
entity	Assignment	{
		name							:	String	
		question			:	String?
		minimum				:	Float?
		avgGrade			:	Float?		=	avg(submissions.grade)
		passPerc			:	Float?		=	sum(submissions.pass	?	1	:	0)	/	count(submissions)
}

entity	Student	{
		name							:	String
}

entity	Submission	{
		name							:	String		=	assignment.name	+	"	"	+	student.name
		answer					:	String?

		grade						:	Float?		=	if(childPass)	childGrade	else	null	(default)	
		pass							:	Boolean	=	grade	>=	(assignment.minimum<+0.0)	<+	false
		childGrade	:	Float?		=	avg(children.grade)
		childPass		:	Boolean	=	conj(children.pass)

		best							:	Boolean	=	grade	==	max(assignment.submissions.grade)	<+	false
}

relation	Assignment.parent					?	<->	*	Assignment.children	
relation	Submission.parent					?	<->	*	Submission.children
relation	Submission.student				1	<->	*	Student.submissions
relation	Submission.assignment	1	<->	*	Assignment.submissions

Example IceDust Specification

Benchmarks

Example Data

IceDust: Incremental and Eventual Computation of
Derived Values in Persistent Object Graphs

Daco C. Harkes, Danny M. Groenewegen, and Eelco Visser
Delft University of Technology, The Netherlands

{d.c.harkes,d.m.groenewegen,e.visser}@tudelft.nl

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
avgGrade = …
passPerc = …

mathAlice : Sub
name = …
grade = …
pass = …
childGrade = …
childPass = …
best = … exam : Assign

name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

mathBob : Sub
name = …
grade = …
pass = …
childGrade = …
childPass = …
best = …

examAlice : Sub
name = …
answer = “Good”
grade = 7.0
pass = …
childGrade = …
childPass = …
best = …

labAlice : Sub
name = …
answer = “Great”
grade = 8.0
pass = …
childGrade = …
childPass = …
best = …

labBob : Sub
name = …
answer = “Perfect”
grade = 10.0
pass = …
childGrade = …
childPass = …
best = …

examBob : Sub
name = …
answer = “Bad”
grade = 3.0
pass = …
childGrade = …
childPass = …
best = …

Calculation Strategies

w rcalc

w calc r

w

calc

r

Calculate-on-Read

Calculate-on-Write

Calculate-Eventually

HTTP request
HTTP response
flag dirty

w write to base value
ar read derived value
acalc calc. derived val.

Problem
Object-oriented programming languages allow specification of derived
values through getters that contain the code that calculates the derived
value. However, this implies calculate on (each) read. Changing to a
cached implementation requires code changes.

Relational Databases provide views, materialized and non-materialized,
for calculating derived values. However, views limit expressiveness by
limiting recursive aggregation.

IIceDust provides three calculation strategies for calculating the values
of attributes: Calculate-on-Read, Calculate-on-Write and Calculate-
Eventually. The high level difference between these strategies is the
moment that derived values are calculated:

Dependency Analysis
IceDust specifications define the value of attributes in terms of other
attributes. The Calculate-on-Write and Eventually-Consistent strategies
require dependency and data flow information.

Dependency analysis is done with path-based abstract interpretation.
For example the dependency paths of the pass attribute are:

(Submission.pass	←	grade)
(Submission.pass	←	assignment.minimum)
(Submission.pass	←	assignment)
(Submission.pass	←	childPass)

(Submission.grade						→	pass)
(Assignment.minimum				→	submissions.pass)
(Submission.assignment	→	pass)
(Submission.childPass		→	pass)

IceDust does not have statements, and thus no control flow. As such the
data flow paths are the inverses of the dependency paths. Paths can be
inverted by inverting the bidirectional relations in the paths. For example
the data flow paths to the pass attribute are:

Solution
IceDust is a language which allows data modeling with derived value
attributes, and provides multiple calculation strategies as compiler
options. This provides separation of the functional specification from the
calculation strategy.

An IceDust specification consists of entities, attributes (base values and
derived values) of entities, and bidirectional relations between entities.

Legend:

Base Value Attribute

Bidirectional Relation

Derived Value Attribute

We benchmarked derived values that
depend on up to 100000 base values
in varying workloads. We calculate a
recursive aggregate in a tree. (See
benchmark specification below.) The
trees have a branching factor of 10.

The first two benchmarks test the
throughput on read only and write
only workloads, with the derived
value on top of the tree depending
on a varying number of base values.
Calc-on-Read performance on reads
suffers when derived values depend
on many base values. Calc-on-Write
performance suffers on writes as
many concurrent writes to the
derived value cache cause failing
database transactions.

The third benchmark tests a varying
workload with a tree of depth 5.
Calc-on-Read and Calc-on-Write
performance is bad on all workloads,
while Calculate-Eventually keeps a
steady performance.

entity	Node	{
		avgValue	:	Float?	=	avg(children.avgValue)	(default)
}
relation	Node.parent	?	<−>	*	Node.children	

The fourth benchmark varies the number of trees, so
that there are multiple, completely separated derived
values, with a 50/50 workload. Calc-on-Write performs
good for completely separated calculations.

Calculation Strategy Implementations

for	a	:	T	m	=	e1	in	E.attributes

		function	calculate_a()	:	T	{		return	e1;		}

		//	Calculate-on-Read
		function	get_a()	:	T	{		return	calculate_a();	}

		//	Calculate-on-Write
		a	:	T
		static	a_dirty	:	Set<E>	
		function	get_a()	:	T	{		return	this.a;		}
		function	update_a()	{		a	:=	calculate_a();		}	

for	E.a	→	path.a2	in	DataFlow	where	a2.entity=E2

		//	Calculate-on-Write
		function	set_a(newV	:	T){
				if(a	!=	newV){		a	:=	newV;	E2.a2_dirty.addAll(path);		}
		}

//	Calculate-on-Write
static	function	update_derived_values()	{
		//	go	through	all	dirty	and	update	until	all	empty
}

//	Eventually-Consistent
//	Same	as	calc-on-write,	but	dirty	flag	to	separate	thread

The different calculation strategies require different code patterns to be
generated by the compiler. Below is a snippet of meta-code that
generates part of the Calc-on-Read and Calc-on-Write implementation.

Harkes, D. C., Groenewegen, D. M., Visser, E.: IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs. ECOOP (2016)
Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014)
Steimann, F.: Content over container: object-oriented programming with multiplicities. ONWARD! (2013)
Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE (2007)

children

children children

submissionssubmissions

