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Abstract

An ambiguous context-free grammar defines a lan-
guage in which some sentences have multiple inter-
pretations. For conciseness, ambiguous context-
free grammars are frequently used to define even
completely unambiguous languages and numerous
disambiguation methods exist for specifying which
interpretation is the intended one for each sen-
tence. The existing methods can be divided in
‘parser specific’ methods that describe how some
parsing technique deals with ambiguous sentences
and ‘logical’ methods that describe the intended
interpretation without reference to a specific pars-
ing technique.

We propose a framework of filters to describe
and compare a wide range of disambiguation prob-
lems in a parser-independent way. A filter is a
function that selects from a set of parse trees (the
canonical representation of the interpretations of
a sentence) the intended trees. The framework
enables us to define several general properties of
disambiguation methods.

The expressive power of filters is illustrated
by several case studies. Finally, a start is made
with the study of efficient implementation tech-
niques for filters by exploiting the commutativity
of parsing steps and filter steps for certain classes
of filters.

Key words & phrases: context-free grammars, gen-

eralized parsing, disambiguation, filters

1 Introduction

In the last two decades we have seen the suc-
cessful development of theory and implemen-
tation techniques for efficient, deterministic,
parsing of languages defined by context-free
grammars. As a consequence, the LL(k) and
LR(k) grammar classes and associated pars-
ing algorithms are now dominating the field.

Using parsing techniques based on these
subclasses of the context-free grammars has,
however, several draw backs. First of all, syn-
tax definitions may need to be brought into
an acceptable, but often unnatural, form that
obeys the restrictions imposed by the gram-
mar class being used. More importantly, sub-
classes of the context-free grammars are not
closed under composition, e.g., composing two
LR(1) grammars does not necessarily yield an
LR(1) grammar. Only the class of context-
free grammars itself can support the compo-
sition of grammars which is essential for the
support and development of modular gram-
mar definitions.

The use of natural, modular, grammars is
becoming feasible due to the recent advances
in parsing technology for arbitrary context-
free grammars. Unfortunately, when leaving
the established field of deterministic parsing
one encounters a next obstacle: the language
defined by a grammar may become ambiguous
and mechanisms are needed to disambiguate
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the parse forest (rather than the single parse
tree) that will be produced by the parser. Dis-
ambiguation encompasses the whole spectrum
from simple priority declarations for resolving
ambiguities in arithmetic expressions to the
use of semantic (e.g., type) information for
pruning the parse forest. As a last resort, the
user of the parser may have to resolve ambi-
guities interactively.

In this paper we explore disambiguation
mechanisms for general context-free gram-
mars and their impact on parsing. We will
concentrate on “logical” disambiguation that
can be modeled by a filter on sets of parse
trees. This excludes disambiguation methods
that are inherently intertwined with a specific
parsing technique. We study the expressive-
ness of various filters and their interaction
with parsing: as a general rule simpler filters
can be applied earlier (during parsing or even
during parser generation).

This research was motivated by our ex-
perience with the modular syntax definition
formalism Sdf (Syntax Definition Formal-
ism) [HHKR92] and its implementation based
on generalized LR parsing [Rek92]. Although
quite elaborate disambiguation techniques are
being used (local conflict detection based on
priority and associativity, and a multi-set or-
dering for pruning the parse forest) we keep
encountering examples where more fine-tuned
filtering would be useful. This suggests an
approach based on extensible, user-defined,
disambiguation filters. For efficiency reasons,
it will be advantageous to apply these filters
as early as possible.

The rest of this paper is structured as follows.
In section 2 we consider several characteris-
tics of disambiguation methods. In section
3 we introduce some preliminary terminology
about context-free grammars and parsing. In
section 4 we define the notion filter on sets of
parse trees, the disambiguation of a context-
free grammar by a filter and several properties
of filters. In section 5 we discuss several exam-
ples illustrating the expressive power of filters.

In section 6 we investigate how filters can be
used in generating parsers for disambiguated
languages by considering the implementation
of parsers for context-free grammars with pri-
orities. Finally in section 7 we discuss related
work and related issues.

2 Disambiguation

A disambiguation mechanism for context-free
languages is a procedure that chooses from
a range of possible parses for a sentence the
most appropriate one according to some cri-
terium. The architecture we propose to use
for disambiguation consists of three parts (see
Figure 1):

Grammar description: a context-free
grammar and a set of disambiguation rules.
Disambiguation rules concern lexical disam-
biguation rules (e.g., preference for a longest
match, preference for keywords over identi-
fiers), context-free disambiguation rules (e.g.,
precedence relations between operators), and
static semantic disambiguation rules (e.g.,
type or declaration dependent rules).

Generation phase: a grammar transformer
and a parser generator. Typical grammar
transformations are the elimination of left/
right recursion, and the coding of priority
and associativity information in grammar
rules. Parser generation is most likely based
on standard GLR techniques [Tom85, Rek92].

Parsing phase: a parser/filter pipeline
that transforms input sentences into a sin-
gle (unambiguous) parse tree.

Given this architecture, we can classify disam-
biguation methods according to the following
characteristics:

Interference of context-free grammar
and disambiguation rules. In Figure 1,
we suggest that the given context-free gram-
mar and disambiguation rules are completely
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Figure 1: Phases in parsing with ambiguous grammars

disjoint. In many cases, however, they will
interfere with each other. For instance, dis-
ambiguation rules may be embedded in gram-
mar rules, or the order of grammar rules may
have a significance for disambiguation. In this
paper, we will keep them disjoint.

Dependence on parsing method. Dis-
ambiguation can be defined in terms of parse
actions (and is then closely intertwined with
parsing) or it can be understood indepen-
dently from the parsing method used. We
will adopt this latter view and we consider
the first approach only when it is an imple-
mentation method of the latter.

Moment of disambiguation. Disambigua-
tion can take place during grammar transfor-
mation, during parser generation, and during
post-parse filtering. As a general rule, de-
ferring disambiguation is expensive but can
be used to implement very general methods.

Our strategy will be to define all disambigua-
tion methods as post-parse filters and to seek
implementation techniques that apply them
(transparently but more efficiently) at an ear-
lier moment.

Semantic assumptions. An issue in the
disambiguation of grammars is the question
whether the derivations of an ambiguous sen-
tence should all have the same meaning.
In natural language parsing, this is clearly
not true. In some other approaches like,
e.g., [Tho94a, Tho94b] this seems an essen-
tial assumption. In addition, it is not clear
whether each sentence generated by the un-
derlying CFG should also be a sentence of
the disambiguated grammar. This property
is called ‘completeness’ in [Tho94a]. But if we
consider the language of type-correct Pascal
programs we see that this property does not
hold.
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3 Preliminaries

3.1 Context-free Grammars

Definition 3.1
A context-free grammar (CFG) G is a triple
⟨VN , VT ,P⟩, where VN is a set of nontermi-
nal symbols, VT a set of terminal symbols,
V the set of symbols of G is VN ∪ VT , and
P ⊆ VN × V ∗ a set of productions. We write
A → α for a production p = ⟨A,α⟩ ∈ P. 2

We will sometimes refer to a production by
a number or by an abbreviation of its symbols,
e.g., E → E + E is abbreviated as +.

We will characterize the language gener-
ated by a CFG by the parse trees it generates
instead of by derivations as is usually done.
This method is as clear as derivations and has
the advantage that the semantics of filters is
easily definable.

Definition 3.2 A CFG G generates a fam-
ily of sets of parse trees T G = (T G

X | X ∈ V ),
which contains the minimal sets T G

X such that

X ∈ T G
X ⇐ X ∈ V

[A → tα] ∈ T G
A ⇐ A → α ∈ P ∧ tα ∈ T G

α

where T G
X1...Xn

= {t1 . . . tn | ti ∈ T G
Xi
}. The

signature of a tree is the production used to
construct the root of a tree; sign([A → tα]) =
A → α 2

We omit the superscript G from T G when
the grammar G is clear from context. We will
identify T and

∪
X∈V TX when appropriate.

According to this definition we should
write [E → [E → a]+ [E → b]] for a tree with
yield a+ b. When no ambiguity arises we will
often write this as [a+ b], using only brackets
to indicate the tree structure.

Definition 3.3 The yield1 of a tree t is the
string containing all leaves from left to right,
i.e.

yield(X) = X, if X ∈ VT

yield([A → t1 . . . tn]) = yield(t1)
· · · yield(tn)

The function can be lifted to sets of parse trees
by

yield(Φ) = {yield(t) | t ∈ Φ} 2

Definition 3.4 The language L(G) gener-
ated by a CFG G is the set of strings yield(T G).
The language L(G)A generated by nontermi-
nal A is the set yield(T G

A ). 2

A CFG is ambiguous if it generates at
least two different trees t and s such that
yield(t) = yield(s).

Derivation in the classical semantics of
CFGs and parse trees are similar notions as
is witnessed by the following proposition.

Proposition 3.5 For any CFG G and any
A ∈ VN , α ∈ V ∗: A →∗

G α ⇐⇒ α ∈ L(G)A
2

3.2 Parse Forests

A parse forest is a compact representation of
a set of parse trees. Compaction is achieved
by sharing common subtrees and by packing
different trees for the same yield in one node.
Parse forests can be described by contexts and
sets of contexts.

Definition 3.6 A context C[•] is a parse tree
with exactly one occurrence of a hole •. The
instantiation C[t] of a context C[•] is con-
structed by replacing the hole • by t. We de-
note the set {C[t] | t ∈ Φ} by C[Φ]. Similarly,
Γ[•] denotes a set of contexts and its instan-
tiation Γ[t] is defined as {C[t] | C[•] ∈ Γ[•]}.

2

Sharing of a tree t by a set of trees is rep-
resented by the instantiation Γ[t] of a set of
contexts. Packing of a set of trees in a single
node is represented by the instantiation C[Φ]
of a context with a set of trees. Sharing of a
packed node by a set of trees is denoted by
Γ[Φ].

1Some authors use frontier instead of yield.
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3.3 Parsing

Definition 3.7 A parser is a function Π
that maps each string w ∈ V ∗

T to a set of
parse trees. A parser Π accepts a string w
if |Π(w)| > 0. A parser Π is deterministic if
|Π(w)| ≤ 1 for all strings w. A parser for a
CFG G that accepts exactly the sentences in
L(G) is defined by

ΠG(w) = {t ∈ T | yield(t) = w} 2

We restrict our attention to pure parsers
that do not modify parse trees during parsing.

An example of an implementation of pars-
ers for arbitrary CFGs is Tomita’s generalized
LR algorithm [Lan74, Tom85, Rek92]. Such a
generalized parser produces a parse forest as
representation of a set of trees by packing all
trees for a subsentence v, the set Φ = ΠG(v),
in a single node and sharing that node in all
trees built for the sentence in which v is em-
bedded, i.e., if uvw is a sentence and parsing
the sentence u •w produces ΠG(u •w) = Γ[•]
then the forest for the whole sentence can be
constructed as ΠG(uvw) ⊇ Γ[Φ].

4 Filters

Ambiguous context-free grammars produce
multiple interpretations for some of the sen-
tences they generate. A language definition
should unambiguously assign to each string a
single interpretation. Therefore, if a language
definition is based on a context-free grammar,
it should select from the multiple interpreta-
tions given by the grammar the most appro-
priate one. We formalize the specification of
selection of an appropriate interpretation by
the notion of parse tree filters. It will turn
out that most ‘logical’ disambiguation meth-
ods can be expressed by means of filters.

Definition 4.1 A filter F for a CFG G is a
function F : ℘(T ) → ℘(T ) that maps sets
of parse trees to sets of parse trees, where
F(Φ) ⊆ Φ for any Φ ⊆ T . The disambigua-
tion of a CFG G by a filter F is denoted

by G/F . The language L(G/F) generated by
G/F is the set

{w ∈ V ∗
T | ∃Φ ⊆ T G : yield(Φ) = {w}

∧ F(Φ) = Φ}

The interpretation of a string w by G/F is the
set of trees F(ΠG(w)). A filter F2 is also ap-
plicable to a disambiguated grammar G/F1,
which is denoted by (G/F1)/F2 and is equiv-
alent to G/(F2 ◦ F1). 2

Given a set of parse trees Φ for some sen-
tence w, a filter selects the ‘correct’ parse
tree(s) in Φ yielding a reduced set of trees
Φ′ ⊆ Φ. The condition F(Φ) ⊆ Φ ensures
that filters do indeed reduce the set of trees
instead of inventing new ones. A trivial ex-
ample of a filter that satisfies this condition is
the identity function on sets of parse trees.

Often we will define a filter in negative
terms by specifying which trees are ‘wrong’
and then throw away the wrong trees from a
set of trees.

A disambiguated CFG G/F generates a
subset of the language generated by G, i.e., a
string w is only in the language generated by
G/F if there is at least one tree with yield w
that is not rejected by the filter.

This is a very general definition allowing
arbitrary functions as filters. Later in this
paper we will consider several classes of filters
that use less powerful functions.

4.1 Properties of filters

We can now investigate several properties of
filters.

Definition 4.2 A filter is completely disam-
biguating when |F(ΠG(w))| ≤ 1 for all w ∈
V ∗. 2

This is a useful property if the parse trees
are input for a next, semantic, processing
phase; no provisions have to be made for sets
of trees in such a phase. A more restrictive
property is completeness:
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Definition 4.3 [Tho94a] A filter F is com-
plete for a CFG G if w ∈ L(G) ⇒ |F(ΠG(w))| =
1. 2

Actually, Thorup defines a parser to be
complete if it produces exactly one ‘canonical’
parse tree for each sentence in the language of
its underlying CFG.

Corollary 4.4 If F is complete for G then
L(G) = L(G/F) 2

Definition 4.5 A filter F for a CFG G is lo-
cal if for each set of contexts Γ[•] ⊆ T [•] and
each Φ ⊆ T

F(Γ[Φ]) ⊆ Γ[F(Φ)]

A filter is global if it is not local. 2

Global filters are counter intuitive: rejec-
tion by a global filter of a tree for some sub-
string of a sentence does not imply that that
tree can not be a subtree of a parse tree for
the sentence. A local filter is transparent: a
rejected tree can not be a subtree of any larger
tree. This means that a local filter can be ap-
plied to a local ambiguity instead of to the en-
tire set of complete parse trees for a sentence.
It seems that a disambiguation method that
can be defined in terms of a local filter is both
intuitive and easy to implement.

Definition 4.6 A filter F is incremental if
for each pair of sets of parse trees Φ1, Φ2

F(F(Φ1) ∪ F(Φ2)) = F(Φ1 ∪ Φ2) 2

A generalized parser constructs sets of
parse trees for local ambiguities in an incre-
mental fashion. If a filter is incremental, it
can be applied to a set whenever an element
is added; if it is not incremental application
to a set is only legal if the set is completed.

Definition 4.7 Two filters F1 and F2 are
commutative if for each set of trees Φ

F1(F2(Φ)) = F2(F1(Φ))

i.e, if their composition commutes:

G/F1 ◦ F2 = G/F2 ◦ F1 2

Definition 4.8 A filter F for a CFG G is
context-free if there is an unambiguous CFG
G′ and a function tr : T G′ → T G such
that L(G′) = L(G/F), i.e., G′ generates the
same language as G/F , and tr(ΠG′(w)) ∈
F(ΠG(w)). A filter is context-dependent if it
is not context-free. 2

4.2 Specification of Filters

Filters can be defined in many ways. We will
consider two special classes of filters that are
defined in terms of predicates and relations on
trees.

Definition 4.9 The filter FE generated by
the unary predicate E (exclude) on trees is de-
fined by

FE
A(Φ) = {t ∈ Φ | ¬E(t)}

A predicate E is compositional if for each tree
t and each context C[•] E(t) ⇒ E(C[t]). 2

A filter FE selects all trees which do not
have property E . The predicate characterizes,
for instance, trees with a conflict. Composi-
tionality of a filter-predicate ensures that if a
tree has a conflict, any tree composed from it
has a conflict as well. This implies that to un-
derstand a conflict in a sentence one only has
to consider the smallest part of the sentence
that has the conflict.

Proposition 4.10 A filter FE is local iff E
is compositional.
Proof. (⇐) Let Γ[•] a set of contexts and Φ
a set of trees. If t ∈ F(Γ[Φ]), then ¬E(t) and
t = C[t′] such that C[•] ∈ Γ[•] and t′ ∈ Φ.
Since E is compositional we have that ¬E(t′)
and therefore t′ ∈ F(Φ) and thus t ∈ Γ[F(Φ)].

(⇒) Assume E is not compositional, i.e.,
there is some tree t and context C[•], such
that E(t) and not E(C[t]). Then F({C[t]}) =
{C[t]} ̸⊆ ∅ = C[F({t})] and thus FE is not
local. 2
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Definition 4.11 The predicate E is defined
in terms of E by E(t) =

∨
s∈sub(t) E(s), where

sub(t) denotes the set of all subtrees of t. 2

Note that E is always compositional.

Definition 4.12 The filter F≺ generated by
the relation ≺ is defined by

F≺(Φ) = {t ∈ Φ | ¬∃t′ ∈ Φ : t′ ≺ t}

A relation ≺ is compositional if

∀s, t, C[•] : s ≺ t ⇒ C[s] ≺ C[t] 2

A filter F≺ selects the minimal trees in
a set according to the order ≺. Note that if
≺ is reflexive or symmetric, the filter F≺ re-
jects all trees. For instance, given any CFG
G, G/F= defines the empty language. The
notation ≺ suggests that the most useful fil-
ters of this kind are based on strict partial
orders, i.e., if ≺ is transitive, irreflexive and
antisymmetric. If ≺ is a strict partial order,
F≺ is monotonous, i.e., F≺(Φ1) ⊆ F≺(Φ2) if
Φ1 ⊆ Φ2, which adds to the clarity of a dis-
ambiguation method.

Proposition 4.13 A filter F≺ is local iff ≺
is compositional.
Proof. (⇐) Assume F not local, i.e., there
are Γ[•], Φ and s = C[s′] ∈ Γ[Φ] such that
s ∈ F(Γ[Φ]) but s ̸∈ Γ[F(Φ)]. Thus ¬∃t ∈
Γ[Φ] : t ≺ s, i.e., ∀t ∈ Γ[Φ] : ¬t ≺ s and espe-
cially ∀t′ ∈ Φ : ¬C[t′] ≺ C[s′] then, by com-
positionality of ≺, ∀t′ ∈ Φ : ¬t′ ≺ s′ which
is equivalent to ¬∃t′ ∈ Φ : t′ ≺ s′ but this is
in contradiction with ∃t′ ∈ Φ : t′ ≺ s′ which
follows from s ̸∈ Γ[F(Φ)].

(⇒) Assume that ≺ is not compositional,
i.e., there are some s, t and C[•] such that
s ≺ t∧¬C[s] ≺ C[t]. But then F(C[{s, t}]) =
C[{s, t}] ̸⊆ C[{s}] = C[F({s, t})], which con-
tradicts the fact that F is local. 2

4.3 Parsers for G/F

By definition a filter can always be used as a
post-parse procedure to prune the parse for-

est, i.e., ΠG/F = F ◦ ΠG . For efficiency rea-
sons it is attractive to apply the disambigua-
tion rules described by a filter as early in the
parse process as possible.

The problem of producing the most effi-
cient parser from an abstract specification of
a filter is probably undecidable. However, for
certain classes of filters efficient parsers are
possible. By considering many disambigua-
tion methods in this one framework of filters
crossovers between implementation strategies
might arise.

Definition 4.14 An approximation of a par-
ser for G/F is a parser Π such that for any
string w

F(ΠG(w)) ⊆ Π(w) ⊆ ΠG(w) 2

If F is a local filter for a CFG G, we can
construct an approximation Π for G/F by fil-
tering any local ambiguity as soon as it is
constructed. Formally, if ΠG(v)A = Φ and
ΠG(u•Aw)B = Γ[•A] then Π(uvw) ⊆ Γ[F(Φ)]
If there are no trees left in a local ambigu-
ity the parser that corresponds to it can be
stopped, yielding the empty set of trees.

Parsing schemata are abstract specifica-
tions of parsing algorithms. In section 6 we
will start an investigation of the implementa-
tion of parsers for grammars disambiguated
by filters based on parsing schemata.

5 Case Studies

In order to assess the feasibility of using filters
for the disambiguation of context-free gram-
mars we present case studies that illustrate
the expressive power of our method.

Priorities are a conventional tool for dis-
ambiguation and have been proposed in many
forms. In sections 5.1 and 5.2 we study the
disambiguation mechanism of Sdf which con-
sists of a filter for priority conflicts and a filter
for priority comparisons, both derived from a
single priority declaration.
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Extensible languages are typical exam-
ples of languages that are not in the scope
of context-free grammars disambiguated by
filters. The definition of a filter presumes
a set of possible trees from which it selects
appropriate ones. A grammar for an exten-
sible language must somehow describe how
new productions, i.e., new tree forms, can
be introduced. However, restricted forms of
extensibility, like Prolog’s user-defined opera-
tors, are in the range of filters (section 5.3).

Landin’s offside rule is a disambiguation
method based on indentation. In section 5.4
we define this method by a filter.

A restricted class of filters based on pat-
tern matching is described in 5.5.

5.1 Priority Conflicts

Disambiguation by precedences or priorities
is used by many grammar formalisms in var-
ious instantiations [Ear75, AJU75, Joh75,
HHKR92, Aas92]. In this and the next section
we study priorities in the syntax definition
formalism Sdf [HHKR92]. An Sdf priority
declaration induces a strict partial order on
grammar productions combined with asso-
ciativity declarations. From the priority and
associativity declarations R two filters FER

and F≺R
are derived. The first removes trees

with priority conflicts and the second selects
trees which are minimal with respect to a
multiset ordering on trees.

We do not use the notation of Sdf for the
declaration of priorities but a notation simi-
lar to Earley’s notation for precedence rules
in [Ear75] that is more suitable for theoreti-
cal exposition as in this paper. The concrete
notation of Sdf can be translated to the ab-
stract notation used here. There have been
many proposals for the interpretation of Sdf
priorities; here we follow [Kli88].

Definition 5.1 A priority declaration R for
a CFG G is a tuple ⟨L,R,N, >⟩, where ⊕ ⊆
P × P for ⊕ ∈ {L,R,N, >}, such that L, R
and N are symmetric and > is irreflexive and

transitive. 2

The relations L, R and N declare left-,
right- and non-associativity, respectively, be-
tween productions. The relation > declares
priority between productions. A tree with sig-
nature p1 can not be a child of a tree with
signature p2 if p2 > p1.

Definition 5.2 A tree t has a root priority
conflict ER(t) if it violates a right- or non-
associativity rule

A → Bα RR B → β ∨A → Bα NR B → β

ER([A → [B → tβ] sα])

or violates a left- or non-associativity rule

A → αB LR B → β ∨A → αB NR B → β

ER([A → sα [B → tβ]])

or violates a priority rule

A → αBγ >R B → β

ER([A → sα [B → tβ] sγ ])

A tree t has a priority conflict, if ER
(t). 2

According to definition 4.9 we can now

construct the filter FER
. Thus the semantics

of the pair ⟨G,R⟩ is the disambiguated CFG

G/FER
. By definition of E in terms of E we

have the following:

Corollary 5.3 FER
is a local filter. 2

Example 5.4 The usual example for priori-
ties is the following grammar Gexp for arith-
metic expressions that is completely disam-
biguated by the priority relation Rexp

Gexp = E → E + E | E − E | E ∗ E
| E ↑ E | − E | (E)
| a | b | . . .

Rexp = −E > ↑ > ∗ > {+,−}
+ L +, − L−, + L−, ∗ L ∗
↑ R ↑,
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Now we have, for instance,

FERexp
(ΠGexp(a+ b+ c))

= FERexp
({[a+ [b+ c]], [[a+ b] + c]})

= {[[a+ b] + c]}

because + L + 2

According to the definition above a root
priority conflict of a tree can be detected by
looking at the signature of the tree and at the
signatures of its children. The following ver-
sion of the predicate is somewhat stronger in
that it looks through chain rules.

Definition 5.5 The function ecr (chain rule
elimination) yields the first subtree that is not
an application of a chain rule:

ecr(X) = X
ecr([A → tB]) = ecr(tB)
ecr([A → tα]) = [A → ecr∗(tα)],

if |α| ̸= 1 2

Definition 5.6 A tree t has a root priority
conflict modulo chain rules if ER

c (t):

ER
c (t) ⇐⇒ ER(ecr(t)) 2

5.2 Multiset Ordering

After selecting the conflict-free trees from a
set there might still be more than one tree in
the set. The next filter that is used by Sdf
selects trees by comparing trees with respect
to a multiset ordering ≺ on trees.

Definition 5.7 A multiset is a function M :
P → N that maps productions to the num-
ber of their occurrences in the set. The union
M ⊎ N of two multisets M and N is defined
as M⊎N(p) = M(p)+N(p). The empty mul-
tiset is denoted by ∅, i.e., ∅(p) = 0 for any p.
We write p ∈ M for M(p) > 0. A multiset
with a finite number of elements with a fi-
nite number of occurrences can be written as
M = {p1, p1, . . . , p2, . . .}, where M(p) is the
number of occurrences of p in the list. 2

Definition 5.8 A tree t is translated to a
multiset by • : T → (P → N) as

X = ∅
[A → tα] = {A → α} ⊎ tα

ϵ = ∅
tαtβ = tα ⊎ tβ

Definition 5.9 Given some priority declara-
tion R, the order ≺R on multisets is defined
as

M ≺R N ⇐⇒ M ̸= N ∧
∀y ∈ M : M(y) > N(y) ⇒

∃x ∈ N : y >R x ∧M(x) < N(x) 2

The motivation for this ordering is that it
prefers parse trees that are constructed with
the smallest possible number of productions
of the highest possible priority.

Given a priority declaration R, we can
now construct the filter F≺R

using definition
4.12 that selects those trees which are minimal
with respect to the multiset ordering induced
by the priority declarations.

Proposition 5.10 [Kli88] The multiset or-
dering ≺R on trees is compositional.
Proof. a) If t1 ≺R t2 then t1 ̸= t2 and thus
T1 = C[t1] ̸= C[t2] = T2. b) Assume T1(y) >
T2(y), then t1(y) > t2(y). Since t1 ≺R t2,
∃x ∈ t2 : y >R x ∧ t1(x) < t2(x), then also
∃x ∈ T2 : y >R x ∧ T1(x) < T2(x). From a)
and b) we conclude that C[t1] ≺R C[t2]. 2

Example 5.11 The following grammar is a
typical example of the working of the multi-
set order for the disambiguation of overloaded
operators.

Gbexp = R → R+R | R ∗R | N | r
N → N +N | N ∗N | n

Rbexp = ∗N > ∗R > +N > +R,
+N L +N ,+R L +R

Given the string n+ n the following trees are
generated by the grammar (with number of

9
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occurrences of productions):

tree # +N # +R

[N → [N → n] + [N → n]] 1 0
[R → [R → n] + [R → n]] 0 1

Some other combinations of strings and trees:

n+ n+ n [N → [N → +]n]
n+ n+ r [R → [N → n+ n] + r]
n+ n ∗ r [R → n+ [R → n ∗ r]] 2

The following examples give illustrations
of grammars that can not or not appropri-
ately be disambiguated with priority rules.

Example 5.12 Another well-known example
is the following grammar for statements with
a dangling-else construct.

Gie = S → iSeS
S → iS

Rie = ie > i

This disambiguation is correct according to
the conventional solution of this problem in
that it forbids an i as first descendant of ie,
as we can see from the parses of the sentence
iiSeS

Rie(ΠGie(iiSeS))
= Rie({[i[iS]eS]), [i[iSeS]]})
= {[i[iSeS]]}

where the first parse is filtered out because
it contains a priority conflict against ie > i.
However, the sentence iSeiS is not a member
of L(Gie/R) since [iSe[iS]] is the only tree in
TS with the right yield and it has a priority
conflict against ie > i. 2

Example 5.13 A more serious problem of
precedences is posed by the following gram-
mar that defines arithmetic expressions by
one generic production for binary operators.

Ggop = E → E O E
O → + | ∗ | · · ·

This grammar can not be disambiguated like
the grammars in example 5.4, although it is
useful when generic operations on the trees
have to be defined. 2

5.3 Operators in Prolog

Several languages have mechanisms for intro-
ducing new infix, prefix and postfix operators
and declaring their precedence and associativ-
ity. Here we study a mechanism that allows
the user to introduce new operators with rela-
tive priority instead of with absolute priority
as in Prolog [Bra90]. The meaning of the pri-
orities is the same as in the previous sections,
but since the priority declarations are part of
the tree, the definition of the filter is more
complicated.

Grammar The CFG Gprolog describes a lan-
guage of programs P that consist of a list of
clauses C that are either operator declarations
D or expressions E. There is an infinite sup-
ply of operators O and priority between op-
erators can be declared by the relations R, L
and > which have the same meaning as be-
fore. A declaration is valid from the point
of introduction until the end of the program
unless overruled by a new declaration.

Gprolog = O → +| ∗ | . . .
A → [a− z]+
D → O RO | O LO | O > O
E → EOE | A | (E)
C → D | E
P → C.P | ϵ

Global filter A filter for these programs se-
lects those trees that have expression trees
that do not violate the priority declarations
earlier in the tree. The first method checks
a program tree by traversing it from left to
right, checking each expression tree with the
priority information it has collected earlier in
the traversal.

10
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Definition 5.14 The predicate ER is de-
fined as follows on program trees

ER([e.p]) ⇐⇒ ER
(e) ∨ ER(p)

ER([d.p]) ⇐⇒ ER∪{d}(p)

and for expression trees

ER([[e1 ⊕ e2]⊗ e3]) ⇐ ⊕ R⊗ ∨⊗ > ⊕
ER([e1 ⊕ [e2 ⊗ e3]]) ⇐ ⊕ L⊗ ∨⊕ > ⊗

The filter for sets of P -trees over Gprolog can
now be defined as

F(Φ) = {t ∈ Φ | ¬E∅(t)} 2

Local filter Another approach to selecting
the right tree is by means of a local filter. The
basic idea of the filter as defined below is that
it infers the priority constraints posed by each
subtree of a tree. If these constraints form an
inconsistent statement the subtree can never
be correct with respect to any priority decla-
ration.

Definition 5.15 The function pr maps trees
in T Gprolog to first-order logical formulas.

pr([A → x]) = ∀⊗,⊕,⊖ :
⊗ > ⊕ ⇒ ¬⊕ > ⊗ ∧ ¬ ⊕ L⊗ ∧¬ ⊕ R⊗

∧ ⊗ > ⊕ ∧⊕ > ⊖ ⇒ ⊗ > ⊖
∧ ⊗ L⊕ ⇒ ⊕ L⊗ ∧ ¬ ⊗ R⊕
∧ ⊗ R⊕ ⇒ ⊕ R⊗ ∧ ¬ ⊗ L⊕

pr([E → E → e1 ⊗ e2]) =
(op(e1) > ⊗ ∨ op(e1) L⊗) ∧ pr(e1) ∧
(op(e2) > ⊗ ∨ op(e2) R⊗) ∧ pr(e2)

pr([P → e.p]) = pr(e) ∧ pr(p)
pr([P → d.p]) = d ∧ pr(p)

where op([A → x]) = x and op([E → e1 ⊕
e2]) = ⊕. The filter can now be defined as

Fpr(Φ) = {t ∈ Φ|∃R : R |= pr(t)} 2

Example 5.16 Sentence:

∗ > +.a+ b ∗ c.

Trees:

pr((∗ > +).((a+ b) ∗ c).) = ∗ > + ∧+ > ∗
= ⊥

pr((∗ > +).(a+ (b ∗ c)).) = ∗ > +
2

Example 5.17 Sentence:

a+ b ∗ c+ d.

Trees:

pr(((a+ b) ∗ (c+ d))) = + > ∗
pr((((a+ b) ∗ c) + d)) = + L ∗
pr(((a+ (b ∗ c)) + d)) = ∗ > + ∧+ L +
pr((a+ ((b ∗ c) + d))) = ∗ > + ∧+R+
pr((a+ (b ∗ (c+ d)))) = + R ∗ 2

It is clear that this disambiguation method
can not be applied at parser-generation time,
but can very well be applied at parse-time.

Aasa [Aas91, Aas92] describes a disam-
biguation method for a limited class of context-
free grammars with distfix operators based
on a predicate on trees. This filter is used
to transform CFGs into disambiguated CFGs
which generate the same trees.

5.4 Offside Rule

Several languages use the offside rule to en-
force uniform indentation and at the same
time reduce the number of keywords for sep-
arating constructs. The rule was first for-
mulated by Landin [Lan66] and later (but
shorter) by Richards [Ric84] as:

None of an expression’s tokens can
lie to the left of its first token.

In the following definition disambiguation by
the offside rule is defined by means of a filter.

Definition 5.18 Associate with each occur-
rence of a terminalX ∈ VT its horizontal posi-
tion h(X). Associate with each tree t = [A →
t1 . . . tn] its horizontal position h(t) = h(t1)
and its minimal horizontal position hm(t) =
minni=1(hm(ti)). A tree t is offside (o(t)) if
hm(t) < h(t). The grammar G/Fo is disam-
biguated by the offside rule. 2

11
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5.5 Pattern Matching Filters

In section 5.1 we saw how priorities can be
defined in terms of a unary predicate that
checks every node of a tree for a priority vi-
olation, i.e., if it matches some pattern that
indicates a priority conflict. This method is
part of a larger class of disambiguation meth-
ods based on pattern matching. This class
is attractive since it is weak enough to im-
plement efficiently and it is strong enough to
resolve ambiguities in the area of precedence
and associativity in an elegant way.

Definition 5.19 A tree t matches a tree
(pattern) q, if q ⋄ t:

X ⋄ X
A ⋄ [A → tα]

[A → q1 . . . qn] ⋄ [A → t1 . . . tn]
⇐

∧n
i=1 qi ⋄ ti

If Q is a set of patterns then Q ⋄ t if there is
some q ∈ Q such that q ⋄ t. 2

(This definition can easily be extended
such that ⋄ yields a substitution of the
variables—indexed nonterminals–in the pat-
tern, if patterns are linear. We will write
σ = q ⋄ t to indicate that σ is a substitution
such that qσ = t.)

Subtree Exclusion Thorup [Tho94b] de-
scribes a disambiguation method that consists
of specifying a set of tree patterns that are
excluded from trees produced by a parser. In
terms of filters this works according to the fol-
lowing

Definition 5.20 Given a set Q of tree pat-
terns, the subtree exclusion filter FQ is defined
by

FQ(Φ) = {t ∈ Φ | ¬∃s ∈ sub(t) : Q ⋄ s} 2

Disambiguation by priority conflicts as de-
fined in section 5.1 can be defined in terms of
subtree exclusion by translating the rules in a
priority declaration R to a set of tree patterns

QR that characterize trees with priority con-
flicts. For example, if ∗ > + ∈ R, then the
pattern ((E + E) ∗ E) is illegal and therefore
the tree ((a+ b) ∗ c) is illegal.

Definition 5.21 A priority declaration R
derives a pattern set QR as follows:

A → αB L B → β ∈ R
⇒ [A → α[B → β]] ∈ QR

A → Bα R B → β ∈ R
⇒ [A → [B → β]α] ∈ QR

A → BαB N B → β ∈ R
⇒ [A → [B → β]αB] ∈ QR
∧ (A → Bα(B → β)) ∈ QR

A → αBβ > B → γ ∈ R
⇒ [A → α[B → γ]β] ∈ QR 2

Proposition 5.22 A tree has a root priority
conflict (Definition 5.2) according to a prior-
ity declaration R iff it matches one of the pat-
terns in QR, i.e., ER(t) ⇐⇒ QR ⋄ t 2

Subtree exclusion is strictly more expres-
sive than priorities as a disambiguation mech-
anism: Proposition 5.22 proves that each pri-
ority declaration can be expressed as a sub-
tree exclusion filter. Example 5.13 showed the
grammar with generic syntax for infix oper-
ators E → EOE that could not be disam-
biguated with priorities. By excluding pat-
terns like

[E → E [O → ∗] [E → E [O → +] E]]

the intended disambiguation can be achieved.
This higher expressivity of subtree exclusion
is due to the fact that arbitrarily deep pat-
terns can be specified, while priorities provide
fixed pattern templates—corresponding to as-
sociativity and precedence—that are always 2
levels deep. Like priorities, subtree exclusion
is not expressive enough for a correct disam-
biguation of the dangling-else grammar in ex-
ample 5.12. This is due to the fact that this
problem can not be solved with a finite num-
ber of fixed depth patterns. Below we will
propose to solve this problem by the use of
higher-order patterns.
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Rewrite Rules LaLonde and Des Rivieres
[LR81] describe a disambiguation method for
operator grammars—with productions of the
form E → E⊕E—that works by translating a
grammar to an unambiguous right-associative
CFG—with productions E → T O E and
O → ⊕—and defining tree transformations
that transform a tree over the unambiguous
grammar to the correct tree over the ambigu-
ous grammar. Such a transformed grammar
is implemented by a deterministic parser that
yields right-associative trees that are trans-
formed after parsing to the correct form by
generic rules like

[E → [E → E1[O → ⊕]E2][O → ⊗]E3]
⇒ [E → E1[O → ⊕]

[E → E → E2[O → ⊗]E3]],
if ⊗ > ⊕

The transformation system is specialized for
operator precedence information. A general-
ization of this technique is achieved by apply-
ing an arbitrary tree rewrite system instead of
operator transformations; for instance, to ex-
press that ∗ > +, the rewrite system contains
a rule

[E → [E → E1 + E2] ∗ E3]
→ [E → E1 + [E → E2 ∗ E3]]

Thorup [Tho94a] uses this idea in a method
for the disambiguation of CFGs by TRSs:

Definition 5.23 A tree or term rewrite sys-
tem (TRS) is a set E of tree pairs (s, t). A tree
t rewrites in one step to a tree s in a TRS E
(t →E s) if t = C[t′], s = C[s′] and there is
a pair (q, p) ∈ E such that σ = q ⋄ t′ and
pσ ⋄ s′. A tree t rewrites to a tree s if t →+

E s.
2

Definition 5.24 If E is a TRS, then FE is
the filter defined by

FE(Φ) = {t ∈ Φ | ¬∃s ∈ Φ : t →+
E s} 2

Conjecture 5.25 Rewrite filters FE are lo-
cal. 2

The grammar G/FE is not implemented
by post-parse filtering, but the TRS is used
for the solution of conflicts in LR parse ta-
bles. The input for the algorithm is a CFG G
and a TRS E, the output is a complete, lin-
ear time parser Π and a TRS E′ = E ∪ E′′ if
such a pair exists, indication of failure other-
wise. The parser Π is a deterministic parser
for L(G), that produces for each sentence w a
tree t in normal form with respect to E′, i.e.,
there is no tree s such that t →+

E′ s.
Disambiguating rewrite rules can be de-

rived from semantic equations s = t that ex-
press that two trees (patterns) s and t have
the same meaning. If the yields of the lhs
and rhs of such an equation are the same,
i.e. yield(s) = yield(t), a disambiguation rule
choosing either one can be derived. This is
especially appropriate for associative opera-
tors as in a ⊕ (b ⊗ c) = (a ⊕ b) ⊗ c. Thorup
[Tho94a] assumes s = t if yield(s) = yield(t)
and neither s →+ t nor t →+ s.

Higher-Order Patterns Several disam-
biguation problems can not be described by
fixed-depth patterns. We propose a language
of higher-order patterns that adds expressive
power to pattern matching; it allows the cor-
rect specification of the disambiguation of the
dangling-else grammar from example 5.12.

Definition 5.26 A higher-order tree pattern
is an element from the set

H = T ∪ { .
α,

.
β,

.
γ, . . .} ∪ (VN ×H∗)

We write (A →∗ q1 . . . qn) for an element of
VN ×H∗. A tree t matches with a higher or-
der pattern q if they are in the relation q 3 t:

X 3 X
A 3 A → α(tα)

[A → qα] 3 [A → tα] ⇐
∧

X∈α qX 3 tX
[A →∗ q⃗] 3 [A → t⃗] ⇐ q⃗ 3 t⃗

.
α q⃗ 3 t⃗1t⃗2 ⇐ q⃗ 3 t⃗2
qq⃗ 3 t1t⃗2 ⇐ q 3 t1 ∧ q⃗ 3 t⃗2
q⃗ 3 t⃗0[A → t⃗1 ]⃗t2 ⇐ q⃗ 3 t⃗0t⃗1t⃗2

2
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Example 5.27 The dangling-else grammar
can now be disambiguated by excluding all
subtrees that match with

[S → i [S →∗ .
α i S] e S]

This pattern matches any tree of the form

i e

α i

6 Implementation

Filters are an attractive method for the dis-
ambiguation of context-free grammars be-
cause they specify the interpretation of a sen-
tence in a logical manner and can be imple-
mented as post-parse filter. An implemen-
tation consisting of a standard generalized
parser in combination with a post-parse filter
allows fast prototyping of, and experimen-
tation with, new disambiguation methods.
However, deferring filtering until parsing is
complete can be expensive, because many
trees built during parsing are thrown away
afterwards. If a tree is rejected by a filter af-
ter parsing we can look at the parse steps that
created it and see at which point the reason
for rejection is introduced. These facts can
be used to apply filter rules during parsing or
even when constructing the parser. We start
an investigation into the derivation of effi-
cient parsers for context-free grammars dis-
ambiguated with filters by refining the parsing
schema for the Earley parsing algorithm.

Parsing Schemata Parsing schemata are
defined by Sikkel in [Sik93, Sik94] as ‘an inter-
mediate level of abstraction between context-
free grammars and parsers’. We will not give a
lengthy introduction to parsing schemata but

refer the reader to the above mentioned liter-
ature.

Parsing schema 6.1 describes Earley’s
parsing algorithm for arbitrary context-free
grammars. ‘Parsing’ with this schema con-
sists of finding the items derivable from the set
of hypotheses H = {[ai, i− 1, i] | 1 ≤ i ≤ n}
containing the tokens for the string a1 . . . an
to be parsed. The declaration of IEarley de-
fines parse items of the form [A → α • β, i, j]
for each production A → αβ and for each
pair of positive integers i and j. The items
from the set IEarley can be deduced from H
according to the rules in DEarley. Step DInit

predicts a sentence for start symbol S.2 The
DPred step predicts a production B → γ at
position j if it is needed for the completion
of an item [A → α • Bβ, i, j]. The DScan

and DCompl steps finalize the recognition of
a subconstruct. The rules are defined such
that an item [A → α • β, i, j] can only be
deduced if there is some tS ∈ TS such that
tS = C[[A → tαβ]], yield(tα) = ai+1 . . . aj and
yield(C[A]) = a1 . . . ai A γ for some γ.

Earley with Trees An Earley item [A →
α•β, i, j] is an abstraction of the set of partial
parse trees

{[A → tαβ] | yield(tα) = ai+1 . . . aj}

In parsing schema 6.2 Earley items have been
replaced by Earley tree-items where the list
of symbols before the dot is replaced by a
list of trees, i.e., [A → α • β, i, j] becomes
[A → tα • β, i, j]. Note how trees are built
as a result of the steps DScan and DCompl.
Schema 6.2 is an item refinement of schema
6.1; each item [A → α • β, i, j] in the latter
represents the set of items

{[A → tα • β, i, j] | yield(tα) = ai+1 . . . aj}

in the former.

2Up to this point we did not use CFGs with start symbols; any symbol of a CFG can be the start symbol.
This situation can be created in CFGs with start symbol by adding a production S → A for each A ∈ V .
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Parsing Schema 6.1 (Earley)

IEarley = {[A → α • β, i, j] | A → αβ ∈ P ∧ 0 ≤ i ≤ j},
DInit = {⊢ [S → •γ, 0, 0]},
DPred = {[A → α •Bβ, i, j] ⊢ [B → •γ, j, j]},
DScan = {[A → α • aβ, i, j], [a, j, j + 1] ⊢ [A → αa • β, i, j + 1],
DCompl = {[A → α •Bβ, h, i], [B → γ•, i, j] ⊢ [A → αB • β, h, j]},
DEarley = DInit ∪DPred ∪DScan ∪DCompl 2

Parsing Schema 6.2 (Earley with Trees ET)

IET = {[A → tα • β, i, j] | A → αβ ∈ P ∧ 0 ≤ i ≤ j ∧ tα ∈ Tα},
DInit = {⊢ [S → •γ, 0, 0]},
DPred = {[A → tα •Bβ, i, j] ⊢ [B → •γ, j, j]},
DScan = {[A → tα • aβ, i, j], [a, j, j + 1] ⊢ [A → αa • β, i, j + 1],
DCompl = {[A → tα •Bβ, h, i], [B → tγ•, i, j] ⊢ [A → tα[B → tγ ] • β, h, j]},
DET = DInit ∪DPred ∪DScan ∪DCompl 2

Schema ET recognizes a string if an item
of the form [S → tγ•, 0, n] can be deduced.
Therefore, we can define a parser for arbitrary
CFGs as

ΠET
G (w) =
{[S → tγ ] | ET(G)(w) ⊢ [S → tγ•, 0, n]}

(where n is the length of w). An implementa-
tion of a disambiguated grammar G/F is the
parser F ◦ΠET

G . This parser can be optimized
if more information about a specific (class of)
filter(s) is available. As an example we study
the optimization for the priority conflict filter

FER
as defined in section 5.1.

Earley with Priorities By the definitions
in sections 4 and 5.1 we have

FER
(Φ) = {t ∈ Φ | ∀s ∈ sub(t) : ¬ER(s)}

Combining this with the specification of ΠET
G

gives

FER
(ΠET

G (w)) =
{[S → tγ ] | ET(G)(w) ⊢ [S → tγ•, 0, n] ∧

∀s ∈ sub([S → tγ ]) : ¬ER(s)}

Following this specification we have to check
every subtree of a final tree for a conflict viola-
tion with predicate ER. In parsing schema 6.3
(ETP) this check is formulated in the decla-
ration of the set of items IETP by forbidding
items—and therefore parse steps—that repre-
sent a tree with a priority conflict.

An extra check has been built in the pre-
dict rule DPred to prevent the prediction of
productions that would lead to an attempt to
a complete with items [A → tα •Bβ, h, i] and
[B → tγ•, i, j] that would be forbidden be-
cause the resulting item [A → tα[B → γ] •
β, h, j] has a priority conflict.

The restriction on items in IETP is rather
general and it is not clear how to implement
it; it seems that at each step all items in-
volved have to be checked completely for pri-
ority conflicts. Predicate ER considers only
the signatures of the root and the direct de-
scendants of a tree. Furthermore, for each
kind of violation just one of the descendants
of the roots is considered. These two consider-
ations lead to parsing schema EP (6.4). The
items are normal Earley items again and the
priority check is transferred to step DCompl
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Parsing Schema 6.3 (Earley with trees and priorities ETP)

IETP = {[A → tα • β, i, j] | A → αβ ∈ P ∧ 0 ≤ i ≤ j ∧ tα ∈ Tα ∧ ¬ER
([A → tαβ])},

DInit = {⊢ [S → •γ, 0, 0]},
DPred = {[A → tα •Bβ, i, j] ⊢ [B → •γ, j, j] | ¬ER

([A → tα[B → γ]β])},
DScan = {[A → tα • aβ, i, j], [a, j, j + 1] ⊢ [A → αa • β, i, j + 1],
DCompl = {[A → tα •Bβ, h, i], [B → tγ•, i, j] ⊢ [A → tα[B → tγ ] • β, h, j]},
DETP = DInit ∪DPred ∪DScan ∪DCompl 2

Parsing Schema 6.4 (Earley with priorities EP)

IEP = {[A → α • β, i, j] | A → αβ ∈ P ∧ 0 ≤ i ≤ j},
DInit = {⊢ [S → •γ, 0, 0]},
DPred = {[A → α •Bβ, i, j] ⊢ [B → •γ, j, j] | ¬ER([A → α[B → γ]β])},
DScan = {[A → α • aβ, i, j], [a, j, j + 1] ⊢ [A → αa • β, i, j + 1],
DCompl = {[A → α •Bβ, h, i], [B → γ•, i, j] ⊢ [A → αB • β, h, j]

| ¬ER([A → α[B → γ]β])},
DEP = DInit ∪DPred ∪DScan ∪DCompl 2

where trees are built. The check in rule DPred

is still useful to prevent unnecessary predic-
tions. The lhs of an item no longer records
the trees that are recognized, since all trees
in items that are constructed have passed the
priority conflict filter and have no influence
on conflicts caused by their right siblings.

Implementation Currently we are imple-
menting schema ETP by a standard general-
ized LR parser that checks for priority conflict
violation at each reduction. This implemen-
tation is not only useful for disambiguation by
priorities but can also be used for, e.g., sub-
tree exclusion. It seems interesting to build
an LR parse-table generator based on schema
EP—possibly refined to SLR(1). The goto
and predict functions would not have a single
symbol as input but a tree skeleton of one level
deep, i.e., a terminal or a production. The in-
crease in the number of states is a problematic
factor which requires further study.

7 Discussion

Many disambiguation methods for context-
free grammars for programming languages
have been proposed since the early seventies.
We can only briefly sketch here some of the
related work.

Lexical Disambiguation Disambiguation
of the lexical tokens of a language is based
on disambiguation rules that differ from those
used at the context-free level. Typical rules
are to prefer the longest match, to prefer key-
words, or to disambiguate using type infor-
mation obtained from a symbol table lookup.
Experiments like, for instance [SC89], show
that reasonably efficient lexical analysis can
be implemented using techniques for parsing
of context-free languages. It is therefore con-
ceivable that our filtering approach can also
be applied at the lexical level.

Disambiguation of operators, prece-
dences Disambiguation of arithmetic op-
erators is most commonly done by assigning
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a priority to each operator and to resolve
conflicting priorities during parsing. Tradi-
tionally, resolution of priority conflicts and
parsing are closely intertwined. Techniques
for disambiguation have been applied in all
phases discussed earlier in Section 2: gram-
mar transformations, heuristic resolution of
table conflicts during parser generation, rule
based resolution, and post-parse filtering of
parse trees.

Typical grammar transformations are the
elimination of left/right recursion, and the
coding of priority and associativity informa-
tion in grammar rules.

Aho et al. [AJU75] describe how pars-
ers for ambiguous grammars of binary expres-
sions can be disambiguated with associativity
and precedence declarations. This technique
is applied by Johnson in the parser generator
YACC [Joh75].

Earley [Ear75] describes a general scheme
of precedence relations on context-free pro-
ductions but only indicates how these could
be used in static disambiguation. Precedences
in the definition of programming languages
are also discussed in [Aas91].

User definable disambiguation is, for in-
stance, used in Prolog by declaring the abso-
lute priority and associativity of operators.

The order of the productions in a context-
free grammar is used in [Wha76] (backtrack-
ing) and YACC [Joh75] (resolution of shift/
reduce conflicts).

Wharton [Wha76] defines a backtracking
parser that is guided by an ordering on parse
steps. This ensures a single parse for any sen-
tence over any grammar. However, this res-
olution of ambiguity is not based on the lan-
guage being defined but on properties of the
grammar productions.

In [HHKR92] (Sdf) a strict partial order
on productions is used as well as relative as-
sociativity of productions. This involves the
detection of priority conflicts, and a multiset
ordering on trees.

Thorup [Tho92, Tho94a, Tho94b] de-
scribes a technique of resolving LR and LL

conflicts based on a set of rewrite rules over
parse trees. A consequence of this work is
disambiguation by exclusion of a set of tree
patterns from the set of legal trees generated
by a grammar.

Semantic Disambiguation Disambigua-
tion can also be combined with the further se-
mantic processing of parse trees. For instance,
during static semantic checking (type check-
ing) of a tree disambiguation can be done
using type information. Examples of this
approach based on attribute grammars can
be found in [Aas92, Vel88a, Vel88b, OS92].
Van den Brand [Bra92] describes parse time
application of semantic predicates in affix
grammars (a variant of attribute grammars).
His technique can also be applied to lexical
disambiguation. Parr and Quong [PQ94] de-
scribe a disambiguation method that mixes
syntactic and semantic disambiguation in LL
parsers. Static semantic restrictions on parse
trees are also used in [BC93, MS93]

An even stronger form of semantics-direct-
ed disambiguation can be found in languages
like, e.g., APL where execution and parsing of
a program occur simultaneously and decisions
regarding parsing can depend on the outcome
of execution.

Filters The notion of “filtering” as a means
of disambiguation has been proposed by other
authors as well. A separation between disam-
biguation and parsing is described in [LR81]
where post-parse transformations on trees are
used to produce the right parse tree. The idea
appears also in e.g., [Aas92]. In our approach,
the treatment of filters and their properties
is more abstract and completely independent
from the underlying parsing techniques.

In the framework of parsing schemata
[Sik93] the notion of filtering is used for de-
scribing refinement relations between parsing
algorithms.

In several approaches the user is queried
interactively to filter ambiguities. An appli-
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cation of user-directed filtering is described in
[Sha88] where a modification of YACC is used
that reports parse conflicts during parsing (in-
stead of during parser generation) and lets the
user solve them. This technique is proposed
as a solution of parsing documents in vari-
ous ambiguous mark-up languages. Tomita
[Tom85] also describes resolution of ambigui-
ties by the user. The implementation of Sdf
([HHKR92]) uses interactive dialogs to filter
ambiguities that could not be resolved by pri-
orities.

We did not propose a formalism for the
specification of filters, since we mainly ex-
plored their semantics. Section 4.2, however,
already suggests an approach to the specifi-
cation of filters using predicates or partial or-
ders, thus abstracting from the application of
these to sets of trees or to parse forests.

Unparsing Disambiguation does not only
play a role for parsing but also for unpars-
ing, i.e., generating a string for some seman-
tical value. If parse trees are mapped to ab-
stract syntax trees and in this process bracket
functions are considered as identity functions
(e.g., (x) and x are identified at the level of ab-
stract syntax trees), there is a problem during
the reverse mapping of abstract syntax trees
to parse trees since the right brackets may
have to be introduced. For disambiguation
methods based on precedence relations there
is some body of knowledge how to do this.
For arbitrary filters new theory is needed in-
dicating how to unparse in this general case.
Blikle [Bli89] describes the derivation of con-
crete syntax from abstract syntax. The equa-
tions that translate abstract to concrete syn-
tax remind us of the algebraic specification
of pretty printers in [Bra93]. Blikle’s method
breaks down when the syntax becomes too
concrete, i.e., when brackets become optional.
Thorup’s disambiguation method [Tho94a] is
aimed at solving that problem. However, un-
parsing is not addressed by him.

8 Conclusions

We have presented filters as a unifying frame-
work for a large class of existing disambigua-
tion methods. This framework can handle all
‘logical’ disambiguation methods but is not
suited for defining parser-specific methods.

All disambiguation methods expressed as
filter can be implemented by post-parse filter-
ing. This gives a way of experimenting easily
with new methods without having to adapt a
given parser generator.

For us, the main merit of this framework is
an increased understanding of the relationship
between parsing and disambiguation. This
insight may help during the design of new
disambiguation methods and their integration
with grammar definition formalisms.

Our initial ideas sketched in Section 6 sug-
gest that a separation of parsing and filtering
at the conceptual level does not exclude the
use of efficient parsing techniques at the im-
plementation level.
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