minimum > submissions.pass)
ghlldliass = ... ghlldliass = ... ghlldliass = ... cb:hlldliass = ... (Submission.assignment - pass)
est=... est=... est=... est=... (Submission.childPass - pass)
Benchmarks Calculation Strategy Implementations
We benchmarked derived values that L0000 _100% reads workload - Throughput _ | L0000 _100% writes workload - Throughput _ | The different calculation strategies require different code patterns to be

generated by the compiler. Below is a snippet of meta-code that
generates part of the Calc-on-Read and Calc-on-Write implementation.

depend on up to 100000 base values
iIn varying workloads. We calculate a
recursive aggregate in a tree. (See
benchmark specification below.) The
trees have a branching factor of 10.

1000} 1000}

_ _ for a : T m = el in E.attributes
100§— 100§

function calculate a() : T { return el; }

10} 10}

Successful HTTP requests per second
Successful HTTP requests per second

The first two benchmarks test the] ®-® CalcOnRead
throughput on read only and write \ A calconiite
\ €9 Eventual . . .

only workloads, with the derived 1F @@ CalcOnRead | NG L \\\'\ """"""""" - - CalcOnRead failed function get_a() : T { return calculate_a(); }
value on top of the tree depending oo bromial 3 | " __ Colconyirits falled |

- @€ Eventual] s \ — - Eventual failed
on a varying number of base values. 0.1] 5 — : . 0.1 : e : - o
Calc-on-Read performance on reads Object tree depth Object tree depth '

. static a dirty : Set<E>
suffers when derived values depend - Y

Varying workload - Throughput Separate trees - Troughput

function get a() : T { return this.a; }

. 10000¢ 10000¢
on many base values. Calc-on-Write | o i function update a() { a := calculate a(); }
performance suffers on writes as S Loool N *——o—o ¢ -
many concurrent writes to .t.he] | g | : for E.a » path.a2 in DataFlow where a2.entity=E2
derived value cache cause failing o - 9 . oo 9o 9o o o o o o
: w1004 S 00| S ,YYSYS”TTFTFTLTTTET .
database transactions. 5 ; 5 | S ;
)) I S])
Th thd b h k.t t : E 10; E 10; \\ __ _ 'FunCthn SEt_a(nEWV . T){
© third-benchmark 1ests a varying T | | T | . if(a !'= newV){ a := newV; E2.a2 dirty.addAll(path); }
T , T _ :
workload with a tree of depth _5. 2 | oo CalconRend 2 o e CocoRon 3 _ }
Ca|C'On'Read and CaIC-OH-WI’Ite v 1;_ """"" : """"""""""""""""" A—A CalcOnWrite v 1;‘A—A CalcOnWrite |77 \'\' """"""""""""""""" E
. 5 [99 Eventual 1 5 [@@ Eventual \ '
per_formance IS bad on a” Workloads’ z ", — - CalcOnWrite failed | @ | — - CalcOnWrite failed \\ 1
while Calculate-Eventually keeps a °1"T00/0 80/20 60/40 40/60 20/80 0/100 "Y1 2 4 8 16 32 64 128 256 static function update_derived_values() {
Steady perfOrmance_ Read/write ratio workload Number of separate trees with depth 4
The fourth benchmark varies the number of trees, so |entity Node {)

that there are multiple, completely separated derived avgValue : Float? = avg(children.avgValue) (default)

values, with a 50/50 workload. Calc-on-Write performs ¥ . :) .
good for completely separated calculations. relation Node.parent ? <-> * Node.children

Harkes, D. C., Groenewegen, D. M., Visser, E.: IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs. ECOOP (2016)

Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014) /;

Steimann, F.: Content over container: object-oriented programming with multiplicities. ONWARD! (2013)

Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE (2007) T U D e I ft

