
From Box to TEX� An algebraic approach to

the construction of documentation tools

Mark van den Brand�y

Eelco Visser�z

June ��� ����

Abstract

We de�ne a translation from an intermediate box language for pretty printing

to TEX� This translation can be used as a back�end for pretty printers in doc�

umentation tools for programming languages� The translation is formulated

in an executable algebraic speci�cation formalism� An important aspect of

the translation is the transformation of boxes according to a set of equations�

These equations preserve the text formatting semantics of boxes which is also

de�ned algebraically� New in this approach is that algebraic transformations

of box terms are used to circumvent the limitations of the typesetter�

The TEX generator� which translates the box language to TEX code� is a

component of documentation tools generated for the programming environ�

ments developed with the ASF�SDF meta�environment� but can also be used

as a separate tool� As a case study� the construction of a typesetter for the

process speci�cation formalism PSF is shown�

Keywords� typesetting� pretty printing� box language� programming

language� software documentation� transformation� algebraic speci�cation�

tool generation� term rewriting

�Programming Research Group� University of Amsterdam� Kruislaan ���� NL����� SJ Ams�
terdam� email� fmarkvdb�visserg�fwi�uva�nl

yPartial support received from ESPRIT project 	�

 �GIPE�II Generation of Interactive Pro�
gramming Environments�

zPartial support received from NWO project
�	���
��	�

�

� Introduction

Software documentation consists of �partial� listing of a program along with ex�
planations of its goals and functionality� There are essentially two ways to list
programs in a document� either including a verbatim listing or a typeset listing of
the program as illustrated in Figure �� The �rst method is easy and ensures that
the documentation is up�to�date with the program� but long verbatim listings do
not encourage reading� However� typesetting a listing manually is time consuming
and error�prone� Moreover� if the program is changed� its documentation must be
updated� either by entirely retypesetting the program or by mirroring the changes
in the program in its documentation�
A documentation tool aids the programmer in producing up�to�date documenta�

tion of a program� It is as easy to use as verbatim listings� but provides the elegance
of typeset listings�
In this paper we will describe how the language dependent parts of a text ori�

ented pretty printer can be reused by a generator of typesetting tools for program�
ming languages� The text formatter that forms the back�end of the text oriented
pretty printers is replaced by a back�end that produces TEX

� �Knu	
a�� The back�
end can be used to typeset programs but can also be embedded in more sophisticated
documentation tools�

� Pretty Printing

A pretty printer for a programming language rearranges the layout between the
tokens of a program to achieve a better readable program� It does this by putting
linebreaks in appropriate places and indenting subconstructs to emphasize their
embedding in their surrounding context�
A pretty printer can be formulated as a translation �L� Display� from abstract

syntax trees� over some language L to some displaying device� This translation can
be decomposed into a translation �L� Box� from abstract syntax trees to box
terms and a translation �Box� Display� from box terms to a displaying device like
a screen or a printer� The box language acts as an intermediate representation that
is independent of both source language and target device�

Box Language A box is a simple data structure built from strings as basic boxes
and a number of box composition operators� Associated with each composition
are its subboxes and the spacing between those boxes� A box can also contain
information about non�structural aspects of a text� such as fonts and colors�
For instance� from the basic boxes a and b we can build the horizontal compo�

sition a b and the vertical composition a
b
�

To express all possible linebreakings the box language has compositions other
than horizontal and vertical composition� These compositions are illustrated by
considering all possible arrangements of the boxes A � B � C �

A B C AB
C

A
B C

A
B
C

�a� �b� �c� �d�

�We will speak about TEX� not excluding LATEX� The code that will be generated by our
formatter can be used both in plain TEX and in LATEX documents�

�We assume the existence of an abstract syntax tree� it can be the result of parsing a text with
�Text � L� or it can be built up in a syntax directed editor in which case no textual origin of the
tree might exist� Furthermore� we will identify a language L with its abstract syntax�

�

begin

declare

input� natural�

output� natural�

repnr� natural�

rep� natural�

input �� ��

output �� ��

while input � �

do

rep �� output�

repnr �� input�

while repnr � �

do

output �� output � rep�

repnr �� repnr � �

od�

input �� input � �

od

end

begin

declare

input � natural�
output � natural�
repnr � natural� rep � natural

input �� �
 output �� �

while input � � do
rep �� output
 repnr �� input

while repnr � � do
output �� output � rep

repnr �� repnr � �

od
 input �� input � �
od

end

Figure �� Verbatim and typeset listing of a Pico program that computes the factorial
of the variable input�

In case �a� the boxes are placed horizontally� in case �b� there is a linebreak after
B � in case �c� there is a linebreak after A and in case �d� the boxes are arranged
completely vertically� The structural operators can be characterized by indicating
which of these cases they cover� A horizontal composition �H� can only set boxes as
in case �a�� A vertical composition �V� can only produce case �d�� The composition
horizontal or vertical �HOV� can produce either �a� or �d�� �a� if they �t on one line
and �d� otherwise� Finally� composition horizontal and vertical �HV� can produce
all four cases� boxes are put on the same line as long as that can be done� and a
linebreak is inserted when the line is full�

Box Construction The front�end of a pretty printer� the box constructor� can be
considered as a compositional� syntax�directed mapping from abstract syntax trees
to box expressions� For example� consider the rules

pp����� � � pp��� � and pp��� � ��� �
pp����
� pp����

for tree nodes of the form ��� and � � �� respectively� They specify that brackets
should be wrapped around their argument with a horizontal composition and that
a ��� node should be displayed as a vertical composition of the �rst argument and
a horizontal composition of ��� with the second argument� Applying these rules to
the tree �a� b� gives

pp��a� b�� � � pp�a� b� � �
� a
� b �

Text Formatting The box construction rules for a language declare in an ab�
stract way how its constructs should be displayed� The interpretation of a box is

�

done by a text formatter that translates the high level box instructions to low level
display instructions such as �print a string� or �go to new line�� The formatter has
to make decisions like setting a string on the current line or continuing on the next
one if the current line is too full�
For instance� the formatter �Box� Text� may produce a list of strings of ascii

characters� where each string corresponds to a line of text� that can be displayed
by an editor or printer� For the box pp��a� b�� it would produce the strings �	a�
and � �b
�� i�e�� the text

	a

�b

Assuming that text is displayed with non�proportional fonts and that the width of
the display is �xed� spacing issues like indentation and interword space can be dealt
with by counting the characters in strings�
If the output of a text formatter has to be used as input for typecheckers�

compilers or syntax directed editors�or any other tool that �rst parses its input
with �Text� L��the composition

�L� Box� � �Box� Text� � �Text� L�

is usually required to be the identity function on L� A pretty printer should not
change the abstract syntax of a program�let alone its meaning�

Other Formatters The decomposition of pretty printing into box construction
and formatting creates a potential for software reuse� A formatter for some display
device can be used for any language for which a box constructor exists� By writing
a formatter for a new display device all existing pretty printers can produce code
for that device� For instance� if we have the box constructor �Pascal� Box� and
the formatter �Box� Text�� we can make the pretty printer �Pascal� Text�� If
we make a box constructor �Cobol� Box� we can reuse the existing formatter to
get �Cobol� Text�� If we write a new formatter �Box� TEX�� it can be used as
back�end for both box constructors�
We must ensure that the meaning of the box construction rules for the new

formatter and for the text formatter is the same� If this would not be the case
it would not make sense to reuse the pretty printer front�ends� If two boxes have
the same result on some text display� they should give similar results on any other
display�

� TEX as Formatter

Since TEX is a box language itself it would seem trivial to translate our box language
to TEX directly� Unfortunately� this is not the case� because ��� our notion of
horizontal and vertical composition is not the same as TEX�s �hbox and �vbox� ���
TEX�s nesting capacity is limited� and ��� we need to control linebreaking�

Horizontal and Vertical Composition The semantics of the horizontal and
vertical composition in our box language is incompatible with the semantics of
TEX�s �hbox and �vbox� For instance� consider the composition

H� � V� a H��b�� � � �

A direct translation to TEX would be

�hbox�	�vbox��hbox�a
�hbox��b

or

�hbox�	�vtop��hbox�a
�hbox��b

which result in �
a
�b� and

�a
�b
�
� respectively� since a �vbox aligns at its bottom line

and a �vtop aligns at its top line in a horizontal composition� The desired result�

however� is
�a
�b�

� In general� our notion of horizontal composition is�

H

�
a
bc

a
bc

� � �
a
bc

�
�

a
bc a
bc � � � a

bc

�

where a box in a horizontal composition aligns with its top at the bottom of the
previous box and with its bottom at the top of the next box� where top �bottom�
corresponds to the top �bottom� text line in a box�
The next problem that we face is illustrated by the composition

H� � V� H � a� � b� � � �

With this semantics we get
�a�
b �

whereas we want
�a�
b�
� which requires that a box

in a horizontal composition be placed immediately after the end of the last line of
the previous box� i�e��

H

�
abc
d

abc
d

� � �
abc
d

�
�

abc
d abc
d � � �

abc
d

�

In Section 	�� we will de�ne formatter independent transformations on boxes
that simplify boxes in such a way that they can be translated to TEX in a straight�
forward manner�

Nesting Nesting is needed since box terms are built up compositionally from a
syntax tree
 the box expression has at least as much�and probably more�nesting
than the original tree� This presents a problem when translating to TEX� since
TEX�s �semantic nest size� is limited to
� �in a standard con�guration��
This problem can be solved by applying transformations on box expressions

that reduce nesting as much as possible� These transformations reduce horizontal
boxes to consist only of basic boxes� In other words� a nested box expression is
transformed into a �at list of lines�

Linebreaking When we translate boxes to TEX we are unable to precompute
where the linebreaks in HOV and HV boxes should be placed� because we have no
information about the width of the display or the sizes of characters� Therefore�
the TEX code that we generate has to know where it may continue on the next line�
This can not be solved by transformations� but has to be done by clever macros�

�

� Tool Generation from Algebraic Speci�cations

��� ASF�SDF

ASF�SDF is a modular algebraic speci�cation formalism developed for the de�
scription of language de�nitions� The formalism is supported by an integrated pro�
gramming environment generator� the ASF�SDF meta�environment �Kli���� which
supports the interactive development of a speci�cation� as well as the generation
of the associated programming environment� Such a programming environment
contains several implicitly derived tools�
The ASF�SDF formalism is a combination of the formalisms SDF �Syntax

De�nition Formalism� �HHKR��� and ASF �Algebraic Speci�cation Formalism�
�BHK	��� SDF provides a formalism for the de�nition of lexical and context�free
syntax� Given an SDF de�nition a structured editor and a parser are derived by
the ASF�SDF meta�environment�
ASF is used to de�ne the semantics of a language� An ASF speci�cation consists

of a set of conditional equations over the language de�ned in the corresponding SDF
part� The equations of an ASF speci�cation are interpreted as rewrite rules in a
term rewrite system� In terms of functional programming this is similar to a strict
�rst order functional programming language� where the left�hand sides of function
de�nitions can be arbitrary patterns and functions do not have to be de�ned for all
cases� There is actually no distinction between functions and datatypes�
The only non�standard feature of ASF�SDF are associative lists�
ASF�SDF is not only used for de�ning programming languages and their se�

mantics� but also for the development of tools� The typical architecture of these
tools is� given the languages A and B� the tool de�nes the mapping �A� B� from
A to B� where this mapping can be decomposed into several submappings�

�A� A�� � �A� � A�� � �A� � A�� � � � � � �An � B�

��� Architecture of text pretty printers

A text pretty printer can be decomposed as

�Text� L� � �L� Box� � �Box� Text�

The mapping �Text� L� is a parser for L generated from the SDF part of a language
de�nition� The mapping �L� Box� is a box constructor for a language L that
can be generated from the context�free grammar GL for L �Bra��a�� Basically this
generator de�nes for each production in GL a default equation de�ning the function
pp that maps the abstract syntax tree node that corresponds with the production
to a box composition of its arguments�
Various modi�cations are possible ranging from simple rearrangements of boxes

to the introduction of columns and user options to in�uence pretty printing� The
default box construction rules are based on the assumption that the source language
is a Pascal�like language� Therefore� more adaptation is needed for a more remote
language�
The pretty print generator is completely speci�ed in ASF�SDF� It has been used

to generate pretty printers for� among others� Cobol� Lisp� and Action Semantics�
The mapping �Box� Text� is a text formatter that produces plain ascii text�

During the last two years several versions of this text formatter� all speci�ed in
ASF�SDF� have been developed ranging from ine�cient ones to a very e�cient
one� The compiled version of this e�cient text formatter is currently being used
in the ASF�SDF meta�environment itself� In Sections �� 	� and � we present the
most algebraic version�

�

We study the speci�cation of a text formatter to understand the semantics of
the box language� With that knowledge we can derive transformations on boxes
that enable us to give a direct translation of boxes to TEX�

��� Design of TEX back�end

The TEX typesetter for a language L can be decomposed as

�Text� L� � �L� Box� � �Box� Box� � �Box� TEX� � �TEX� DVI�

The �rst two components� the parser �Text� L� and the box constructor �L� Box�
can be reused from a text pretty printer for L� The component �TEX� DVI� is the
program tex or latex�
The mapping �Box� Box� transforms boxes so that they can be translated

easily to TEX� preserving the formatting semantics of �Box� Text�� i�e��

�Box� Box� � �Box� Text� � �Box� Text�

The box transformations may not in�uence the text produced by the text formatter�
The mapping �Box� TEX� translates boxes in normal form to TEX code� Box

operators are represented by macros� We provide a the de�nitions of these macros
in TEX�
In Section �� we present a speci�cation in ASF�SDF of a translation from

boxes to TEX code
 that is� we will specify the components �Box� Box� and
�Box� TEX�� In Section �� we present an application of this back�end in a type�
setter for the speci�cation language PSF�

� Box Language

The syntax of our box language �Bra��a� Bra��b�� has been in�uenced by the syn�
tactic representation of PPML �MCC	�� boxes� This paper concentrates on the core
of the language that describes structural compositions� In appendix B we extend
this core with fonts�
A box is built by application of a box operator to a list of boxes� Basic boxes

are strings� Each application can have any number of space options that govern the
spacing between the boxes in the composition� We will use the letters A� B� C and
D �possibly indexed by a number� to denote boxes� Box lists of zero �one� or more
boxes are denoted by a box variable with a � ����

imports Strings�����

exports

sorts BOX BOX�LIST

context�free syntax

STRING � BOX

OPERATOR SPACE�OPTIONS ��� BOX�LIST ��� � BOX

BOX� � BOX�LIST

��� BOX ��� � BOX fbracketg
variables

�A�D����� ��� � BOX

�A�D�������� ��� � BOX�
�A�D�������� ��� � BOX�

�

Basic Operators The basic structural operators of the box language are H �hor�
izontal composition�� V �vertical composition�� I �indentation�� HOV �horizontal or
vertical composition�� HV �horizontal and�or vertical composition�� and WD �invis�
ible box with same width as some visible box�� An arbitrary operator is denoted
by O�

sorts OPERATOR

context�free syntax

�H� � OPERATOR

�V� � OPERATOR

�I� � OPERATOR

�HOV� � OPERATOR

�HV� � OPERATOR

�WD� � OPERATOR

variables

�O����� ��� � OPERATOR

Space Spacing between boxes in a list can be adapted by instantiating the space
options of a composition� We allow horizontal �hs�� vertical �vs� and indentation
�is� space� The amount of space is indicated by a number� which is an integer or
real� The amount of space this number represents depends on the formatter� but a
good agreement to eliminate surprises would be to interpret a number n as n times
the width of the letter M in the current font for horizontal and indentation space
and n times the height of the letter X for vertical space�
The constantsH� I and V represent the default values for horizontal� indentation

and vertical space� respectively� When no space options are given in a composition�
these values are used�

imports Numbers�Syntax�A���

exports

sorts SPACE�OPERATOR SPACE�OPTION SPACE�OPTIONS

context�free syntax

hs � SPACE�OPERATOR

vs � SPACE�OPERATOR

is � SPACE�OPERATOR

SPACE�OPERATOR ��� NUM � SPACE�OPTION

SPACE�OPTION� � SPACE�OPTIONS

�H� � NUM

�I� � NUM

�V� � NUM

variables

�S����� ��� � SPACE�OPERATOR

�so����� ��� � SPACE�OPTION

�so�������� ��� � SPACE�OPTION�
�o����� ��� � SPACE�OPTIONS

Examples With this syntax we can construct powerful boxes� In Section � we
saw the box construction for �a� b� by the box

H��	� V��a� H���� �b��� �
��

This expression can be expressed better by the box

H��	� HOV��a� H���� �b��� �
��

	

It will set the expression on one line if there is enough room� but will break before
the ��� otherwise�
Another application of HOV is in typesetting an if�then�else construct

HOV ��if� I�H��a� ��� �b���
�then� I�H��x� ���� ������
�else� I�H��x� ���� ������ �

This box declares that� if the entire if�then�else �ts on the rest of the line� it should
be formatted as

if a � b then x �� �� else x �� ��

but� if there is not enough room� it should be formatted as

if

a � b

then

x �� ��

else

x �� ��

A more sophisticated way to typeset this construct� is by the box

HOV �HOV��if� I�H��a� ��� �b��� �then��
I�H��x� ���� ������
�else�

I�H��x� ���� ������ �

This box should be set horizontally if there is room� but if there is no room� there
will �rst be a test whether the if�then part �ts on the rest of the line to get

if a � b then

x �� ��

else

x �� ��

If there is insu�cient space� the result will be a totally vertical text as shown before�
An application of HV is typesetting a pre�x function application like f�a� b� c�

by the box

Hhs � ���f	� HV�Hhs � ���a� ���� Hhs � ���b� ���� �c�� �
��

This box can be set as one of the following texts�

f	a� b� c

f	a� b�

c

f	a�

b�

c

� Text

We give formatting semantics to boxes by mapping them to text� A text is a list of
strings where each one is interpreted as a line on a display�

��� Strings

A string is a list of arbitrary characters except for a newline enclosed in double
quotes� A double quote can only occur in a string if it is preceded �escaped� by a
backslash�

imports Layout�A��� Numbers�Op�A���

�

exports

sorts STRING

lexical syntax

�n��STR�CHR��n�� � STRING

�nn�� � STR�CHR

���nn� � STR�CHR

We de�ne the following operations on strings� � �string concatenation�� width �num�
ber of characters in a string� and blank �string with all characters of argument string
replaced by blanks�� Concatenation is right associative� An arbitrary string is de�
noted by a� � � � � e

context�free syntax

STRING ��� STRING � STRING frightg
width�STRING� � INT

blank�STRING� � STRING

��� STRING ��� � STRING fbracketg
variables

�a�e����� ��� � STRING

hiddens

variables

�chr����� ��� � CHAR
�chr�������� ��� � CHAR�

��� string���� chr�� ���� � string���� chr
�
� ���� � string���� chr�� chr

�
� ����

��� width���� � �

��� width�string���� chr chr� ����� � � � width�string���� chr� �����

�
� blank���� � ��

��� blank�string���� chr chr� ����� � ��� � blank�string���� chr� �����

��� Text

A text is simply a list of strings� where each string denotes a line on a display� We
will use T as variable for texts�

imports Strings����� Numbers�Op�A���

exports

sorts TEXT

context�free syntax

STRING� � TEXT fconstructorg
variables

�a�e�������� ��� � STRING�
�a�e�������� ��� � STRING�
�T����� ��� � TEXT

Horizontal and Vertical Composition The main text composing operations
are �� for vertical composition and jj for horizontal composition� Additionally we
de�ne the operations a and j to pre�x a text with a string� The �rst pre�xes a
string to every line of a text� The second pre�xes a string a to the �rst line of a text

��

and then pre�xes a string of blanks that has the same width as a to all subsequent
lines�

context�free syntax

TEXT ���� TEXT � TEXT frightg
TEXT �k� TEXT � TEXT frightg
STRING �a� TEXT � TEXT

STRING �j� TEXT � TEXT

��� TEXT ��� � TEXT fbracketg
priorities

�a� � �j� � �k� � ����

The operator �� places the lines of a text vertically below another� This boils down
to concatenating the lines of the texts�

��� a� �� b� � a� b�

The operator a pre�xes each line of a text with a string�

��� a a �

��� a a b b
� � a � b �� a a b

�

Note that if the text is empty the pre�x is discarded�

The operator j pre�xes every line after the �rst line of a text with a blank string
with the same width as its �rst string argument a and pre�xes a to
the �rst line of the text�

�
� a j � a

��� a j b b� � a � b �� blank�a� a b�

This is similar to the way this paragraph is typeset
 the �rst line is
pre�xed with the string �The operator j � and the rest of the lines
are pre�xed �indented� by an empty string that has the same width
as that string� This is called hanging indentation�

Finally� the operator jj takes the last line of the �rst text and hangs the second
text from it� composing the resulting text vertically with all but the last lines of
the �rst text�

��� k T � T

��� a� a k T � a� �� a j T

Conditional Composition For each of the operators k and �� there are left and
right looking conditional compositions� For instance� the left looking horizontal
composition k only sets its second argument if its �rst �left� argument is not empty�

context�free syntax

TEXT ���� TEXT � TEXT frightg
TEXT ���� TEXT � TEXT frightg
TEXT �k� TEXT � TEXT frightg
TEXT �k� TEXT � TEXT frightg

priorities

fright� �k�� �k�g� fright� ����� ����g� �k� � �k� � ���� � ����

�	� k T � ��� �� T �

���� a� k T � a� k T ���� a� �� T � a� �� T

���� T k � ���� T �� �

��
� T k a� � T k a� ���� T �� a� � T �� a�

��

These operators are very convenient for setting space between texts that should
only appear if the trailing text is not empty�

Width Operations Finally� we de�ne some operators for measuring texts and
for creating texts consisting of white space
 twidth gives the maximal width of a
text� hwidth measures the horizontal width of a text� i�e�� the width of its last line�
wd creates a blank string that has the same width as the horizontal width of its
argument text� hskip and vskip create blank texts of given width�height�

context�free syntax

twidth�TEXT� � INT

hwidth�TEXT� � INT

hskip�NUM� � TEXT

vskip�NUM� � TEXT

wd�TEXT� � TEXT

hiddens

variables

�r����� ��� � REAL

�n����� ��� � INT

�N����� ��� � NUM

The text width �twidth� of a text is the maximum of the widths of its lines� If a
text has text width n it has at least one line that extends n characters from the left
margin� The horizontal width of a text �hwidth� is the width of its last line�

���� twidth�� � �

���� twidth�a a�� � max�width�a�� twidth�a���

��	� hwidth�� � �

���� hwidth�a� a� � width�a�

hskip�N� yields an empty string of width N and vskip�N� builds a text of N empty
lines�

���� hskip�N� � when ���N� � true

���� hskip�n� � ��� k hskip�n � �� when n � � � true

���� hskip�r� � hskip�brc�

���� vskip�N� � when ���N� � true

��
� vskip�n� � �� �� vskip�n � �� when n � � � true

���� vskip�r� � vskip�brc�

where brc maps a real number r to the smallest integer that is greater or equal than
r�
The function wd creates an empty string with the same width as the last line of

its argument text�

���� wd�� �

���� wd�a� a� � blank�a�

� Text Formatting

We will not give the formatting for all the box operators at once� We will �rst
describe the text formatting using only the plain box operators H and V without
space between boxes and then gradually improve this formatter�

��

��� Box to Text 	A

A �rst try at formatting boxes using only strings� H and V boxes� We consider a
box as a function that� when applied to no arguments produces a text� i�e�� box A
is mapped to text by applying it as A���

imports Box��� Text�����

exports

context�free syntax

BOX ��� ��� � TEXT

A string yields itself� An empty box yields an empty text� A horizontal �vertical�
composition is mapped to horizontal �vertical� text composition with k �����

��� a�� � a

��� O���� �

��� H�A B���� � A�� k H�B����

�
� V�A B���� � A�� �� V�B����

Example The best way to understand this de�nition is by looking at an example�
We follow how the formatting of our favourite box example proceeds�

H��	� V�H��a� ���� �b�� �
���� � �	��� k V�H��a� ���� �b���� k �
���
� �	� k �H��a� ������ �� �b���� k �
�
� �	� k ��a��� k ����� �� �b���� k �
�
� �	� k ��a� k ��� �� �b�� k �
�
� �	� k ��a�� �� �b�� k �
�
� �	� j �a�� �b� k �
�
� ��	a�� �� blank��	�� a �b�� k �
�
� �	a�� �� ��b� j �
�
� �	a��

��b
�

��� Space Options

The box language allows the modi�cation of the layout between boxes� Each op�
erator may be accompanied by a number of options� Not every combination of
operator and option makes sense� If for an operator no relevant option is speci�ed
a default value is used�
imports Box���

exports

context�free syntax

SPACE�OPTIONS ��� OPERATOR ��� � NUM

hiddens

variables

�hiv����� ��� � NUM

For some list of space options o and operator O� the call o�O� yields the amount
of space speci�ed by o in context O� To give the horizontal space �H� the function
looks in the list of options from left to right� until it �nds an option hs � h in which
case the number h is yielded �equations ��� and ����� If no hs option exists in the
options the default value H is yielded �equation �����

��� �H� � H

��� hs � h so��H� � h

��� S � h so��H� � so��H� when S �� hs

��

For V and I the function works similarly�

�
� �V� � V

��� vs � v so��V� � v

��� S � v so��V� � so��V� when S �� vs

��� �I� � I

�	� is � i so��I� � i

��� S � h so��I� � so��I� when S �� is

The values for default space are given by default equations� This implies that they
can be overridden in an importing module�

���� H � � otherwise

���� I � � otherwise

���� V � � otherwise

��� Box to Text 	B

We improve the previous attempt by separating boxes by space according to the
space options of compositions�

imports Box��� Text����� Space�Options�	���

exports

context�free syntax

BOX ��� ��� � TEXT

Formatting is de�ned as before� except that a hskip is used to separate two boxes
in a horizontal compositions and a vskip is used to separate boxes in a vertical
composition�

��� a�� � a

��� Oo���� �

��� Ho�A B���� � A�� k hskip�o�H�� kHo�B
����

�
� Vo�A B���� � A�� �� vskip�o�V�� �� Vo�B
����

By using conditional compositions to attach the separating space between boxes we
do not have to worry that box A is the last box in the composition�
�Note that we set the options �o� of boxes as a subscript of the operator in

equations��

� Indentation

Extending the text formatter with the box operator I in�uences the formatting of
both the H and V operator� The reason for this is that the I operator behaves
di�erently when applied in a H or V operator� Given this nearly complete text
formatter we are able to de�ne the �rst set of box transformations in Section 	��

��� Box to Text 	C

The formatting function now takes an operator as argument� because the formatting
of the I operator is context sensitive� The term A�O� should be read as� format box

�

A in an O context� We use box operators to indicate the context� A�H� means that
box A occurs inside a H box�

imports Box��� Text����� Space�Options�	���

exports

context�free syntax

BOX ��� OPERATOR ��� � TEXT

Strings� H and V boxes are set as before� except that the context operator is passed
as an argument� H and V are not context sensitive�

��� a�O� � a

��� Oo���O
�� �

��� Ho�A B���O� � A�H� k hskip�o�H�� k Ho�B
���H�

�
� Vo�A B���O� � A�V� �� vskip�o�V�� �� Vo�B
���O�

In a vertical context an I box works by pre�xing indentation space before each of
its containing boxes and composing the resulting texts horizontally� In a H context
an I box is formatted as a H box�

��� Io�A B���V� � hskip�o�I�� kA�V� k I�B���V�

��� Io�A
���H� � Ho�A

���H�

Another new operator is WD� It yields a blank text that has the same width as its
arguments�

��� WDo�A B���O� � wd�A�O� k hskip�o�H�� kWDo�B
���O��

��� Box Laws 	C

Some box transformations are needed to reduce the nesting level in box expressions
and to conform to the semantics of horizontal and vertical composition of TEX� The
laws preserve the text formatting semantics of boxes� i�e�� a box law A � B is valid
if and only if A�O� � B�O� for any O�

imports Box��� Space�Options�	���

hiddens

variables

�hiv����� ��� � NUM

Redundant Options We saw that space options are not relevant in all situations�
Therefore� we can throw away those options that are irrelevant� For instance� in
a H box only horizontal space �indicated by the hs option� is relevant� so we can
remove options for indentation and vertical space �equations ��� and �����

��� Hso�� is � i so���A
�� � Hso�� so

�
��A

��

��� Hso�� vs � i so���A
�� � Hso�� so

�
��A

��

��� Vso�� hs � i so���A
�� � Vso�� so

�
��A

��

�
� Vso�� is � i so���A
�� � Vso�� so

�
��A

��

��� Iso�� vs � i so���A
�� � Iso�� so

�
��A

��

Furthermore� we saw that only the �rst option for some category is relevant for the
function that looks up the space for some context in a list of options� Therefore�
we can remove any extra options for the same category S�

��� so�� S � h� so
�
� S � h� so

�
� � so�� S � h� so

�
� so

�
�

��

I in H is H According to equation �	����� an I box in a H context is treated in
the same way as a H box� Therefore� we can replace an I box in a H box by a H
box�

��� Ho��A
� Io��B

�� C�� � Ho��A
� Ho��B

�� C��

Note that the H that replaces the I inherits its space options� That is the reason
that we can not remove a hs option of an I box� but only its vs option �equation
�����

Empty boxes According to equation �	����� an empty box of any kind yields no
text� Therefore� we can remove it from any list of boxes�

�	� A� Oo�� B� � A� B�

Strings in H Strings can be concatenated in a H box when its horizontal space
is zero�

��� Ho�A� a b C�� � Ho�A� a � b C�� when ���o�H�� � true

V lifting The following transformations are used to move the V operator out of
the box expression� The result of these transformations is a box expression consisting
of a list of H boxes which do not contain V operators any more�

����
B� �� � B� ��

Ho��A
� Vo��B� B

� B�� C
�� �

Vo��Ho��A
� Vo��B��� Ho��WDo��A

�� Vo��B
� Ho��Vo��B�� C

�����

The following reduction sequence shows how this equation�in combination with a
couple of equations that we discuss below�works on our �a� b� example�

H��	� V�H��a� ���� H��b��� �
��
� V�H��	� H��a� ����� H�WD��	�� V�H�V�H��b��� �
�����
� V�H��	� �a� ���� H�WD��	�� V�H�V�H��b��� �
�����
� V�H��	� �a� ���� H�WD��	�� V�H�H� �b�� �
�����
� V�H��	� �a� ���� H�WD��	�� V�H��b� �
�����
� V�H��	� �a� ���� H�WD��	�� �b� �
���

If we draw the �rst and last box in this sequence as a picture we see how �attening
of boxes takes place�

� a�
b �

�
� a�

b �

Note that the bracket in the left picture is actually in the outer horizontal box� We
see that the maximal nesting is reduced from
 in the original box to � in resulting
box�
After applying this equation there are still V boxes inside H boxes� but they are

always singleton V boxes� They are left around the boxes B� and B� to protect I
boxes in them from the surrounding H box� Below we will show how these singleton
V boxes can be lifted as well�
Lifting V boxes from I boxes is tricky� since we must ensure the I does not occur

in a H box� We ensure this by the condition O �� H� that restricts the context to
non�H boxes�

����
O �� H� B ��

Oo
�A
� Io��Vo��B B��� C�� � Oo
�A

� Vo��Io��B� Io��Vo��B
���� C��

��

Only the last box of a V box inside a WD box is relevant� because the function wd
yields a blank line with the same width as the last line of its argument text �see
equations �������� and �	�������

���� WDo��Vo��A
� B�� � WDo��B�

Nested boxes of the same kind Nesting H� V and WD boxes makes only sense
if di�erent space options are attached to the outer and inner box� Otherwise� if the
options are the same� the inner list can be lifted into the outer list�

���� Vo�A� Vo�B�� C�� � Vo�A� B� C��

��
� Ho�A� Ho�B�� C�� � Ho�A� B� C��

���� WDo�A� WDo�B�� C�� � WDo�A� B� C��

Furthermore� for H boxes we can move the trailing part of the outer horizontal list
into the inner horizontal list�

���� Ho��A
� Ho��B

� B� C�� � Ho��A
� Ho��B

� Ho��B C����

An I box inside an I box is not meaningless� but indicates �double� indentation�
For the case of a singleton indented I box we can derive the following equation
independent of the context�

���� Io��Io��A�� � Iis � o��I� � o��I��A�

�where � is addition and 	 is subtraction on NUM��

Singleton Boxes It would seem that for any operatorO� Oo�A� � A� However� in
the �rst place this does not hold for O � I and in the second place� since A itself can
be an I box� this equation might change the context of that I� Therefore� we have to
consider carefully for each O and for each context O� whether O�

o� �Oo�A�� � O�
o� �A��

We must ensure that the context of a box is only changed if that is safe
 in particular
we have to ensure that an I box in a V box is protected from a possible H context
of the V box�
A singleton string in a H or V box is just that string�

��	� Ho�a� � a

���� Vo�a� � a

Singleton H boxes�

���� Ho��A
� Ho��B� C

�� � Ho��A
� B C��

���� Ho��Ho��A
��� � Ho��A

��

Singleton V boxes�

���� Vo��Vo��A
��� � Vo��A

��

���� Vo��Ho��A
��� � Ho��A

��

��
� Vo��A
� Vo��B� C

�� � Vo��A
� B C��

���� Ho��A
� Vo��Ho��B

��� C�� � Ho��A
� Ho��B

�� C��

���� Vo��Ho��Vo��A��� � Vo��A�

H in WD

���� WDo�Ho�A��� � WDo�A��

��

Since Is are protected in Is we can �atten a singleton H or V box in a I box�

��	� Io��Ho��A�� � Io��A�

���� Io��Vo��A�� � Io��A�

���� Ho��Vo��Io��B
� B�� C�� � Vo��Io��B

� Ho��B C����

���� Ho��A
� Vo��Io��B� B

� B��� C
�� � Vo��Iis � ��Ho��A

� ��� Io��B
� Ho��B� C

�����

	 Linebreaking

In this section we give the semantics of the two remaining box operators HOV and
HV� We �rst give a non�deterministic speci�cation of these operators in terms of
the H� V and I operators�
A HOV can either be formatted as if it were a H box or as if it were a V box�

��� HOVo�A
�� � Ho�A

��

��� HOVo�A
�� � Vo�A

��

The formatter prefers the �rst possibility and only uses the second if there is not
enough room left on the current line to put all boxes horizontally� We present a
deterministic de�nition of formatting HOV in section ����
A HV can be set either as a H box or as a V box� In the latter case the list of

arguments is broken into three arbitrary� but non�empty� sublists� The �rst and the
last are new� but smaller HVs and the middle one is set as an indented H box�

��� HVo�A
�� � Ho�A

��

�
� HVo�A
� B� C�� � Vo�HVo�A

�� Io�Ho�B
��� HVo�C

���

We present a deterministic de�nition of formatting HV in section ����

��� Box to Text 	D
 C � HOV

The deterministic formatting of HOV boxes is performed in a rather brute force
manner� First the HOV box is formatted as a H box� if the resulting text does not
�t on the remaining space or consists of more than one line the box is reformatted
as a V box� The formatting function is extended with an extra argument which
denotes the remaining space on a line�

imports Box��� Text����� Space�Options�	���

exports

context�free syntax

BOX ��� OPERATOR ��� NUM ��� � TEXT

�ifHOV��TEXT� BOX� OPERATOR� NUM� � TEXT

hiddens

variables

�hiv����� ��� � NUM

�ms����� ��� � NUM

Strings and V boxes are set as before� except that the context operator and the
remaining space on the current line are passed to inner boxes�

��� a�O� m� � a

��� Oo���O�� m� �

��� Vo�A B���O� m� � A�V� m� �� vskip�o�V�� �� Vo�B���O� m�

�	

In formatting H� I and WD boxes we have to keep track of how much space remains
after setting a box�

�
�
A�H� m� � T� hwidth�T� � s� h � o�H�

Ho�A B���O� m� � T k hskip�h� k Ho�B���H� m 	 s 	 h�

��� Io�A���H� m� � Ho�A���H� m�

���
i � o�I�� m� � m 	 i� A�V� m�� � T� hwidth�T� � s

Io�A B���V� m� � hskip�i� kT k I�B���V� m� 	 s�

���
A�O� m� � T� hwidth�T� � s� h � o�H�

WDo�A B���O� m� � wd�T k hskip�h� kWDo�B���O� m 	 s 	 h��

Formatting of HOVs is implemented by the auxilary function ifHOV which takes
the formatted text and decides whether this text can be used or whether the box
should be reformatted vertically�

�	� HOVo�A���O� m� � ifHOV�Ho�A���O� m�� Vo�A�� � O� m�

��� ifHOV�� B� O� m� �

���� ifHOV�a� B� O� m� � a when width�a�
N m � true

���� ifHOV�a� B� O� m� � B�O� m� when width�a� �N m � true

���� ifHOV�a b�� B� O� m� � B�O� m�

��� Box Laws 	D
 C � HOV

The formatting of the HOV operator has also impact on the box transformation
rules� The text formatting semantics of the HOV operator prescribes that if the
text produced by an HOV box consists of more than one line� the HOV box should
be formatted in a vertical way�

imports Box�Laws�C�����

The trailing part of a horizontal composition after a HOV will always be placed hor�

izontally after the last element of the HOV�

��� Hso��A� HOVo��B
� B� C�� �

Hso��A� HOVo��B
� Iis � � hs � ��B Hso���� C�����

The strange construction in the right hand side is needed to protect a possible I
in box B� but keeping the possibility open for eliminating the I if the HOV is set
horizontally�
A singleton V box containg a HOV is that HOV�

��� Vo��HOVo��B
��� � HOVo��B

��

According to equation �������� a HOV box containing a V box with more than one
box is always formatted vertically�

��� HOVo��A
� Vo��B B�� C�� � Vo��A

� Vo��B B�� C�� when B B� ��

�
� HOVo��A
� Vo��B� C

�� � HOVo��A
� B C��

���
B� �� � B� ��

HOVo
�A
� Io��Vo��B� B

� B��� C
�� � Vo
�A

� Vo��Io��B�� Io��Vo��B
� B���� C

��

��

��� Box to Text 	E
 D � HV

We extend the formatter of Section ��� with rules for formatting HV boxes� These
are the most complicated ones� because for each argument box it must be checked
whether it �ts on the remainder of the current line or should be placed at the start
of a new line�

imports Box�to�Text�D�����

hiddens

variables

�hiv����� ��� � NUM

�nms����� ��� � NUM

The �rst box is formatted without paying attention to the amount of space this box
uses�

��� HVo�A��O� m� � A�H� m�

���
A�H� m� � T

HVo�A B���O� m� � HV o�T� m 	 hwidth�T� j B���m�

The formatting of the remaining boxes depends on the amount of space left on the
current line� The boxes are formatted one by one but as soon as a box runs over
the right margin the produced text will be shifted to the next line� Unless the text
uses more space than the orginal space or consists of more than one line� These
cases ask for a reformatting of the complete box�
We use the following auxiliary function

context�free syntax

�HV� SPACE�OPTIONS ��� TEXT ��� NUM �j� BOX�LIST ���
��� NUM ��� � TEXT

A term HVo�T� sjB���O�m� declares that on this line we have already set text T�
that has width s� We still have to set boxes B�� From the start of a new line we
have m space until the right margin� If there are no more boxes left we are ready
and yield text T ���� If there is at least one box A left in the list we set that box
in a horizontal context with s space to go�

��� HV o�T� s j ��m� � T

�
� HV o�T� s j A B���m� � HV o�T� s � A�H� s�� A � B���m�

context�free syntax

�HV� SPACE�OPTIONS ��� TEXT ��� NUM

��� TEXT ��� BOX ��� BOX�LIST ��� ��� NUM ��� � TEXT

Now we have to deal with the situation HVo�T� s � T��A � B���m�� i�e�� we have
mapped box A to text and that resulted in text T�� Note that we remember box A�
Now we have to decide where we are going to put T��
Box A is mapped to the single line of text a and a �ts on the current line because

its width n is smaller than the amount s of space left�

���
o�H� � width�a� � n� n
N s � true

HV o�T� s � a� A � B���m� � HV o�T k hskip�o�H�� k a� s 	 n j B���m�

Text a does not �t on the current line but it �ts on the next line�

���
width�a� � n� o�H� � n �N s � true� o�I� � n
N m � true

HV o�T� s � a� A � B���m� � T �� vskip�o�V��
��HV o�hskip�o�I�� k a� m 	 n 	 o�I� j B���m�

��

Text a does not �t on the current line and neither on the next�

���

width�a� � n� o�H� � n �N s � true� o�I� � n �N m � true�

A�H� m 	 o�I�� � T�� m 	 o�I� 	 hwidth�T�� � s�

HV o�T� s � a� A � B���m� � T �� vskip�o�V��
��HV o�hskip�o�I�� k T�� s� j B���m�

The text resulting from A consists of multiple lines� In this case the box is refor�
matted after starting on a new line�

�	�
T� � hskip�o�I�� k A�H� m 	 o�I��

HV o�T� s � a� a� A � B���m� � T �� vskip�o�V��
��HV o�T�� hwidth�T�� j B���m�

Reformatting is necessary because A was formatted for the remaining space s� It
might be the case that� if it is formatted with the �larger� linewidth m of the HV�
the resulting text is di�erent�

��� Box Laws 	E
 D � HV

The introduction of the HV operator results also in an extension of the set of box
transformation rules�

imports Box�Laws�D�����

I in HV

��� HVo��A
� Io��B

�� C�� � HVo��A
� Ho��B

�� C��

HV in H

��� Ho��A
� HVo��B

� B� C�� � Ho��A
� HVo��B

� Ho��B C���� when B ��

Singleton boxes

��� HVo�A� � Ho�A�

�
� Ho��HVo��A
��� � HVo��A

��

��� Vo��HVo��A
� A�� � HVo��A

� A�

V lifting in case of HV is almost identical to the V lifting of H� The result is a V
box with only HV argument boxes which do not contain V operators�

��� HVo��A
� Vo��B

� B� C�� � Vo��HVo��A
�� B� HVo��B C���

��� Vo��HVo��A
��� � HVo��A

��

�
 TEX Formatting

After de�ning the syntax of TEX we can translate boxes to TEX�

���� TEX

Since we only want to generate code� we use a simple syntax for TEX code� The
TEX code we generate consists of a list of strings� numbers� command sequences
and braces f and g� To be able to translate a nested box� a token can also be a list
of tokens�

��

imports Strings����� Identi�ers�A���

exports

sorts CS TEX

lexical syntax

�n�ID � CS

context�free syntax

��� TEX� ��� � TEX

STRING � TEX

NUM � TEX

CS � TEX

�f� � TEX

�g� � TEX

variables

�t����� ��� � TEX

�t�������� ��� � TEX�

Nested lists are �attened by

��� �t�� �t
�
�� t

�
�� � �t�� t

�
� t

�
��

This implies that any nested list we generate is reduced to a �at list�

���� Box to TEX

The function tex translates a box to TEX code� It makes use of the auxiliary
functions tex�� tex� and tex� that map lists of boxes to TEX� The translation is
based on the following assumptions�

� V boxes occur only at the toplevel

� H boxes contain only strings and possibly one HOV or HV box as last box�

That is� the translation works for any box� but the TEX implementation is only
guaranteed to work under these assumptions�
imports Box�Laws�E����� TeX��
���

exports

context�free syntax

tex�BOX� � TEX

texs��BOX�LIST� � TEX

texs��TEX� BOX�LIST� � TEX

texs��TEX� BOX�LIST� � TEX

hiddens

variables

�hiv� � NUM

�chr��� CHAR�

Lists of Boxes We de�ne three functions to translate a list of boxes� The �rst
one simply concatenates the translations of the boxes in a list� The second one
separates code for boxes by a piece of code� The third one pre�xes each box with a
piece of code t and puts braces around the code for the box� Here t is intended to
be a macro that takes a piece of code as argument�

��� texs��� � ��

��� texs��A A�� � �tex�A� texs��A���

��

��� texs��t� � � ��

�
� texs��t� A� � tex�A�

��� texs��t� A A�� � �tex�A� t texs��t� A���

��� texs��t� � � ��

��� texs��t� A A�� � �t f tex�A� g texs��t� A���

Strings Strings are translated by removing their doublequotes�

�	� tex�string���� chr� ����� � ��S f string�chr�� g�

�This is not very decent because it implies that the resulting code does not conform
to the syntax of TEX as we de�ned it above� Since we do not plan to analyse the
generated code this solution is better than trying to remove the quotes in TEX��

Boxes We translate boxes to code� Each box operator is mapped to a corre�
sponding macro� For instance� H is mapped to �H and V to �V� The pieces of code
that correspond to the subboxes of a box are separated by skips that take care of
spacing� The skips are parameterized by the relevant space option values�

��� tex�Ho�A��� � ��Hftexs����HSKIPfo�H�g��A��g�

���� tex�Vo�A��� � ��Vftexs����VSKIPfo�V�g��A��g�

���� tex�Io�A��� � ��If�ISKIPfo�I�gf�gtexs����ISKIPfo�I�gfo�H�g��A��g�

���� tex�WDo�A��� � ��WDftexs����HSKIPfo�H�g��A��g�

���� tex�HOVo�A��� � ��HOVftexs����HOVSKIPfo�H�gfo�V�g��A��g�

��
� tex�HVo�AA��� � ��HVftex�A�texs����HVSKIPfo�H�gfo�I�gfo�V�g��A��g�

Note that �HVSKIPs take the next box as argument� As we will see below in the
macro de�nitions it handles the placing of its argument by comparing its width with
the amount of space left on the current line�
We can reduce the size of the generated code by removing irrelevant skips� A

zero �HSKIP� �ISKIP� �VSKIP or �HOVSKIP has no e�ect�

���� �t���HSKIPfhgt
�
�� � �t��t

�
�� when ���h� � true

���� �t���VSKIPfvgt
�
�� � �t��t

�
�� when ���v� � true

���� �t���ISKIPfigfhgt
�
�� � �t��t

�
�� when ���i�and���h� � true

��	� �t���HOVSKIPfhgfvgt
�
�� � �t��t

�
�� when ���h�and���v� � true

Example To see the e�ect of the translation we translate our �a� b� box to TEX
by evaluating the term

tex	 H��	� V�H��a� ���� �b�� �
��

By application of the box transformations this �rst reduces to

tex	 V�H��	� �a� ���� H�WD��	�� �b� �
���

and then the translation yields

�V��H��S�	
�HSKIP��
�S�a
�HSKIP��
�S��

�H�

��WD��S�	

�HSKIP��
�S�b
�HSKIP��
�S�

�

��

which results in
� a �
b �

� A variant of the previous box does not put space after �

and before ��

tex	 H hs � � ��	� V�H��a� ���� �b�� �
��

results in the code

�V��H��S�	
�H��S�a
�HSKIP��
�S��

�H��WD�

��S�	

�S�b

�

Note that it does not contain code of the form �HSKIP��
� The result of this code

is�
�a �
b�

�

���� TEX macros

We give macro de�nitions for the macros used in code generated by the function
tex�

Preliminaries Command sequence �RM represents the amount of space until right
margin is reached� Its default value is �hsize�

�edef�RM��hsize�

�RMdecr decreases the value of �RM by the amount given in its argument�

�def�RMdecr����dimen�����dimen���RM�advance�dimen� by��dimen��edef�RM��dimen���

We introduce two conditionals that indicate whether or not we are inside a �V or
�HOV�

�newif�ifVMODE�newif�ifHVMODE�VMODEfalse�HVMODEfalse

Boxes in external list We pack the de�nitions of the box macros in the body
of a macro� to ensure that they are not rede�ned� Furthermore� we have two sets
of de�nitions� internal and external� The external de�nitions apply to boxes at the
outermost level� The boxes contained in these are internal boxes�
An external box is either directly at the top level or is contained in a �V box at

the top level� Therefore� each external box starts a new line� see the �par�noindent
at the beginning of the bodies�

�def�EXTERN�L�	

�S� �H and �I are �hbox�s the contents of which are processed with internal de�ni�
tions� The boxes in a �H are not in vertical mode� �I does not change the modes�

�def�S�����par�noindent�hbox��INTERN�L�����	

�def�H�����par�noindent�hbox��INTERN�L�HVMODEfalse�VMODEfalse �����	

�def�I�����par�noindent�hbox��INTERN�L�����	

�def�WD�����par�noindent�setbox���hbox��INTERN�L�����hbox��hskip�wd���	

�HV�s and �HOV�s are set as internal �HV�s and �HOV�s after starting a new line�

�def�HV�����par�noindent��INTERN�L�HV�������	

�def�HOV�����par�noindent��INTERN�L�HOV�������	

A �V only sets �VMODE�

�def�V�����VMODEtrue����	

�	 end of �EXTERN�L

�

Boxes in internal list

�def�INTERN�L�	

As in the external de�nition �S� �H and �I are �hbox�s� The boxes in a �H are not
in vertical mode� �I does not change the modes� The di�erence is that the width
of the boxes is measured ��wd�� and used to decrease the space left on the current
line ��RMdecr��wd�
��

�def�S�����setbox���hbox������copy��RMdecr��wd���	

�def�H�����setbox���hbox��HVMODEfalse�VMODEfalse �����copy��RMdecr��wd���	

�def�I�����setbox���hbox������copy��RMdecr��wd���	

�def�WD�����setbox���hbox������RMdecr��wd���hbox��hskip�wd���	

An internal �V box can not occur according to the assumptions of the translation�
To be prepared for the worst we issue a warning to the user and set the code with
a �vtop�

�def�V�����typeout�WARNING
Box to TeX�� internal V box�	

�vtop��EXTERN�L�HVMODEfalse�VMODEtrue �����	

A �HOV �rst tries to set its contents completely horizontally� Then it tests whether
the resulting box �ts on the line by comparing its width with �RM� If there it does
not �t the contents are set in a vertical box that aligns at the top� otherwise the
horizontal box is placed�

�def�HOV�����setbox���hbox��hor ����	

�ifnum�wd�
�RM�vtop��EXTERN�L�HVMODEfalse�VMODEtrue����	

�else�copy��RMdecr��wd���fi�	

For a �HV the same procedure is followed� The di�erence is that the vertical box
has a �xed width of �RM�

�def�HV�����setbox���hbox��hor ����	

�ifnum�wd�
�RM�setbox���vtop��hsize��RM�VMODEfalse�HVMODEtrue�noindent ����	

�fi�copy��RMdecr��wd���	

�	 end of �INTERN�L

In the implementation of �HOV and �HV we used the macro �hor to force possibly
non�horizontal boxes and skips inside these boxes to behave like �H boxes� Its
de�nition is

�def�hor��VMODEfalse	

�def�HV�����H������	

�def�HOV�����H������	

�def�ISKIP��������HSKIP������	

�def�HVSKIP��������������HSKIP����������

Space Units Units for horizontal� indentation and vertical space can be used to
increase or decrease the spacing in the documentation uniformly�

�newdimen�UH�UH���em	 unit for horizontal space

�newdimen�UI�UI���em	 unit for indentation space

�newdimen�UV�UV��ex	 unit for vertical space

��

Skips A �HSKIP produces a horizontal skip if not in VMODE� an �ISKIP produces
a horizontal skip only in VMODE and a �VSKIP produces a vertical skip in VMODE�

�def�HSKIP����ifVMODE�else�hbox��hskip���UH��RMdecr����UH��fi�

�def�ISKIP������ifVMODE�hbox��hskip���UI��RMdecr����UI��else	

�hbox��hskip���UH��RMdecr����UH��fi�

�def�VSKIP����ifVMODE�ifdim���UV
�pt�par�vskip��lastskip�vskip���UV�fi�fi�

A �HOVSKIP is a �VSKIP in vertical mode and a �HSKIP otherwise�

�def�HOVSKIP������ifVMODE�VSKIP�����else�HSKIP�����fi�

A �HVSKIP takes a box as last argument and decides whether to set it on this line
or on the next� If a completely horizontal setting of the box �with �hor� yields a
box that is less wide than �RM it places the box� Otherwise a new line is started
and the width of the box is compared to the width of the enclosing �HV� If the box
is still to wide it is set non�horizontally� i�e�� possible �HOV�s and �HV inside the box
are allowed to be set vertically�

�def�HVSKIP���������	

�setbox���hbox��hor�HSKIP���� ���	

�ifnum�wd�
�RM�par�noindent�dimen���hsize�edef�RM��dimen��	

�setbox���hbox��VMODEtrue�ISKIP��������hor ���	

�ifnum�wd�
�RM�setbox���hbox��ISKIP�����������fi�fi	

�copy��RMdecr��wd��	

�

Initialization To use the generated code in a document several initializations
have to be done� These initializations are performed by �boxterm or by �freeterm�
The �rst one puts the entire code inside a minipage� so that it can be used in �gures�
The second only does initialization and then sets the code in the surrounding vertical
list� Both macros have two arguments� The �rst argument is the size of the display
and the second argument is the generated code�

�long�def�boxterm������	

�dimen�����edef�RM��dimen���dimen�����edef�HSIZE��dimen��	

�fbox��begin�minipage��t������EXTERN�L�VMODEtrue ���end�minipage����

�long�def�freeterm������

�dimen�����edef�RM��dimen��	

�dimen�����edef�HSIZE��dimen���EXTERN�L�VMODEtrue ����par�

�� Case Study� Typesetting PSF

The process speci�cation formalism PSF �MV��� is an algebraic speci�cation formal�
ism based on process algebra for describing concurrent systems like communication
protocols� It is a formal machine�readable language that can be written as ascii
text� There are several tools for PSF such as a typechecker� a term rewrite system
compiler for data modules and an interactive simulator for processes�
PSF is a typical example of a document language� Its main purpose is not to be

compiled into executable software� but to capture a system with a formal� high�level
description that serves as a standard for many implementations� A documentation
tool for this language is therefore very useful�
With the techniques described in this paper we constructed a typesetter for PSF�

In this section we give an overview of the construction process of the typesetter and
give an example of a typeset speci�cation�

��

Syntax of PSF The syntax of PSF is de�ned in �MV��� as set of BNF rules� We
translated these BNF rules to an SDF de�nition�using a speci�ed BNF to SDF
translator�

Generation and tuning of �PSF� Box� From the syntax de�nition of PSF a
box constructor is generated� The default rules were adapted to the preference of
�MV���� The context�free grammar of PSF is too big to be presented here� therefore
we have selected a context�free grammar rule and give the generated as well as the
adapted pretty print rules for this rule�
The following SDF rule describes the process declaration list in a PSF speci��

cation�

�processes� Process�decl�list� �� Processes

A piece of PSF code described by this context�free grammar rule is�

processes

CLUSTER � PORT

KICK�OFF � PORT

The pretty print generator derives the following default pretty print rules for this
context�free grammar�

�default����

ppProcesses	processes var�Process�decl�list���
 �

H ��processes� ppProcess�decl�list�	var�Process�decl�list���
�

�default�����

ppProcess�decl�list�	var�Process�decl�list���
 �

V �ppProcess�decl�list��	var�Process�decl�list���
�

Independent of the number of elements in the Process�decl�list the pretty printed
text will always have the same format� For example� if these rules are applied to
the PSF code above the result will be�

processes CLUSTER � PORT

KICK�OFF � PORT

If we want to have a more �exible pretty print result we have to adapt these
generated rules� First of all we mark the keywords� so that the TEX back�end can
put them in a special font� for example bold� Secondly we change the generated
pretty print rule in such a way that when the list consists of only one element this
element is printed immediately after the keyword processes� but when the list
consists of more than one element the complete list is printed on a new line with
extra indentation� This is simply achieved by replacing the H operator by the HOV
operator in the right hand side of equation ���� and indenting the declaration list
with I�

���� ppProcesses	processes var�Process�decl�list���
 �

HOV ��KW ��processes��

I �ppProcess�decl�list�	var�Process�decl�list���
��

The result of this adaptation can be found in process module TokenRing below
where a Process�decl�list with one element as well as two elements appear�

Using �PSF� TEX� A PSF speci�cation can be developed with the syntax di�
rected editors in the PSF programming environment generated by the ASF�SDF
meta�environment� These editors have a �TEX� button for the automatic transla�
tion of the PSF speci�cation into TEX code� The generated TEX �le can be included
in a TEX document�

��

Two Complete Modules As a �nal example we show two PSF modules from
�MV���� The �rst is a data module specifying the datatype queue� The second is
a process module that is part of a speci�cation of tokenrings� Note the usage of
fonts� keywords are set in bold type� module names� equation tags� sorts and set
identi�ers in roman and other identi�ers in italic� Note also that pagebreaks can
occur in speci�cations�

data module Queues
begin

parameters

Queue�parameter
begin

sorts Q�ELEMENT
functions

default�q�element � � Q�ELEMENT
end Queue�parameter

exports

begin

sorts QUEUE
functions

empty�queue �� QUEUE
enqueue � Q�ELEMENT QUEUE� QUEUE
serve � QUEUE� Q�ELEMENT
dequeue � QUEUE� QUEUE
length � QUEUE� NATURAL

end

imports Naturals

functions

� � Q�ELEMENT QUEUE� QUEUE

variables

e� e� � � Q�ELEMENT q � � QUEUE

equations

���� enqueue�e� q� � e � q
���� serve�empty�queue� � default�q�element

���� serve�e � empty�queue� � e

��
� serve�e � �e� � q�� � serve�e� � q�
���� dequeue�empty�queue� � empty�queue

���� dequeue�e � empty�queue� � empty�queue

���� dequeue�e � �e� � q�� � e � dequeue�e� � q�
��	� length�empty�queue� � zero

���� length�e � q� � s�length�q��

end Queues

process module TokenRing
begin

exports

begin

processes TOKENRING

end

imports Ports� Ring�Interfaces� Bu�er� Token�Transmission� Utilities

�	

processes

CLUSTER � PORT
KICK�OFF � PORT

sets

of atoms

C � fr�p� d�� s�p� d�
j p in PORT�
d in OCTETg

H � fget�pdu�queued�p� b�� put�pdu�queued�p� b�
j p in PORT�
b in BOOLEANg

� fget�buf�req�p� b�� put�buf�req�p� b�
j p in PORT�
b in OCTETg

variables

p � � PORT

de�nitions

TOKENRING � encaps�C� merge�p in PORT� CLUSTER�p���

CLUSTER�p� �
��is�monitor�p� � true� � TX�TOKEN�p� � KICK�OFF�p�
� �is�monitor�p� � false� � KICK�OFF�p��

KICK�OFF�p� � encaps�H� RI�p� jj Bu�er�p��

end TokenRing

�� Discussion

���� Related Work

Pretty printing with boxes One of the �rst thorough studies of pretty printing
is made by Oppen �Opp	��� He introduces the notion of blocks� which are compa�
rable to boxes and the notion of markings for possible line breaks� He distinguishes
two di�erent kinds of possible line breaks� viz� consistent and �exible ones� The
consistent ones have the same functionality as the HOV operators and the �exible
ones resemble the HV operators�
PPML �MCC	�� �inspiration for the box language presented in Section �� is a

programming language for constructing boxes� PPML supports many more features
than our box language� Among these are computational capabilities that are similar
to rewriting� We do not need such power in our box language since computation can
be performed by the conditional equations� In PPML there is a confusion between
the translation of one language to another and pretty printing a language� PPML
speci�cations can also be processed by the formatting machine FIGUE �Has����
which o�ers the options for changinng fontsizes and colors�
To the best of our knowledge� the way we transform boxes is new�

Pretty printing to TEX Literate programming tools WEB �Knu	
b�� CWEB�
noweb� fweb� nuweb� Some of these tools do pretty printing�
Spider �Ram	�a� Ram	�b� is a generator for WEB tools� The language indepen�

dent parts of Knuth�s original WEB tools are separated from the language indepen�
dent parts such as the pretty printer� The pretty printer can be generated by an
AWK script from a so called pretty print grammar� For a new language a pretty print

��

grammar can be obtained by rewriting a grammar for a language that is similar in
appearance�
MathPad �Mat� is an almost complete WYSIWYG editor for mathematical for�

mulas working with TEX as background process� it has been developed at the Tech�
nical University of Eindhoven�

Other documentation tools There exist several language speci�c documenta�
tion tools� for example for Pascal� C� Ei�el �Mey���� Lotos�
The documentation tool �ASF�SDF� LATEX� �Vis�
� that translates ASF�SDF

speci�cations to LATEX was used to typeset the speci�cations in this paper� Improve�
ment of this tool was the original motivation for the work that we described�

���� Applications

The combination of a powerful pretty printer generator with the �Box� TEX� back�
end o�ers us the possibility of constructing for almost any language a software
documentation tool� Given a context�free grammar in SDF the amount of time
needed to develop such a documentation tool for the language depends heavily on
how sophisticated the documentation tool must be� After having generated the
pretty printer the documentation tool is also available� but it must be tuned to
satisfy the users of the documentation tool�
We have used two languages as case studies� The toy language Pico is a standard

ASF�SDF example� It has a Pascal�like syntax for expressions and statements� An
example of a Pico program which has been typeset can be found in Figure �� In
Section �� we presented a typesetter for PSF �MV����
In the near future we plan to construct documentation tools for a couple of

languages� We discuss a few of these plans�
Typesetting ASF�SDF speci�cations is currently done by a lisp program� We

plan to replace this program using �Box� TEX��
Another application� is the construction of literate programming tools from lan�

guage de�nitions� The WEB approach to literate programming can be applied to
arbitrary languages� In fact� a WEB language can be derived automatically from
the context�free grammar of a language L by providing extra syntax for chunk def�
initions and quotations� By generating a typesetter for the new WEB language�
which incorporates the typesetter for L� we have a new L�WEAVE� By generating
a speci�cation of substitution of chunk names by their bodies we have a new L�
TANGLE� Syntax directed editing� parsing and other tools already speci�ed for L
can be extended automatically to L�WEB�
An application outside the domain of programming languages is typesetting of

long proofs �see for instance �Lam����� If a syntax for proofs based on a syntax
of formulas is written� proofs can be written in ascii and checked for syntactic
correctness and even for other properties� These ascii proofs can then be typeset
automatically by the typesetter generated from the proof syntax� guaranteeing at
least syntactic correctness of the proofs in a publication�

���� Future Work

������ Extensions

In this paper we have de�ned the core of a typesetting tool for programming lan�
guages� Although this core is powerful enough to cope with most typesetting prob�
lems for programming language constructs� users will never be satis�ed with these
possibilities� Therefore� a uniform way of extending the capabilities of generated
typesetters� typesetter generation and the box language is needed�

��

User extensions Di�erent types of users can be distinguishd� First of all there
are users who develop a context�free grammar for a �new� language and want to
generate a documentation tool for this language as well� They must be able to
modify the generated pretty printer and if they feel the need to �extend� the box
language as well as the typesetter� The modi�cation of the generated pretty printer
is simple and well supported� The extension of the box language and typesetter is
more tedious and asks more experience in both writing speci�cations and adapting
TEX macros�
The second group� the users of a programming environment� should not have

to adapt pretty print rules when not satis�ed with the pretty printing of their pro�
grams� Instead user con�guration should be done by setting a few �ags that modify
the behaviour� The language speci�er should design these �ags� A simple way to
take such options into account in the pretty printer� is by adding an extra argument
that contains a list of options to each box construction function and making the
box construction rules conditional where appropriate� if an option governs the style
of a certain construct� then for each value the option can take there is a rule that
constructs the appropriate box under the condition that the option has that value�

Formatter extensions The introduction of new features in the typesetters or
box language can be tackled by de�ning a new box language which incorporates the
core box language and the new operator�s�� Examples of adaptations that can be
made are�

Fonts An obvious extension of the box language is declaration which fonts to use
for the tokens of a language� As an example of extending the box language
we describe in Appendix B the font extension�

Crossreferences and indexing are an important means for making documenta�
tion more accessable� The box language should be extended with declarations
of crossreferences and indexed tokens� These declarations should not depend
on the typesetter used by the back�end�

Comments should be handled in the same way as in the current implementation
of �ASF�SDF� LATEX��

Alignments allow arranging the tokens in several lines of text in columns� This
is a useful feature for formatting� for instance� variable declarations or BNF
rules�

Other structural compositions The box language should o�er a uniform way to
be extended with new structural compositions� such as sub� and superscripts�
over� fractions� etc�

For example� if the documentation writer wants to use the mathematical for�

mula
p
xn

�

�k it is much easier for him to type sqrt x � n � 	��� � k
 instead
of ��frac��sqrt�x�n

���� �cdot k
��

Using a formal language� de�ned by a context�free grammar� to write mathe�
matics o�ers more possibilities for consistency checking than the TEX source�
The pretty printer can produce a clean translation to a typesetting language
like TEX if formula�s� expressions� proofs and other mathematical texts are
written in such a formal �ascii� language�

There is no need to introduce general computational aspects into the box language�
All computation should be dealt with during box construction or during formatting�

��

������ Correctness of box transformations

Another point of future research is not concerned with typesetting but with the
speci�cation techniques used in this paper�
The correctness of box transformations should be proven� We derived equations

on boxes by considering which boxes are treated in the same way by the text for�
matter� Another approach to derive transformations for boxes would be to take
the text formatter as starting point and eliminating the assumptions that it uses
about texts� For instance� the text formatter can compute the width of a text
by assuming that all characters in strings and space have the same width� If we
drop this assumption� i�e�� leave the functions width� hwidth and twidth unde�ned�
terms like hskip�width�� � ��� can no longer be computed� In general� we would
drop all assumptions that depend on the text model� By abstract interpretation of
the text formatter we get a text term that is not completely reduced to a list of
strings� An implementation of the text operators in TEX�or any other typesetting
language!would then give the desired result�

�� Conclusions

We have shown in this paper that by means of algebraic speci�cations we were able
to reuse a rather simple front�end for pretty printing programs in a language L to
build a documentation tool for this language� ASF�SDF proved not only to be
powerful enough to specify all components of the pretty printer generator� but it
inspired us to connect the pretty printer front�end to the TEX back�end�
Given a rather simple but powerful box language we developed a number of

speci�cations which translate box expressions to TEX code� Although TEX is also
based on a kind of boxes this translation could not be done in a straightforward
manner� It was necessary to de�ne a number of text formatting semantics preserving
box transformation rules� ASF�SDF allowed us to de�ne these transformations
in a simple and elegant way� Given these transformation rules we were able to
transform box expressions so that they can be translated easily to TEX code� The
box transformations were essential in order to reduce the nesting level in the box
expression and to lift V boxes to the outermost level
We have used this technique succesfully to construct documentation tools for

the toy language Pico and the speci�cation language PSF� The development of a
documentation tool boils down to the generation of a box constructor� and connect
it to a TEX code producing back�end� To obtain a good documentation tool it is
necessary to tune the generated box constructor so that it produces a satisfactory
code�

Acknowledgements

We thank Susan "Usk"udarl# and Paul Klint for reading and commenting on drafts
of this paper� We thank Sjouke Mauw for providing an ample supply of PSF spec�
i�cations and for critically commenting on the output of our PSF typesetter� The
fast production of the PSF typesetter would not have been possible without Wilco
Koorns BNF to SDF translator�

References

�BHK	�� J�A� Bergstra� J� Heering� and P� Klint� The algebraic speci�cation
formalism ASF� In J�A� Bergstra� J� Heering� and P� Klint� editors�

��

Algebraic Speci�cation� ACM Press Frontier Series� pages �!��� The
ACM Press in co�operation with Addison�Wesley� ��	�� Chapter ��

�Bra��a� M� G� J� van den Brand� Generation of language independent pret�
typrinters� Technical Report P����� programming Research Group�
University of Amsterdam� Amsterdam� October �����

�Bra��b� M� G� J� van den Brand� Prettyprinting without losing comments� Re�
port P����� Programming Research Group� University of Amsterdam�
July ����� Available by ftp from ftp�cwi�nl��pub�gipe as Bra���ps�Z�

�Deu��� Arie van Deursen� A numerical package for ASF�SDF� Technical report�
CWI� Amsterdam� ����� Unpublished report�

�Has��� L� Hascoet� FIGUE An Incremental Graphic Formatter User�s manual

for Version �� INRIA� Sophia�Antipolis� �����

�HHKR��� J� Heering� P� R� H� Hendriks� P� Klint� and J� Rekers� The syntax

de�nition formalism SDF � Reference Manual� version May ��� �����
Earlier version in SIGPLAN Notices� �
�����
�!��� ��	�� Available by
ftp from ftp�cwi�nl��pub�gipe as SDFmanual�ps�Z�

�Kli��� P� Klint� A meta�environment for generating programming envi�
ronments� ACM Transactions on Software Engineering Methodology�
��������!���� �����

�Knu	
a� Donald E� Knuth� The TEXbook� volume A of Computers � Typesetting�
Addison�Wesley� ��	
� �Ninth printing� revised� October ��	���

�Knu	
b� Donald E� Knuth� Literate programming� The Computer Journal�
��������!���� May ��	
� Reprinted as Chapter
 of �Knu����

�Knu��� Donald E� Knuth� Literate Programming� Number �� in CSLI Lecture
Notes� Center for the Study of Language and Information� �����

�Lam��� Leslie Lamport� How to write a long formula� Technical Report ����
DEC Systems Research Center� Palo Alto� California� December ��
����� Minor correction� January �	� ���
�

�Mat� MathPad manual pages� �more information from
mathpad�win tue nl��

�MCC	�� E� Morcos�Chounet and A� Conchon� PPML� a general formalism to
specify prettyprinting� In H��J� Kugler� editor� Information Processing

	
� pages �	�!���� Elsevier� ��	��

�Mey��� B� Meyer� Ei�el� The Language� Prentice Hall Object�Oriented Series�
Prentice Hall� �����

�MV��� S� Mauw and G� J� Veltink� editors� Algebraic Speci�cation of Com

munication Protocols� volume �� of Cambridge Tracts in Theoretical

Computer Science� Cambridge University Press� �����

�Opp	�� D� C� Oppen� Prettyprinting� ACM Transactions on Programming Lan

guages and Systems� ��
��
��!
	�� ��	��

�Ram	�a� Norman Ramsey� Literate programming� Weaving a language�
independent WEB� Communications of the ACM� ����������!�����
September ��	��

��

�Ram	�b� Norman Ramsey� A spider user�s guide� Technical report� Department
of Computer Science� Princeton University� July ��	�� Available by
anonymous ftp from ftp tex ac uk in directory �pub�spiderweb as
part of the distribution of Spider�

�Vis�
� Eelco Visser� Writing course notes with ASF�SDF to LATEX� In T� B�
Dinesh and Susan M� "Usk"udarl#� editors� Using the ASF�SDF environ

ment for teaching computer science� chapter �� ���
� To be presented
at the Workshop on Teaching Formal Methods�

�

A Library Modules

In this section we give the signatures �syntax parts� of the library modules we used in
this paper� Module Layout de�nes layout in speci�cations� Module Booleans de�nes
the datatype Booleans with operations true� false� or� and and not� Modules
Numbers�Syntax and Numbers�Op de�ne the datatype NUM� A NUM is an integer or
a real� The datatype is built on top of a standard numerical package for ASF�SDF
�Deu����
We also give the syntax of identi�ers and the syntax and equations of Strings�

A�� Layout

exports

lexical syntax

��ntnn� � LAYOUT
������nn�� � LAYOUT

A�� Booleans

imports Layout�A���

exports

sorts BOOL

context�free syntax

true � BOOL

false � BOOL

BOOL or BOOL � BOOL fassocg
BOOL and BOOL � BOOL fassocg
not BOOL � BOOL

��� BOOL ��� � BOOL fbracketg
priorities

or � and � not

variables

Bool ���� ��� � BOOL

A�� Numbers�Syntax

imports Int�con�A� Mant�real�con�A� Real�op�A�

exports

sorts NUM

context�free syntax

INT � NUM

REAL � NUM

NUM ��� NUM � NUM fleftg
NUM �	� NUM � NUM fleftg
NUM ��N� NUM � BOOL

NUM �
N� NUM � BOOL

NUM ��N� NUM � BOOL

NUM ��N� NUM � BOOL

�����NUM� � BOOL

hiddens

variables

�r����� ��� � REAL

�hijkmn����� ��� � INT

�N����� ��� � NUM

��

A�� Numbers�Op

imports Numbers�Syntax�A��� Real�op�A� Deal�A� Dint�A�

exports

context�free syntax

�b� NUM �c� � INT

hiddens

variables

N ���� ��� � NUM

n���� ��� � INT

r���� ��� � REAL

dr���� ��� � DOT�REAL

A�� Identi�ers

imports Layout�A���

exports

sorts ID

lexical syntax

�A
Za
z�� � ID

variables

�Id����� ��� � ID

B Fonts

In this appendix we describe the extension of the box language with font operators�

B�� Box Fonts

The operators in the kernel box language determine the structure of the box� Font
operators do not in�uence the structure of a box but determine the appearance of
basic boxes� i�e�� strings�
The argument of a font operator speci�es its shape� f�i�� italic� roman� It is

conceivable that more aspects of a font might be speci�ed such as size� family and
boldness �see the new font selection scheme of TEX for speci�cation of fonts�
 this
has not only relevance for a TEX backend�

imports Box��� Identi�ers�A���

exports

sorts FONT�OPERATOR FONT�PARAM FONT�OPTION FONT�OPTIONS

context�free syntax

FONT�PARAM ��� ID � FONT�OPTION

FONT�PARAM ��� NAT � FONT�OPTION

FONT�OPTION� � FONT�OPTIONS

��F� FONT�OPTIONS � FONT�OPERATOR

FONT�OPERATOR ��� BOX ��� � BOX

FONT�OPERATOR ��� BOX�LIST ��� � BOX�LIST

variables

�fp����� ��� � FONT�PARAM

�fo����� ��� � FONT�OPTION

�fo�������� ��� � FONT�OPTION�
�F����� ��� � FONT�OPERATOR

��

Font Parameters A font is characterized by a series parameters� fn font name

abbreviation for other parameters except size fm �family�� se �series�� sh �shape��
sz �size� and cl �color�
context�free syntax

fn � FONT�PARAM

fm � FONT�PARAM

se � FONT�PARAM

sh � FONT�PARAM

sz � FONT�PARAM

cl � FONT�PARAM

Semantics of Font Operators We show how font operators have no e�ect on
the structural aspects of a box expression and how font operator interact with other
font operators� Font operators distribute over all structural operators�

��� F�O�A��� � O�F�A���

��� F�� �

��� F�A A�� � F�A� B� when B� � F�A��

A font operator without any font changing options is meaningless�

�
� �F �A� � A

Inner font operators inherit font options for a parameter fp from outer font operators
if do not already have an option for that parameter�

��� �F fo�� fp � Id� fo
�
���F fo�� fp � Id� fo

�
��A�� � �F fo�� fo

�
���F fo�� fp � Id� fo

�
��A��

��� �F fo
�
���F fo

�
��A�� � �F fo

�
� fo

�
��A� otherwise

Font Operator Abbreviations In many applications it is useful to abstract
from the actual font that is given to a box� We only want to distinguish �logical
fonts�� We give some font operators that are useful in most programming languages

They distinguish keywords� variables� numbers and math items �such as brackets
and other mathematical symbols�� The formatting backend can give a suitable
de�nition for these operators�

context�free syntax

��KW� � FONT�OPERATOR

��VAR� � FONT�OPERATOR

��NUM� � FONT�OPERATOR

��MATH� � FONT�OPERATOR

��ESC� � FONT�OPERATOR

B�� Box�Fonts to Text

The text formatter we de�ned has a plain ascii display that can not handle fonts
as target� Formatting fonts for these displays is therefore simple� A font operator
applied to some string is just thrown away�

imports Box�to�Text�E����� Box�Fonts�B���

hiddens

variables

m� NUM

��� �F fo
��a��O� m� � a�O� m�

��

B�� Box�Fonts to TEX

imports Box�to�TeX��
��� Box�Fonts�B��� Box�Laws�F����

hiddens

variables

�chr������ ��� � CHAR�

Font Operators A fontname is translated to a command sequence that calls the
font�

��� tex��F fn � id�chr���string���� chr�� ������ � ��S f cs���� chr�� f g string�chr��� g�

We do not yet give a translation for the other font options� These were designed
for use with the New Font Selection Scheme of LATEX� and will be supported in the
near future�
The abbreviations might for instance be de�ned� using LATEX�s fontnames� as

��� �KW � �F fn � bf

��� �VAR � �F fn � sl

�
� �NUM � �F fn � rm

��� �MATH�a� � ��� � a � ���

Several �combinations of� ascii characters can be mapped to mathematical symbols�
To indicate that this is desired the font operator �ESC should be used in the box
construction rules�

��� �ESC����� � ������ ��� �ESC��
�� � ���
��

�	� �ESC����� � ����� ��� �ESC����� � �����

���� �ESC��	�� � ��	�� ���� �ESC��
�� � ��
��

���� �ESC����� � ���� ���� �ESC������ � ���to��

��
� �ESC����� � ��HAT� ���� �ESC����� � �����

���� �ESC��!!�� � ��!!�� ���� �ESC����� � ����

��	� �ESC�� �� � ���cdot�� ���� �ESC��!�� � ��!��

���� �ESC����� � ����� ���� �ESC������ � ���geq��

���� �ESC����� � ����� ���� �ESC������ � ���leq��

��
� �ESC����� � �����

���� �ESC����� � ����� ���� �ESC����� � �����

���� �ESC����� � ����� ��	� �ESC����� � �����

�	

Contents

� Introduction �

� Pretty Printing �

� TEX as Formatter �

� Tool Generation from Algebraic Speci�cations �

�� ASF�SDF �

�� Architecture of text pretty printers �

�� Design of TEX back�end �

	 Box Language

� Text �

��� Strings �
��� Text ��

 Text Formatting ��

��� Box to Text �A� ��
��� Space Options ��
��� Box to Text �B� �

� Indentation ��

	�� Box to Text �C� �

	�� Box Laws �C� ��

� Linebreaking ��

��� Box to Text �D � C � HOV� �	
��� Box Laws �D � C � HOV� ��
��� Box to Text �E � D � HV� ��
��
 Box Laws �E � D � HV� ��

�
 TEX Formatting ��

���� TEX ��
���� Box to TEX ��
���� TEX macros �

�� Case Study� Typesetting PSF ��

�� Discussion ��

���� Related Work ��
���� Applications ��
���� Future Work ��

������ Extensions ��
������ Correctness of box transformations � � � � � � � � � � � � � � � ��

�� Conclusions ��

A Library Modules �	

A�� Layout ��
A�� Booleans ��
A�� Numbers�Syntax ��
A�
 Numbers�Op ��
A�� Identi�ers ��

��

B Fonts ��

B�� Box Fonts ��
B�� Box�Fonts to Text ��
B�� Box�Fonts to TEX �	

�

