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Abstract. In this paper we design a syntax definition formalism as a family
of formalisms. Starting with a small kernel, various features for syntax de-
finition are designed orthogonally to each other. This provides a framework
for constructing new formalisms by adapting and extending old ones. The
formalism is developed with the algebraic specification formalism Asf+Sdf.
It provides the following features: lexical and context-free syntax, variables,
disambiguation by priorities, regular expressions, character classes and modu-
lar definitions. New are the uniform treatment of lexical syntax, context-free
syntax and variables, the treatment of regular expressions by normalization
yielding abstract syntax without auxiliary sorts, regular expressions as result
of productions and modules with hidden imports and renamings.
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1 Introduction

1.1 General

New programming, specification and special purpose languages are being developed
continuously [C+94]. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preprocessors, user definable infix or distfix operators in pro-
gramming languages, grammars as signatures in algebraic specification formalisms,
and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by Chomsky
in 1956 [Cho56]. A context-free grammar is a set of string rewrite rules of the form
α → A. A string w is member of the language described by a grammar G if it can
be rewritten to the start symbol S, i.e., if there is a sequence w = α0 → α1 → . . . →
αn = S and each step has the form αiβiγi → αiBiγi where βi → Bi is a production
in G.

Despite, or maybe due to, the simplicity of this basic structure there has never
emerged a standard formalism for syntax definition. The Backus Naur Form (bnf)
[Bac59, N+60], originally developed for the definition of the syntax of Algol, is a
commonly used notation for context-free grammars, but it does not have the status
of a standard. Several standard notations for syntax definition have been proposed
[Wir77, Wil82]. None of these has been convincing, instead a number of similar or
overlapping formalisms exist.
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The reason for this divergence is that a practical syntax definition formalism
serves not only to define languages, i.e, sets of strings. Syntax definitions are also
interpreted as recognizers that decide whether a string belongs to a language, as
parsers that map strings to parse trees, as mappings from parse trees to abstract
syntax trees and as syntax directed editors. Plain context-free grammars are not ad-
equate for this purpose. To support the compact definition of languages, formalisms
can provide a variety of features as extensions to the basic structure: character clas-
ses, regular expressions, disambiguation by associativity and priority declarations,
reuse by modularization, interfacing between the formalism and its environment,
e.g. mapping to abstract syntax. Furthermore, various extensions of context-free
grammars are developed for attaching semantics to grammars: attribute grammars
[Knu68], affix grammars [Kos71], and definite clause grammars [PW80]. Examples
of formalisms built on one or more of these themes are: lex [LS86], yacc [Joh75],
PSG [BS86], Cigale [Voi86], synthesizer generator [RT89], Metal [Aus89], Sdf
[HHKR92], txl [CC93] and pccts [PQ94]. An overview of available syntax defini-
tion tools is provided by [MR94].

The combination of features that a formalism provides is, necessarily, rather
arbitrary and strongly influenced by the expected application of definitions and the
environment in which generated tools have to operate. Although it is not desirable
to include all conceivable features in a formalism—some features can not be combi-
ned with others and too many features results in an unmanageable formalism—the
similarities between different formalisms can be exploited by reusing parts of the
design and implementation of old formalisms. However, formalisms are conven-
tionally designed in a monolithic way, containing an intertwined mix of features,
resulting in a formalism with a lack of orthogonality and uniformity that is difficult
to implement, extend and use for other applications than the intended ones. Syntax
definition formalisms form no exception to this rule.

1.2 A Family of Formalisms

In this paper we set out to design syntax definition formalisms in a modular way, as
a family of formalisms each extending a small kernel with some feature for syntax
definition. This approach should result in more orthogonal and uniform formalisms
and should make it easier to (a) construct formalisms that use some subset of a
set of known features, (b) adapt formalisms for use in other applications areas, (c)
implement tools for such formalisms and (d) design new formalisms that combine
new features with existing ones.

As a first step to accomplish this goal we design a concrete formalism with a
restricted set of features that are useful in many application areas, but in particular
in the application of grammars as signatures for algebraic specifications of program-
ming languages. The result is a complete syntax definition formalism Sdf1 that can
be seen as an improvement of the formalism Sdf. It incorporates several concepts
and techniques introduced in [HHKR92] in a more consequent way.

We use the algebraic specification formalism Asf+Sdf to formally specify the
family of syntax definition formalisms. The development of Asf+Sdf specificati-
ons is supported by an interactive environment [Kli93] that supports execution of
specifications by interpretation as term rewrite systems.

In the next section we define strings of symbols, the abstract notion of a grammar
and several possible interpretations of grammars. Sections 3 through 7 define several
syntax definition features. An overview of these features is given at the end of the
next section. Section 8 gives an overview of the appendices. Section 9 evaluates the
design and draws some conclusions from this project.



A Family of Syntax Definition Formalisms 91

2 Symbols and Grammars

2.1 Symbols

Syntax definitions define languages, i.e. sets of strings of symbols. Without specify-
ing a concrete alphabet of symbols, we declare the sort Symbol. A string of symbols
is a list of zero or more symbols. The function ++ concatenates strings. We will use
this operator also as concatenation operator for other list sorts.

imports LayoutB.1

exports
sorts Symbol Symbols
context-free syntax

Symbol∗ → Symbols
Symbols “++” Symbols → Symbols {assoc}

variables
[ABC][0-9 ′]∗ → Symbol
[αβγ][0-9 ′]∗ → Symbol∗
[αβγ]“+”[0-9 ′]∗ → Symbol+

(1) α ++ β = α β

Note that we do not make a distinction between terminal and nonterminal sym-
bols. Whether a symbol is a terminal or nonterminal symbol is determined by the
interpretation and is not fixed syntactically. A symbol that plays the role of a ter-
minal in one view can be a nonterminal in another view. An example is a literal
that can be considered as a terminal token or as a nonterminal that is defined in
terms of characters. In examples we will use the syntax for basic symbols of Sdf1:
literals between double quotes, e.g., "aliteral", sorts start with a capital, e.g.,
ASort, and character classes are written as [a−z]. The definition of literals, sorts
and character classes can be found in appendices G, H, and I, respectively. It is im-
portant to note that we do not commit to any specific notation for things like sorts
and literals. We design the family of formalisms in such a way that we can easily
switch to another notation for literals without affecting the rest of the framework.

2.2 Grammars

All syntax definition formalisms we will specify consist of grammars. The only
generic operations on grammars that we define at this point are an associative com-
position operation that is used to combine grammars and the constant ∅ representing
the empty grammar.

imports LayoutB.1

exports
sorts Grammar
context-free syntax

“∅” → Grammar
Grammar Grammar → Grammar {assoc}
“(” Grammar “)” → Grammar {bracket}

variables
“G”[0-9 ′]∗ → Grammar

(1) ∅ G = G
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Symbols

Grammar

Bool Term
rec[[•]](•) parse[[•]](•)

abs[[•]](•)
filter[[•]](•)

unparse[[•]](•)

pt[[•]](•)

Figure 1: Grammar interpretation functions.

(2) G ∅ = G
(3) G G = G
(4) G1 (G2 G3) = G1 G2 G3

2.3 Interpretation

A grammar defines first and foremost a set of strings of symbols—a language. The
relation between a grammar and the language it defines is specified by a recognition
predicate on the universe of strings. Apart from this fundamental interpretation of
a grammar, many other interpretations are useful. In this paper we will consider
parsers, unparsers, filters, and abstraction functions.

imports Grammars-Syntax2.2 Symbols2.1 BooleansB.2 ATerms3.4

exports
context-free syntax
rec “[[” Grammar “]]” “(” Symbols “)” → BOOL
pt “[[” Grammar “]]” “(” ATerm “)” → BOOL
yield “[[” Grammar “]]” “(” ATerm “)” → Symbols
parse “[[” Grammar “]]” “(” Symbols “)” → ATerm
filter “[[” Grammar “]]” “(” ATerm “)” → ATerm
abs “[[” Grammar “]]” “(” ATerm “)” → ATerm
unparse “[[” Grammar “]]” “(” ATerm “)” → Symbols

Figure 1 summarizes the signature of grammar interpretation functions. (Throug-
hout this paper we use • to indicate some unspecified argument of a function.) The
sort Term covers parse trees, abstract syntax trees and sets of parse trees. We will
use both ‘term’ and ‘tree’ to refer to tree-like structures. We briefly discuss the
functions.

Recognition The recognition function rec[[G]](•) for a grammar G is a predicate on
strings of symbols that characterizes the strings in the language L(G) defined
by G.

Parse Trees The function pt[[G]](•) characterizes the terms that are correct parse
trees for grammar G.

Parsing A parser parse[[G]](•) is a function that maps strings in L(G) to sets of
parse trees. The inverse of this function is yield that maps parse trees to strings.
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Filtering A filter function filter[[G]](•) selects a subset of a set of parse trees. Filters
are used to model disambiguation. In [KV94] several properties and examples
of filters are discussed.

Abstraction An abstraction function abs[[G]](•) maps parse trees to abstract syntax
trees.

Unparsing An unparser unparse[[G]](•) maps abstract syntax trees to strings of
symbols.
The following laws should be satisfied by any specification of these functions.

T ∈ parse[[G]](α) ⇐⇒ pt[[G]](T ) ∧ yield[[G]](T ) = α

rec[[G]](yield[[G]](T )) ⇐⇒ pt[[G]](T )

filter[[G]](parse[[G]](α)) ⊆ parse[[G]](α)

T ∈ abs[[G]](parse[[G]](unparse[[G]](T )))

2.4 Features

The rest of this paper is devoted to the specification of several common features for
syntax definition. Figure 2 shows the import graph of the various extensions.

The specification of a feature starts with the definition of its syntax. Normali-
zation defines how this syntax can be tranlated to a subset of the syntax. This is
done either directly by equations on the syntax, e.g., the equation

p∗1 p p∗2 p p∗3 = p∗1 p p∗2 p∗3

expresses that multiple occurences of a production p in a list of productions can
be replaced by one occurence, or, in case such equations would lead to a non-
terminating rewrite system, normalization is defined through a normalization func-
tion, e.g., the equation

r[[A?]] = syntax

→ A?
A → A?

expresses that the optional construct A? generates two productions. For each fea-
ture all interpretation functions for recognition, parse trees, parsing, filtering, and
abstract syntax are defined, in principle; a feature for which the syntax normalizes
to the constructs of another formalism, can reuse the interpretation functions of
that formalism. The various aspects of a feature are each defined in a separate
module. Figure 3 shows a typical import graph for the cluster of modules defining
a single feature.

We give an overview of the features.

Kernel Sdf introduces context-free productions of the form α → A. A kernel
grammar is a set of productions. Based on this structure we define the interpre-
tation functions for recognition, parse trees, parsing and abstract syntax trees.
(Section 3)

Basic Sdf provides a method to combine the grammars for lexical and context-free
syntax in one grammar. A similar method is provided for the definition of syntax
for variables. The interface between lexical and context-free syntax is defined
by normalizing definitions to kernel grammars with the function b[[•]]. This
normalization uses the new symbol constructors ⟨•-LEX⟩, ⟨•-CF⟩ and ⟨•-VAR⟩.
If G is a definition over Basic Sdf, then a string α is parsed by parse[[b[[G]]]](α).
(Section 4)
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Priority

p[[•]]

Regular
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Literal

Character
Class

l[[•]]
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Figure 2: Import graph of a family of syntax definition formalisms. The formalism
Sdf1 is the combination of all the features described in this paper. Normal arrows
show the import relation. Dashed arrows show domain and range of normalization.

Priority Sdf provides disambiguation by a priority and associativity relation on
productions. The normalization function p[[•]] derives productions from priority
declarations and priority declarations from productions, so that no redundant
declarations are needed. Syntax for abbreviation of chains of priorities is nor-
malized by means of semantic equations. Priorities are interpreted by a filter
on sets of parse trees that selects the minimal parse trees without priority or
associativity conflicts. (Section 5)

Regular Sdf provides abbreviations for iteration, optional constructs and alternati-
ves by means of regular operators on symbols (∗, +, ?, and |). The normalization
function r[[•]] adds productions for each symbol. (Section 6)

Modular Sdf provides a structure of named modules on top of grammars. Mo-
dules consist of a series of exports and hiddens sections. Other modules can
be imported in a module. Imports can be included either in exports or in
hiddens sections. Renamings of symbols and productions can be applied to im-
ported modules to prevent name clashes and to instantiate generic modules. The
normalization function m[[•]](•) yields the grammar corresponding to a named
module. (Section 7)

Literal Sdf provides syntax for literals. The normalization function l[[•]] defines
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Figure 3: Import graph of a feature cluster.

literals by adding productions using character classes. (Section G)
Sort Sdf provides syntax for sort names and declaration of sorts. Sorts are only

used to check that no unintended symbols are used in productions. (Section H)
Character Class Sdf provides a compact description of sets of characters. Nor-

malization of character classes is expressed by semantic equations. (Section I)
Sdf1 combines all features above. A series of module declarations d is normalized

by first extracting the flattened grammar for a module and then normalizing
using the normalization functions of the other features, i.e., the grammar G cor-
responding to a module named M in a definition d is G = l[[p[[r[[b[[m[[d]](M)]]]]]]]].
(Section K)

3 Kernel Sdf: Context-free Productions

3.1 Syntax

The basic structure of our grammars is the context-free production. A production
α → A! is a tuple of a list of symbols α, a symbolA, and an optional list of attributes
! (we use the exclamation mark ‘!’ as variable for attributes). The function syntax

maps a list of productions to a grammar. (To distinguish the object language from
the meta language we write all tokens of the object language in a typewriter font.)

imports Symbols2.1 Grammars-Syntax2.2 Kernel-Sdf-AttributesD.1

exports
sorts Production Productions
context-free syntax
Symbols “→” Symbol Attributes → Production
Production∗ → Productions
Productions “++” Productions → Productions {right}
“syntax” Productions → Grammar

variables
[p][0-9 ′]∗ → Production
[p]“∗”[0-9 ′]∗ → Production∗
[p]“+”[0-9 ′]∗ → Production+

(1) p∗1 ++ p∗2 = p∗1 p∗2

Conventionally, productions are written as A → α in context-free grammars to
emphasize the generative view of grammars; they describe how to generate a string
from a specific start symbol. The unconventional notation for productions that we
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inherit from Sdf emphasizes the functional view of productions when used in the
context of algebraic specification. A production coincides with the declaration of
name and type of a function. However, there is no fundamental difference with other
notations for productions as in bnf, yacc [Joh75] or any of its variants. Indeed,
we could define a version of Sdf that uses the A ::= α notation of bnf and define
its meaning by translating to the notation used here.

3.2 Normalization

Composition of grammars consisting of sets of productions is equal to the compo-
sition of the sets. Lists of productions should be considered as sets. This entails
that multiple occurences of the same production can be reduced to one occurence
as is expressed by equation (4). Note that the property expressed by equation (4)
is often not recognized by parser generators, resulting in reports of ambiguities.

imports Kernel-Sdf-Syntax3.1

(1) syntax = ∅
(2) syntax p∗1 syntax p∗2 = syntax p∗1 p∗2

(3) G syntax p∗1 syntax p∗2 = G syntax p∗1 p∗2

(4) p∗1 p p∗2 p p∗3 = p∗1 p p∗2 p∗3

3.3 Recognition

The predicate rec[[G]] characterizes the strings of the language defined by G, i.e.,

L(G) = {α | rec[[G]](α) = true}

A set of productions describes a rewrite system on strings of symbols. A string α is
member of the language L(G) described by a grammar G if it can be rewritten to a
symbol A. Equation (4) expresses this rewrite property: a string αβγ is recognized
if there exists a production β → A and the string αAγ is recognized.

imports Kernel-Sdf-Normalization3.2 BooleansB.2 Grammar-Interpretation2.3

exports
context-free syntax
rec “[[” Productions “]]” “(” Symbols “)” → BOOL
rec “[[” Productions “]]” “(” Symbols “·” Symbols “)” → BOOL

(1) rec[[syntax p∗]](α) = rec[[p∗]](α)

(2) rec[[p∗]](α) = rec[[p∗]]( · α)
(3) rec[[p∗]](A · ) = true

(4)
rec[[p∗1 β → A ! p∗2]](α A · γ) = true

rec[[p∗1 β → A ! p∗2]](α β · γ) = true

(5)
rec[[p∗]](α A · γ) = true

rec[[p∗]](α · A γ) = true

Productions are context-free because the context α•γ of the string β has no influence
on the rewrite step β → A. This entails that a rewrite step can take place at any
point in a string. The auxiliary predicate controls the searching for substrings to be
reduced by dividing the string in two parts. A substring is only reduced if it occurs
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Parse
Forest filter[[•]](•)

Parse
Tree abs[[•]](•)

Abstract
Syntax Tree

ATerm
parse[[•]](•)

Symbols Grammar

Figure 4: Signature of terms. A generic term datatype is used to model various
forms of trees.

right before the dot and matches the left-hand side of a production [equation (4)].
By an application of equation (5) the dot can be shifted to the right. We could
have done without the auxiliary predicate by removing the dot and equation (5).
However, this techniques, known as shift-reduce backtrack recognition (see, e.g.,
[AU72]), cuts down the search space considerably and enables us to actually use
this specification as a prototype.

Generally there are many ways to rewrite a string given a set of productions.
The rewrite process can be infinite if there exist empty productions (→ A) or cyclic
productions (A → B → · · · → A); empty productions even increase the size of
the ‘reduced’ string. Although the specification has infinite reductions for cyclic or
ϵ-grammars, for acyclic, ϵ-free grammars this specification is terminating and can
be used as an executable prototype. It is not supposed to be efficiently executable,
though. A whole array of techniques from parsing theory can be applied to optimize
this specification.

3.4 Terms

The recognition predicate in the previous section specifies which strings are gene-
rated by a set of productions. To analyze strings we want to use the structure
assigned to strings by a grammar. This structure is defined in terms of trees in the
following way. If for 1 ≤ i ≤ n △Ai

are parse trees of type Ai and A1 . . .An → A
is a production, then the tree

△A1
. . . △An

A1 . . .An → A

is a parse tree of type A. A complete example of a parse tree is shown in Figure 5(a).
The language of AsFix terms [Kli94] is a generic representation for applicative,
annotated terms. It was developed as a fixed representation language for Asf+Sdf.
We will use this language to represent all kinds of tree-like structures we need, i.e.,
parse trees, parse forests (or sets of parse trees) and abstract syntax trees. Figure 4
shows how the sort of terms is divided into several classes of terms.

imports LiteralsG.2

exports
sorts ATerm
context-free syntax
Literal → ATerm
“[” ATerm ATerm “]” → ATerm
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1

1 → E +

0

0 → E

E + E → E

(a) Parse tree

E + E → E

1 → E 1

[ AT AT ] → AT

+

0 → E 0

[ AT AT ] → AT

AT ; AT → AT

AT ; AT → AT

[ AT AT ] → AT

(b) AsFix representation

Figure 5: Parse tree and its AsFix representation. The sort ATerm is abbreviated
to AT.

ATerm “;” ATerm → ATerm {right}
nil → ATerm
ATerm “/” ATerm → ATerm {left}
“(” ATerm “)” → ATerm {bracket}

variables
T [0-9 ′]∗ → ATerm

priorities
ATerm “/”ATerm → ATerm > ATerm “;”ATerm → ATerm

(1) nil; T = T

(2) T; nil = T

(3) (T1; T2); T3 = T1; T2; T3

This syntax should be interpreted as follows: [T1 T2] is the application of the
term T1 (a function) to the term T2 (its argument), nil is the empty list, T1;T2 is
concatenation of the lists or list items T1 and T2, T1/T2 is the annotation of T1 with
T2.

3.5 Parse Trees

To represent parse trees as terms we extend the definition of terms in the previous
section with productions and symbols.

imports ATerms3.4 Kernel-Sdf-Normalization3.2 Grammar-Interpretation2.3

exports
context-free syntax
Production → ATerm
Symbol → ATerm

The example parse tree from the previous section can now be represented as

[E + E → E [1 → E 1] ; + ; [0 → E 0]]
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Figure 5(b) shows a pictorial representation of this term. In the official use of
ATerms, productions and symbols are also encoded as terms using literal strings
to indicate the primitive functions. We can easily provide equations that translate
productions to such terms. However, for clarity and simplicity we use symbols
and productions from our syntax definitions directly. Note that in Figure 5(b) a

production like E + E → E actually denotes the structure

E + E

Symbol* → Symbols E

Symbols → Symbol

From now on we will assume term representations and parse trees to be the same
and will depict them as in Figure 5(a). Conventional definitions of parse trees use
symbols as labels of interior nodes. For instance, our example would look like

1

E +

0

E

E

To check the consistency of such a tree the grammar that generated the tree is
needed. With our approach this is not necessary; a parse tree is self-descriptive.

In our encoding productions are used as labels of interior nodes and symbols are
used as leaves of trees. However, by declaring productions and symbols as terms,
we can construct terms that are not representations of parse trees. For instance,
the term [E [E E + E → E]] is a syntactically correct term but we do not want to
consider it a representation of a parse tree. Therefore, we define a function type that
characterizes the terms that we want to consider as legal parse trees by assigning a
type to a term; only those terms that have a single symbol as type are legal parse
trees.

context-free syntax
type(ATerm) → Type

In this context we take symbols as basic types denoting the set of all trees that
correspond to that symbol.

sorts Type
context-free syntax
Symbols → Type
Production → Type

The type assignment for terms is

(1) type(p) = p

(2) type(A) = A
(3) type(nil) =

(4) type(T1; T2) = α β when type(T1) = α, type(T2) = β

(5) type([T1 T2]) = A when type(T1) = α → A !, type(T2) = α

This assignment specifies that a tree can only be composed from symbols and pro-
ductions using sequential composition •; • and function application [• •]. These
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constructs correspond to concatenation of list of symbols (αβ) and to productions
(α → A) on the type level. Since symbols can not be productions, higher-order
application is excluded and the function T1 in an application [T1 T2] should always
be a production. Note the similarity of equation (5) with type checking in typed
term construction systems like the simple theory of types [Chu40].

The function type checks that a parse tree is internally consistent. If we want
to check that a parse tree is consistent according to a particular grammar we also
have to check that all productions used as function in the tree also occur in the
grammar. To this end the function Σ produces the productions (the signature) of
a parse tree

context-free syntax
“Σ” “(” ATerm “)” → Productions

(6) Σ(p) = p

(7) Σ([T1 T2]) = Σ(T1) ++ Σ(T2)

(8) Σ(T1; T2) = Σ(T1) ++ Σ(T2)

(9) Σ(T) = otherwise

The predicate pt characterizes the correct parse trees over a grammar.

imports BooleansB.2

exports
context-free syntax
pt “[[” Productions “]]” “(” ATerm “)” → BOOL
Productions “⊆” Productions → BOOL

(10) pt[[syntax p∗]](T) = pt[[p∗]](T)

(11) pt[[p∗]](T) = true when type(T) = A, Σ(T) ⊆ p∗ = true

(12) pt[[p∗]](T) = false otherwise

(13) ⊆ p∗ = true

(14) p p∗ ⊆ p∗1 p p∗2 = p∗ ⊆ p∗1 p p∗2

The yield of a parse tree is the concatenation of its leaves. The function is the
inverse of the parse function that we define in the next section.

context-free syntax
yield(ATerm) → Symbols

(15) yield(A) = A
(16) yield(nil) =

(17) yield(T1; T2) = yield(T1) ++ yield(T2)

(18) yield([T1 T2]) = yield(T2)

3.6 Parsing

Given the definition of parse trees we can now define how parse trees are derived
from strings of symbols. Below we give a definition for the function parse that
interprets a grammar as a parser and that yields the list of all parse trees for a
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string. We first declare an auxiliary function list that translates an associative list
of terms to a term list built with the term concatentation operator •; •.

imports Kernel-Sdf-Trees3.5 Grammar-Interpretation2.3

hiddens
context-free syntax
list(ATerm∗) → ATerm

variables
“T”“∗”[0-9 ′]∗ → ATerm∗
“T”“+”[0-9 ′]∗ → ATerm+

(1) list() = nil (2) list(T) = T (3) list(T T+) = T; list(T+)

A declarative specification of the parse function is:

parse[[G]](α) =

 nil when rec[[G]](α) = false

T1; . . . ;Tn when rec[[G]](α) = true, pt[[G]](Ti), yield(Ti) = α

More constructively, the interpretation of a grammar as a parser is defined in terms
of the auxiliary functions

context-free syntax
parse “[[” Productions “]]” “(” Productions “)”
“(” ATerm∗ “·” Symbols “)” → ATerm
parse “[[” Productions “]]” “(” ATerm∗ “·” Symbols “)” → ATerm

by

(4) parse[[syntax p∗]](α) = parse[[p∗]]( · α)

The functions maintain a parse configuration T ∗ · β consisting of an associative list
of trees T ∗ corresponding to a prefix of the original string α and a suffix β of α. If
the initial configuration is ·α, then each following configuration T1 . . . Tn ·β satisfies
the property

pt[[G]](Ti) = true ∧ yield(T1) ++ · · ·++ yield(Tn) ++ β = α

The first function tries to rewrite some list of trees before the dot with some pro-
duction in the set. If the type of the list of trees matches the left-hand side of a
production, the list is replaced by a single tree with the list as arguments and the
production as function. If the left-hand side of the production does not match any
list of trees, parsing fails, i.e., returns an empty list of trees.

(5)
list(T∗

2) = T3, type(T3) = α

parse[[p∗]](α → A !)(T∗
1 T∗

2 · β) = parse[[p∗]](T∗
1 [α → A ! T3] · β)

(6) parse[[p∗]](p)(T∗ · α) = nil otherwise

If more than one production can be tried, they are tried in parallel, concatenating
the resulting lists of trees. If no production can be tried parsing fails.

(7) parse[[p∗]](p+1 p+2 )(T
∗ · α) = parse[[p∗]](p+1 )(T

∗ · α); parse[[p∗]](p+2 )(T
∗ · α)

(8) parse[[p∗]]()(T∗ · α) = nil

A configuration consisting of a single tree and an empty suffix is an accepting
configuration and T is the result.

(9) parse[[p∗]](T · ) = T
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If there is more than one tree in the configuration or the suffix is not empty, attempts
are made to rewrite the configuration with the productions of the grammar and a
new configuration is created by shifting a symbol from the suffix to the tree list.

(10) parse[[p∗]](T T+ · ) = parse[[p∗]](p∗)(T T+ · )
(11) parse[[p∗]](T∗ · A α) = parse[[p∗]](T∗ A · α); parse[[p∗]](p∗)(T∗ · A α)

This specification is a nonterminating term rewrite system if the grammar is
cyclic or contains ϵ-productions. However, as a semantic description it is adequate.
In the case of cycles or ϵ-productions the result of parsing is an infinite list of parse
trees.

3.7 Abstract Syntax

McCarthy [McC62] introduced abstract syntax as a way to deal with programs by
abstracting from concrete notation. This was achieved by functions to construct
and deconstruct terms. In the initial algebra approach to semantics [GTWW77],
the abstract syntax of a programming language is represented by a many sorted al-
gebraic signature. The relation between a constructor function f : S1×· · ·×Sn → S
that constructs a tree (or term) of type S from a tuple of trees of type S1×· · ·×Sn

and a selector function g : S → Si that selects a single subtree from such a com-
position can be specified by the equation g(f(s1, . . . , si, . . . , sn)) = si. However, in
[GTWW77] it is shown that all kinds of recursive constructions, including context-
free grammars, are isomorphic to algebraic signatures. This entails that ‘abstract
syntax’ as in [McC62] is no more abstract than context-free grammars.

A number of algebraic specification formalisms—obj, Aspegique, Asf+SDF—
exploit this property by using signatures with distfix operators or even arbitrary
context-free grammars instead of a prefix signature. A definition can be viewed as
a context-free grammar or as an algebraic signature. The grammar view is used to
generate parsers from a definition. The signature view describes the abstract syntax
trees that are used by semantic tools. A mapping from parse trees to abstract syntax
trees is used as interface between parser and semantic tool. In [HHKR92] these views
are made explicit by translating an Sdf definition to a contex-free grammar (bnf)
and to a first-order algebraic signature and by providing a translation from parse
trees to abstract syntax trees.

In this paper we do not give such translations but we directly interpret pro-
ductions as grammar rules and as function declarations. This has the advantage
that no external formalisms have to be defined and understood. Our definition of
parse trees in this section is such that parse trees are close to abstract syntax trees.
Productions are used as functions in these trees. Abstract syntax reflects our idea
of syntactic equality; two strings with the same abstract syntax tree are equal. The
only thing that is left to abstract is ‘redundant’ information that is not needed
by semantic tools. Typical examples of such redundant information are the layout
between tokens and the literals in a production, that are introduced in the next
section and in appendix G, respectively.

Here we define the mapping from parse trees to abstract syntax trees by means
of a predicate abs on types that characterizes the types of (sub)trees to be removed.

imports Kernel-Sdf-Trees3.5

exports
context-free syntax
abs “[[” Grammar “]]” “(” Symbol “)” → BOOL

The predicate abs determines which symbols act as sorts and which as terminals.

(1) abs[[G]](A) = false otherwise



A Family of Syntax Definition Formalisms 103

Based on the abs predicate the function abs removes all subtrees from a parse tree
that have a type that is not abstracted from according to the abs predicate.

(2)
type(T) = A, abs[[G]](A) = true

abs[[G]](T) = nil

(3) abs[[G]](T1; T2) = abs[[G]](T1); abs[[G]](T2) otherwise

(4) abs[[G]]([T1 T2]) = [abs[[G]](T2) abs[[G]](T2)] otherwise

(5) abs[[G]](A) = A otherwise

(6) abs[[G]](p) = p otherwise

In the extension Literals Sdf we introduce double quoted literals like "+". By
defining abs[[G]](L) = true, where L is a variable ranging over literals, we obtain an
abstraction that has the following effect:

E "+" E

E "+" E → E

abs[[G]]
=⇒

E E

E "+" E → E

The abstract syntax trees that are produced by the function abs are characterized
by the following abstract type function atype.

context-free syntax
atype “[[” Grammar “]]” “(” ATerm “)” → Type
nt “[[” Grammar “]]” “(” Symbols “)” → Symbols

The function nt selects the ‘sorts’, i.e., the non-abs symbols, in a string of symbols.

(7) nt[[G]]() =

(8) nt[[G]](α+ β+) = nt[[G]](α+) ++ nt[[G]](β+)

(9) nt[[G]](A) = when abs[[G]](A) = true

(10) nt[[G]](A) = A when abs[[G]](A) = false

The type nt[[G]](α) → A! is the ‘abstract’ type of the function α → A!. The function
atype returns the abstract type of a well formed abstract syntax tree.

(11) atype[[G]](A) = A
(12) atype[[G]](α → A !) = nt[[G]](α) → A !

(13) atype[[G]](nil) =

(14)
atype[[G]](T1) = α → A , atype[[G]](T2) = α

atype[[G]]([T1 T2]) = A

(15)
atype[[G]](T1) = α, atype[[G]](T2) = β

atype[[G]](T1; T2) = α β

3.8 Unparsing

An unparser maps abstract syntax trees to strings. A parse tree can be translated
easily to its underlying string by concatening its leaves. For abstract syntax trees
this is not so easy since some of the leaves are thrown away. Unparsing is used
to display generated trees, for example in structure editing, and to ‘beautify’ the
display of a text. Pretty printing and typesetting of programming languages is for
example described in [Bra95, BV95].
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Here we are not concerned with the æsthetics of unparsing, but only with
(re)producing the underlying string from a tree. The function unparse[[G]](A) pro-
duces a string for each symbol that is abstracted by the abstraction function from
the previous section. The function unparse[[G]](α, T ) produces the strings for the
trees in a list T . For the abstract types it encounters in α, default strings are filled
in.

imports Kernel-Sdf-Abstract-Syntax3.7 Grammar-Interpretation2.3

exports
context-free syntax
unparse “[[” Grammar “]]” “(” Symbol “)” → Symbols
unparse “[[” Grammar “]]” “(” Symbols “,” ATerm “)” → Symbols

(1) unparse[[G]]([α → A T]) = unparse[[G]](α, T; nil)

(2) unparse[[G]](, nil) =

(3)
abs[[G]](A) = true

unparse[[G]](A α, T1; T2) = unparse[[G]](A) ++ unparse[[G]](α, T1; T2)

(4)
abs[[G]](A) = false

unparse[[G]](A α, T1; T2) = unparse[[G]](T1) ++ unparse[[G]](α, T2)

4 Basic Sdf: Lexical Syntax and Variables

4.1 Syntax

The syntax of a programming language is often divided in two levels: lexical syntax
and context-free syntax. Lexical syntax is the syntax of the tokens, the words of
the language, e.g., identifiers, numbers and keywords. Context-free syntax is the
syntax of the sentences of a language, e.g., expressions, statements, type declara-
tions and function definitions. The division affects both language definition and
implementation. The parsing of lexical syntax is often implemented with finite au-
tomata, while the parsing of context-free syntax is implemented with push-down
automata. Indeed, it is sometimes not clear whether the division is motivated by
the implementation or by an inherent concept of lexical syntax.

In many formalisms the separation is even physical; lexical and context-free
syntax are defined with completely different formalisms that are written in separate
files. For instance, yacc and Metal use lex to define lexical syntax. This means
lexical definitions in the form of a number of regular expressions are defined in
a separate file. Context-free and lexical definitions share a declaration of token
symbols that constitutes the interface between the lexical and context-free level.
The syntax definition formalism of pccts uses a lexical syntax similar to lex, but
provides a mechanism to include token definitions in the same file as the context-
free syntax definition. In Sdf lexical and context-free syntax are integrated in one
formalism, but still uses different semantics for both. All these approaches have in
common that the distinction between lexical and context-free syntax is identified
with the distinction between regular and context-free grammars.

In this paper we adopt the view that the inherent distinction between the two
categories is that context-free symbols can be separated by layout while lexical
symbols can not. Beyond that difference there is none. The exact same features
should be available for the definition of lexical and context-free syntax.
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New in this approach is that we provide a uniform notation for the definition
of lexical and context-free syntax by means of context-free productions. Grammars
for lexical and context-free syntax are normalized to the context-free grammars of
the kernel. The distinction between lexical and context-free syntax is completely
expressed in the resulting productions.

By treating lexical and context-free syntax identically, every extension that is
defined for one is also applicable to the other. For instance, in the next section we
define priorities for disambiguation. In [HHKR92] these are only defined for context-
free syntax. As result of our approach we can also provide lexical disambiguation
through priorities. Similarly the regular operators introduced in section 6 can be
used in the definition of both lexical and context-free syntax.

In addition to lexical syntax we also define variables. Variable schemes are used
in specifications of semantics of languages. We also introduce the notion of lexical
variables that range over constructs introduced in lexical syntax grammars.

imports Kernel-Sdf-Syntax3.1

exports
context-free syntax
“lexical” “syntax” Productions → Grammar
“context-free” “syntax” Productions → Grammar
“variables” Productions → Grammar
“lexical” “variables” Productions → Grammar

“<” Symbol “-CF” “>” → Symbol
“<” Symbol “-LEX” “>” → Symbol
“<” Symbol “-VAR” “>” → Symbol

“LAYOUT” → Symbol

4.2 Normalization

The normalization function b[[•]] translates all production grammars not constructed
with syntax to such grammars. Figure 6 shows an example grammar and its normal
form under application of this function.

imports Basic-Sdf-Syntax4.1 Priority-Sdf-Syntax5.1

exports
context-free syntax

“b[[” Grammar “]]” → Grammar

(1) b[[∅]] = ∅
(2) b[[G1 G2]] = b[[G1]] b[[G2]]

(3) b[[syntax p∗]] = syntax p∗

Lexical syntax grammars are translated to normal syntax grammars by encoding
the symbols of the grammar to ⟨A-LEX⟩ symbols.

context-free syntax
“<” Symbols “-LEX” “>” → Symbols
“<” Production “-LEX” “>” → Production
“<” Productions “-LEX” “>” → Productions
“<” Grammar “-LEX” “>” → Grammar

priorities
“<”Symbol “-LEX”“>” → Symbol > “<”Symbols “-LEX”“>” → Symbols,
“<”Production “-LEX”“>” → Production >
“<”Productions “-LEX”“>” → Productions
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lexical syntax

[\ \t\n] -> LAYOUT

[a-z] [0-9a-z]* -> V

context-free syntax

V -> E

E "+" E -> E {assoc}

variables

[E-F] [\’0-9]* -> E

[V] [\’0-9]* -> V

(a) Original

syntax

[\ \t\n] -> <LAYOUT-LEX>

<LAYOUT-LEX> -> <LAYOUT-CF>

<LAYOUT-LEX> -> LAYOUT

[a-z] <[0-9a-z]*-LEX> -> <V-LEX>

<V-LEX> -> <V-CF>

<<V-CF>-VAR> -> <V-CF>

<V-CF> -> <E-CF>

<E-CF> LAYOUT "+" LAYOUT <E-CF> -> <E-CF> {assoc}

<<E-CF>-VAR> -> <E-CF>

[E-F] <[\’0-9]*-LEX> -> <<E-CF>-VAR>

[V] <[\’0-9]*-LEX> -> <<V-CF>-VAR>

priorities

LAYOUT LAYOUT -> LAYOUT {assoc} >

-> LAYOUT

(b) Normal Form

Figure 6: A Basic Sdf grammar and its normal form.

Transform all symbols in a string to ⟨-LEX⟩ symbols.

(4) ⟨α-LEX⟩ = when α =

(5) ⟨α+-LEX⟩ = ⟨A-LEX⟩ when α+ = A
(6) ⟨α+ β+-LEX⟩ = ⟨α+-LEX⟩ ++ ⟨β+-LEX⟩

A production is lexicalized by encoding left-hand side and right-hand side.

(7) ⟨α → A !-LEX⟩ = ⟨α-LEX⟩ → ⟨A-LEX⟩ !

Translating list of productions: for each lexical production an injection from the
lexical into the context-free symbol is added.

(8) ⟨p+-LEX⟩ = ⟨α → A !-LEX⟩ ⟨A-LEX⟩ → ⟨A-CF⟩ when p+ = α → A !

(9) ⟨p∗-LEX⟩ = when p∗ =

(10) ⟨p+1 p+2 -LEX⟩ = ⟨p+1 -LEX⟩ ++ ⟨p+2 -LEX⟩

Finally, a lexical grammar is equal to a syntax grammar with lexicalized produc-
tions.

(11) ⟨syntax p∗-LEX⟩ = syntax ⟨p∗-LEX⟩
(12) ⟨G1 G2-LEX⟩ = ⟨G1-LEX⟩ ⟨G2-LEX⟩
(13) ⟨∅-LEX⟩ = ∅

(14) b[[lexical syntax p∗]] = syntax ⟨p∗-LEX⟩

Context-free syntax is treated similarly to lexical syntax; all symbols in the pro-
duction are mapped to ⟨A-CF⟩ symbols. The important difference is that each
adjacent pair of symbols in the left-hand side of a production is separated by the
symbol LAYOUT.

context-free syntax
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“<” Symbols “-CF” “>” → Symbols
“<” Production “-CF” “>” → Production
“<” Productions “-CF” “>” → Productions
“<” Grammar “-CF” “>” → Grammar

priorities
“<”Symbol “-CF”“>” → Symbol > “<”Symbols “-CF”“>” → Symbols,
“<”Production “-CF”“>” → Production >
“<”Productions “-CF”“>” → Productions

(15) ⟨α-CF⟩ = when α =

(16) ⟨α+-CF⟩ = ⟨A-CF⟩ when α+ = A
(17) ⟨α+ β+-CF⟩ = ⟨α+-CF⟩ ++ LAYOUT ++ ⟨β+-CF⟩

(18) ⟨α → A !-CF⟩ = ⟨α-CF⟩ → ⟨A-CF⟩ !

(19) ⟨p+-CF⟩ = ⟨p-CF⟩ when p+ = p

(20) ⟨p∗-CF⟩ = when p∗ =

(21) ⟨p+1 p+2 -CF⟩ = ⟨p+1 -CF⟩ ++ ⟨p+2 -CF⟩

(22) ⟨syntax p∗-CF⟩ = syntax ⟨p∗-CF⟩
(23) ⟨G1 G2-CF⟩ = ⟨G1-CF⟩ ⟨G2-CF⟩
(24) ⟨∅-CF⟩ = ∅

Productions defining the symbol LAYOUT are added to the grammar produced for a
context-free syntax grammar.

(25) b[[context-free syntax p∗]] =

syntax ⟨p∗-CF⟩
priorities LAYOUT LAYOUT → LAYOUT {assoc}>

→ LAYOUT

syntax ⟨LAYOUT-LEX⟩ → LAYOUT

Variables and lexical variables grammars introduce tokens that have the status of
variables. The symbol constructor ⟨A-VAR⟩ is used to denote variables over the
symbol A. The left-hand sides of variable productions are interpreted as lexical
syntax. The lexical value produced by such a left-hand side is given the type of a
variable over the symbol in the right-hand side of the production.

(26) variables = ∅
(27) b[[variables p+1 p+2 ]] = b[[variables p+1 ]] b[[variables p+2 ]]

(28) b[[variables α → A !]] = syntax ⟨α-LEX⟩ → ⟨⟨A-CF⟩-VAR⟩ !
⟨⟨A-CF⟩-VAR⟩ → ⟨A-CF⟩

(29) lexical variables = ∅
(30) b[[lexical variables p+1 p+2 ]] = b[[lexical variables p+1 ]]

b[[lexical variables p+2 ]]

(31) b[[lexical variables α → A !]] = syntax ⟨α-LEX⟩ → ⟨⟨A-LEX⟩-VAR⟩ !
⟨⟨A-LEX⟩-VAR⟩ → ⟨A-LEX⟩
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Lexical Layout In some languages tokens can contain some kind of layout. In
[HHKR92] the symbol IGNORE is introduced for this purpose. This can be dealt with
by separating the the symbols in a lexical production by a lexical layout symbol just
as this is done with context-free productions.

Implementation A conventional implementation of parsers for lexical and context-
free syntax is based on a separate scanner and parser. Such an implementation can
be achieved for grammars as introduced here by separating productions for ⟨-LEX⟩
and ⟨-VAR⟩ symbols from productions for ⟨-CF⟩ symbols and generating a scanner
based on DFA technology for the first set of productions and by generating a parser
for the second set of productions based on PDA technology. Scanner and parser
communicate through some shared buffer-like data-structure. A requirement for
this approach is that the lexical productions form a regular grammar. This can be
enforced by specifying a static constraint on lexical grammars.

The parser generator for Sdf1 described in [Vis95b] does not depend on a se-
parate scanner. Instead ‘lexical analysis’, i.e., parsing according to the productions
for ⟨-LEX⟩ symbols is incorporated in the parser. To cope with ambiguities and
lookahead, generalized LR techniques are used. A similar approach is described in
[SC89] under the name scannerless parsing.

Lexical Disambiguation Lexical ambiguities are normally solved by rules like
‘prefer longest match’ or ‘prefer keywords’. Such disambiguation heuristics are clo-
sely coupled to the duality in conventional implementations; lexical ambiguities
have to be solved before tokens can be sent to the parser. By removing the duality,
lexical ambiguities can be dealt with in the same way as context-free ambiguities.
For example, in the next section we define disambiguation by priorities, which ap-
plies both to lexical and context-free syntax. Furthermore, many lexical ambiguities
are solved by considering the context in which tokens occur.

5 Priority Sdf: Disambiguation

5.1 Syntax

There are many disambiguation methods for the disambiguation of context-free
grammars. Most programming language oriented formalisms provide some kind of
precedence based method.

Here we adopt the method of disambiguation by associativity and priority of
Sdf. New with respect to the design of priorities in [HHKR92] is (a) disambigua-
tion of lexical syntax by lexical priorities, (b) a more uniform notation for priority
declarations, and (c) derivation of productions from priority declarations — this
provides a more compact notation by avoiding multiple declarations of produc-
tions. We also give a specification of disambiguation by priorities by means of a
filter on sets of parse trees.

imports Kernel-Sdf-Syntax3.1

exports
sorts Associativity Group Priority Priorities
context-free syntax
“left” → Associativity
“right” → Associativity
“non-assoc” → Associativity
“assoc” → Associativity

Associativity → Attribute
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Production → Group
“{” Productions “}” → Group
“{” Associativity “:” Productions “}” → Group

{Group “>”}+ → Priority
Group Associativity Group → Priority

{Priority “,”}∗ → Priorities
Priorities “++” Priorities → Priorities {assoc}

“priorities” Priorities → Grammar
“lexical” “priorities” Priorities → Grammar
“context-free” “priorities” Priorities → Grammar

variables
[g][0-9 ′]∗ → Group
[g]“∗”[0-9 ′]∗ → {Group “>”}∗
[g]“+”[0-9 ′]∗ → {Group “>”}+
“pr”[0-9 ′]∗ → Priority
“pr”“∗”[0-9 ′]∗ → {Priority “,”}∗
“pr”“+”[0-9 ′]∗ → {Priority “,”}+
“as”[0-9 ′]∗ → Associativity

(1) pr∗1 ++ pr∗2 = pr∗1, pr
∗
2

5.2 Normalization

The normalization of grammars with priorities consists of the following kinds of
transformations: Lists of priorities with chains and groups are normalized to lists of
simple priorities of the form p1 > p2 or p1 as p2. Lexical and context-free priorities
are translated to plain priorities, where the same techniques as in the previous
section are applied. Composition of priority grammars is the same as union of the
priority declarations. Finally, the normalization function p derives syntax rules from
priority declarations and vice versa. We only show the specification of the function
p. Figure 7 shows original and normal form of a Priority Sdf definition.

imports Priority-Sdf-Syntax5.1 Basic-Sdf-Normalization4.2

exports
context-free syntax

“p[[” Grammar “]]” → Grammar
assoc “(” Productions “)” → Priorities

The interpretation function p extracts syntax information from priorities and prio-
rity information from syntax.

(1) p[[G1 G2]] = p[[G1]] p[[G2]]

(2) p[[priorities pr+1 , pr
+
2 ]] = p[[priorities pr+1 ]] p[[priorities pr+2 ]]

(3) p[[syntax p∗]] = syntax p∗ priorities assoc(p∗)

(4) p[[priorities p1> p2]] = syntax p1 p2
priorities p1> p2
priorities assoc(p1 p2)

(5) p[[priorities p1 as p2]] = syntax p1 p2
priorities p1 as p2
priorities assoc(p1 p2)
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priorities

"-" E -> E

> E "^" E -> E {right}

> E "*" E -> E {left}

> {left:

E "+" E -> E {assoc}

E "-" E -> E {left}}

(a) Original

syntax

"-" E -> E

E "^" E -> E {right}

E "*" E -> E {left}

E "+" E -> E {assoc}

E "-" E -> E {left}

priorities

"-" E -> E > E "^" E -> E {right},

E "^" E -> E {right} right E "^" E -> E {right},

E "^" E -> E {right} > E "*" E -> E {left},

E "*" E -> E {left} > E "+" E -> E {assoc},

E "*" E -> E {left} > E "-" E -> E {left},

E "*" E -> E {left} left E "*" E -> E {left},

E "+" E -> E {assoc} left E "-" E -> E {left},

E "+" E -> E {assoc} assoc E "+" E -> E {assoc},

E "-" E -> E {left} left E "-" E -> E {left}

(b) Normal Form

Figure 7: A Priority Sdf grammar and its normal form.

(6) p[[priorities pr∗]] = p[[priorities [[pr∗]]]] otherwise

(7) p[[context-free priorities pr∗]] = p[[priorities ⟨pr∗-CF⟩]]
(8) p[[lexical priorities pr∗]] = p[[priorities ⟨pr∗-LEX⟩]]
(9) p[[G]] = G otherwise

where the function assoc is defined as

(10) assoc() =

(11) assoc(p+1 p+2 ) = assoc(p+1 ) ++ assoc(p+2 )

(12) assoc(p) = p as p when p = α → A {attr∗1, as, attr∗2}
(13) assoc(p) = otherwise

5.3 Filter

A priority declaration is interpreted as a filter on a set of parse trees.

imports Priority-Sdf-Syntax5.1 Priority-Sdf-OperationsF.1 Kernel-Sdf-Trees3.5

exports
context-free syntax
cnf “[[” Priorities “]]” “(” ATerm “)” → BOOL
filter “[[” Priorities “]]” “(” ATerm “)” → ATerm

The priority filter selects those trees from a list of trees that have no priority conflict.

(1) filter[[pr∗]](T1; T2) = filter[[pr∗]](T1); filter[[pr
∗]](T2)

(2)
cnf[[pr∗]]([T1 T2]) = false

filter[[pr∗]]([T1 T2]) = [T1 T2]

(3) filter[[pr∗]](T) = nil otherwise



A Family of Syntax Definition Formalisms 111

A tree has a conflict if it has a root conflict at one of its nodes.

(4) cnf[[pr∗]]([p T]) = r-cnf[[pr∗]]([p T]) or cnf[[pr∗]](T)

(5) cnf[[pr∗]](T1; T2) = cnf[[pr∗]](T1) or cnf[[pr
∗]](T2)

(6) cnf[[pr∗]](nil) = false

(7) cnf[[pr∗]](A) = false

hiddens
sorts ATerms
context-free syntax
ATerm∗ → ATerms
“σ” “(” ATerm “)” → ATerms
r-cnf “[[” Priorities “]]” “(” ATerm “)” → BOOL

variables
[T]“∗”[0-9 ′]∗ → ATerm∗

The function σ maps a list of argument trees to a list of the function labels of those
trees. It looks through injection functions.

(8) σ([B → A T2]) = σ(T2)

(9) σ([p T2]) = p otherwise

(10) σ(A) = A
(11) σ(T1; T2) = T∗

1 T∗
2 when T∗

1 = σ(T1), T∗
2 = σ(T2)

A tree with function label p has a root conflict if one its descendants has a priority
conflict with respect to p. A left child may not be right- or non-associative with
respect to its parent. Likewise a right child may not be left- or non-associative to its
parent. Furthermore, associative functions are treated as if left associative. None
of the descendants may have lower priority than p.

(12)
σ(T) = p2 T∗, p1 right p2 ∈ pr∗ or p1 non-assoc p2 ∈ pr∗ = true

r-cnf[[pr∗]]([p1 T]) = true

(13)
σ(T) = T∗

1 p2 T∗
2, p1> p2 ∈ pr∗ = true

r-cnf[[pr∗]]([p1 T]) = true

(14)

σ(T) = T∗ p2,
p1 left p2 ∈ pr∗ or p1 assoc p2 ∈ pr∗ or p1 non-assoc p2 ∈ pr∗ = true

r-cnf[[pr∗]]([p1 T]) = true

(15) r-cnf[[pr∗]](T) = false otherwise

The predicate pr ∈ pr∗ for tests whether a priority rule is contained in a set of
priority rules (see appendix F.1). If the descendant is a symbol no conflict arises.

Multiset Order After disambiguation by the conflict filter a second filter is ap-
plied. This filter selects the smallest tree with respect to the multiset order on parse
trees induced by the priority relation. See [KV94] for a definition of this filter.

Implementation The specification of a disambiguation method by a filter that
selects the intended trees after parsing forces independence of disambiguation from
parsing. However, application of disambiguation rules during might lead to a con-
siderable efficiency increase. An efficient parser-generation time implementation of
disambiguation by priorities is described in [Vis95a]
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Unparsing Unparsing is complicated in the presence of priorities. Naievely trans-
lating an abstract syntax tree to a string as described before might lead to a string
that, when parsed and filtered, does not represent the same tree. To force equiva-
lence of tree and string, brackets are used. In [BV95] the rules for priority conflicts
are used to place brackets when unparsing an abstract syntax tree.

Other Disambiguation Methods Disambiguation by priorities as defined in
this section originally defined in [HHKR92]. Disambiguation by priority conflicts is
similar to the methods using precedences as in [Ear75, AJU75]. In [KV94] several
disambiguation methods are defined using filters.

Subtree exclusion [Tho94] is a disambiguation method that works by specifying a
finite set of partial parse trees that are forbidden as subtrees of parse trees yielded by
the parser. This method allows a more fine tuned disambiguation than is achievable
by the priority scheme. Examples are disambiguation of generic operators and
internal arguments. Some problems can not be solved appropriately; the if-then-
else ambiguity is solved in the same way as with priorities, which is wrong.

6 Regular Sdf: Regular Expressions

6.1 Syntax

Certain patterns of context-free productions occur again and again. Examples of
such patterns are lists, lists with separators, optional constructs and alternative.
For example, a list of one or more A’s can be specified by the productions A → LA
and LA A → LA, where the auxiliary symbol LA stands for ‘list of A’s’.

Many formalisms provide shortcuts for these patterns by extending the language
of context-free grammars with some collection of regular operators on symbols. For
instance, bnf provides alternative at the level of productions, i.e. a production has
the form A := A0| . . . |An, where | has the meaning of or. Extended bnf (ebnf) is
the canonical extension of bnf with regular operators. In one formulation, Wirth
[Wir77] adds the operators {A} for iteration and [A] for optionality. Variations on
this notation appear in [Lee72, Wil82]. Sdf provides Kleene iteration A∗ and A+
and {A L}⊕ iteration for abbreviation of lists of A’s separated by a literal L.

In this section we give an extension of context-free productions by a set of regular
operators on symbols. In all the approaches mentioned above regular operators are
given a special treatment. New in our formulation is the treatment of regular
operators as first class citizens; they are nothing but constructors of new symbols
that spare the specifier the burden of having to invent new names. As a consequence,
a regular expression can occur everywhere a normal symbol can occur, also in the
right-hand side of a production.

This approach is motivated by the following considerations: (1) It enables us
to express the meaning of regular expressions by means of a normalization of the
grammar that adds defining productions for each expression. (2) Our grammars
function as signatures for algebraic specifications, where each production represents
a function. If regular symbols can not be the result of functions, as is the case in
Sdf, we still have to define an auxiliary symbol to define a function that yields
such a result. For example, suppose that we want to define a function add that
adds some integer to each integer in a list of integers. In the syntax below we can
write this as "add" "(" Int "," Int∗ ")" → Int∗, whereas in Sdf we should
introduce an auxiliary sort IntList to represent the result sort of this function. In
the design of Sdf this was motivated by the cost of implementation of associative
matching against list matching.

We consider the following operators.
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syntax

"begin" (Decl ";")? {Stat ";"}+ "end" -> Stat

(a) Original

syntax

"begin" (Decl ";")? {Stat ";"}+ "end" -> Stat

Decl ";" -> (Decl ";")

-> (Decl ";")?

(Decl ";") -> (Decl ";")?

Stat -> {Stat ";"}+

{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {assoc}

(b) Normal Form

Figure 8: A Regular Sdf grammar and its normal form.

imports Kernel-Sdf-Syntax3.1

exports
context-free syntax
“(” Symbols “)” → Symbol
Symbol “|” Symbol → Symbol {right}
Symbol “?” → Symbol
Symbol “∗” → Symbol
Symbol “+” → Symbol
“{” Symbol Symbol “}” “∗” → Symbol
“{” Symbol Symbol “}” “+” → Symbol
“(|” Symbol “|)” → Symbol {bracket}

priorities

{Symbol “?” → Symbol, Symbol “∗” → Symbol,
Symbol “+” → Symbol} > Symbol “|”Symbol → Symbol

Informally, the operators have the following meaning: (α) represents concatenation,
A|B is either A or B, A? is an optional A, A∗ (A+) is a list of zero (one) or more
A’s, and {A B}∗ ({A B}+) is a list of zero (one) or more A’s separated by B’s.

6.2 Normalization

We define a normalization function r[[•]] that introduces for each regular expression
that appears in some production one or more productions that define its meaning. In
this interpretation regular expressions form a shorthand for defining extra symbols.
Figure 8 shows an example grammar with regular expressions and its normal form.

imports Regular-Sdf-Syntax6.1 Priority-Sdf-Syntax5.1

Kernel-Sdf-Normalization3.2 Kernel-Sdf-SymbolsD.2

exports
context-free syntax
“r[[” Grammar “]]” → Grammar
“r[[” Symbols “]]” → Grammar

The function r[[•]] adds defining productions for each regular expresssion occurring
in one of the productions of the grammar. Existing productions are not changed.

(1) r[[G]] = G r[[α]] when {α} = symbols(G)
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The function symbols defined in module Kernel-Sdf-Symbols gives the set of all
symbols in a grammar.

(2) r[[]] = ∅
(3) r[[α+ β+]] = r[[α+]] r[[β+]]

The regular expression (α) is a symbol that abbreviates concatentation.

(4) r[[(α)]] = r[[α]]
syntax α → (α)

An example of the use is the symbol (Decl ”; ”) in Figure 8. Note that r[[α]]
recursively produces the productions for regular expressions in the list of symbols
α. As an exception we define the concatation of a single symbol to be equal to that
symbol.

(5) (A) = A

This permits the use of (•) as bracket symbols without considering it as a new
symbol.

The alternative A|B denotes either A or B. We could thus define r[[A|B]] to
yield the productions A → A|B and B → A|B. However, if one of the alternatives
is again an alternative, an unnecessary chain like

A → A|B → A|B|C

is created. To avoid such chains we define

(6) r[[A | B]] = alt[[A | B, A | B]]

where the function alt unpacks the alternative until a regular expression is reached
that is not an alternative.

hiddens
context-free syntax
“alt[[” Symbol “,” Symbol “]]” → Grammar

(7) alt[[A, B1 | B2]] = alt[[A, B1]] alt[[A, B2]]

(8) alt[[A, B]] = r[[B]] syntax B → A otherwise

The optional construct A? is either empty or A.

(9) r[[A?]] = r[[A]]
syntax → A?

A → A?

The iteration operator A+ denotes a list of one or more A’s, i.e., either A or A A
or A A A or . . . . There are several ways to define such lists with productions. We
use an injection of A into A+ and an associative concatenation operator of A+’s.

(10) r[[A+]] = r[[A]]
syntax A → A+

A+ A+ → A+ {assoc}

We can not use the more common solution A+ A → A+ because productions
γ → A+, other than the ones added here, might exist; this requires that A+ γ be
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recognized as A+. Furthermore, this syntax gives a more ‘abstract’ syntax; lists
are built from singleton lists by concatenation.

An iteration A∗ denotes a list of zero or more A’s, i.e., ϵ (empty) or A or A A or
A A A or . . . . Thus analogously to + iteration we could introduce the productions

→ A∗
A → A∗
A ∗ A∗ → A ∗ {assoc}

However, this is not adequate if the grammar also introduces the symbol A+, be-
cause A+ is included in A∗. In particular if we have some function, other than
the ones above, that produces an A+ we want to include it in or combine it with
an A∗, which would be impossible with the productions given above. Therefore we
define A∗ as an extension to A+. We use priorities to disambiguate the various
concatenation operators.

(11) r[[A∗]] = r[[A+]]
priorities A+ → A∗ >

A+ A+ → A+ {assoc}>
{assoc : A+ A∗ → A+

A∗ A+ → A+ }>
A∗ A∗ → A∗ {assoc}>
→ A∗

The iteration with separator operators {A B}+ and {A B}∗ denote iteration of A’s
separated by B’s. Their meaning is defined analogously to A+ and A∗.

(12) r[[{A B}+]] = r[[A]] r[[B]]
syntax A → {A B}+

{A B}+ B {A B}+ → {A B}+ {assoc}
(13) r[[{A B}∗]] = r[[{A B}+]]

priorities {A B}+ → {A B}∗ >
{A B}+ B {A B}+ → {A B}+ {assoc}>
{assoc : {A B}+ B {A B}∗ → {A B}+

{A B}∗ B {A B}+ → {A B}+ }>
{A B}∗ B {A B}∗ → {A B}∗ {assoc}>
→ {A B}∗

Direct Interpretation Instead of defining the interpretation of regular expres-
sions in terms of context-free productions, we could also adapt the recognition and
parsing functions to account for regular expressions. The definitions of the regu-
lar operators as shown here would then be built in the rules of the interpretation
functions. This has the advantage that the grammar does not explode. But this
is almost no advantage because instead the specification of the interpretation func-
tions explodes; every tool has to be aware of regular operators while the complexity
or efficiency of interpretation is not reduced.

6.3 Abstract Syntax

Through the normalization of the previous section we have defined regular operators
in terms of normal context-free productions. Normalized grammars use regular ex-
pressions only as generators of symbol names, no extra meaning is attached to them
anymore. Therefore, all the interpretation functions that we defined for context-free
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E

E → E+

E

E → E+

E

E → E+

E+ E+ → E+

E+ E+ → E+

(a) Associative

E E E

E+

(b) Flat

E+

E

E E

AT ; AT → AT

AT ; AT → AT

[AT AT] → AT

(c) AsFix

Figure 9: Various abstract syntax representations for lists.

productions are also applicable to the normalized Regular Sdf grammars, including
parse and abstract syntax trees.

The only problem lies in matching terms. The associativity of the concatenation
operators implies that matching of terms with constructs built over productions
added here should be done modulo associativity. Furthermore, variables over the
sort A∗ that are instantiated with an empty list should be removed from the list.
This means that matching should be done modulo the following equations:

(a+1 a+2 ) a
+
3 = a+1 (a+2 a+3 )

(a+1 a∗2) a
+
3 = a+1 (a∗2 a+3 )

(a∗1 a+2 ) a
+
3 = a∗1 (a+2 a+3 )

(a∗1 a∗2) a
+
3 = a∗1 (a∗2 a+3 )

(a+1 a+2 ) a
∗
3 = a+1 (a+2 a∗3)

(a+1 a∗2) a
∗
3 = a+1 (a∗2 a∗3)

(a∗1 a+2 ) a
∗
3 = a∗1 (a+2 a∗3)

(a∗1 a∗2) a
∗
3 = a∗1 (a∗2 a∗3)

ϵA∗ a+ = a+

a+ ϵA∗ = a+

ϵA∗ a∗ = a∗

a∗ ϵA∗ = a∗

Where a variable a+ (a∗) ranges over all constructs of typeA+ (A∗) and ϵA∗ denotes
the term [→ A ∗ nil].

An alternative abstract syntax mapping is possible that interprets iterators as
list constructors, reusing the list constructor of the underlying tree datatype instead
of representing lists by concatenation operators. Figure 9 shows three representa-
tions of abstract syntax trees for the symbol A+. The flat representation in Fi-
gure 9(b) is the conceptual representation of an abstract syntax tree. Figure 9(a)
shows the representation for this tree with associative concatenation operators and
Figure 9(c) shows its AsFix representation. This picture shows that there is not
a great difference between one or the other representation, as long as associativity
is regarded that enables one to apply the conceptual flat image. However, for the
representation in Figure 9(c) an alternative typing scheme is needed that treats list
symbols like A+ as functions with input type A . . .A, for an arbitrary number of
A’s and with output type A+. This is a considerable complication, that permeates
to all other interpretation functions that deal with parse or abstract syntax trees.
Therefore, we keep to the associative operators defined by the derived productions.

Since the general case of rewriting modulo associativity is expensive, the current
Asf+Sdf system only supports list matching [Hen91, Eke92]. This approach can
still be used for equations that defines functions over lists, because the entire list is
covered by the pattern and thus a flat representation can be used.
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6.4 Generalization

The extension described in this section, actually introduces a set of new type con-
structors that are associated with characteristic functions. For instance, the ope-
rator + constructs a new type A+ from an arbitrary type A and associated with
this new type are the functions A → A+ and A+ A+ → A+. This approach can
be applied to any number of other types. For example, we might introduce the
operator A#B for the product of A and B and define it by extending the r function
by

r[[A#B]] = "<"A","B">" → A#B

and use it as

context-free syntax

"eval" Exp # Env -> Val # Env

The approach can be generalized by including the extension mechanism—implied
rules for certain symbol constructors—in the formalism itself. This can be achieved
by introducing variables that range over symbols. The grammar schemas that are
now embedded in the definition of the function r[[•]] can be written directly in a
grammar. For instance, if we use ’A as variable ranging over symbols we could
define

context-free syntax

’A -> ’A+

’A+ ’A+ -> ’A+ {assoc}

to express the semantics of •+.
Another example of a constructor that might be added is the function type

(• ⇒ •). An example of its use is in the following grammar:

context-free syntax

(’A => ’B) ’A -> ’B

"sqr" -> (Int => Int)

"map" -> ((’A => B) => (’A* => ’B*))

With this syntax "map" "sqr" is a correct string with type (Int* => Int*). Such
a type system is the basis of combinatory algebraic specification [Vis93]. Note that
this ⇒ operator is similar to the / of the Lambek calculus [Lam58].

In addition to symbol variables we need to extend the formalism with a way
to introduce new symbol constructors. This leads to the grammatical analogue
of a leveled algebraic signature [Mei91], i.e., a leveled grammar formalism—type
grammars in [Vis95c]. This formalism resembles definite clause grammars [PW80].
However, for the restricted use that we sketch here the formalism might be somewhat
weaker such that implementation is feasible.

7 Modular Sdf: Modules and Renamings

7.1 Syntax

Modularity constructs are provided by many specification and programming langua-
ges to break programs down in manageable parts and to make such parts reusable
in many programs. In this section we define simple notions of modularity for syntax
definition.

Seen from the perspective of modularization, syntax definition is not different
from other formalisms. Maybe due to this fact, few modular syntax definition forma-
lisms exist. An example is Sdf as implemented in the Asf+Sdf meta-environment
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[Kli93]; the modularization is a subset of Asf’s modularization. However, atta-
ching a name to some entity and later referring to it by that name is not unique for
modularization either, e.g., replacing an import with the body of the corresponding
module is similar to function application or to rewriting in context-free grammars.

New with respect to the modularization constructs as provided by Asf [BHK89]
and Asf+Sdf are hidden imports. We define renamings of sorts and productions.
Although renamings are part of Asf, they were never incorporated in Sdf. Hen-
driks [Hen91] describes both a textual normalization semantics and an incremental
semantics for modular constructs without renamings and hidden imports.

We deviate from Asf in that we do not incorporate the ‘origin rule’ that forbids
identification of names that originate from different modules. ‘[T]he origin rule
enforces a certain modularization of ASF specifications’ [BHK89]. This style forbids
to have two modules with partly overlapping signatures, e.g. both introducing the
same sort, that are imported in the same module, even if the overlap is intentional.

We feel that these deviations are improvements of the modularization of Asf
and Asf+Sdf. They reflect our experience with the modularity constructs of
Asf+Sdf.

A modular syntax definition consists of a series of named module declarations.
A module declaration consists of a list of section which can be grammars.

imports Kernel-Sdf-Syntax3.1

exports
sorts ModuleName Section Sections Module Definition
lexical syntax

[A-Za-z][A-Za-z0-9\−]∗ → ModuleName
context-free syntax
Grammar → Section
Section∗ → Sections
“module” ModuleName Sections → Module
Module∗ → Definition

variables
[MN][0-9 ′]∗ → ModuleName
“s”[0-9 ′]∗ → Section
“s”“∗”[0-9 ′]∗ → Section∗
“s”“+”[0-9 ′]∗ → Section+
[m][0-9 ′]∗ → Module
[m]“∗”[0-9 ′]∗ → Module∗
“d”[0-9 ′]∗ → Definition

A module can import any numbers of other modules. An import of a module M
denotes the grammar declared in module M .

sorts Import Imports
context-free syntax
“imports” Imports → Grammar
Import∗ → Imports
ModuleName → Import
“(” Import “)” → Import {bracket}

variables
“i”[0-9 ′]∗ → Import
“i”“∗”[0-9 ′]∗ → Import∗
“i”“+”[0-9 ′]∗ → Import+

Renamings enable the adaptation of a generic module to specific needs by renaming
sorts and productions. Syntax and semantics of renamings are defined in appendix J.
A renaming is either a sort renaming A ⇒ B that renames A to B or a production
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renaming p1 ⇒ p2 that renames p1 to p2. The application of a renaming ρ to some
construct is written (•)ρ.

imports Kernel-Sdf-RenamingsJ.1

exports
context-free syntax
Import Renamings → Import

priorities
Import Renamings → Import > Renamings Renamings → Renamings

Export and hiding provide a means to control what is visible from a module and
what is local to that module. Hidden syntax is useful when the syntax definition
formalism is coupled to a semantics formalism for the specification of the semantics
of languages. Hidden syntax then plays the role of auxiliary functions. Since imports
are abbreviations for grammars, an import can be hidden or exported.

exports
context-free syntax

“exports” Grammar → Section
“hiddens” Grammar → Section

We do not provide a parameter mechanism since we believe that renamings make
parameters redundant. Modularization in this way is not enough; to structure large
specifications we need some method to define clusters of modules. It might also
be useful to have named submodules: named export or hiddens sections can be
referenced in imports to obtain a selective import of a part of a module.

Semantics Context-free grammars do not have a compositional semantics, i.e.,
L(G1) ∪ L(G2) ⊆ L(G1G2), where the inclusion is possibly strict. In terms of the
recognition predicate

rec[[p∗1p
∗
2]](α) ̸⇒ rec[[p∗1]](α) ∨ rec[[p∗2]](α)

This implies that parsers can not be composed from parsers for smaller langua-
ges/grammars. All kinds of properties like LR(k) etc. are not closed under union.
Hendriks [Hen91] defines a compositional semantics for context-free grammars that
adds all derived productions to a grammar. However, the composition of two such
closed grammars needs still to be closed under that operation to account for the
interference between the two grammars. Unfortunately, no matter what semantics
is taken for context-free grammars, it will not express modularity in an appropriate
way, i.e., without reconsidering all information in the grammars that are composed.
There might be some condition on grammars that allows a compositional semantics;
this condition forbids interference between the grammars and will probably yield a
formalism that is too constrained.

7.2 Normalization

We define the function m[[d]](M) that yields the grammar corresponding to module
M in the definition d. Figure 10 shows an example Modular Sdf grammar and its
normal form.

imports Modular-Sdf-Syntax7.1 Modular-Sdf-RenamingsJ.4

Renaming of a renamed import is equal to renaming the import with the composi-
tion of the renamings.

(1) i ρ1 ρ2 = i (ρ1 ρ2)
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module Tables

exports

sorts Key Val Table

syntax

"[" {(Key "->" Val) ","}* "]" -> Table

"lookup" Key "in" Table -> Val

module Symbol-Tables

exports

imports

Tables

["lookup" Key "in" Table -> Val

=> "type" "of" Symbol "in" SymbolTable -> Type

Key => Symbol

Val => Type

Table => SymbolTable]

(a) Original

sorts Symbol Type SymbolTable

syntax

"[" {(Symbol "->" Type) ","}* "]" -> SymbolTable

"type" "of" Symbol "in" SymbolTable -> Type

(b) Normal Form

Figure 10: A Modular Sdf grammar and its normal form.

Normalization of order of grammars

(2) imports = ∅
(3) imports i∗1 imports i∗2 = imports i∗1 i∗2
(4) G imports i∗1 imports i∗2 = imports i∗1 i∗2 G
(5) G imports i∗ = imports i∗ G otherwise

Normalization of module sections

(6) s∗1 exports G1 exports G2 s∗2 = s∗1 exports G1 G2 s∗2

(7) s∗1 hiddens G1 hiddens G2 s∗2 = s∗1 hiddens G1 G2 s∗2

(8) s∗1 hiddens G1 exports G2 s∗2 = s∗1 exports G2 hiddens G1 s∗2

(9) module M s∗1 G s∗2 = module M s∗1 exports G s∗2

Projection functions. [[d]](N) yields the grammar corresponding to the module na-
med N . exp yields the exported part of a module and hid yields the hidden part of
a module.

hiddens
context-free syntax

“[[” Definition “]]” “(” ModuleName “)” → Sections
exp(Sections) → Grammar
hid(Sections) → Grammar

(10) [[m∗
1 module N s∗1 m∗

2]](N) = s∗1 s∗2 when s∗2 = [[m∗
1 m∗

2]](N)
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(11) [[d]](N) = otherwise

(12) exp() = ∅ (13) hid() = ∅
(14) exp(s+1 s+2 ) = exp(s+1 ) exp(s

+
2 ) (15) hid(s+1 s+2 ) = hid(s+1 ) hid(s

+
2 )

(16) exp(exports G) = G (17) hid(exports G) = ∅
(18) exp(hiddens G) = ∅ (19) hid(hiddens G) = G

The semantics of a module named M in a definition d is expressed by m[[d]](M)
and is the composition of the exported and hidden grammars of module M with all
imports replaced by the exported grammars of the modules they refer to.

exports
context-free syntax

“m[[” Definition “]]” “(” ModuleName “)” → Grammar
hiddens
sorts IG
context-free syntax
“<” Imports “,” Grammar “>” → IG
imp “[[” Definition “]]” “(” Imports “,” Import “)” → IG
ims “[[” Definition “]]” “(” Imports “,” Imports “)” → IG
gra “[[” Definition “]]” “(” Imports “,” Grammar “)” → IG

(20)
[[d]](M) = s∗, gra[[d]](, exp(s∗) hid(s∗)) = ⟨i∗, G⟩

m[[d]](M) = G

The function gra expands all the imports in a grammar. A structure ⟨i∗,G⟩ denotes
a flattened grammar with the list of imports i∗ that were expanded to flatten the
grammar. It prevents the flattening function from looping in case of cyclic imports.

(21)
gra[[d]](i∗1, G1) = ⟨i∗2, G1

′⟩, gra[[d]](i∗2, G2) = ⟨i∗3, G2
′⟩

gra[[d]](i∗1, G1 G2) = ⟨i∗3, G1
′ G2

′⟩
(22) gra[[d]](i∗1, imports i∗2) = ims[[d]](i∗1, i

∗
2)

(23) gra[[d]](i∗, G) = ⟨i∗, G⟩ otherwise

The function ims yields the flattened grammars for a list imports.

(24) ims[[d]](i∗, ) = ⟨i∗, ∅⟩

(25)
imp[[d]](i∗1, i) = ⟨i∗3, G1⟩, ims[[d]](i∗3, i

∗
2) = ⟨i∗4, G2⟩

ims[[d]](i∗1, i i
∗
2) = ⟨i∗4, G1 G2⟩

The function imp yields the flattened grammar associated with the exported gram-
mar of an import. The first list of imports denotes the imports that are already
expanded.

(26) imp[[d]](i∗1 i i∗2, i) = ⟨i∗1 i i∗2, ∅⟩

(27)
[[d]](M) = s∗

imp[[d]](i∗, M) = gra[[d]](i∗ M, exp(s∗))
otherwise

(28)
[[d]](M) = s∗, G = (exp(s∗)) ρ

imp[[d]](i∗, M ρ) = gra[[d]](i∗ M ρ, G)
otherwise



122 E. Visser

8 Overview of Appendices

The appendices to this paper define the extensions and details of extensions that
were not yet treated. The appendices are available electronically via the WWW
page of the workshop: http://www.cwi.nl/∼gipe/asf+sdf95/.

A Examples Syntax definition of Pico and Sdf1 in Sdf1.

B Library Modules Layout and Booleans.

C Symbols Symbol sets

D Kernel Sdf Symbols used in a grammar

E Basic Sdf Abstract syntax

F Priority Sdf Membership of priorities and associativity declaration.

G Literals Sdf Syntax and normalization for literals. A literal like "then" is
defined by adding a production [\116] [\104] [\101] [\110] → "then".

H Sorts Sdf Syntax for sort identifiers and declaration of sorts.

I Character Class Sdf Syntax and normalization of character classes.

J Renamings For each extension renaming of symbols and productions over
the syntax introduced in the extension is defined.

K Sdf1 Modules for syntax, normalization, parsing etc. of Sdf1. The modules
mainly import earlier defined modules. Furthermore, an interactive environ-
ment for Sdf1 is defined, that contains tools for applying various normaliza-
tions and interpretations.

9 Conclusions

In this paper we presented the modular design of a family of syntax definition
formalisms. The result is a uniform formalism for syntax definition designed for
extensibility. A guiding principle in the design is the orthogonality of the features
with respect to one another. This entails that it is easier to replace a feature by a
variant or to add a new feature without affecting the design of all other features.

We developed several features for syntax definition that are applicable in many
areas. All features extend a kernel that introduces context-free productions.

The distinction between lexical and context-free syntax is not presented as a dis-
tinction between regular and context-free grammars. Instead, lexical and context-
free syntax are defined both by context-free productions. The only difference bet-
ween the two levels is that symbols in context-free syntax can be separated by layout.
Interference between the levels is avoided by renaming the sorts. All features and
interpretations available for lexical syntax are also available for context-free syntax
and vice versa. This holds in particular for parsing and disambiguation of lexical
syntax that are conventionally done by separate methods.

Priorities are interpreted as a filter on sets of parse trees as prescribed by
[HHKR92]. This approach can be extended to other disambiguation methods
[KV94].

Regular expressions are considered as name constructors that are used to make
new names out of existing ones. A normalization function adds canonical produc-
tions defining the regular operators. For instance, A? denotes an optional A and
is defined by the productions A → A? and → A?. However, there is no restriction
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to the use of these name constructors; other defining productions can be added by
the user. In the context of algebraic specification this means for instance that users
can specify functions that have lists (A∗) as result.

Modules associate a name with a grammar. Grammars can be combined by
module imports. Export and hiding provide control over visibility of grammars.
New with respect to the modularization of Sdf are renamings and hidden imports.

The direct motivation for this work was the specification of a parser generator
for Sdf. Many of the techniques presented in this paper were originally developed
for the translation of Sdf to intermediate languages like context-free and regular
grammars as prescribed by the reference manual [HHKR92]. Gradually it became
clear that the difficulty of this project was due to the monolithic design of Sdf. The
features presented in this paper are combined in the formalism Sdf1 that is intended
to replace Sdf in the new architecture. A first specification of a parser generator
for Sdf1 was a considerably easier task, due to the uniform abstract syntax and
elimination of cases by normalization (and also due to the earlier experience). A
complete implementation is expected soon [Vis95b]. This implementation will give
more experience with scannerless parsing.

This paper introduces only a small family of syntax definition formalisms. We
plan to investigate new features for the description of linguistic phenomena of pro-
gramming languages for which no or poor formal support in syntax definition for-
malisms exist; for instance, the syntax of extensible languages (like Asf+Sdf),
mildly context-sensitive phenomena on lexical level (e.g. \verb construct in LATEX)
and disambiguation on the basis of type information. The generalization of the
regular expression approach to type grammars [Vis95c] provides the syntactic ana-
logue of the leveled signatures of [Mei91]. Another challenge is the application of
the features developed here in application areas other than programming language
design.

The Asf+Sdf formalism and meta-environment are a considerable improve-
ment over the techniques that were available when Sdf was originally designed.
This becomes clear when we compare the design of Sdf in [HHKR92] with the
design of Sdf1 in this paper. The use of Asf+Sdf provides fast feedback and
makes experiments feasible. However, it remains difficult to define a clean family
of languages and it is still impossible to create new formalisms by specifying its
features by their catalogue number. Features tend to interfere and the complexity
of a formalism is higher than the sum of the complexities of its features (see also
[BB89]). The specification of large formalisms in a compositional manner remains
a challenge and tools that support such specifications can always be improved.
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