Towards Language-Parametric Semantic Editor Services

based on Declarative Type System Specifications

Daniel A.A. Pelsmaeker Hendrik van Antwerpen Eelco Visser
d.a.a.pelsmaeker@tudelft.nl h.vanantwerpen@tudelft.nl e.visser@tudelft.nl

— Overview

We propose to use constraint programming on syntax-directed
typing rules to not only verify the correctness of the program,
but also enable advanced semantic editor services.

Semantic analysis on the incomplete program leaves us with some con-
straints on the placeholder. We use these as the starting point for our
search algoritm. An editor service-specific search strategy dictates how

By performing a search over the solution space, we get multi- the search is performed.

ple possible solutions to a given constraint problem. We believe
these can be used to implement language-parametric refactor- typeOf (#2, $Exp) == BOOL.
ings, code navigation, and semantic code completion with mini- ’

mal effort. I
Through simplification we replace a constraint by its subconstraints.

simplify These constraints can be solved using unification. However, just simplifi-

cation and unification will provide up to one solution, which makes it useful
for program verification.

e match {
And(el, e2), Constraint refinement splits a constraint in different constraints within the
The user’s program is incomplete. We represent holes in an incom- Call(x, es) original constraint’s domain, allowing us to explore different solutions. In
plete AST with a syntactic placeholder and a corresponding con- }. our case we split the match constraint into its separate branches. Some
straint variable, which allows normal parsing and semantic analysis solutions will not be satisfiable.
to take place. I
refine

public class C {
boolean m(int x, int y) {
return (x == vy) && SExp

A solution can include an AST fragment. Their syntax can be used, for ex-
ample, as a code completion proposal.

}

True() -> BOOL == BOOL. -

true

int f() { return 42; }

And(el, e2) —->
typeOf (#2, el) == BOOL,
typeOf (#2, e2) == BOOL,
BOOL == BOOL.

SExp && SExp

Our search strategy determines whether we continue our search for the
subexpressions or terminate here with a partial solution. When we termi-

Call(x, es) —-> nate, we replace the constraint variables by syntactic placeholders.
Method{x} in #2
 m—
Scope Graph == METHOD(targs, tret),

The scope graph is a represen- typesOf(#2, es) == targs,
tation of the declarations and BOOL == tret.

scopes in the program.

It is produced by the solver and
used for name resolution.

C : CLASS(1)

Similarly, we can perform refinement on a query constraint, refining it into
the various declarations that would satisfy the query.

._—— mm: INT,INT — BOOL

Method{"f"} in #2 Method{"m"} in #2

== METHOD([], INT), —= METHOD([INT) INT]) BOOL), -_— e m($Exps)

- a f :()-—)INT? typesOf (#2, es) == [], typesOf (#2, es) == [INT, INT], | o
INT == BOOL. BOOL == BOOL. The search strategy can decide to perform a deterministic search on
some of the constraint variables. For a method call this would result
in a syntax fragment with placeholders for the exact number of ex-

pected arguments.

typesOf (#2, [eO, el]) == [INT, INT].

B

typeOf (#2, e0®) == INT.

We can use the solutions we found for semantic code completion,
where each solution is a completion proposal:

@ m(SExp, SExp)

e® match { ‘ () &&I
. . return (x ==y
c Static Semantic Rules True(),
And(e2, e3), true
The static semantics of the language is expressed as declarative Call(x, es)
syntax-directed rules in Statix. Each rule specifies the constraints 1, $Exp && SExp

it applies to parts of the program, and how the scope graph

should be extended.

typeOf(s, e) = ty :- e match {

True() -> BOOL == INT. Call(x, es) —> And(e2, e3) —>

Method{x} in #2 typeOf (#2, e2) == BOOL,
== METHOD(targs, tret),
And(el, e2) ->

typeOf (#2, e3),== BOOL,
typesOf (#2, es) == targs, BOOL == INT.
typeOf(s, el) == BOOL, INT == tret.
typeOf(s, e2) == BOOL,
BOOL == ty. ﬁ If we continue our search, we may find a solution for the subexpres-
sions as well. However, we run the risk of trying to find an infinite se-
Call (X y eS) —> Method{"m"} in #2 Method{"f"} in #2 quence of nested expressions.
Method{x} in s == METHOD(targs, tret) __ __
)) == METHOD([INT, INT], BOOL), == METHOD([], INT), > @ m(f(SExps), SExp)

@ m($Exp, SExp)

True() -> BOOL == ty.

\ 4

typesOf (s, es) == targs,

o typesOf (#2, es) == [INT, INT], typesOf (#2, es) == [],
tret == ty. | BOOL == INT. INT == INT.
The search strategy determines how we search
/] .. and when we terminate.
Fe typesOf(#2, [1) == []. @ m(f(), $Exp)

D. A. A. Pelsmaeker, H. van Antwerpen, E. Visser. (2019).
Towards Language-Parametric Semantic Editor Services
based on Declarative Type System Specifications (Brave New Idea Paper).
In 33rd European Conference on Object-Oriented Programming
(ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

FuDelft spoofax.org

