
D. A. A. Pelsmaeker, H. van Antwerpen, E. Visser. (2019).
Towards Language-Parametric Semantic Editor Services

based on Declarative Type System Specifications (Brave New Idea Paper).
In 33rd European Conference on Object-Oriented Programming

(ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Scope Graph
The scope graph is a represen-
tation of the declarations and
scopes in the program.
It is produced by the solver and
used for name resolution.

1

0

P

2

P

3

P

C : class(1) :

m : int, int → bool:

f : () → int:

x : int:

y : int:

Program
The user’s program is incomplete. We represent holes in an incom-
plete AST with a syntactic placeholder and a corresponding con-
straint variable, which allows normal parsing and semantic analysis
to take place.

public class C {
 boolean m(int x, int y) {
 return (x == y) && $Exp
 }

 int f() { return 42; }
}

Static Semantic Rules
The static semantics of the language is expressed as declarative
syntax-directed rules in Statix. Each rule specifies the constraints
it applies to parts of the program, and how the scope graph
should be extended.

typeOf(s, e) = ty :- e match {

 True() -> BOOL == ty.

 And(e1, e2) ->
 typeOf(s, e1) == BOOL,
 typeOf(s, e2) == BOOL,
 BOOL == ty.

 Call(x, es) ->
 Method{x} in s == METHOD(targs, tret),
 typesOf(s, es) == targs,
 tret == ty.

 // ...

}.

Overview

We propose to use constraint programming on syntax-directed
typing rules to not only verify the correctness of the program,
but also enable advanced semantic editor services.

By performing a search over the solution space, we get multi-
ple possible solutions to a given constraint problem. We believe
these can be used to implement language-parametric refactor-
ings, code navigation, and semantic code completion with mini-
mal effort.

Through simplification we replace a constraint by its subconstraints.
These constraints can be solved using unification. However, just simplifi-
cation and unification will provide up to one solution, which makes it useful
for program verification.

Constraint refinement splits a constraint in different constraints within the
original constraint’s domain, allowing us to explore different solutions. In
our case we split the match constraint into its separate branches. Some
solutions will not be satisfiable.

Similarly, we can perform refinement on a query constraint, refining it into
the various declarations that would satisfy the query.

Our search strategy determines whether we continue our search for the
subexpressions or terminate here with a partial solution. When we termi-
nate, we replace the constraint variables by syntactic placeholders.

We can use the solutions we found for semantic code completion,
where each solution is a completion proposal:

A solution can include an AST fragment. Their syntax can be used, for ex-
ample, as a code completion proposal.

The search strategy can decide to perform a deterministic search on
some of the constraint variables. For a method call this would result
in a syntax fragment with placeholders for the exact number of ex-
pected arguments.

Semantic analysis on the incomplete program leaves us with some con-
straints on the placeholder. We use these as the starting point for our
search algoritm. An editor service-specific search strategy dictates how
the search is performed.

return (x == y) &&

The search strategy determines how we search
and when we terminate.

If we continue our search, we may find a solution for the subexpres-
sions as well. However, we run the risk of trying to find an infinite se-
quence of nested expressions.

$Exp && $Exp

true

m($Exps)

m($Exp, $Exp)

m(f($Exps), $Exp)

m(f(), $Exp)

e match {
 True(),
 And(e1, e2),
 Call(x, es)
}.

Method{"f"} in #2
 == METHOD([], INT),
typesOf(#2, es) == [],
INT == BOOL.

Method{"m"} in #2
 == METHOD([INT, INT], BOOL),
typesOf(#2, es) == [INT, INT],
BOOL == BOOL.

typesOf(#2, [e0, e1]) == [INT, INT].

typeOf(#2, e0) == INT.

And(e1, e2) ->
 typeOf(#2, e1) == BOOL,
 typeOf(#2, e2) == BOOL,
 BOOL == BOOL.

Call(x, es) ->
 Method{x} in #2
 == METHOD(targs, tret),
 typesOf(#2, es) == targs,
 BOOL == tret.

True() -> BOOL == BOOL.

e0 match {
 True(),
 And(e2, e3),
 Call(x, es)
}.

And(e2, e3) ->
 typeOf(#2, e2) == BOOL,
 typeOf(#2, e3) == BOOL,
 BOOL == INT.

Call(x, es) ->
 Method{x} in #2
 == METHOD(targs, tret),
 typesOf(#2, es) == targs,
 INT == tret.

True() -> BOOL == INT.

Method{"f"} in #2
 == METHOD([], INT),
typesOf(#2, es) == [],
INT == INT.

Method{"m"} in #2
 == METHOD([INT, INT], BOOL),
typesOf(#2, es) == [INT, INT],
BOOL == INT.

typesOf(#2, []) == [].

typeOf(#2, $Exp) == BOOL.

simplify

refine

$Exp && $Exp

true

m($Exp, $Exp)

spoofax.org

Towards Language-Parametric Semantic Editor Services
based on Declarative Type System Specifications

Daniel A.A. Pelsmaeker
d.a.a.pelsmaeker@tudelft.nl

Eelco Visser
e.visser@tudelft.nl

Hendrik van Antwerpen
h.vanantwerpen@tudelft.nl

