Generation of Formatters for Context-Free
Languages

MARK VAN DEN BRAND and EELCO VISSER
University of Amsterdam

Good documentation is important for the production of reusable and maintainable software.
For the production of accurate documentation it is necessary that the original program text is
not copied manually to obtain a typeset version. Apart from being tedious, this will invariably
introduce errors. The production of tools that support the production of legible and accurate
documentation is a software engineering challenge in itself. We present an algebraic approach
to the generation of tools that produce typographically effective presentations of computer
programs. A specification of a formatter is generated from the context-free grammar of a
(programmingi language. These generated formatters translate abstract syntax trees of
programs into box expressions. Box expressions are translated by language-independent
interpreters of the box language into ASCII or TEX. The formatting rules that are generated
can easily be tuned in order to get the desired formatting of programs. We demonstrate this by
means of real-life applications. Furthermore, we give a practical solution for the problem of
formatting comments, which occur in the original text. The formatter generation approach
proposed in this article can be used to generate formatting programs for arbitrary program-
ming environments. Our formatter generation approach can be used to automatically generate
formatters that have to be programmed explicitly in other systems.

Categories and Subject Descriptors: D.2.1 {Software Engineering|: Requirements/Specifica-
tions —languages; D.2.3 [Software Engineeringl: Coding—pretty printers; D.2.6 [Software
Engineering)]: Programming Environments; D.2.7 (Software Engineering|: Distribution
and Maintenance—documentation; D.2.m [Software Engineeringl: Miscellaneous—rapid
prototyping; D.3.2 |[Programming Languages]: Language Classifications —specialized appli-
cation languages; 1.7.2 |Text Processingl: Document Preparation

General Terms: Design, Documentation, Languages

Additional Key Words and Phrases: Document preparation, program generators

1. INTRODUCTION

Software engineering and software documentation are almost synonymous.
A program that is not documented will soon become an unintelligible black
box that is hard to maintain and extend. Improving the textual presenta-

Authors’ address: Programming Research Group, University of Amsterdam, Kruislaan 403,
NL-1098 SJ Amsterdam, The Netherlands; email: {markvdb; visser¥afwi.uva.nl.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1996 ACM 1049-331X/96/0100-0001 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 5. No. 1, January 1996, Pages 1-41

2 . Mark van den Brand and Eelco Visser

tion of programs increases the chance that these are being read (and
understood) by programmers. However, manually maintaining a program
and its typeset documentation is time consuming and error prone.

Formatters for programming languages relieve documentation writers
from typesetting programs by hand and ensure that documentation is
correct and up to date. Formatters can be used to enforce a uniform textual
presentation of programs written by different programmers, which eases
software maintenance. Formatters can also be used to visualize the struc-
ture of programs, which can be of great help when analyzing the program
text for reverse engineering of legacy code. Formatters are used in interac-
tive applications, such as (structure) editors, to reformat the program text
during editing. Formatters are also used in noninteractive applications to
produce high-quality, printed versions of programs, useful for the produc-
tion of legible and accurate documentation.

Current formatting technology has a number of problems. For many
programming languages there are no formatters available, and these would
have to be implemented from scratch. The implementation of a formatter
for a language under development is an even more time consuming activity,
since each time the language is modified the formatter has to be adapted
also. Most existing formatters are inflexible and cannot be adapted, al-
though this is sometimes necessary when, for example, the layout of a
language influences its semantics. Furthermore, most formatters are
geared to one text processing or typesetting system and cannot easily be
connected with other systems.

In this article we describe a program generator that considerably simpli-
fies the task of building formatters. The generator produces an executable
specification of a formatter for a programming language from its context-
free grammar. The formatter thus obtained works as follows. First, it
translates the abstract syntax tree of a program into a box expression
which is a declarative description of the intended layout of the program.
Second, this language-independent box expression is translated into ASCII
text, TEX code, or some other input format for a displaying device. These
language-independent back-ends do the hard work of producing a legible
text. They are reused for every language for which a formatter is gener-
ated. So, it will be obvious that our language-independent back-ends form a
powerful set of typesetting tools. In combination with our mechanism to
restore comments this offers a sound basis for sophisticated documentation
tools.

The generator cannot possibly produce formatters that realize the de-
sired formatting for an arbitrary language, as there is no absolute layout
criterion. For instance, consider the differences between layout conventions
of imperative languages and functional ones. Therefore it is necessary to be
able to easily adapt the rules of the generated formatter. The formatters
produced by our generator can easily be manipulated by a layman in
typesetting.

This research was initiated to improve the formatting facilities of pro-
gramming environments generated by the ASF+SDF Metaenvironment

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 3

[Klint 1993). These environments had a built-in formatter which could
hardly be adapted to satisfy the semantic layout constraints for languages
such as Cobol [Stern and Stern 1988]. The need to be able to influence the
standard formatter resulted in the box language, Box, and a number of
tools, such as the formatter generator and a Box-to-ASCII back-end.
Generated formatters in combination with this back-end are used to
replace the standard formatting facilities of the environments. Since the
structure editors of the generated environments do not support facilities
such as colors and more than one font, it was not necessary to support this
in the Box-to-ASCII back-end. However, it is easy to implement back-ends
that do support those facilities. Currently, we are building a Box-to-HTML
back-end.

Our approach of generating formatters given a context-free grammar can
be applied in other programming environment generators, such as the
Synthesizer Generator [Reps and Teitelbaum 1989] and CENTAUR [Borras
1989; Borras et al. 1989], where currently the formatting rules have to be
specified by hand. The advantage of applying our techniques is that the
bulk of formatting rules is automatically generated. This saves a consider-
able amount of time, and the generation of unparsing rules for a given
grammar ensures the correctness of the unparsing specification.

1.1 Architecture

Given a context-free grammar of a language L the formatter generator
generates a formatter for L. This formatter traverses an abstract syntax
tree of an L program and produces a box term. This box term can either be
transformed to ASCII text, or it can be translated to TEX code. This process
is illustrated in Figure 1. The triangle in this figure represents a tree. The
rectangles stand for text files. The ellipses denote programs. The dashed
objects are currently developed. Arrows denote the input/output behavior of
the programs. Note that this figure contains a cycle: AST, formatter, Box
term, Box2ASCII, ASCII text, parser, and AST again. This cycle expresses
that our approach is formal: the parsing of the formatted text of a given
abstract syntax tree produces this abstract syntax tree again. This is
important as formatters are not allowed to alter the syntactic structure of a
program by themselves. For the other two back-ends this is not relevant
because these produce output for final versions of the programs to be used
as or included in documentation.

In this article we describe a formatter generator that produces ASF+SDF
specifications [Bergstra et al. 1989; Heering et al. 1992]. The underlying
ideas are equally well applicable to imperative or functional implementa-
tions and can be expressed in any language that supports recursive
functions and data structures such as C {Kernighan and Ritchie 1978{. The
only requirements are that the generated formatter has (direct or indirect)
access to the abstract syntax tree and that it generates box terms that can
be recognized by the various back-ends. A detailed description of the
implementation can be found in Section 7.

ACM Transactions on Software Engineering and Methodology. Vol. 5. No. 1. January 1996.

4 . Mark van den Brand and Eelco Visser

parser
AS for L
of
'L program
C‘I;.G formatter formatter
L generator for L
Box term Box2ascil ASCII text
for f for
ormatter
L program L program
Box2TgX TEX output
\ formatter for
\ L program
\
\
1
P A-ivhyiebrinty
\'Box2HTMLY, _>: tor put
s, formatter /~)
. ! + L program
b R ¢ L ______ -

Fig. 1. Architecture of the formatter generator and formatting tools.

In the next example we discuss the use of a generated and adapted for-
matter and the Box-to-ASCII and Box-to-TEX back-ends in a structure editor.

Example 1.1.1 Given the context-free grammar of the language Cobol, a
structure editor for this language may offer a “Pretty” button to format a
part of the text selected by the user, and a “TeX” button to generate TEX
code for the selected part. Figure 2(a) shows an instantiation of such an
editor with these two buttons. Pushing the “Pretty” button causes the
selected text to be formatted as is shown in Figure 2(b). In this situation
the formatter is used interactively; only the selected text is replaced by the
formatted text.

Pushing the “TeX” button in Figure 2(a) produces TEX code which yields
the text shown in Figure 2(c). Here the formatter is used in a batch-oriented
manner. The production of TEX code takes more time than the production of
plain ASCII text, because a number of transformations is applied, before TEX
code can be generated; see van den Brand and Visser [1994] for details. Note
that keywords and variable names are set in different fonts.

1.2 Overview

We start in the next section with the generation of unparsers—formatters
that directly translate abstract syntax trees to strings without consider-

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 5

@ CUBOL Files : /nfs/adam/ada2/markvdb/PP/COBOL/Ex

(a) unformatted

O] COHUL F.Lles ¢ /nfs/adam/ada2/markvdb/PP/COBOL/ cobofi

o1 REE*FE&-TW PIC 3(5),
01 REQ-SIZE PIC 9(H),
O1 RETURN-PTR USFGE IS POT

01 ELT~CNT PIC 9(33,

(b) formatted

IDENTIFICATION DIVISION.
PROGRAM-ID. LCR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REC-MEM-TOP PIC 9(5).
01 REQ-SIZE PIC 9(5).
01 RETURN-PTR USAGE IS POINTER.
01 ELT-CNT PIC 9(3).
END PROGRAM LCR.

(c) typeset

Fig. 2. Structure editor with unformatted (a) and formatted (b) Cobol text and TEX output
for a part of the Cobo! program f(c).

ation for layout. In Section 3 priority and associativity declarations are
used to place brackets in the generated string in order to keep a correct
correspondence with the abstract syntax tree in case of ambiguities. In
Section 4 we give a short overview of our box language and present a

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

6 . Mark van den Brand and Eelco Visser

formatter that produces boxes. Some extensions of Box are described, such
as box operators for fonts and alignments. In Section 5 we present an
elegant and flexible solution for the classical problem for formatting
comments occurring in the source text. In Section 6 we show how the
extensions of the box language can be used to adapt the generated format-
ter. Next, formatters for the languages Cobol [Stern and Stern 1988] and
the process specification formalism PSF [Mauw and Veltink 1990] are
discussed as case studies. Section 7 discusses the implementation of the
box formatter generator in more detail. In Section 8 we review related
work.

2. UNPARSERS

An unparser translates an abstract syntax tree representation of a program
into a textual representation without considering layout. A parser for
language L parses some input string and builds a parse tree if the string is
syntactically correct. Unparsing a parse tree is simple, because all informa-
tion concerning keywords, priority, and associativity conflicts, etc. is explic-
itly available. The yield (frontier) of a parse tree gives in fact a perfect
unparsing. However, a parser normally does not return a parse tree but an
abstract syntax tree which contains less information. An unparser which
traverses such an abstract syntax tree must know for each node which
keywords to generate and whether brackets are needed to correctly repre-
sent the priorities and associativities of operators.

Given a context-free grammar the generator derives an executable alge-
braic specification of the unparser. Each production in the grammar is
translated to an equation in the generated unparser. This approach is later
extended to the more sophisticated solution we have used in our generator.

2.1 Correctness of Unparsers

The unparser traverses an abstract syntax tree to obtain its yield. Such a
tree is either built by a parser or constructed automatically by program
transformations or program generators.

A parser for language L is a function

parse; : STRING — TREE,

which takes a string and builds an abstract syntax tree if this string
belongs to L, and an unparser is a function

pp. : TREE, — STRING

which takes an abstract syntax tree constructed for a string over L and
transforms it back into a string. We cannot require

ppL(parse.(s)) = s

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 7

as the unparser may modify the layout in the original string s. An unparser
pp; is correct with respect to parse, if, given any abstract syntax tree A,
over language L, we have

parse; (pp.(A.)) = A,

If the parser would produce a parse tree instead of an abstract syntax
tree the correctness is quite obvious, because in that case it is sufficient for
the unparser to concatenate all leaves. In case of an abstract syntax tree,
however, it is necessary to show that the unparser does yield a text which
is syntactically correct and represents the original tree.

2.2 Derivation of Unparsers

The process of generating an unparser for an arbitrary language consists of
translating context-free grammar rules into text-formatting rules. Given
the abstract syntax tree of some program, the unparser produces an
unparsing which consists of the yield of the corresponding parse tree. All
terminals are concatenated, separated by a space character.

The unparser is generated using the context-free grammar G = (Vy, Vo,
S. P) of language L, where Vj is the set of nonterminals; V; is the set of
terminals; V, 0V, = 2, S € Vy; and P is a finite subset of Vi, X (VU
Vo,

For each nonterminal N the generated unparser contains a function

ppN(N) — STRING

Each alternative of a production rule for a nonterminal is transformed into
an equation. Consider the production “N ::= a”; all nonterminals X in « are
replaced by variables, varX;, of the sort’ X. The i is needed to ensure the
uniqueness of the variable names in case a nonterminal occurs more than
once in «. The terminals ¢ in « are not modified.

The context-free grammar rule “N ::= X, ... X,” is translated into the
equation
ppN(X] ...X,,):sl‘“l_l”'...'“LJ”'Sn
where
_ X, if X, e Vrp, “X” if X, eV,
Xl = . and 8, = _ .
varX, if X, eVy ppX,(X,) if X, €Vy

Right-hand sides of equations are constructed from constant strings and
recursive applications of unparsing functions separated by spaces and
concatenated by a binary concatenation operator {-) on strings.

! When context-free grammars are used to denote algebraic signatures nonterminals are
conventionally called sorts. We will use both notions when appropriate.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1. January 1996.

8 . Mark van den Brand and Eelco Visser

context-free syntax
ppProgram(Program) — String

ppDecls(Decls) — String
ppSeries(Series) — String
variables

varDecls[0-9]* — Decls
varSeries[0-9)« — Series
equations

[1] ppProgram(begin varDeclsq varSeries; end)
= "begin" . ",," . ppDecls(varDeclsg) . "" . ppSeries(varSeries;) . "u" . "end"

Fig. 3. Generated unparser for a context-free production rule.

begin--end

N

varDecls varSeries

Fig. 4. The abstract syntax tree for begin varDecls varSeries end.

Example 2.2.1. The production rule

Program ::= “begin” Decls Series “end”
is transformed into the specification given in Figure 3.

2.3 Interpretation of Equations

Before we continue our description of the unparser a few words on the
interpretation of equations are appropriate. A description of the structure
of ASF+SDF specifications can be found in Section 7.1. The ASF+SDF
formalism allows the use of general user-definable syntax instead of prefix
functions only. The argument, begin varDecls varSeries end, of the function
ppProgram corresponds with the abstract syntax tree in Figure 4.

Applying the function ppProgram to begin varDecls varSeries end corre-
sponds to applying the function ppProgram to the abstract syntax tree of
Figure 4. ppProgram(begin varDecls varSeries end) rewrites to the right-
hand side of Figure 5. The variable varDecls is matched with the abstract
syntax tree with the nonterminal Decls as root. The function ppDecls
applied to this abstract syntax tree can now be rewritten as well. This
process is repeated for all nonterminals in the abstract syntax tree.

The equations are interpreted as rewrite rules on the abstract syntax
trees. Variables in the left-hand side and right-hand side of equations are
consistently substituted with abstract syntax trees. A detailed description
of this process can be found in Walters [1991].

2.4 Lists

Most extended BNF notations support a notion for lists. In SDF [Heering et
al. 1992] there are four types of lists: with and without a separator, and

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 9

ppProgram() N
, — "begin" -
begin--end "o

™~
u
/ \ ppDecl/S(N
varDecls varSeries varlgecls/\

win
u

ppSeés()\.
var.SJeries/ \

Hull '|endﬂ
Fig. 5. Interpretation of an equation.
with zero or more or one or more elements. Lists without a separator are

denoted by N®, where € = *, or +, respectively. An equivalent BNF
definition of such lists is

Nx* N+ =N

I

Nx 1= N+ N+ :=NN+

Lists with a separator are denoted by {N “"}B with ¢t € V; The BNF
definition of this type of list is

{N “t”}* .
{N “t"}* =

fl

{N “t"}+ ::= N
{N “t”}+ {N “t”}"‘ = NS {N “t”}+

Although these rules for lists suggest a cons list structure, the correspond-
ing node in the abstract syntax tree has the structure as shown in Figure 6.

2.4.1 Formatting Rules for Lists. For each list {N “t"}* the generated
unparser contains a function

“ppNt0” ({N “t"}*) — STRING
defined by
ppNtO() =*“"
ppNtO(varN) = ppN(varN)
ppNtO(varN t varNt+) = ppN(varN) - “L” - “t” - “U” - ppNtO(varN¢ +).

where varNt+ is a variable of the sort {N “t”}+. For each list {N “t”}+ the
generated unparser contains a function

“ppNt1” ({N “t”}+) — STRING

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

10 . Mark van den Brand and Eelco Visser

Fig. 6. List node in abstract syntax tree for a list without separators.

defined by the equations

ppNtl(varN) = ppN(varN)
pNtl(varN ¢t varNt+) = ppN(varN) - “U” - “¢t” - “U” - ppNtl(varNt+).

For lists without separators the unparser contains similar functions and
equations. The list separator “¢” and the list iterators, * and +, are used to
compose the variable names which represent lists.

Example 2.4.1.1. Consider a production rule for a block of statements

context-free syntax
begin Decls {Stat “;"}* end — Program

The generated unparser will contain the generated equations shown in
Figure 7. The variable varStat;* in Figure 7 denotes a list with zero or more
elements, whereas varStat;” denotes a list with at least one element.?

2.5 Implicit Syntax Rules

Some tools use syntax rules which are implicitly derived from context-free
grammars—for example, placeholders used in structure and hybrid editors.
Unparsers must be able to deal with these implicitly derived syntax rules.

Example 2.5.1. Generic structure editors allow the manipulation of
incomplete programs. Placeholders are used by the structure editors to
represent holes in the program text. Assume the textual representation of a
placeholder is the name of a nonterminal surrounded by the characters
(and). A placeholder can only replace syntactic constructs of the equiva-
lent sort. For each nonterminal N the implicit syntax rule N ::= “N)” for
the corresponding placeholder is derived from the grammar.

2.5.1 Formatting Rules for Placeholders. The unparser must be able to
format programs containing placeholders; therefore for each nonterminal N
it contains an equation:

PPN ((N)) = “(N)”
For each list {N “t”}* and {V “¢”}+ the unparser contains the equations:
PPNtO((Ntx)) = “(Ntx)”
PPNt1((Nt+)) = “(Nt+)”

2 The lifting of the * and + in the variable names is caused by the ASF+SDF typesetter.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 11

context-free syntax
“ppStat;0” ({Stat “"}x) — String

variables
varDecls[0-9)* — Decls
varStat[0-9]« —+ Stat

“varStat; #"[0-9]* — {St&t “;”}1&
“varStat; +"[0-9]* — {Stat “”}+
equations

(1] ppProgram(begin varDeclsg varStat;] end)
= "begin" . "." . ppDecls(varDeclsp) . "" . ppStat;0{varStat;]) . "," . "end"

[2) ppStat;0() = "
[3] ppStat;0(varStaty) = ppStat(varStaty)

[4] ppStat;0(varStato; varStat; ")
= ppStat{varStatg) . """ . ";" . "L ppStat;O(varStat;l+)

Fig. 7. Generated unparser for lists.

For lists without separators the unparser contains similar equations.

2.5.2 Variables. The specification of the unparser contains, besides the
functions and equations, a list of variables used in the equations. All
variables are directly related to nonterminals in the original context-free
grammar; however, for the lists N* and {N “t”}* the unparser contains also
list variables for N+ and {V “¢"}+ respectively. An example of the declara-
tion of variables used in equations can be found in Figure 7.

In the rest of this article all example specifications will be presented
without the variable declarations.

3. PRIORITY AND ASSOCIATIVITY

Priority and associativity definitions for (binary) operators are used to
disambiguate sentences containing occurrences of these operators. Priority
definitions are used to define the (relative) ordering of operators with
respect to each other. The priority and associativity of the operators can be
overruled by inserting brackets. Priority and associativity of operators
introduce the problem of whether or not the unparser should insert
brackets in the formatted text. Two situations can be distinguished: the
abstract syntax tree contains nodes representing brackets, or these nodes
do not occur in the abstract syntax tree. In the latter case the unparser
needs extra information to decide whether brackets should be inserted.
The only way to define priority and associativity in BNF is by means of
introducing extra nonterminals. SDF allows a more explicit definition of
priority and associativity in a separate priorities section. The priorities are
expressed by a partial order on productions. Associativity can be defined for
binary operators by means of attributes left, right, assoc, or non-assoc

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996,

12 . Mark van den Brand and Eelco Visser
* -
+ - + 2
5 5 4 2 3 *
(2) (6+6)+(4-2) / \
5 4

(b) B+5#4~2

Fig. 8. Abstract syntax trees for (5 + 5) * (4 — 2)and 5 + 5 * 4 ~ 2 according to the syntax for
expressions in Example 3.1.

which are associated with context-free grammar rules of the form SORT
“op” SORT — SORT.

The associativity relation between a group of operators can be defined in
the priorities section.

Example 3.1. Consider the following SDF definitions for arithmetic
expressions.

context-free syntax
Nat — Exp
Exp “+” Exp — Exp {left}
Exp “~” Exp — Exp {left}
Exp “#” Exp — Exp {left}
“"Exp ‘)" — Exp {bracket}

priorities
{left: Exp “+” Exp — Exp, Exp “-" Exp — Exp}
< Exp “¥” Exp — Exp

All the operators are left-associative. The * operator has higher priority
than the + and — operators, which have the same priority and are
left-associative with respect to each other.

If a context-free grammar rule is followed by the attribute bracket, no
node will be created in the abstract syntax tree for an occurrence of such a
rule. Given this context-free grammar the parser builds the abstract syntax
tree shown in Figure 8(a) for the sentence (5 + 5) * (4 — 2). A naive text
formatter might produce the output 5 + 5 * 4 — 2 for this abstract syntax
tree. So, it does not put the brackets back, although they are necessary.
The abstract syntax tree for 5 + 5 * 4 — 2 is given in Figure 8(b). Given the
priority and associativity definitions the formatter should contain equa-
tions which insert these brackets automatically.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 13

context-free syntax
non-assocExp(Exp, Exp) - BOOL
right Exp(Exp, Exp) — BOOL

leftExp(Exp, Exp) — BOOL
gtrExp(Exp, Exp) — BOOL
equations

(1] non-assocExp(varEzp,, varEzp,) = false otherwise

[2] rightExp(varEzpg, varEzp,) = false otherwise

[3] leftExp(varEzp, + varFzp,, varEzp, + varEzp,) = true
[4] leftExp(varEzp, — varEzp,, varEzp, — varEzp,) = true
[5] leftExp(verEzp, * varEzp,, varEzp, * varEzp;) = true
6] leftExp(varEzp, + varBzp,, varEzp, — varEzp,) = true

(7] leftExp(varEzp, — verEzp,, varEzp, + varEzp,) = true
[8] leftExp(varEzp,, varEzp,) = false otherwise

9] gtrExp(varEzp, * varEzp,, varEzp, + varEzp;) = true
[10] gtrExp(varEzp, * varEzp,, varEzp, — varEzp,) = true
[11) gtrExp{varEzp,, varEzp,) = false otherwise

Fig. 9. Generated equations representing priority and associativity declarations.

For each nonterminal occurring in the right-hand side of a context-free
grammar rule which is used in the priorities section and/or is extended
with an associativity attribute the text formatter contains the functions

non-assocN (N, N) — BOOL

rightN (N, N) — BOOL

leftN (N, N) —BOOL

gtrN(N, N) —BOOL
Example 3.2. The rules in the SDF definition for the expressions from
Example 3.1 are translated to the equations presented in Figure 9. The
generated text-formatting rule for the + operator defined in Example 3.1 is
shown in Figure 10. The functions [_bracketsExp and r_bracketsExp in
Figure 10 transform the leftmost and rightmost argument, respectively,

into a string and add brackets if needed.
If the formatter contains a context-free grammar rule like

“(” N)" — N {bracket}

and for N there exists also a priority or associativity definition, then the
formatter contains a function

addbracketsN (N) —STRING

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

14 . Mark van den Brand and Eelco Visser

context-free syntax
ppExp(Exp) — String
equations
l.addbracketsExp(varEzpg, varEzpy + varEzp,) = varString,,
r-addbracketsExp(varEzp,, varEzp, + varEzp,) = varString,

(1]

ppExp(verBzp, + varEzp,) = varStringg . "," . "+" . "J" . varString;

Fig. 10. Generated equation for unparsing an expression.

for producing the brackets around an expression and the functions

|_addbracketsN (N, N) —»STRING
r_addbracketsN (N, N) —»STRING
m_addbracketsN (N, N) —»STRING

The first argument of these functions is a subexpression of the expression
given as the second argument. The functions transform the subexpression
given as the first argument into a string and put brackets around this
string if there is a priority or associativity conflict between the expression
and the second argument.

Example 3.3. The generated equations for restoring the brackets for the
grammar presented in Example 3.1 are given in Figure 11. The functions
I_addbracketsExp and r_addbracketsExp of Figure 10 are defined using the
functions of Figure 9. The function addbracketsExp transforms its argu-
ment into a string and adds the brackets.

4. BOX FORMATTERS

The formatters defined by the methods from the previous section only
produce a linear “unparsed text” corresponding to an abstract syntax tree.
This text is completely unembellished and does, for instance, not display
structure by indentation. In this section we replace string concatenation by
more powerful composition operations to get a better layout.

The formatting rules will be more flexible because they allow

—the use of conditional line breaks and indentation;
—the use of different fonts, sizes, and colors;
—translation to TEX and other formalisms;
—modification of the formatting rules.

The advantage of having more abstract formatting rules based on an
intermediate box language is obvious: the formatter depends no longer on a
specific output medium. By defining translations from the box language to
ASCII, TEX, or any other output language, we are able to reuse the box
formatters without modifications.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 15

context-free syntax
addbracketsExp(Exp) — String
1_addbracketsExp(Exp, Exp) — String
m_addbracketsExp(Exp, Exp) — String
r_addbracketsExp(Exp, Exp) — String
equations

[1] addbracketsExp(varBzps) = "(" . "u" . ppExp(varBzp,) . "J" . ")"

non-assocExp(varEzp,, varEzp,)
v rightExp(varEzp,, varEzp,)
v gtrExp(varEzp,, varEzp,) = true

1_addbracketsExp(varEzp,, varEzp,) = addbracketsExp(varEzp,)

(2]

[3] l-addbracketsExp(varEzp,, varEzp,) = ppExp(varEzp,) otherwise

non-assocExp(varEzp,, varEzp,)
v leftExp{varEzp,, varEzp,)
v gtrExp(varEzp,, varEzp,) = true

r.addbracketsExp(varEzp,, varErp,) = addbracketsExp(varEzp,)

(4]

[5] r.addbracketsExp(varEzp,, varEzp;} = ppExp(verEzp,) otherwise

gtrExp(varEzp,, varEzp,) = true

m.addbracketsExp(varEzp,, varEzp,) = addbracketsExp(varEzp,)

(7] m.addbracketsExp(varEzpy, varEzp,) = ppExp(varEzp,) otherwise

Fig. 11. Generated equations for adding brackets.

The box formatters are generated using the context-free grammar of
some language. The generated formatting rules can be modified in order to
obtain the desired formatting result. It is possible to reuse the modified
formatting rules when a new box formatter is generated for the same
language after, for instance, modifying the context-free grammar; see
Section 6.1.

4.1 Box: A Box Language

The most elementary boxes are strings of characters enclosed in double
quotes. Boxes can be composed, and the relative positioning of boxes is
defined by operators in the box language. We distinguish six basic operators: H
(horizontal composition), V (vertical composition), HV (horizontal and/or verti-
cal composition), HOV (horizontal or vertical composition), | (indentation), and
WD (invisible box with the same width as some visible box).

The functionality of the box operators is described by the following
diagrams. For simplicity, we only show operators with two or three argu-
ments. Generalization to the case of n arguments is straightforward. The

ACM Transactions on Software Engineering and Methodology. Vol. 5, No. 1. January 1996,

16 . Mark van den Brand and Eelco Visser

diagrams for the H and V operators are obvious.

HL[B.][Bo]]=Bi/Bs] VI By|[Bs] 1=
B

The formatting of the HV operator depends on the amount of space left for
the argument boxes. For each argument box it is considered whether this
box fits in the remaining space or not. In case of three argument boxes
this yields, for instance, four different ways of formatting. We express the
formatting in terms of H and V operators.

W[(B, BB 1- HI B, B;][B3]] or
V[H[B,|[B;|1{Bs]] or
VL BuJH [B2][Ba]1] or
VL B1|Bs] Bo)]

The formatting of the HOV operator also depends on the amount of space
left for the boxes. For all argument boxes it is considered whether they fit
in the remaining space or not. We also use the H and V operators to express
the functionality of this operator.

HOV[[B]B5] B3] 1= HI By BalBal 1 or
V[[B.][Bs][Bs]]

The functionality of the | operator depends on the surrounding box opera-
tor. This operator has an effect only in a vertical setting.

B.]
VL [B.JI[[By]1Bs]]= B,|
B
So, if the boxes are formatted horizontally the | operator is ignored.

HL [B,JI[[B4] 1(Bs] 1= [B.] B.] B

This has the consequence that an | operator in a HV or HOV is only
considered when the surrounding box becomes vertical.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 17

The WD operator translates a box into an empty box with dimensions
equal to those of its arguments.

Vi B, H[wo[B, 1 B, 1= Bt

B

4.2 Box Syntax

A box term consists of a box operator, zero or more spacing options, and is
followed by zero or more boxes.

context-free syntax

String — Box
Box* — Box-List
“H” 8-Options “|” Box-List “]” — Box

“V" S-Options “|” Box-List “|” — Box
“HV” S-Options “[” Box-List “|” — Box
“HOV” S-Options “|” Box-List “]” — Box
“I” $-Options “[” Box “1” — Box
“WD” “[” Box “]” — Box

The spacing options are used to adapt the horizontal, vertical, or inden-
tation offset between boxes. Not every combination of spacing option and
box operator makes sense. For instance the modification of the vertical
offset in combination with the H operator is not useful.

context-free syntax

“hs” — Spaced-Symbol
“vs” — Spaced-Symbol
“18” — Spaced-Symbol
Spacing-Symbol “=" INT — S-Option
S-Option* — S-Options

If no spacing options are specified, default values are used. The default
values for As, vs, and is are 1, 1, and 2, respectively.

4.3 Generating Boxes

Given the Box language, we are able to modify the generator presented in
Section 2 in such a way that the resulting formatter is no longer based on
strings but on boxes. It is not necessary to describe the entire box formatter
generator because issues like placeholders and “brackets” remain the same.
The process of generating a box formatter for an arbitrary language is done
by classifying each context-free grammar rule and by generating the

ACM Transactions on Software Engineering and Methodology. Vol. 5. No. 1, January 1996

18 . Mark van den Brand and Eelco Visser

formatting rules in the box formatter for each grammar rule using this
classification information.

4.3.1 Classification of Context-Free Grammar Rules. Box offers the
facility to place the members of a context-free grammar rule in a horizon-
tal, vertical, or some mixed way. The way the members are placed depends
on a number of circumstances—e.g., the structure of the grammar rule, the
surroundings where the rule is applied, etc. A conditional must be format-
ted in a different way than an expression, e.g.,

if
<Exp>
then
<Series>
else
<Series>
fi
versus
<Exp> + <Exp>

For the sake of brevity and simplicity we give only a rough classification of
context-free grammar rules. Only two different types will be used: indented
and nonindented. The name “indented” stems from the fact that some
language constructs are more indented than others to increase readibility.
The name “nonindented” represents all other language constructs. The
context-free grammar rule is of the type

—-indented, if it has one of the following patterns: ¢t N (¢ N)x t or t N (¢t N)+
and

—nonindented, if it does not satisfy one of the patterns given above.

Observe that most control structures in programming languages will be
classified as “indented.” This classification can be decided by means of a
simple finite automaton, which scans the production rule and yields its
classification as the result. This classification is performed by the formatter
generator, which uses this information to decide which box operators must
be used in the formatting rule of the corresponding context-free grammar
rule. The actual generator distinguishes more types in the classification
and uses more sophisticated heuristics to classify the context-free grammar
rules.

4.3.2 Derivation of Box Formatting Rules. For each nonterminal N in
the context-free grammar the generated formatter contains a function:

ppN (N) — Box

We present the formatting rules for indented and nonindented context-free
grammar rules and for lists.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 19

4.3.3 Formatting Rules for Grammar Rules of Type “Indented.” Each
grammar rule N == X, ... X, which is of type indented, results in an
equation

ppN (X, ... X)) =V[b,...b,]
where
‘X, it X, eV, “X.” if X.eV,

o and b, =
1 varX, if X eV,

X, P = L
lppX. (X)) if X, €V,.

The right-hand sides of the equations consist of strings, the most elemen-
tary hoxes, and (recursive) function calls of ppN (varN) which are indented
via the | operator. The boxes in the right-hand side are combined into one V
hox.

4.3.4 Formatting Rules for Grammar Rules of Type “Nonindented.” A
grammar rule of type nonindented results in an equation

ppN (Xl - .X”) = HV [bl Lo bn]
where

X, if X ev, “X7 if X ev,
X, - o and b, = _
‘VarX, if X,E V;'\' prl(Xl) if X,E V\

The hoxes in the right-hand side are combined into one HV box.

4.3.5 Formatting Rules for Lists. For each list {N “t"}» the formatter
contains the functions

“ppNt0” ({N “t"}*) — Box
“ppNt0e” ({N “t”}+) — Box
defined as

ppNtO() = H [|

ppNtO(varNt1) = V [ppNtOe(varN¢1)]

ppNtOe(varN) = ppN (varN)

ppNtOe(varN t varNt1) = H hs=0 [ppN (varN) “t”] ppNt0Oe(varNt1).

For the other syntactic forms of lists the formatter contains similar sets of
functions and equations.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1. January 1996.

20 . Mark van den Brand and Eeico Visser

context-free syntax
ppDecls(Decls) — Box
ppld-Type(Id-Type) — Box
“ppld-Type,0” ({Id-Type “”}*) — Box
“ppld-Type,0e” ({Id-Type “,”}*) — Box-List
equations
(1] ppDecls(declare varld-Type,*;)
= V ["declare"
I [PPId"I'}’Pe»O(W'"M'TyPC, ‘)]

u:u]
[2] ppld-Type,0() = H]
(3] ppld-Type,0(varid-Type,*) = V [ppld-Type,0e(varid-Type,*)]

(4] ppld-Type,Qe(varld-Type) = ppld-Type{varld-Type)

ppld-Type,0e(varid- Type, +) = varBoz-List

ppld-Type,0e(varid- Type, varld-Type,*) =
H hs = 0[ppld-Type(varld-Type) ","] varBoz-List

Fig. 12. Generated box formatter.

Example 4.3.5.1. Consider the context-free grammar rule

context-free syntax
declare (Id-Type “,"}* “” — Decls

which is transformed into the specification presented in Figure 12. This
rule is classified as type “indented.”

4.4 Modular Structure of the Box Formatter

SDF allows the specification of the context-free grammar to be split into
several modules. The generator generates for each of these modules a
separate formatter module. The import graph for these generated modules
is the same as for the context-free grammar. This allows an incremental
approach to the generation of formatters. If one of the modules of the
context-free grammar changes, a formatter needs to be regenerated only for
this module.

5. FORMATTING COMMENTS

A major problem is how to restore comments occurring in the original text,
when the abstract syntax tree is transformed into text. A typical scenario is
as follows. A parser processes a program text and builds an abstract syntax
tree for it. A text formatter processes the abstract syntax tree using
generated and/or user-defined formatting rules and produces text again.
The difference between the input of the parser and the output of the
formatter is layout. Comments in the input text will be lost in the output

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 21

text if comments are treated as layout, but this is unacceptable from the
users’ point of view.
There are two different ways of dealing with comments:

—Comments are considered part of the context-free syntax; thus it is
specified in the context-free grammar of the language where they may
occur. This is, for instance, the case for the “expected” comments in
Eiffel [Meyer 1992]. These comments are included in the abstract syntax
tree.

Comments are considered as a part of the lexical syntax, so they may
occur anywhere and are not included in the abstract syntax tree. Com-
ments are considered as layout.

The second form of comments is notoriously difficult to handle during
formatting [Blaschek and Sametinger 1989; Jokinen 1989]. Below, we
describe a solution for the treatment of this sort of comments. Note that we
do not consider the case where comments may appear inside lexical tokens,
e.g., as in Algol68 [Wijngaarden et al. 1976].

One approach to solve the problem of restoring comments is to attach
them to nodes in the abstract syntax tree [Rose and Welsh 1981]. During
formatting, the comments are regenerated when processing the node in
question. This method is also used in the CENTAUR system [Borras 1989;
Borras et al. 1989]. Unfortunately, there is no unique and completely
satisfactory method to determine to which node the comment should be
attached. For instance, in

while x > 0 (* as long as x positive *)
do

od

should the comment be attached to the syntax tree for the 0, the condition,
or the while-construct? A wrong choice may lead to an unexpected place-
ment of the comment in the formatted text.

In our approach, the position of a comment in the original text is used to
determine its position in the formatted text. Boxes are constructed on the
basis of the abstract syntax tree and a set of formatting rules. Boxes have
no knowledge of the original abstract syntax tree and can be modified
easily. This offers us a possibility for restoring comments. The box term
constructed for a given abstract syntax tree is compared with the original
text. The differences, thus the comments, are then inserted in the box. This
approach is based on the following assumptions:

—white space consists of spaces and new lines only and will be ignored;

—a comment starts with a begin marker and ends with either a new line or
an end marker;

—during formatting no lexical symbols are changed; for instance, “begin”
may not be replaced by “(”. The box contains only original tokens.

ACM Transactions on Software Engineering and Methodology. Vol. 5. No. 1, January 1996

22 . Mark van den Brand and Eelco Visser

Comments according to this style can be specified, for instance, in the
following way:

lexical syntax
“%%” ~ [\n]* “\n” — LAYOUT
“%” ~ [%\n]l+ “%” — LAYOUT

The first rule describes comments which start with some begin marker
(“%%”) and ends at the end of the line. The second rule describes comments
which start with some begin marker (“%”) and ends also with an end
marker; in this case no new lines and % characters are allowed within the
comment string. Other forms of comments are also allowed; their process-
ing is similar to the processing of these two forms.

5.1 Comments

The comments occurring in the original text must be restored in the
formatted text. The way the comments are formatted depends on the exact
place where the comments occur in the original text. We distinguish three
different types of comments:

—comments which occur after some symbol (HPAR);

—comments which occur on a line which does not contain any symbol
except the comment text, but the comment symbol does not occur in the
first column (VPAR); and

—comments which start in the first column of a new line (PAR).

Each of these comment types is represented by a separate box operator.
The comment box operators have no space options; instead they have two
strings which represent the begin and end marker of the comment.

context-free syntax
“HPAR” String String “(” Box-List “]” — Box
“VPAR” String String “[” Box-List “]” — Box
“PAR” String String “[” Box-List “]” — Box

Back-ends should take care of formatting the comment box in a correct
manner.,

5.2 Algorithm for Restoring Comments

We will give only a brief description of the algorithm for restoring
comments. Given the box term constructed for some abstract syntax tree
and the original text, this text is scanned using the strings in the box
term. White space is ignored. As soon as a begin marker of a comment is
encountered the comment is scanned and translated into a box term. The
selection of the appropriate box operator, HPAR, VPAR, or PAR, depends
on the exact place of the comment in the original text.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996,

Generation of Formatters for Context-Free Languages . 23

We will demonstrate the functionality of this algorithm by means of a
simple example. Suppose the text

begin
%% This is a toy program.
%% x is declared as a natural.
declare x : natural,
x % x gets the value 1 % := 1
end

has to be formatted. Given the abstract syntax tree of this program the
formatter generates the box

V [“begin”
PV [“declare” H hs=0 [l [H [“x” “:” “natural™]] *“;"T]]
FIHV [“x” =7 17
“end”]

Giiven the original text and this box, the algorithm transforms it into

V [“begin”
I [VPAR “% %" “” [* This is a toy program.”
“ x is declared as a natural.”]]
| [V [“declare” H hs =0 {1 [H [“x" “:” “natural”]] “;"]]]
[[HV [H [*x” HPAR “%"” “%” [* x gets the value 1]
=)
“end”]

This results in the following ASCII output:

begin
%% This is a toy program. x is declared as a natural.
declare
x : natural

x % x gets the value 1 % := 1
end

Note that the text of the comments is formatted as well. This was a
design decision; a small modification in the back-ends could suppress
this formatting.

6. FINE-TUNING OF GENERATED FORMATTERS

Formatters can be adapted by the specification writer in order to obtain
results better suited for the language at hand. Some adaptations deal with
the layout between terminals and are output medium independent; others
are output medium specific, such as font changes. Adapting box formatting
rules is demonstrated by giving an example of the desired layout scheme
and describing which changes are necessary to obtain this scheme. In
general, it may be necessary to extend the kernel box language to obtain
the desired result.

ACM Transactions on Software Engincering and Methodology. Vol 5. No. 1, January 1996.

24 . Mark van den Brand and Eelco Visser

It is possible to modify a formatter for a language L in such a way that
it produces code for language L’'. However we will not describe the possi-
bilities of using the formatter as a kind of “translator”—for example,
to transform Pascal code into C code—since this is not a task for an
unparser but for a translator. Such a translator can be specified in
ASF+SDF: Pascal — C — Box — ASCII.

Example 6.1. Consider again the context-free grammar rule

context-free syntax
declare {Id-Type “,’}* “;” — Decls

The corresponding box formatting rule is given in Figure 12,
For the program text “declare x:int;” the formatter produces the following
ASCII result

declare
X :int

whereas

declare
X :int;

is more “natural.” This is achieved by changing the formatting rule into

[1]1 ppDecls(declare varld-Type, * ;)
= V[“declare”
I[H hs = O[ppld-Type,O(UarId_Type’ *) “;,,]]]

The amount of polishing strongly depends on the structure of the lan-
guage. A more elaborate example showing how to tune generated format-
ters will be presented in Section 6.4.

6.1 General Usage

The construction of a formatter for some language passes through four
phases.

First the context-free syntax of the language in question has to be
formally specified. We use SDF to define the syntax in a modular way. The
modules defining the syntax of the language can be used as input for the
formatter generator.

In the second phase the formatter generator generates an algebraic
specification containing formatting functions for all the context-free rules
that were defined in the SDF modules. The generator produces for each
SDF module M two modules, one containing the generated formatting
information and one module that is intended to adapt certain formatting
rules to achieve specific effects, such as putting things in columns. We will
call these modules the generated module and the modification module. We
name these modules GEN-M and MOD-M respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 25

In the third phase the formatter can be adapted by modifying the
generated functions. The functions in the generated modules should not be
adapted; when the context-free grammar is changed the specific added
information would be destroyed. The rules that need more attention should
preferably be copied from the GEN-M module to the MOD-M module. The
generator will never overwrite the MOD-M modules; only the GEN-M
modules are affected.

The heuristics used in the generator are based on Algol-like languages;
therefore, it is sometimes necessary to alter the generated formatting
functions. For example, for declarative languages, like Prolog [SICS 1992]
or CLEAN [Plasmeijer and van Eekelen 1993], the formatting functions
must be adapted to obtain good formatting. Some compilers impose strict
layout conventions on the programs to be processed by them, such as Cobol
[Stern and Stern 1988].

The final phase of the development of a formatter is to speed up the
program. This is done by translating the ensuing algebraic specification
into a standalone C program. This is done with the ASF2C compiler
[Kamperman and Walters 1993].

The amount of time spent tuning the generated formatting functions
depends on the size of the grammar and the structure of the language. The
PSF syntax [Mauw and Veltink 1990] consists of 165 context-free syntax
rules spread over 10 SDF modules. It took about two days to produce a
satisfactory formatter for this language. This was done by a user who was
not an expert in making formatting programs.

Of course, as soon as a user adapts the generated rules for specific
effects, their correctness is no longer guaranteed. There is no tool to check
the correctness of the tuned rules. However, there is one aspect of the
correctness of the formatting rules that can be defined by means of an
algorithm. The skeleton of the right-hand side of the box formatting rule of
a context-free grammar rule should be equivalent to the right-hand side of
the corresponding text-formatting rule. This can be checked by stripping
the box expression in the right-hand side of its operators and using string
concatenation instead; this should always yield the original text-formatting
rule. The semantics of Box guarantees its constructs are placed linearly;
none of the box operators switches boxes. Furthermore, the modification of
the generated formatting rules is supported by an interactive programming
environment; every single change can be visualized immediately, and
therefore the most obvious mistakes will become apparent immediately.

6.2 Columns

Although Box only uses six operators it is possible to specify complex layout
schemes, such as columns. First we give an example of how to obtain
columns using the kernel box language. It turns out that this approach is
too tedious for the specification writer and too much directed toward text
formatting. It is based on the assumption that all characters have the same
width. A translation of boxes describing columns to TEX code produces

ACM Transactions on Software Engineering and Methodology. Vol. 5. No. 1, January 1996.

26 . Mark van den Brand and Eelco Visser

output which does not reflect the desired result. The introduction of special
box operators for columns solves these problems.

Example 6.2.1. Suppose we have a list of identifiers with their types,
and we want them to be formatted as

declare

input : natural,

output : natural,

repnr : natural,

rep : natural
This layout scheme can be obtained by first traversing the list, which is to
be formatted, in order to find the maximum length of identifiers which is
used when formatting the list.

Writing a specification to get columns in the formatted text has a number
of disadvantages. Such a specification is nondeclarative; it contains format-
ting information; thus it is not back-end independent. It is quite difficult
for the specification writer to specify this calculation of columns, particu-
larly if things must be put in more than two columns. The box formatter
contains too much detailed information; only the layout structure should be
specified, not the way to obtain this form. Finally, such a specification is
difficult to maintain and is error prone. Changing the context-free syntax
rules could result in a complete new specification of the column calculation.

These disadvantages can be eliminated by introducing special box opera-
tors dealing with columns.

6.2.1 Alignments. The introduction of an alignment operator relieves
the user from specifying the explicit calculation of columns. Furthermore,
the alignment operator can easily be translated to TEX.

Columns are implemented by means of two box operators: A and R. The
arguments of the A operator are R boxes. Each R box represents a row. All
R boxes should have the same number of arguments, equal to the desired
number of columns. For each column the user can specify whether the
alignment should be left, right, or centered. The number of alignment
indications should be equal to the number of columns. Each alignment
indication can be extended with spacing options, which are transferred to
the columns to be formatted.

context-free syntax

“A” A-Options S-Options “[” Box-List “]” — Box

“R” “[” Box-LiSt “]” N B()x

“1” S-Options — A-Option
“c” S-Options — A-Option
“r” S-Options — A-Option
“” {A-Option 7} “)” — A-Options

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 27

context-free syntax
“ppld-Type,0”({Id-Type “,”}*) — Box
“ppld-Type,0e” ({Id-Type “,"}*) — Box-List
equations

(1] ppld-Type,0(varld-Type,y) =A (1, c, 1} [ppld-Type,Oe(varid- Type,;)]
(2! ppld-Type,Oe() = ""
[3] ppld-Type,0e(varid : varType) = R[ppld(varid) ":" ppType(varType)]

ppld-Type,0e(varld-Type,;) = varBoz-List

ppld-Type,Oe(varld : varType, varld-Type,) =
Rlppld(varid) ":" H hs = 0[ppType{varType) ","]]
varBoz-List

Fig. 13. Specification of declaration columns using the alignment operators.

declare
input : natural,
output : natural,
repnr : natural,
rep : natural

Fig. 14. TgX output for the declarations.

The introduction of box operators for alignment requires of course the
adaptation of the various back-ends. The text back-end translates the
alignment operator into box operators in the kernel box language. The
problem of traversing the list twice is solved by storing size information in
the boxes and by processing the columns one by one. The TEX back-end
implements the alignment operator by means of its built-in alignment
facilities.

Example 6.2.1.1. The use of the alignment operators is demonstrated in
Figure 13. The declarations of Example 6.2.1 are formatted as shown in
Figure 14 using the TEX back-end.

6.3 Fonts

The kernel box language offers no facilities to manipulate fonts. It is not
necessary to have such facilities in case of the ASCII back-end. TEX allows
different fonts, and therefore we extend Box with operators to manipu-
late fonts. We have used the same strategy as with alignments. We
extend the kernel box language with new box operators for specifying
fonts. The font extension is independent of the alignment extension.
Font operators affect only the strings in boxes; they do not influence the
structure of boxes.

ACM Transactions on Software Engineering and Methodalogy, Vol. 5, No. 1, January 1996

28 . Mark van den Brand and Eelco Visser

Fonts are characterized by a number of parameters. We distinguish the
following parameters: fn (font name), fm (font family), se (font series), sh
{font shape), sz (font size), and ¢l (font color). Each of these parameters will
be translated to the appropriate TEX code.

context-free syntax

Font-Param “=" INT — Font-Option
Font-Param “=" ID — Font-Option
Font-Option* — Font-Options
“F” Font-Options — Font-Operator
Font-Operator “[” Box “]” — Box
Font-Operator “(” Box-List “)” — Box-List

“fn” — Font-Param
“fm” — Font-Param
“se” — Font-Param
“sh” — Font-Param
“sz” -> Font-Param
“cl” — Font-Param

A number of frequently used fonts are predefined by means of special
font operators. They can be considered as a kind of abbreviation, because
they can also be defined using font options. Special font operators are
introduced to mark keywords, variables, numbers, mathematical symbols,
and comments. The ESC font operator is used as an escape mechanism to
obtain special symbols in the formatted text.

context-free syntax
“KW” — Font-Operator
“VAR” — Font-Operator
“NUM” — Font-Operator
“MATH” — Font-Operator
“COMM” — Font-Operator
“ESC” — Font-Operator

The various back-ends have to be adapted in order to deal with the font
box operators. The text back-end ignores the font operators and their
options and uses only the string argument to derive plain ASCII text. The
TEX back-end translates the font operators into TEX macros to obtain the
desired effect in the output.

Some of these font operators are used by the generator of box formatters,
for instance, to mark keywords by making them consequently bold.

By using different fonts it is possible to mark defined and undefined
variables in a program. This can be achieved by letting the box formatter
rules use context-sensitive information, such as typechecking information,
while constructing the box expression for some program in order to decide
which font operator to use.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 29

[¢] COBOL-Files : /nfs’/adam/ada2/markvdb/PP/COBOL/ cobol}
I o, axpand heip

Fig. 156, An incorrectly formatted Cobol program.

6.4 Developing a Cobol Formatter

We demonstrate the approach of tuning generated formatters by generat-
ing a formatter for the programming language Cobol |Stern and Stern
1988] and modifying some of the generated box formatting rules. The
programming language Cobol has a simple syntax, but Cobol compilers
impose severe constraints on the layout. Cobol compilers do not process
programs which do not satisfy these layout constraints. We will show how
to tune a formatter by modifying the box formatting rules generated for the
context-free grammar rules in Figure 18.

The Cobol program in the editor of Figure 15 is an incorrectly formatted
Cobol program which will not be accepted by a Cobol compiler. This Cobol
program is formatted using the automatically generated formatting rules.
This editor is extended with a number of buttons. The “Pretty” button
formats the text selected by the user: the old text is replaced by the
formatted text. The “TeX” button translates the text selected by the user to
TrX code.

Equation 4 in Figure 16 is changed in equation 1 given in Figure 17, by
introducing a few extra H operators with the spacing option hs = 0 and
removing the | operator in the right-hand side of the equation. It is also
necessary to remove the keyword “otherwise” in the equation; this key-
word marks the equation as a so-called default equation. The default
equations are tried if none of the other equations succeeds. The modifica-
tions in the right-hand side of this equation are in fact minor; however,
pushing the “Pretty” button clearly shows the differences in Figure 19.

The equations 2, 5, and 7 given in Figure 16 are changed into the
equations 1, 2, and 3 given in Figure 20 by introducing some extra H
operator (with or without a spacing option hs = 0) and removing a few |
operators. Pushing the “Pretty” button produces the result shown in Figure
21. The numbered Cobol lines in Figures 19 and 21 are now formatted as
well. The modifications to obtain this result are not discussed here. The end
result is a program which can be processed by a Cobol compiler.

ACM Transactions on Software Engineering and Methodology. Vol. 5, No. 1. January 1996,

30 . Mark van den Brand and Eelco Visser

equations

[1] ppCOBOL-PROGRAM(var.ID-DIV:o var.OPT-DATA-DIV:
var_OPT-PROC-DIV:3 var.OPT-PROG-END:3)
= HV [ppID-DIV(var.ID-DIV:o)
ppOPT-DATA-DIV(var_.OPT-DATA-DIV:;)
ppOPT-PROC-DIV(var.OPT-PROC-DIV:3)
ppOPT-PROG-END(var.OPT-PROG-END:3)]
otherwise

[2] ppOPT-PROG-END(END PROGRAM var.ID:z .}
= V [KW["END"] KW["PROGRAN"] | [ppID(var_ID:3)] ".")
otherwise

(3] ppOPT-PROG-END() = HV [] otherwise

(4] ppID-DIV(IDENTIFICATION DIVISION . PROGRAM-ID . var_ID:5 .)
= V [KW["IDENTIFICATION"]
KW["DIVISIDN"] "
KW["PROGRAN-1D"] "
| [ppID(var-ID:s})] " ."
otherwise

[5] ppOPT-DATA-DIV(DATA DIVISION . var_OPT-STORAGE-SEC:3
var_.OPT-LINKAGE-SEC:,)
= V [KW["DATA"] KW["DIVISION"] " "
| [ppOPT-STORAGE-SEC(var_.OPT-STORAGE-SEC:3)]
| [ppOPT-LINKAGE-SEC(var-OPT-LINKAGE-SEC:4)])
otherwise

[6] ppOPT-DATA-DIV() = HV [} otherwise

[7] ppOPT-STORAGE-SEC(WORKING-STORAGE SECTION .
var_DATA-DESCS:3)
= V [KW["WORKING-STORAGE"
KW[“SECTION“] "o
| [ppDATA-DESCS(var_DATA-DESCS:3))]
otherwise

{8) ppOPT-STORAGE-SEC() = HV [] otherwise

Fig. 16. Some of the generated formatting rules for Cobol.

The Cobol formatter was used as a back-end for a compiler which
translated a special-purpose specification formalism for financial applica-
tions into Cobol code [Res 1994]. The output of this compiler could not be
processed by the Cobol compiler because of layout conventions. The Cobol
formatter was used as a filter to obtain compilable input for the Cobol
compiler.

6.5 The PSF Formatter

Another application of the box formatter generator was the production of a
formatter for the process specification formalism PSF [Mauw and Veltink

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 31

(1] ppID-DIV(IDENTIFICATION DIVISION . PROGRAM-ID . var_ID:s .)
= V [H [KW["IDENTIFICATION"] H hs = O[KW[*DIVISION"] "."]]
H [H hs = O[KW["PROGRAM-ID"] " "]
H hs = 0[ppID(var_ID:s) “."]]]

Fig. 17. The first modification in the generated formatting rules of Cobol.

1990]. It was used to typeset all specifications in Brunekreef [1995a]. There
are a couple of interesting features related to this typesetter not specific for
PSF. First, comments occurring in the original specification were not lost in
the typeset text, because they were essential for understanding the specifi-
cations. Second, the author wanted to “hide” (leave out) parts of PSF
specifications that were not relevant for the presentation. This can be
considered as a kind of elision. This latter feature has been implemented by
extending the PSF grammar with a new type of comments.

lexical syntax

“ . E-CHAR + “...” - LAYOUT
S~ — E-CHAR
~[.1 — E-CHAR

Comments of this type were not restored but translated to “. . .” by the TEX
back-end. This feature could only be implemented by extending the specifi-
cation of the generated PSF formatter. An example of a typeset PSF
specification can be found in Figure 22.

PSF is a modular specification formalism. To keep track of the dependen-
cies between the various modules a cross-referencing mechanism is
added to the PSF typesetter. This was implemented by extending the box
language.

7. IMPLEMENTATION

This section discusses the implementation details that played a role in the
development of the formatter generator, as well as the generated format-
ters themselves. We will briefly explain the ASF+SDF Metaenvironment
and the two accompanying formalisms. For more details on ASF+SDF we
refer to Bergstra et al. [1989] and Heering et al. [1992] and for a descrip-
tion of the Metaenvironment to Klint [1993; 1995]. We will refrain from
discussing the technical implementation details of the back-ends of the
formatters, i.e., Box-to-ASCII and Box-to-TEX. A detailed description of
these back-ends can be found in van den Brand and Visser [1994].

7.1 ASF+SDF

ASF+SDF is a modular algebraic specification formalism for the definition
of syntax and semantics of (programming) languages. It is a combination of

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

32 . Mark van den Brand and Eeico Visser

context-free syntax
ID-DIV OPT-DATA-DIV
OPT-PROC-DIV OPT-PROG-END — COBOL-PROGRAM

“END” “PROGRAM” ID “.” - OPT-PROG-END
— OPT-PROG-END

“IDENTIFICATION" “DIVISION” ©.”
“PROGRAM-ID” “” ID “” — ID-DIV

“DATA” “DIVISION” *.”»
OPT-STORAGE-SEC OPT-LINKAGE-SEC — OPT-DATA-DIV
-+ OPT-DATA-DIV

“WORKING-STORAGE” “SECTION” “.”
DATA-DESCS — OPT-STORAGE-SEC
— OPT-STORAGE-SEC

Fig. 18. Fragment of the syntax of Cobol.

COBOL-Files
Lree text

Fig. 19. A slightly better formatted Cobol program.

two formalisms: ASF (Algebraic Specification Formalism [Bergstra et al.
1989]) and SDF (Syntax Definition Formalism [Heering et al. 1992]). The
ASF+SDF formalism is supported by an interactive programming environ-
ment: the ASF+SDF Metaenvironment [Klint 1993]. This system is a metaen-
vironment because it supports the design and development of programming
environments. We used this environment to implement our ideas.

ASF is based on the notion of a module consisting of a signature defining
the abstract syntax of functions and a set of conditional equations defining
their semantics. SDF allows the definition of concrete (i.e., lexical and
context-free) syntax. Abstract syntax is automatically derived from the
concrete syntax rules.

ASF+SDF has already been used for the formal definition of a variety of
(programming) languages and for the specification of software engineering
problems in diverse areas, such as simulation of hydraulic systems, query
optimization, and the specification of a software interconnection bus.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 33

(1] ppOPT-PROG-END(END PROGRAM var_ID:; .)
= H [KW["END"] KW["PROGRAN"] H hs = 0[ppID(var_ID:5) " ."]]

(2] ppOPT-DATA-DIV(DATA DIVISION . var OPT-STORAGE-SEC:3
var.OPT-LINKAGE-SEC:4)
= V [H [KW["DATA"] H hs = O[KW(["DIVISION"] "."]]
ppOPT-STORAGE-SEC(var.OPT-STORAGE-SEC:3)
ppOPT-LINKAGE-SEC(var_.OPT-LINKAGE-SEC:4))]

(3] ppOPT-STORAGE-SEC(WORKING-STORAGE SECTION .
var.DATA-DESCS:3)
= V [H [KW["WORKING-STORAGE"] H hs = O[KW/["SECTION"] »."]]
J is = 1[ppDATA-DESCS(var.DATA-DESCS:3))]

Fig. 20. The other modified formatting rules of Cobol.

[® COBOL-Files : /nfs/adam/ada2/markvdb/PP/COBOL/cobol

m.

DATA DIVISION,

WORKING-STORAGE SECTION,

01 REC-MEM-TOP PIC 9(5),

01 REG-SIZE PIC 945},

01 RETURN-PTR LISAGE IS POINTER,
0L ELT-CNT PIC 943},

END PROGRAM LCR

Fig. 21. The expected formatted Cobol program.

ASF +SDF specifications can be executed by interpretation or by compi-
lation to C using the ASF2C compiler [Kamperman and Walters 1993]. It is
also possible to regard the ASF+SDF specification as a formal specification
and to implement the described functionality in some programming lan-
guage. This has, for instance, been done for the software interconnection
architecture ToolBus of Bergstra and Klint [1995].

The skeleton of an ASF+SDF module consists of an imports section, zero
or more exports or hiddens sections (defining sorts, lexical syntax, context-
free syntax, and variables), a priority declaration section, and conditional
equations; detailed examples can be found in Figures 7 and 23. Physically,
an ASF+SDF module consists of two files: the SDF file (everything except
the conditional equations) and the ASF file (the conditional equations).

The development of ASF+SDF specifications is supported by the
ASF+SDF Metaenvironment. The metaenvironment is an interactive envi-
ronment in which language definitions can be edited, checked, and com-
piled. All editing in the environment is performed via syntax-directed

ACM Transactions on Software Engineering and Methodology. Vol. 5, No. 1, January 1996

34 . Mark van den Brand and Eeico Visser

process module PointToPointChannel
begin
parameters
SettingsParameter
begin
functions
pcerror : -+ BOOLEAN
pcloss : — BOOLEAN
pesize : - NATURAL
end SettingsParameter

imports
Sides,
Queues
{Queue-Parameters bound by [Q-ELEMENT — FR, queue-nil — ce]
to GenericFrames}

variables
Q : - QUEUE
c¢in, cout : — SIDE
definitions

~— initialisation
P-CHANNEL (cin, cout) = P-CHANNEL (cin, cout, empty-queue)

P-CHANNEL(cin, cout, Q) =
[or{eq(pcsize, nat(*0)), it(length(Q), pcsize)) = true] —
sum(F in FRset,
read-SC(cin, F) - P-CHANNEL (cin, cout, enqueue (F, @Q)))
+ [or(eq(pcsize, nat("0)), lt(length(Q), pcsize)) = false] —
sum(F in FRset,
read-SC(cin, F) -
P-CHANNEL (cin, cout, enquene (F, dequeue(Q))))
+ [gt(length(Q), nat("0)) = true] - send-CR(cout, serve(Q)) -
P-CHANNEL (cin, cout, dequeue(Q))
+ [and(gt(length(Q), nat("0)), pcerror) = true] — send-CR(cout, ce) -
P-CHANNEL (cin, cout, dequeue(Q))
+ [and(gt(length(Q), nat("0)), pcloss) = true] — lost(cin, cout) -
P-CHANNEL (cin, cout, dequeue(Q))
end PointToPointChannel

Fig. 22. A typeset PSF specification.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 35

[Module Booleans NEEENGG—_G—G—GlGGGG————

[1 tree text expand help

“ imports Layout

exports
sorts BOOL
context—free syntax
true -> BOOL
false -> BOOL

BOOL “i" BOOL -> BOOL {left3l
BOOL “a" BOOL -> BOOL {left3l
not "(" BOOL ")" -> BOOL

“(" BOOL ">" -> BOOL fbracket3}

equations
[1] true | Bool = true
[2] false | Bool = Bool
[3] true & Bool = Bool
4] false & Bool = false
(51 not{false) = true
[6] not{true) = false|

C eiEHHRA e

Fig. 23. A module editor.

editors which allow textual as well as structural editing |[Koorn 1994]. An
ASF+SDF module can be edited via a module editor, which is a combina-
tion of two syntax-directed editors: one for the SDF part and one for the
ASF part; see Figure 23.

7.2 Generator

Given a context-free grammar in SDF the formatter generator generates a
modular and adaptable formatter. The generator is a standalone tool that
processes a module and, optionally, all its directly and indirectly imported
modules. The generator preserves the modular structure of the input
grammar and, after generating an initial version, incrementally updates
only those modules for which the original grammar is changed.

A pictorial representation of the implementation of the generator can be
found in Figure 24. Observe that the generator has been bootstrapped: it
uses its own formatting technology to produce output. The parser processes
the SDF modules. The parser is implemented in LEX+YACC [Johnsson
1986; Lesk and Schmidt 1986]. The context-free grammar in SDF is
translated into an intermediate representation in the Graph Exchange

ACM Transaclions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

36 . Mark van den Brand and Eelco Visser

SoF
generator
module
- - - -
- - - -
-
SoF in formatter in formatter as
parser kernel AsFix2Box Box2ascil
arL format AsFix format Box expression

Fig. 24. Architecture of the implementation of the generator.

Language [Kamperman 1994]), which we use for the concise encoding of
trees and graphs. This intermediate format is input for the next phase, the
kernel, which translates each context-free rule in the SDF specification into
one or more formatting functions. These functions are in another interme-
diate format, called AsFix [Klint 1994], which we use for the internal
representation of ASF+SDF specifications. The next phase, the AsFix2Box
unparser, produces the Box representation of the formatting functions. In
this phase the AsFix representation is “translated” to an ASF+SDF speci-
fication. The last phase is the Box2ASCII back-end which translates this
Box representation into text. The kernel, AsFix2Box and Box2ASCII back-
end are algebraic specifications in ASF+SDF. The ASF2C compiler trans-
lates these specifications into C programs. These programs can be compiled
to obtain a standalone executable.

The performance of these compiled specifications is so good that we felt
no need to reimplement them directly in C. The performance of the
generator depends mainly on the size of the modules to be processed.

7.3 Generated Formatters

The formatters produced by the generator consist of two parts: the func-
tions to transform an abstract syntax tree into a box expression and the
functions which take the original text together with the constructed box
expression and insert the comments in the text in the box expression.
These two parts are separate because when the formatter is used as the
back-end of some code generation process the restoration of comments is
not needed.

The generated formatter is an ASF+SDF specification. The modular
structure of the underlying context-free grammar is clearly visible in the
formatter. Each module in the context-free grammar results in two mod-
ules in the generated formatter. In Section 6.1 we already gave an abstract
description of the generation of these modules.

The generated formatters can also be compiled to C. Such a compiled
formatter can then be used to replace the standard formatter in the
programming environments generated by the ASF+SDF Metaenvironment.

In our syntax-directed editors we use a nonconventional approach: rather
than regenerating the source text from the abstract syntax tree after each
modification, we maintain the original source text as well. Unparsing is

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 37

thus not part of the innermost time-critical editing loop. As a result,
generated formatters can be used in interactive editors, although they are
currently nonincremental. The development of incremental formatters is
interesting, however, to improve performance when formatting large pro-
grams. The elision mechanism should also be improved, since this is
important when large programs are inspected or manipulated. A flexible
elision mechanism could reduce the size of program code to be formatted
and thus influence performance as well. Currently we are investigating an
elision mechanism similar to the one described in Cordy et al. [1990].

8. RELATED WORK

Various approaches are developed to tackle the formatting of text, formu-
las, or programs. Some of these approaches are based on a box-like
language, e.g., TEX {Knuth 19841 or PPML [Morcos-Chounet and Conchon
19861, others use a “lexical” approach, e.g., Oppen [1980].

TEX uses a box language to typeset formulas. A formalization of this box
language in a functional programming language can be found in Heckmann
and Wilhelm [1995]. PPML, a pretty-print metalanguage, uses a box
language to format programs. The PPML box language and our box
language are quite similar. The formatting language of Pretty [Vos 1990], a
first attempt to define formatting algebraically, offered a considerable
number of (infix) operators on boxes.

Oppen’s formatting mechanism is based on an algorithm that receives
lists of lexical tokens with escape characters to direct the pretty-printing
process. These lists of lexical tokens are called blocks in Oppen [1980]. A
block can contain two categories of escape characters:

—bracket characters to delimit a syntactic construct, such as an assignment
or a series;

—blank characters to mark a possible line break and/or the number of
blanks to be printed between lexical symbols.

The functionality of the brackets is to delimit syntactic constructs. The
blank characters come in two flavors: consistent and flexible ones. Blocks
are comparable to our boxes. The functionality of the escape characters in
Oppen’s approach is expressed by the operators in Box. We think that the
semantics of operators is more clear than the semantics of a queue of blank
characters. The consistent blank characters represent the functionality of
our HOV operator, whereas the flexible ones resemble our HV operator. The
unparsing rules in the specification language SSL [Reps and Teitelbaum
19891 of the Synthesizer Generator {Reps and Teitelbaum 1989] use also a set
of lexical tokens —e.g., %t (move the left margin one indentation unit to the
right), %b (move the left margin one indentation unit to the left), or %n (break
the line and return to the current left margin) — to direct the unparsing.
There exist several programming environments that can be parameter-
ized by a programming language definition: Synthesizer Generator {Reps
and Teitelbaum 1989{, CENTAUR [Borras 1989; Borras et al. 1989], PSG

ACM Transactions an Software Engineering and Methodology. Vol. 5, No. 1. January 1996.

38 . Mark van den Brand and Eelco Visser

(Bahlke and Snelting 1986], Mjglner/ORM Environment [Magnusson et al.
1990], Pregmatic [van den Brand 1992], and the ASF+SDF Metaenviron-
ment [Klint 1993]. Each of these systems has its own way of implementing
unparsers. SSL [Reps and Teitelbaum 1989] of the Synthesizer Generator
offers facilities to specify unparsing rules. CENTAUR on the other hand
uses a special-purpose language PPML [Morcos-Chounet and Conchon
1986] to specify unparsing. These two approaches have in common that the
unparsers have to be specified manually.

In this article we explained how to automate the process of writing
formatters. We used the ASF+SDF Metaenvironment to specify a formatter
generator to achieve that goal. The difference between our approach and
the other approaches is that it becomes possible to specify a generator to
generate the unparsing rules in SSL format or PPML programs, rather
than writing them by hand as is currently done in CENTAUR and the
Synthesizer Generator.

We based our box language on the boxes of PPML. The basic ideas of Box
originate from Knuth’s TEX, but we follow the approach of PPML. The
basic operators in Box and those of PPML differ only in technical details.
One of the disadvantages of PPML is that it can only be used within the
CENTAUR system whereas in our approach it is possible and feasible to
generate a standalone program outside the context of the ASF+SDF
Metaenvironment. A PPML program is interpreted by a PPML formatting
engine or by the FIGUE formatting engine {Hascoet 1992]. These formatting
engines are similar to the back-ends for Box. In PPML the operators are
hardwired in the language, whereas Box offers the possibility to extend the set
of operators. The construction of new back-ends for Box is also possible.

The VIZ/UAL unparsing mechanism described in Garlan [1985] and the
SbyS editor [Mindr 1990] of the Mjglner/ORM environment [Magnusson et
al. 1990] offer facilities to have different views of the same object in
different windows. This is a feature which is not supported by our current
box formatters. The elision mechanisms of the above-mentioned systems
and of the language-based editor UQ2 [Welsh et al. 1991] also go beyond
the elision mechanism in our generated formatters. Finally, the UQ2 editor
[Welsh et al. 1991] offers an interesting feature with respect to the
production of documentation—namely, the production of program documen-
tation can be done in parallel with developing the program text. This is
achieved via editors with two editable views: one for the documentation and
one for the program text. This is complementary to our treatment of
comments: our system literally restores comments at their original positions,
whereas in the UQ2 editor comments are treated in a more restricted way.

9. CONCLUSIONS

In this article we have presented a method for generating formatting tools
for arbitrary languages based on the definition of their syntax. The gener-
ated formatter is an algebraic specification of a family of functions that
compositionally map the constructs of a language to box expressions. A box

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 39

expression is a declarative, language-independent description of the layout
of programs. It can be translated by various back-ends to ASCII, TEX, or
other text representations. The formatters reconstruct brackets and com-
ments that are usually thrown away by the parser. Extensions of the box
language provide powerful constructs for fonts and alignments.

The formatter generator presented in this article is, in combination with
the formatters for boxes [van den Brand and Visser 1994], a practical
support tool for the construction of documentation tools. It has been applied
to generate parts of programming environments for various languages.
Some of these parts are: error messages for a SEAL type checker {Koorn
1994]; a typesetter for the specification language wCRL [Hillebrand 1996};
a formatter for Prolog [SICS 1992] used in a transformation system for
Prolog programs [Brunekreef 1995b|; a formatter for a subset of the
functional language CLEAN [Plasmeijer and van Eekelen 1993] used in a
transformation system for CLEAN programs [van den Brand et al. 1995]; a
pretty-printer for Cobol used as a back-end of a Cobol generator [Res 1994];
a typesetter for the process specification formalism PSF used to typeset the
specifications in Brunekreef [1995a]|. The latter two tools were discussed in
Sections 6.4 and 6.5. The generated formatters save a considerable amount
of document preparation time, and the generation of the formatters saves a
considerable amount of tool specification and implementation time. This is
especially important when applied to new and experimental languages.

Both the formatter generator itself and the generated formatters are
specified algebraically using ASF+SDF. Because of the high level of
specification and the support provided by the ASF+SDF Metaenvironment,
the generator and generated tools are easy to maintain, document, and adapt.

Our approach for generating formatters can also be applied to systems,
such as the Synthesizer Generator |Reps and Teitelbaum 1989 and CEN-
TAUR [Borras 1989: Borras et al. 1989, where the formatting rules have to
be specified by hand.

The techniques described in this article are a starting point for generat-
ing more advanced formatters. Currently the formatting tools are used to
experiment with visualization of programs in the context of reverse engi-
neering. Some of the issues involved are the automatic generation of
comments to emphasize peculiarities in a program and the use of an elision
mechanism to clarify the structure of certain constructs. It is interesting to
investigate the combination of elision, color, and hypertext to display the
results of semantic analysis of programs. These techniques are crucial for a
better understanding of poorly documented programs.

ACKNOWLEDGMENTS

We thank Jacob Brunekreef, Joris Hillebrand, Wilco Koorn, and Martijn
Res for their remarks and suggestions based on their experience with the
formatter generator. Jan Rekers developed (a more sophisticated version
of) the algorithm for classifying context-free grammar rules that we pre-
sented in Section 4.3. We thank Paul Klint, Emma van der Meulen, Susan

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1. January 1996

40 . Mark van den Brand and Eelco Visser

Uskiidarl;, and Chris Verhoef for reading draft versions of this article.
Finally, we thank the referees for their useful comments.

REFERENCES

BAHLKE, R. AND SNELTING, G. 1986. Context-sensitive editing with PSG environments. In
Proceedings of the International Workshop on Advanced Programming Environments, R.
Conradi, T. Didriksen, and D. Wanvik, Eds. Lecture Notes in Computer Science, vol. 244.
Springer-Verlag, Berlin, 26-38.

BERGSTRA, J. A. AND KLINT, P. 1995. The discrete time ToolBus. Tech. Rep. P9502, Program-
ming Research Group, Univ. of Amsterdam, Netherlands. Available as ftp:/ftp.fwi.uva.nl/
pub/programming-research/reports/1995/P9502.ps.Z.

BERGSTRA, J. A., HEERING, J., aND KLINT, P. 1989. The algebraic specification formalism
ASF. In Algebraic Specification, J. A. Bergstra, J. Heering, and P. Klint, Eds. Addison-
Wesley, Reading, Mass., 1-66.

BLASCHEK, G. AND SAMETINGER, J. 1989. User-adaptable prettyprinting. Softw. Pract. Exp.
19, 7, 687-702.

Borras, P. 1989. PPML —Reference Manual and Compiler Implementation. INRIA, Sophia-
Antipolis, France.

Borras, P., CLEMENT, D., Despevyroux, T., INCErPI, J., Lang, B., aNnD PascuaL, V.
1989. CENTAUR: The system. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments. SIGPLAN
Not. 14, 2, 14-24.

BRUNEKREEF, J. J. 1995a. On modular algebraic protocol specification. Ph.D. thesis, Univ. of
Amsterdam, Netherlands.

BRUNEKREEF, J.J. 1995b. TransLog, an interactive tool for transformation of logic pro-
grams. Tech. Rep. P9512, Programming Research Group, Univ. of Amsterdam, Netherlands.
Available as ftp:/ftp.fwi.uva.nl/pub/programming-research/reports/1995/P9512.ps.Z.

Corpy, J. R., ELioT, N. L., AND ROBERTSON, M. G. 1990. Turingtool: A user interface to aid
in the software maintenance task. IEEE Trans. Softw. Eng. 16, 3, 294-301.

GarLaN, D, 1985. Flexible unparsing in a structure editing environment. Tech. Rep. CMU-
CS-85-129, Carnegie-Mellon Univ., Pittsburgh, Pa.

Hascoker, L. 1992. FIGUE An Incremental Graphic Formatter User’s Manual for Version 1.
INRIA, Sophia-Antipolis, France.

HECKMANN, R. AND WILHELM, R. 1995. Formula layout. Tech. Rep. A 07/95, FB 14 Informa-
tik, Universitit des Saarlandes, Saarbriicken, Germany.

HeerING, J., HENDRIKS, P. R. H., KuinT, P., AND REKERS, J. 1992. The Syntax Definition
Formalism SDF — Reference Manual. Version 6. CWI, Amsterdam, Netherlands. Available as
ftp://ftp.cwi.nl/pub/gipe/reports/SDFManual.ps.Z. Dec. Earlier version appeared in SIG-
PLAN Not. 24, 11 (1989), 43-75.

HILLEBRAND, J. A. 1996. A small language for the specification of grid protocols. Tech. Rep.,
Programming Research Group, Univ. of Amsterdam, Netherlands. To appear.

JonnssoN, T. 1986. Target code generation from G-machine code. In Graph Reduction, J. F.
Fasel and R. M. Keller, Eds. Lecture Notes in Computer Science, vol. 279. Springer-Verlag,
Berlin, 119-159.

JOKINEN, M. O. 1989. A Language-independent prettyprinter. Softw. Pract. Exp. 19, 9, 839-856.

KAMPERMAN, J. F. T. 1994. GEL, a graph exchange language. Tech. Rep. CS-R9440, CWI,
Amsterdam, Netherlands. Available as ftp:/ftp.cwi.nl/pub/gipe/reports/Kam94.ps.Z.

KaMPERMAN, J. F. T. AND WaLTERS, H. R. 1993. ARM, abstract rewriting machine. Tech.
Rep. CS-9330, CWI, Amsterdam, Netherlands. Available as ftp:/ftp.cwi.nl/pub/gipe/reports/
KW93.ps.Z.

KERNIGHAN, B. W. aND RiTCHIE, D. M. 1978. The C Programming Language. Prentice-Hall,
Englewood Cliffs, N.J.

KuiNt, P. 1993, A meta-environment for generating programming environments. ACM
Trans. Softw. Eng. Meth. 2, 2, 176-201.

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1, January 1996.

Generation of Formatters for Context-Free Languages . 41

KLINT, P. 1994, Writing meta-level specifications in ASF+~SDF. CWI, Amsterdam, Nether-
lands.

Krint, P. 1995, The ASF+SDF meta-environment — user's guide. CWI, Amsterdam, Neth-
erlands. Available as ftp:/ftp.cwi.nl/pub/gipe/reports/SysManual.ps.Z.

KnuTH, D.E. 1984. The TgXbook. Vol. A, Computers and Typesetting. Addison-Wesley,
Reading, Mass. (Ninth printing, revised, October 1989}.

Koorn, J. W.C. 1994, Generating uniform user-interfaces for interactive programming
environments. Ph.D. thesis, ILLC dissertation series 1994-2, Univ. of Amsterdam, Nether-
lands.

LEsk, M. E. aND ScHMIDT, E. 1986. LEX-—A lexical analyzer generator. UNIX Programmer’s
Supplementary Documents, volume 1 (PS1). Bell Laboratories, Murray Hill, N.J.

MacNusson, B., BENGTSsON, M., DadLIN, L.-O., Fries, G., Gustavsson, A., HEpIN, G., MINOR,
S., OscarssoN, D, anD TauBe, M. 1990. An Overview of the Mjelner/ORM Environment:
Incremental language and software development. In Proceedings of TOOLS '90. Prentice-
Hall, Englewood Cliffs, N.J., 635-646.

Mauw, S. aND VELTINK, G.J. 1990. A process specification formalism. Fundamenta Infor-
maticae 12, 85-139.

MEYER, B. 1992. [Eiffel: The Language. Prentice-Hall, Englewood Cliffs, N.J.

MINOR, 8. 1990. On structure-oriented editing. Ph.D. thesis, Lund Univ., Lund, Sweden.
Morc0s-CHOUNET, E. AND CONCHON, A. 1986. PPML: A general formalism to specify pretty-
printing. In Information Processing 86, H.-J. Kugler, Ed. Elsevier, Amsterdam, 583-590.

OpreEn, D. C. 1980. Prettyprinting. ACM Trans. Program. Lang. Syst. 2, 4, 465-483.

PLASMEIJER, M. J. AND vaN EEKeELEN, M. C. J. D. 1993. Functional Programming and Paral-
lel Graph Rewriting. Addison-Wesley, Reading, Mass.

REPS, T. aND TEITELBAUM, T. 1989, The Synthesizer Generator: A System for Constructing
Language-Based Editors. Springer-Verlag, Berlin.

Res, M. 1994. A generated programming environment for RISLA, a specification language -
for defining financial products. M.S. thesis, Programming Research Group, Univ. of Amster-
dam. Netherlands.

Rose, G. A. aNp WELSH, J. 1981. Formatted Programming Languages. Softw. Pract. Exp.
11, 651-669.

SICS. 1992. SICStus Prolog User’s Manual. Swedish Institute of Computer Science, Kista,
Sweden.

STERN, N. AND STERN, R. 1988. Structured COBOL Programming. Wiley, New York.

vaN DEN BranD, M. G.J. 1992. Pregmatic, a generator for incremental programming envi-
ronments. Ph.D. thesis, Katholieke Universiteit Nijmegen, Netheriands.

VAN DEN BranD, M. G. J., EKELKAMP, 8. M., GELUK, D. K. A., MELJER, H., OSBORNE, H. R., AND
PoLuing, M. J. F. 1995, Program transformations using ASF+S8DF. In ASF+SDF '95: A
Workshop on Generating Tools from Algebraic Specifications, M. G. J. van den Brand, A. van
Deursen, T. B. Dinesh, J. F. T. Kamperman, and E. Visser, Eds. Programming Research Group,
Univ. of Amsterdam, Netherlands, 29-52. Also Tech. Rep. P9504, Programming Research
Group, Univ. of Amsterdam. Available as http://www.fwi uva.nl/research/prog/reports/.

vaN DEN BRaND, M. G. J. anD VisseR, E. 1994, From Box to TEX: An algebraic approach to
the construction of documentation tools. Tech. Rep. P9420, Programming Research
Group, Univ. of Amsterdam, Netherlands. Available as ftp:/ftp.fwi.uva.nl/pub/
programming-research/reports/1994/P9420.ps.Z.

Vos, K. J. 1990. Pretty for an easy touch of beauty. M.S. thesis, Programming Research
Group, Univ. of Amsterdam, Netherlands.

WaLTERS, H. R. 1991, On equal terms, implementing algebraic specifications. Ph.D. thesis,
Univ. of Amsterdam, Netherlands. Available as ftp://ftp.cwi.nl:/pub/gipe/reports/Wal91.ps.Z.

WEeLsH, J., BRooMm, B., anD Kiong, D, 1991. A design rationale for a language-based editor.
Softuw. Pract. Exp. 21, 9, 923-948.

WIINGAARDEN, A., MalLLoux, B., PEcK, J., KosTEr, C., SINTZOFF, M., LINDSEY, C., MEERTENS, L.,
axp Fisker, R. 1976. Revised Report on the Algorithmic Language Algol 68. Springer-
Verlag, Berlin.

Received July 1995; revised December 1995; accepted January 1996

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 1. January 1996.

