
University of Amsterdam
Programming Research Group

Alist(A) (::)

[]

type

prod

(->) (#)

list

type(->) (#)
type

list

Alist(A) (::)

(^)

[]

prod(LT)
<>

Multi-Level Specifications

E. Visser

Report P9604 April 1996

University of Amsterdam

Department of Logic and Computer Science

Programming Research Group

Multi-level specifications

E. Visser

Report P9604 April 1996

E. Visser

Programming Research Group
Department of Logic and Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 SJ Amsterdam
The Netherlands

tel. +31 20 525 7590
e-mail: visser@fwi.uva.nl

This technical report is a preprint of Chapter � of A� van Deursen� J� Heering and P� Klint
�editors� Language Prototyping� An Algebraic Speci�cation Approach� AMAST Series in
Computing� World Scienti�c Publishing Inc�� ����

Acknowledgements Discussions with and	or comments on drafts of this chapter by Jan
Bergstra� Arie van Deursen� Dinesh� Pieter Hartel� Jan Heering� Paul Klint� Karl Meinke�
Jon Mountjoy and Teo Rus considerably improved the formalism� the speci�cation� the
presentation and my spirit� Arie van Deursen is acknowledged for asking me to write this
chapter� Leon Moonen created a tool for automatically constructing the import graph for
Asf�Sdf speci�cations� which was of great help in restructuring the speci�cation�

The research was conducted with support from the Dutch Organization for Scienti�c
Research �NWO� under grant ��
���
��
�� Incremental parser generation and context�
dependent disambiguation� a multi�disciplinary perspective�

Universiteit van Amsterdam� ����

CONTENTS � iii

Contents

� Introduction �

��� Semantics �

��
 Type Systems �

��� Multi�Level Speci�cations �

��� Related Formalisms �

��� Outline �

� Untyped Equational Speci�cations ��

�� Terms ��

�
 Equations �

�� Equational Logic ��

�� Term Rewriting ��

� One�Level Speci�cations ��

��� An Example ��

��
 Types ��

��� Term Analysis ��

��� Syntax of One�Level Speci�cations �OLS� � � � � � � � � � � � � � � � �
�

��� Speci�cation Semantics �
�

� Typechecking One�Level Speci�cations ��

��� Projection �
�

��
 Well�formedness �OLS�WF�

��� Non�wellformedness �OLS�NWF� ��

��� Type Assignment �OLS�TA� ��

��� Typechecking �OLS�TC� ��

� Multi�Level Speci�cations ��

��� Natural Numbers �

��
 Signature of Types ��

��� Functions ��

��� Typing Natural Numbers ��

��� Cartesian Product ��

��� Disjoint Sum ��

��
 Lists �

��� Strati�ed Stacks ��

��� Kinds ��

���� Generalized Product ��

���� Generalized Zip ��

���
 Type Classes ��

iv � CONTENTS

� Syntax of Multi�Level Speci�cations ��
��� Syntax �MLS� ��
��
 Normalization �MLS�Norm� ��
��� Modular Multi�Level Speci�cations �MMLS� � � � � � � � � � � � � � � ��
��� Multi�Level Equational Logic ��

	 Typechecking Multi�Level Speci�cations �	

�� Projection �

�
 Well�Formedness �MLS�WF� ��

�� Non�wellformedness �MLS�NWF� �

�� Preliminaries for Type Assignment �MLS�TA�Aux� � � � � � � � � � � ��

�� Type Assignment �MLS�TA� ��

�� Disambiguation and Con�uence �
�

�
 Typechecking �MLS�TC�
�

�� Typechecking Modular Speci�cations �MMLS�TC� � � � � � � � � � � �
�

 Discussion and Concluding Remarks 	�
��� Related Work �
�
��
 Extensions �
�
��� Conclusions �
�

A Library Modules
�
A�� Layout ��
A�
 Booleans ��
A�� Error Booleans ��
A�� Naturals �

B Term Utilities
�
B�� Binary Operators ��
B�
 Errors over Terms and Signatures ��
B�� Term Functions ��
B�� Equation Functions ��
B�� Term Sets ��
B�� Variables �

B�
 Substitution ��
B�� Matching ��
B�� Uni�cation �

B��� Renaming �

Multi�Level Speci�cations

Eelco Visser

Abstract This chapter introduces a modular� applicative� multi�level equational
speci�cation formalism that supports algebraic speci�cation with user�de�nable type
constructors� polymorphic functions and higher�order functions� Speci�cations consist
of one or more levels numbered � to n� Level � de�nes the object level terms� Level �
de�nes the types used in the signature of level �� In general� the terms used as types
in level n are de�ned in level n � �� This setup makes the algebra of types and
the algebra of types of types� etc�� user�de�nable� The applicative term structure
makes functions �rst�class citizens and facilitates higher�order functions� The use
of variables in terms used as types provides polymorphism �including higher�order
polymorphism� i�e�� abstraction over type constructors�� Functions and variables can
be overloaded� Speci�cations can be divided into modules� Modules can be imported
at several levels by means of a speci�cation lifting operation� Equations de�ne the
semantics of terms over a signature� The formalism also allows equations over types�
by means of which many type systems can be described� The typechecker presented
in this chapter does not take into account type equations�

The speci�cation� in Asf�Sdf� of the syntax� type system and semantics of the
formalism is presented in three stages� ��� untyped equational speci�cations �
� ap�
plicative one�level speci�cations ��� modular multi�level speci�cations� The de�nition
of a typechecker for stages �
� and ��� is divided into four parts� �a� well�formedness
judgements verifying type correctness of fully annotated terms and speci�cations� �b�
non well�formedness rules giving descriptive error messages for the cases not covered
under �a�� �c� a type assignment function annotating the terms in a plain speci�ca�
tion with types� and �d� a typechecking function which checks well�formedness after
applying type assignment� These functions are de�ned uniformly for all levels of a
speci�cation�

Aside of de�ning a new speci�cation formalism� this chapter illustrates the use of
Asf�Sdf for the design and prototyping of sophisticated speci�cation formalisms�

 � Multi�Level Speci�cations

� Introduction

Algebraic speci�cation and functional programming are closely related paradigms�
The foundation of both paradigms is equational logic� Values are represented by
terms and a program or speci�cation consists of a list of equations over these terms
Two terms that are equal according to a speci�cation �by means of equational logic�
have the same meaning and can replace each other in any context� a property called
referential transparency�

The paradigms di�er in the aim of a program or speci�cation� An algebraic speci�
�cation de�nes a class of algebras that satisfy its equations� A functional program on
the other hand de�nes a method to compute a value from an initial value by executing
the equations as rewrite rules� However� this di�erence is mainly one of emphasis�
functional programs can be seen as algebraic speci�cations that satisfy certain restric�
tions� Almost all speci�cations in this book can be executed as rewrite systems� In
spite of that� there are many technical di�erences between actual formalisms� These
di�erences can be divided into semantics and type system�

��� Semantics

The choice of a semantics for a language is based on the set of required program
constructs� which may include equations� conditional equations� � abstraction� let
binding� recursion and �xed�point operators� etc� In this chapter we use pure equa�
tional logic as the basis for the speci�cation logic�

The operationalization of an equational algebraic speci�cation by means of term
rewriting is aimed at determining whether two terms are equal or at �nding a normal
form for a term� The strategy used to accomplish this is of no importance� Func�
tional programming languages� emphasizing computation rather than speci�cation�
incorporate a rewrite strategy �innermost� outermost� lazy� into their semantics� Fur�
thermore� functional languages make a distinction between functions that transform
a value into another and constructors that are used to represent data� In algebraic
speci�cation this distinction is not made� e�g�� the unary minus function ��� can be
seen either as a constructor ���� or as a function ��� � ���

��� Type Systems

A signature determines which terms are the subject of a speci�cation or program�
A type system determines the form of signatures and the well�formed terms over a
signature� Several issues are of importance in the design of type systems�

Term Structure� First�order many�sorted algebraic speci�cations use a many�
sorted algebraic signature to assign types of the form s� � � � � � sn � s� to function
symbols f � Terms can be formed by application of such function symbols to a list
of terms ti of sort si� resulting in terms of the form f�t�� � � � � tn�� This function
application construct is called algebraic� Such a type system is called �rst�order

�� Introduction � �

because no higher�order functions �having functions as arguments� can be de�ned� A
function symbol can only occur in a term when it is applied to the right number of
arguments� Other type systems allow higher�order functions and use an applicative
term structure � application is of the form t� t�� term t� applied to term t� � to
build terms� Applicative term structure is common in functional languages� whereas
algebraic speci�cation formalisms generally use �rst�order term structures�

Overloading� If a function can have a �nite number of di�erent types it is said to be
overloaded� An example of overloading is addition on integers and reals� Overloading
is common in frameworks with algebraic term structure� where it is easy to deduce
which version of a function is used from the arguments to which it is applied� In
applicative frameworks ambiguities caused by overloading are much harder to resolve
because functions can occur separate from their arguments� Therefore� overloading
was omitted in early functional languages like ML� Most modern functional languages
have some restricted form of overloading through type classes �see below��

Polymorphism� Parametric polymorphic functions� which were introduced by Mil�
ner ���
�� in the functional language ML� can have in�nitely many types that are
instantiations of one generic type� An example of a polymorphic function is the func�
tion that computes the length of a list� which is independent of the contents of lists
and can therefore be de�ned for all possible lists at once� Polymorphic functions have
a universally quanti�ed type� For instance the type of length is ���list���� int�

Restricted polymorphism� For some applications this unrestricted polymorphism
is too strong� For instance� the polymorphic equality function with type �������
bool also applies to functions� which is undesirable because function equality is not
computable� In Standard ML �Milner et al�� ����� the type of the equality function
is de�ned on the subset of the set of all types for which equality is computable� This
idea is generalized by Wadler and Blott ������ by means of type classes� which are
predicates on types that divide the set of types into subsets with certain properties
that can be used to restrict the polymorphism of functions� For instance� if the
class eq indicates all types on which equality can be de�ned� then the type of the
equality function can be rephrased as ���eq��� � � � � � bool to express that
the type variable can only be bound to types for which the eq predicate holds� that
is� those that are in the eq class� The type classes of Wadler and Blott ������ are
unary predicates on types� Jones ����
� gives a more general formulation of restricted
polymorphism in his theory of quali�ed types� in which arbitrary predicates on types
are allowed� Special cases of the theory are type classes� subtyping and extensible
records�

Type Operators� In frameworks with polymorphism the language of types becomes
a user�de�nable set of terms and subject to a type system itself� In a �rst�order
framework the type of lists of integers has a name like int�list� In a polymorphic
framework one wants to quantify over the type of the contents of lists� By de�ning
a type constructor list �a function from types to types�� one can denote lists of
integers as list�int� and arbitrary lists as list�A�� where A is a variable ranging
over types�

� � Multi�Level Speci�cations

Types of Types� The language of types built from type constants and type con�
structors is itself an algebraic language with a signature� In many�sorted algebraic
signatures the only type constructors are � and � and the language of types is re�
stricted to types of the form c� � � � � � cn � c�� where the ci are type constants� In
polymorphic languages like ML the language of types consists of untyped� �rst�order
terms� i�e�� all type constructors have a type of the form type� � � � � type � type�
For instance� list is a type constructor that takes a type and constructs a type� i�e��
it is declared as list � type � type� Generalizing the idea of an algebra of type
constructors� one can use an arbitrary many�sorted �instead of a one�sorted� signa�
ture for the speci�cation of the algebra of types� leading to a two�level signature�
Further generalization of this idea leads to a third�level signature that speci�es the
types of types of types� In this chapter a formalism with multiple levels of signatures
is presented�

Higher�Order Polymorphism and Constructor Classes� In Hindley	Milner type
systems the quanti�er in types can only range over types and not over type construc�
tors� Higher�order polymorphic functions can also quantify over type constructors�
With such polymorphism it is natural to extend the notion of a type class to a con�
structor class which restricts quanti�cation over type constructors �Jones� ������

There are many other considerations in the design of type systems� Here we
restrict our attention to the ones discussed above� See Section � for some references
to surveys of type systems�

��� Multi�Level Speci�cations

In this chapter we present the formalism MLS� a modular� ap�
plicative� multi�level� equational speci�cation formalism with
overloading� Figure � illustrates several features of this lan�
guage by means of a two�level speci�cation of lists and trees
with polymorphic size and map functions� The speci�cation
imports the speci�cation of the type nat of natural numbers
with functions �� s and ����

Multi�level� A speci�cation consists of arbitrary many lev�
els of one�level speci�cations� The terms over the signature at
level � are the �object� level terms� The types used in the sig�
nature of level � are terms over level �� In general� the types
in the signature at level n are terms over the signature at level
n � �� as is depicted in the diagram next to this paragraph�
The types used in the signature of the highest level are deter�
mined by an implicit signature of types consisting only of type
constants and the type constructors � and ��

signature

equations

level n

� � �

signature

equations

level �

implicit ���

signature

The sort declarations at level n determine which of the terms at level n � �
can actually be used as type at level n� A term used as type should match one

�� Introduction � �

module list�tree

imports nat�

level �

signature

sorts type�

functions

���� ��	�
 type � type �	 type�

list� tree
 type �	 type�

variables

A� B
 type�

level �

signature

sorts A� list�A��

functions

��
 list�A��

�

�
 A � list�A� �	 list�A��

size
 list�A� �	 nat�

map
 �A �	 B� � list�A� �	 list�B��

variables

X
 A� L
 list�A�� G
 A �	 B�

equations

size����

 ��

size�X

 L�

 s�size�L���

map�G� ���

 ���

map�G� X

 L�

 G�X�

 map�G��L��

signature

sorts A� tree�A��

functions

��
 tree�A��

node
 tree�A� � A � tree�A� �	 tree�A��

size
 tree�A� �	 nat�

map
 �A �	 B� � tree�A� �	 tree�B��

variables

X
 A� T
 tree�A�� G
 A �	 B�

equations

size����

 ��

size�node�T� X� T���

 s�size�T� � size�T����

map�G� ���

 ���

map�G� node�T� X� T���

 node�map�G��T�� G�X�� map�G��T���

Figure �� Two�level speci�cation of list and tree data types�

� � Multi�Level Speci�cations

of the terms declared as sort� These ideas are illustrated in Figure �� The term
type � type �	 type in the �rst function declaration at level � is a term over the
implicit signature of the types at the highest level� �Note that � is written � in
ASCII notation�� The term list�A� is a term over the signature at level �� list is a
function from type to type and A is a type variable� Furthermore� list�A� matches
the sort declarations A and list�A�� Therefore� list�A� can be used in the signature
at level � as a type in the declaration of the functions �� �empty list�� �

� �cons�
etc� Level �� �nally� determines the terms for the objects of real interest� such as ���
s���

 ��� and map�s���

 ����

The example in Figure � shows a two�level speci�cation �n � ��� The formalism
supports arbitrarily many levels� The type constructors available at level � can be
enriched by means of a third level� In Section � several examples of three level
speci�cations are shown�

Polymorphism� Terms over a signature can contain variables� A term with vari�
ables used as type in a signature denotes a polymorphic type� For instance� size is
a function from list�A� to nat� This means that for any type t� size applies to
terms of type list�t�� Quanti�cation is not restricted to types but can also range
over type constructors�

Overloading� Functions can have two or more related� or completely di�erent�
types� This allows the use of function names for di�erent purposes� which is not
possible with polymorphism alone� For instance� the functions size and map are
de�ned for both lists and trees� Equations can also be overloaded� For example� the
equations de�ning the functions size and map on empty lists and empty trees are
exactly the same� Actually� writing this equation once would have su�ced� because
all possible interpretations of ambiguous equations are taken into consideration�

Applicative� The term structure is applicative� i�e�� application is a binary opera�
tion on terms� At the functional position an arbitrary term can occur� Functions are
�rst�class citizens and can be arguments of functions� For instance� the function map

has a function as argument� which it applies to all elements of a list or tree�

Observe that the arrow and product constructors for types are considered normal
functions� The arrow in the type of size is the same arrow that is declared at level �
as a binary function on types� There is� however� one di�erence with other functions�
the arrow and product constructors are related to the operations application and
pairing� For each arrow type� there is a corresponding application operation that
takes a term of type �� � �� and a term of type �� and produces a term of type ���
Similarly for each product type there is a corresponding pairing operation that takes
two terms of types �� and �� and produces a term of type �� � ���

Equational� Equational axioms� over terms express the semantics of terms� Equa�
tional logic can be used for reasoning about terms� whereas term rewriting can be
used to decide equations for appropriate systems of equations or to compute the result

�The ideas for the multi�level type system in this chapter are also applicable to formalisms with
other logics� e�g�� conditional equations� Horn clause logic or even �rst�order logic�

�� Introduction �

of de�ned functions�
Modular� Multi�level speci�cations can be split into modules by means of a rudi�

mentary module system consisting of module declarations and module references �im�
ports�� Operations for manipulating speci�cations can also be applied to imports�
facilitating reuse of speci�cations at more than one level �see Section � for examples��

Type Equations� The MLS formalism supports equations at all levels of a spec�
i�cation� This means that equations over types can be de�ned to specify powerful
type constructs like recursive types� quali�ed types� and logical frameworks� How�
ever� the typechecker for MLS de�ned in this chapter does not take into account
equations over types� This requires E�uni�cation� which is undecidable in general�
For restricted forms of equations typechecking with E�uni�cation seems feasible� and
might be incorporated in future versions of the MLS typechecker�

��� Related Formalisms

The MLS formalism is a generalization of several concepts found in other formalisms�
Below we give a brief overview of related formalisms� The landscape of formalisms is
summarized by the diagram in Table ��

One�Level Monomorphic Algebraic Languages The algebraic speci�cation
formalisms OBJ �Futatsugi et al�� ������ Pluss �Bidoit et al�� ����� and Asf�Sdf
�see Chapter � of van Deursen et al� ������� have monomorphic many�sorted �rst�
order signatures as type system� The sort space consists of terms of the form
c� � � � � � cn � c�� with the ci sort constants� A limited form of polymorphism
can be obtained by means of overloading and parameterized modules� but polymor�
phic higher�order functions are not provided� All these formalisms support arbitrary
mix�x notation� OBJ provides order�sorted signatures� in which an inclusion rela�
tion between sorts can be declared� In Asf�Sdf� sort inclusion can be simulated by
means of syntaxless unary functions �also called injections�� The formalisms OLS and
MLS considered in this chapter support neither subsorting nor syntaxless functions�

One�Level Monomorphic Applicative Languages The one�level applicative
speci�cation language OLS� de�ned in Sections � and �� generalizes the sort space of
monomorphic algebraic languages to the closure under � and � of the declared sort
constants� The extension with respect to the algebraic frameworks discussed above
is the support for higher�order functions�

Two�Level Polymorphic Applicative Languages The type system for polymor�
phic higher�order functions� known as the Hindley	Milner system� was �rst described
by Hindley ������ as a type assignment algorithm for expressions in combinatory logic�
It was extended by Milner ���
�� to languages with local declarations� The functional
programming language ML �Gordon et al�� ��
�� was the �rst language to incorporate

� � Multi�Level Speci�cations

add� features algebraic � levels applicative add� features

ol OBJ� Pluss� � OLS hof
Asf�Sdf

 ML� Miranda hof� p
p� tc PolySpec Spectrum� Haskell hof� p� tc
p� ol ATLAS � Quest hof� p� st
p� ol ATLASII n MLS hof� p� ol

Table �� Several algebraic and functional languages classi�ed according to their
number of levels and to their term structure �algebraic vs� applicative�� The
additional features columns list the presence of� ol� overloading� hof� higher�
order functions� p� polymorphism� tc� type classes� st� subtypes�

this type system� For the introduction of type operators� the type system of ML uses
a second level of terms consisting of an untyped� �rst�order signature� All type oper�
ators work on one implicit type �kind� of types� ML is not purely functional because
it supports side e�ects through assignments in expressions� Miranda �Turner� �����
is one of a number of purely functional languages with a Hindley	Milner type system�
Haskell is a general purpose� purely functional programming language �Hudak et al��
���
� with a Hindley	Milner type system using one�sorted �rst�order user�de�nable
type constructors� Overloading� which is not supported in ML and Miranda� is intro�
duced in a restricted form through type classes �see Section ��
�� which are the main
innovation of the language�

The requirement and design speci�cation language Spectrum �Broy et al�� �����
is an algebraic speci�cation formalism with applicative term structure� a two�level
type system and sort classes� which is a variant of type classes� The second level is
an unsorted signature� The distinction with functional languages like Haskell is the
use of full �rst�order logic instead of conditional equations�

Two�Level Polymorphic Algebraic Languages The algebraic speci�cation for�
malism PolySpec of Nazareth ������ is a two�level formalism� with an untyped second
level of type constructors and predicates �sort classes�� which are used to constrain
polymorphism similarly to type classes�

Both the algebraic and the applicative two�level languages that we have discussed
have an untyped second level� all type constructors operate on the single� implicit
sort type�

Three�Level Applicative Languages Quest is a three level language inspired by
second�order typed ��calculus �Cardelli� ������ A Quest program introduces objects

�� Introduction � �

at three levels� values at level �� types and type operators at level � and kinds at
level
� Instead of the limited universal type quanti�cation of Hindley	Milner type
systems� explicit and nested quanti�cation over types is allowed� Universally quan�
ti�ed types� i�e�� polymorphic types� have to be instantiated explicitly� For example�
the identity function� declared as id � ���� � �� should �rst be applied to a type
to instantiate the type variable and then to a value� e�g�� id�int����� Cardelli ������
discusses a rich set of built�in data types including mutable types� array types� ex�
ception types� tuple types� option types� recursive types� subtyping� operations at the
level of types� Quest does not support overloading�

Three�Level Algebraic Languages The algebraic speci�cation formalism AT�
LAS of Hearn and Meinke ������ is a three�level algebraic speci�cation formalism�
The main di�erences with MLS are� ��� ATLAS has an arrow type constructor for the
type of functions and a product type constructor for the type of pairs that are primi�
tive at all levels� and that can be used as �rst�order types of the form ��� � � ���n � � �
which means that term structure is algebraic� Higher�order function application can
be simulated by means of a user�de�ned arrow type constructor and a user�de�ned
application operator and by declaring functions as constants of the user de�ned arrow
type� MLS has an applicative instead of an algebraic term structure� which makes
higher�order types and functions more naturally de�nable� �
� An ATLAS speci�ca�
tion consists of three levels for the constructors of �kinds�� �types� and �combinators�
as the di�erent sorts of terms are called� MLS speci�cations can have arbitrary many
levels instead of the �xed three levels of ATLAS� making the de�nition of the syntax
and type system uniform for all levels and enabling speci�cations with more or fewer
than three levels� ��� ATLAS does not have a module system� ��� ATLAS considers
ambiguous equations as erroneous� In MLS all well�formed typings of an equation
are considered valid� ��� ATLAS speci�cations can contain rewrite rules at all levels�
which are interpreted by the type assignment mechanism� Although the MLS formal�
ism allows equations at all levels� these are not considered by the type assignment
algorithm speci�ed in this chapter�

Multi�Level Algebraic Languages ATLASII is a multi�level and modular re�
design of ATLAS �Hearn� ������ Items ���� ��� and ��� above also hold for ATLASII�

Multi�Level Applicative Languages The speci�cation formalism MLS de�ned
in this chapter is an applicative multi�level language with overloading�

��� Outline

The rest of this chapter presents the multi�level speci�cation formalismMLS by means
of a speci�cation in Asf�Sdf of syntax� type system and semantics� In order not

�� � Multi�Level Speci�cations

to introduce too many concepts and technical details at once� the equational speci��
cation formalism is presented in three phases� each enhancing the previous one� ���
an untyped formalism� �
� a one�level applicative formalism without overloading or
polymorphism� and ��� a multi�level� applicative formalism with polymorphism and
overloading�

In Section
 the notions of terms and equations for the untyped language are
de�ned� Speci�cations are lists of equations over a simple term language with appli�
cation and pairing�

In Section � this untyped language is extended to a one�level language� after
introducing the notions of types and signatures�

In Section � a typechecker for this speci�cation language is de�ned as the compo�
sition of a type assignment function and a well�formedness checker� The type assign�
ment function takes a plain term and annotates it with types� The well�formedness
checker takes a fully annotated term and veri�es its well�formedness� The speci��
cation is presented in four parts� Well�formedness judgements determine whether a
fully annotated term is well�formed according to a signature� The complements of the
rules for well�formedness give descriptive error messages for non�wellformed terms�
A type assignment function annotates each subterm of a plain term with a type� A
typechecker combines type assignment and well�formedness checking�

In Section � one�level speci�cations are used to form multi�level speci�cations�
The same syntax for terms� signatures and equations is used at all levels� The use�
fulness of such multi�level speci�cations is illustrated with several examples of data
type speci�cation in MLS�

In Section
 the type system of multi�level speci�cations is de�ned with the same
four part structure as for one�level speci�cations� The same ideas apply to the type
system� but are complicated by the addition of multiple levels of signatures� poly�
morphism and overloading� The most important innovation here is that the types of
each level of the speci�cation are well�formed terms over the signature at the next
level of the speci�cation� This means that types become typed terms� The same
typechecking mechanism is used at all levels�

The appendices of this chapter de�ne a number of tools that are used in the
speci�cation� In Appendix A several �standard� library modules like Layout and
Booleans are de�ned� In Appendix B several utilities on terms such as sets of terms�
substitution� matching and uni�cation are de�ned�

� Untyped Equational Speci�cations

Equational speci�cations consist of a list of equations over some term language� Such
speci�cations can be interpreted as a set of axioms for reasoning with equational logic�
For many speci�cations� equality of terms in the context of an equational speci�cation
can be made by means of term rewriting� We start with the de�nition of the term
language�

�� Untyped Equational Speci�cations � ��

��� Terms

The terms of our speci�cation language are simple applicative terms composed of
function symbols �identi�ers starting with a lowercase letter� e�g�� map� variables
�identi�ers starting with an uppercase letter� e�g�� X�� application �t� t��� and pairing
�t�� t��� Application is left�associative and has a higher priority than pairing� Pair�
ing is right�associative� For example� map G empty denotes ��map G� empty�� not
map�G�empty��� Likewise� plus X� Y should be read as �plus X�� Y and not as
plus�X� Y�� In this chapter we will write the argument of an application between
parentheses� e�g�� map�G��empty� instead of map G empty� These notations are syn�
tactically equivalent according to the following grammar�

imports LayoutA��

exports

sorts Fun Var Term

lexical syntax

�a�z�����A�Za�z��� �� � Fun
�A�Z��A�Za�z ������ ��� � Var

context�free syntax

Var � Term
Fun � Term
Term Term � Term fleftg
Term ��� Term � Term frightg
��� Term ��� � Term fbracketg

priorities

Term Term � Term � Term ���Term � Term

variables

�xy����� ��� � Var
�f ����� ��� � Fun
�t����� ��� � Term

To accommodate the convention of writing binary functions as in�x operators�
Appendix B�� de�nes syntax for in�x operators� The application of a binary operator
� to two arguments t� and t� is written t� � t�� By enclosing a binary operator
in parentheses it is converted into a pre�x function symbol� Using this property
an in�x application is translated into a pre�x application by the equation t� �
t� � ����t�� t��� For example� in Figure � the expression size�T� � size�T�� is
equivalent to ����size�T�� size�T��� and X

 L is equivalent to �

��X� L��
Furthermore� Appendix B�� introduces notation to use an arbitrary term as an in�x
operator� such that a binary function application of the form t��t�� t�� can be written
as t� �t�� t�� Finally� if the functions �

� and �� are used to construct lists� the
notation �t�� � � � �tn� can be used to represent a list with a �xed number of elements�
This notation is translated to t�

 � � �

 tn

 ��� Note that using the �t�� � � � �tn�

�
 � Multi�Level Speci�cations

notation the tail of the list is always ��� i�e�� can not be a variable or another term�
Similarly� tuple terms of the form �t�� � � � � tn	 are abbreviations for t� � � � � � tn � �	�

The extension of multi�level signature formalisms with arbitrary mix��x opera�
tors �like if then else � leads to a multi�level grammar formalism� Such a
formalism leads to extra complications in parsing that are out of the scope of this
chapter� and the subject of ongoing research �see �Visser� ����b� and Section ���

Lists of terms separated by semicolons�

exports

sorts Terms
context�free syntax

fTerm ���g� � Terms
Terms ���� Terms � Terms frightg
��� Terms ��� � Terms fbracketg

variables

�t�������� ��� � fTerm ���g�
�t�������� ��� � fTerm ���g�
�ts����� ��� � Terms

equations

�l�conc� t�� �� t�� � t��� t
�
�

��� Equations

An equation is a pair of terms t� � t�� In order to avoid confusion between the
equality symbol in the object language we are describing and the metalanguage we
describe it with� the symbol � is used for speci�cation equations� It is written

 in
examples� We will refer to the left�hand �right�hand� side t� �t�� of an equation by
�lhs� ��rhs��� An equational speci�cation is a list of equations�

imports Binary�OperatorsB�� Terms���

exports

sorts Eq Eqs
context�free syntax

Term ��� Term � Eq
fEq ���g� � Eqs
Eqs ���� Eqs � Eqs fassocg
��� Eqs ��� � Eqs fbracketg

variables

������� ��� � Eq
���������� ��� � fEq ���g�
���������� ��� � fEq ���g�
�E����� ��� � Eqs

�� Untyped Equational Speci�cations � ��

� � X

 X�

s�X� � Y

 s�X � Y��

map�G�����

 ���

map�G��X

 L�

 G�X�

 map�G��L�

Figure
� Untyped equational speci�cation of addition on successor naturals and
map over cons lists�

equations

�eqs�conc� ��� �� ��� � ���� �
�
�

An example speci�cation is shown in Figure
� The �rst two equations de�ne
the addition operation ��� on successor naturals� The last two equations de�ne the
function map that applies some function G to all elements of a list represented by
means of the functions �� �empty list� and �

� �cons�� Observe that some of the
parentheses used are optional� e�g�� we might as well write G X instead of G�X�� Recall
that we will use the convention of writing the argument of an application between
parentheses�

��� Equational Logic

A term represents a value� In an equational speci�cation a term represents the same
value as all terms to which it is equal� In this view the semantics of a speci�cation
is the equality relation on terms that it induces� This relation is determined by
the following rules of equational logic together with a list of equations �also called
axioms�� Two terms t� and t� are equal according to a set of equations E if the
predicate E 	 t� � t� holds� Note that predicates are modeled by means of Boolean
functions in Asf�Sdf� This entails that the speci�cation of a predicate consists of
equations over sort Bool� If P is a Boolean function we will write P �x� in texts when
we mean P �x� �
�

The rules of equational logic are the re�exivity� symmetry and transitivity rules
of equivalence relations� an axiom rule that declares any equation in E as axiom� a
substitution rule that makes any substitution instance of a derivably equation deriv�
able� and congruence rules� The substitution rule �el�sub� uses the notation ��t� for
the application to a term t of a substitution � that maps variables to terms� �See
Appendix B�
 for the de�nition of substitution��

imports Equations��� SubstitutionB�� BooleansA��

exports

context�free syntax

Eqs �	� Eq � Bool

�� � Multi�Level Speci�cations

equations

�el�re�� E 	 t � t �

�el�sym�
E 	 t� � t� �

E 	 t� � t� �

�el�trans�
E 	 t� � t� �
� E 	 t� � t� �

E 	 t� � t� �

�el�ax� ���� t� � t�� �
�
� 	 t� � t� �

�el�sub�
E 	 t� � t� �

E 	 ��t�� � ��t�� �

�el�app�
E 	 t� � t� �
� E 	 t� � t� �

E 	 t� t� � t� t� �

�el�pr�
E 	 t� � t� �
� E 	 t� � t� �

E 	 t�� t� � t�� t� �

This speci�cation is not executable as a term rewrite system� because it is non�
deterministic and not normalizing� This is not surprising since equational derivability
is an undecidable property� To determine whether two terms are equal we can make
use of several other techniques� In the following subsection we de�ne an evaluation
function that implements a simple rewrite strategy that decides �ground� equality for
a large class of speci�cations�

��� Term Rewriting

Equational speci�cations can be interpreted as term rewriting systems by directing
the equations from left to right� This gives a procedure for deciding derivable equality
from a set of equations that constitutes a terminating and con�uent rewrite system�
Evaluation of a term in the context of a speci�cation amounts to �nding its normal
form� if it exists� with respect to the term rewriting system� If E is a list of equations
and t is a term� then t� � eval�E���t�� is the normal form of t under E � i�e�� t� has no
sub�term that matches the lhs of an equation in E �

There are a number of strategies used to �nd normal forms� Here we use a
simple left�most innermost rewriting algorithm� This strategy is sound with respect to
equational logic� i�e�� if two terms have the same normal form they are also derivably
equal� The strategy is �ground� complete with respect to con�uent and strongly
normalizing term rewrite systems� i�e�� two terms are derivably equal if and only if
they have the same normal form�

Evaluation proceeds as follows� The auxiliary function �step� tries to �nd a match�
ing equation for a term� If it �nds one� the instantiation of its rhs is evaluated� In

�� Untyped Equational Speci�cations � ��

equation �redex� the list of equations is searched �by means of list matching� see Sec�
tion ����
 of van Deursen et al� ������� for an equation t� � t� such that the lhs
t� matches the term t� i�e�� such that there is a substitution � such that ��t�� � t�
The substitution is found in the condition t� �� t � �� The substitution � forms the
environment for the evaluation of the rhs of the equation� If no matching equation
is found� �step� just returns its argument �equation �nf��� The function �eval� itself
evaluates a term by �rst evaluating its direct sub�terms and then applying �step� to
the composition of the resulting normal forms��

imports MatchingB�� Equations���

exports

context�free syntax

eval ��� Eqs ��� ���� Term ���� � Term
eval ��� Eqs ��� ���� Term ���� � � Subst � Term
step ��� Eqs ��� ���� Term ���� � Term

equations

�eval�trm� eval�E���t�� � eval�E���t����
�eval�var� eval�E���x��� � ��x�

�eval�fun� eval�E���f��� � step�E���f��

�eval�app� eval�E���t� t���� � step�E���eval�E���t���� eval�E���t������

�eval�pr� eval�E���t�� t���� � step�E���eval�E���t����� eval�E���t������

�redex� step�E���t�� � eval�E���t����
when E � ���� t� � t�� �

�
�� t� �� t � �

�nf� step�E���t�� � t otherwise

The following proposition states that evaluation is sound with respect to derivable
equality�

Proposition � �soundness of evaluation� If E constitutes a terminating term re�
write system and eval�E���t��� � t�� then E 	 ��t� � t� and if step�E���t�� � t�� then
E 	 t � t�

Proof
 By simultaneous induction on the de�nition of eval and step� �

Observe that the speci�cation of evaluation is not su�ciently�complete� because
the �eval� of a non�terminating term cannot be eliminated and thus is a new term
constructor� The restriction to terminating rewrite systems in the soundness proposi�
tion is necessary because the de�nition of equational logic does not account for these

�Note that the underscore in the syntax of the function �eval� is interpreted by the Asf�Sdf to
LATEX typesetting program by typesetting the next argument� i�e�� the substitution� as a subscript�

�� � Multi�Level Speci�cations

new term constructors� This could be repaired by introducing an auxiliary sort as
the result of evaluation and using conditional equations to de�ne �eval� as in

eval�E���t��� � t��� eval�E���t��� � t��
eval�E���t� t��� � step�E���t�� t

�
���

The conditions work as �retracts� and guarantee that the rule only applies if the eval�
uation of the subterms terminate� thereby avoiding the pollution of the sort Term�
However� this gives a more complicated speci�cation that does not have a better termi�
nation behavior and adds nothing to our understanding of term rewriting� Therefore�
we leave the speci�cation as it is� with the somewhat loose understanding that it says
what we intend for terminating speci�cations�

� One�Level Speci�cations

The untyped equations of the previous section do not impose a restriction on the
set of terms that they describe� Although we have an intuition about the terms
that are meaningful with respect to a speci�cation and those that are not� this is
not formalized� For instance� the speci�cation in Figure
 clearly manipulates two
categories of terms� numbers composed by �� s and ��� and lists composed by ���
�

� and map� However� s�map� � � is a valid term over this speci�cation� which
has no apparent meaning in our intuition about the speci�cation�

Signatures formalize the intuition about the types of terms in speci�cations and
allow one to check that speci�cations and terms comply with each other� A signature
is a list of declarations of functions and variables that is interpreted as a predicate
on terms indicating which terms are well�formed� In this section� we extend the
untyped equational speci�cation formalism with signatures� leading to the one�level
speci�cation formalism OLS�

��� An Example

Before giving the syntax of type terms� signatures and speci�cations we discuss a
simple example of a one�level speci�cation� Figure ��a� presents the speci�cation of
natural numbers in OLS� The signature part declares the constant nat as a sort and
the constant �� the unary function s and the binary function ���� Furthermore� the
signature declares X and Y as nat variables� Together these declarations de�ne the
terms of sort nat� The equation part de�nes the meaning of the binary function ���

in terms of � and s�
The signature of this speci�cation is depicted by the signature diagram in Fig�

ure ��b�� The diagram consists an ellipse denoting the set of all terms of sort nat�
The arrows denote the functions declared in the signature� The constant � is denoted
by an arrow without origin� The unary function s is denoted by an arrow from nat

to nat� it takes a natural number and produces a new one� The binary function ���

�� One�Level Speci�cations � �

signature

sorts nat�

functions

�
 nat�

s
 nat �	 nat�

���
 nat � nat �	 nat�

variables

X� Y
 nat�

equations

� � X

 X�

s�X� � Y

 s�X � Y�

�a�

nat
(+)

0

s

�b�

Figure �� Speci�cation of successor naturals with addition �a� and corresponding
signature diagram �b��

nat
(,)

nat # nat nat -> nat

nat # nat -> nat

(@)

(+)

0 s(@)

Figure �� Signature diagram of natural numbers in which function and prod�
uct types and the corresponding application and pairing functions are depicted
explicitly� The functions s and ��� are constants of functional types�

takes two natural numbers and produces a new one� which is depicted by the forked
arrow�

As we will see� the term structure of one�level speci�cations is actually applicative�
This entails that besides nat� there are two sorts nat �	 nat and nat � nat �	 nat�
i�e�� they are sets of terms� The signature diagram in Figure � depicts this situation�
The functions s and ��� are constants of sorts nat �	 nat and nat � nat �	 nat�
respectively� The diagram also shows the role of the implicitly declared pairing ���

and application ��� functions�

�� � Multi�Level Speci�cations

��� Types

A type is an expression that denotes a set of terms� Types in many�sorted signatures
are composed of constants� such as nat� by means of the type operators product �
and arrow �� The product type �� � �� denotes pairs of terms �t�� t�� of type �� and
��� respectively� The type �� � �� denotes the type of functions with domain �� and
codomain ��� The types in polymorphic languages are f���g�types extended with
arbitrary terms like list�nat�� We will see later that such types can be described
by a signature� Anticipating this extension� we use terms extended with the product
and arrow operators as types� The variable � � ranging over terms� will be used to
indicate a term used as type�

A type annotation of a term is the attachment of a type to each subterm� Anno�
tation is expressed by means of the operator ���� The term t � � denotes the term t
annotated with type � � A term is fully annotated if each subterm has a type annota�
tion� For example� the term

�s
 nat �	 nat���
 nat�
 nat

is a fully annotated version of the term s���� In the context of a signature� a term
without annotations is an abbreviation of an annotated term� In the multi�level exten�
sion that we will de�ne in Sections � and
 we will encounter terms with annotations
that are themselves annotated� e�g�

��
 ��list
 type �	 type��A
 type�
 type�

is the term �� annotated with the type list�A�� which is itself annotated� Compare
the annotation of list�A� with that of s��� above�

imports Terms���

exports

context�free syntax

�nil� � Term
�top� � Term
Term ��� Term � Term frightg
Term ��� Term � Term frightg
Term ��� Term � Term frightg

priorities

Term Term � Term � Term ���Term � Term � Term ���Term � Term
� Term ���Term � Term � Term ���Term � Term

variables

������� ��� � Term
���������� ��� � fTerm ���g�
���������� ��� � fTerm ���g�

The terms �nil� and �top� are auxiliary types that will be used in typechecking�
�nil� denotes the empty type� which is assigned to terms for which no type exists� In

�� One�Level Speci�cations � ��

our multi�level setting� �top� will denote the type of top�level types� i�e�� terms over
the implicit signature on top of a multi�level speci�cation�

The priorities section declares that application has highest priority of all term
constructors and that product binds stronger than arrow� which has higher priority
than type annotation and pair� For instance� read
list
 type �	 type as list
 �type �	 type�

list A �	 nat as �list A� �	 nat

nat � nat �	 nat as �nat � nat� �	 nat

list
 type �	 type A
 type as list
 ��type �	 �type A��
 type�

and not as �list
 �type �	 type�� �A
 type�

��� Term Analysis

Recall that we have the following term constructors� variable and function symbols�
nil� top� application� pairing� product� arrow and annotation� These are all the con�
structors we will consider in this chapter� All other functions that produce terms
should be such that they can always be eliminated �i�e�� the speci�cation is assumed
to be su�ciently complete�� Assuming this property� a default �otherwise� equation
over a function with a term as argument ranges over all constructors for which no
other equation is de�ned� and thus is an abbreviation for a list of equations with those
other constructors substituted�

For future use we now de�ne several functions for analyzing terms� The sort
TermToTerm is the sort of functions from terms to terms that is de�ned in Ap�
pendix B��� The basic operation of this sort is the application of a function to a term
yielding a term� i�e�� TermToTerm�Term� � Term� This approach makes it possible
to generically de�ne a function that applies a TermToTerm function to all terms in a
list of terms�

imports Term�FunctionsB�� Terms��� Types��� Binary�OperatorsB��

exports

context�free syntax

spine � TermToTerm
fspine � TermToTerm
term � TermToTerm
type � TermToTerm
dom � TermToTerm
cod � TermToTerm
fun � TermToTerm
arg � TermToTerm
bterm � TermToTerm
bapp � TermToTerm

equations
The type assignment functions that will be speci�ed later add annotations to

terms� In order to relate a fully annotated term to its underlying plain term� the

� � Multi�Level Speci�cations

function �spine� removes all annotations from a term� For instance� the spine of
�s
 nat �	 nat���
 nat�
 nat is s����

�sp�ann� spine�t � � � � spine�t�
�sp�fun� spine�f� � f
�sp�var� spine�x� � x
�sp�top� spine�nil� � nil
�sp�top� spine�top� � top
�sp�pr� spine�t�� t�� � spine�t��� spine�t��
�sp�app� spine�t� t�� � spine�t�� spine�t��
�sp�prd� spine�t� � t�� � spine�t�� � spine�t��
�sp�arr� spine�t� � t�� � spine�t��� spine�t��

The function �fspine� is the same as �spine� except that it does not remove the anno�
tation from a function symbol�

�fsp�fun� fspine�f � � � � f � �
�fsp�ann� fspine�t � � � � fspine�t� otherwise

The other equations are the same as for �spine�� This function is used to translate
annotated terms over a signature with overloading to disambiguated plain terms�

The �term� of an annotated term is the term without its outermost type annota�
tion� The �type� of a term is its outermost annotation�

�trm�ann� term�t � �� � t
�tp�ann� type�t � �� � �

We see that for any term t of the form t� � � � term�t� � type�t� � t� To extend this
property to arbitrary terms� the �term� of a term without annotation is de�ned to be
the term itself and the �type� of a term without annotation is �top�� To complete the
picture it follows that a term with annotation �top� is equal to the term itself�

�trm� term�t� � t otherwise

�type� type�t� � top otherwise

�top�ann� t � top � t

Now we have for arbitrary terms

�term�type� term�t� � type�t� � t

The functions �dom� and �cod� give the domain and codomain of a function type�
respectively� The domain of a term that is not an arrow is nil� its codomain is the
term itself� nil is a left unit for arrow� This corresponds to the notion that a constant
is a function without arguments� Similarly the functions �fun� and �arg� give the
function and argument of an application

�dom�arr� dom�t� � t�� � t� �arg�app� arg�t� t�� � t�

�� One�Level Speci�cations �
�

�dom� dom�t� � nil otherwise �arg� arg�t� � nil otherwise

�cod�arr� cod�t� � t�� � t� �fun�app� fun�t� t�� � t�
�cod� cod�t� � t otherwise �fun� fun�t� � t otherwise

�nil�cod� nil� t � t �fun�nil� t nil � t

We have

�arg�res� dom�t�� cod�t� � t �arg�res� fun�t� arg�t� � t

The functions above are combined in the de�nition of the function �bterm� that is
used to analyze the types of binary functions� It strips the outermost annotation o�
an arrow term and o� its domain�

�bterm�� bterm�t� � term�dom�term�t���� cod�term�t��

For example�

bterm����nat
 type� � �nat
 type��
 type �	 �nat
 type�
 type��

 �nat
 type� � �nat
 type� �	 �nat
 type�

This function will be used for typechecking multi�level speci�cations� Similarly the
function �bapp� removes the annotations from a binary application

�bapp�� bapp�t� � t� �t�� t��
when term�t� � t �� t

�
�� term�t

�
�� � t�� term�t

�
�� � t�� t�

�bapp�� bapp�t� � t otherwise

For example�

bapp�����
 nat � nat �	 nat����
 nat� �
 nat�
 nat � nat�
 nat�

 ������
 nat�� ��
 nat��

��� Syntax of One�Level Speci�cations �OLS	

A signature is constructed from sort� function and variable declarations�

Declarations A function declaration of the form f � � assigns the type � to function
symbol f � For example� the type of the addition operator plus on natural numbers is
declared as plus
 nat � nat �	 nat� An in�x operator is declared by declaring its
pre�x notation as a binary function� For instance� if we use � as an in�x operator for
addition on natural numbers we would declare ���
 nat � nat �	 nat� A variable
declaration of the form x � � assigns type � to variable symbol x� For instance� the
declaration X
 nat declares a variable X of type nat� A sort declaration consists of
a declaration of function symbols to be used as basic types�

imports Terms��� Types��� Binary�OperatorsB��

 � Multi�Level Speci�cations

exports

sorts Decl Decls
context�free syntax

fFun ���g� ��� Term � Decl
fVar ���g� ��� Term � Decl
fDecl ���g� � Decls
Decls ���� Decls � Decls frightg

variables

�f�������� ��� � fFun ���g�
�x�������� ��� � fVar ���g�
�d����� ��� � Decl
�d�������� ��� � fDecl ���g�
�d�������� ��� � fDecl ���g�
�ds����� ��� � Decls

equations
According to the syntax above� declarations can have the form f�� � � � � fn � �

declaring in one declaration the function symbols fi to be of type � � This notation
is merely an abbreviation of a list of declarations fi � � as expressed by the following
equations�

�f�decl� d��� f
	
� � f

	
� � � � d

�
� � d��� f

	
� � � � f

	
� � � � d

�
�

�v�decl� d��� x
	
� � x

	
� � � � d

�
� � d��� x

	
� � � � x

	
� � � � d

�
�

�decls�conc� d�� �� d�� � d��� d
�
�

Signatures An atomic signature is constructed from sort� function and variable
declarations by the constructors �sorts�� �functions� and �variables�� respectively� Sig�
natures can be combined by the signature concatenation operator ���� The projection
functions �S�� �F� and �V� yield the list of sorts� function declarations� and variable
declarations� respectively� of a signature�

exports

sorts Sig
context�free syntax

�sorts� Terms � Sig
�functions� Decls � Sig
�variables� Decls � Sig

� Sig
Sig ��� Sig � Sig frightg
��� Sig ��� � Sig fbracketg
�S��Sig� � Terms
�F��Sig� � Decls
�V��Sig� � Decls

variables

�� One�Level Speci�cations �
�

� ����� ��� � Sig

equations
Equations �Sig�es�� �Sig�ef� and �Sig�ev� express that atomic signatures with empty

declaration lists are equivalent to empty signatures�

�Sgel� � � �Sges� sorts �
�Sger� � � �Sgef� functions �
�Sgas� � �� ��� � � �� �� � �Sgev� variables �
�S�� S�sorts ts� � ts �S�� S�� �
�S�� S�functions ds� � �S�� S� �� �� � S� �� �� S� ��
�S	� S�variables ds� �
�F�� F�sorts ts� � �F�� F�� �
�F�� F�functions ds� � ds �F�� F� �� �� � F� �� �� F� ��
�F	� F�variables ds� �
�V�� V�sorts ts� � �V�� V�� �
�V�� V�functions ds� � �V�� V� �� �� � V� �� �� V� ��
�V	� V�variables ds� � ds

Speci�cations An atomic speci�cation is a signature or a list of equations indicated
by the functions �signature� and �equations�� respectively� Speci�cations are combined
by the operator ���� The projection functions �Sg� and �E� give the signature and
equations of a speci�cation�

imports Equations���

exports

sorts Spec
context�free syntax

�signature� Sig � Spec
�equations� Eqs � Spec

� Spec
Spec ��� Spec � Spec frightg
��� Spec ��� � Spec fbracketg
�Sg��Spec� � Sig
�E��Spec� � Eqs

variables

�S����� ��� � Spec

equations

�Spel� � S � S �Spes� signature �
�Sper� S� � S �Spee� equations �
�Spas� �S�� S��� S� � S�� S�� S�

�Sg�� Sg�signature � � �E�� E�signature � �
�Sg�� Sg�equations E� � �E�� E�equations E� � E
�Sg	� Sg�� � �E	� E�� �

� � Multi�Level Speci�cations

�Sg�� Sg�S�� S�� � Sg�S��� Sg�S�� �E�� E�S�� S�� � E�S�� �� E�S��

We can extend the TermToTerm functions to apply to all terms in a speci�cation�
By means of these functions we can apply the functions �spine� and �fspine� to a fully
annotated speci�cation in order to get its underlying plain speci�cation� Accordingly�
spine�S� denotes the underlying plain speci�cation of speci�cation S�

��� Speci�cation Semantics

The semantics of speci�cations is de�ned by means of an extension of equational logic
to terms with type annotations�

����� Typed Equational Logic

Equation �tel�ax� states that an equation t� � t� is an axiom of a speci�cation S if it
is an element of the equations of S� The other rules are the same as in the case of
untyped equational logic �Section
���� except for the congruence rule for annotated
terms �tel�ann�� Only terms with the same annotation can be equated if they are
equal without annotation� Compare this to the congruence rules for application �el�
app� and pairing �el�pr� in Section
��� where both arguments can be equal modulo
the equations in E � In the case of multi�level speci�cations we will give an equational
logic �Section ���� where equations over types play a role�

imports OLS��� SubstitutionB��

exports

context�free syntax

Spec �	� Eq � Bool

equations

�tel�ax�
E�S� � ���� t� � t�� �

�
�

S 	 t� � t� �

�tel�ann�
S 	 t� � t� �

S 	 t� � � � t� � � �

The standard rules for re�exivity� symmetry� transitivity� substitution and congruence
for the other binary operators are not shown�

Proposition � Typed equational logic over a list of equations E is type preserving if
the equations in E are type preserving� i�e�� if for each t� � t� � E � type�t�� � type�t��
then E 	 t � t� implies type�t� � type�t���

Proof
 by induction on derivations� The property clearly holds for �tel�ax�� �tel�re��
and �tel�ann� and equality of types is preserved by symmetry� transitivity� substitution
and congruence� �

�� Typechecking One�Level Speci�cations �
�

����� Typed Term Rewriting

In accordance with the rules for typed equational logic� the typed innermost term
rewriting function �eval� applies equations� oriented from left to right� until a term
is in normal form� The annotation of a term is not evaluated in equation �eval�ann��
because the equations of a speci�cation apply only to object terms and not to types�

imports OLS��� MatchingB��

exports

context�free syntax

eval ��� Spec ��� ���� Term ���� � Term
eval ��� Spec ��� ���� Term ���� � � Subst � Term
step ��� Spec ��� ���� Term ���� � Term

equations

�eval�trm� eval�S���t�� � eval�S���t����
�eval�ann� eval�S���t � � ��� � step�S���eval�S���t��� � ��� ���

�redex� step�S���t�� � eval�S���t����
when E�S� � ���� t� � t�� �

�
�� t� �� t � �

�nf� step�S���t�� � t otherwise

The evaluation rules for the other operators are straightforward following Section
���
Note that recursive applications of eval to the other new operators product and arrow
have to be added�

� Typechecking One�Level Speci�cations

The context�free syntax of speci�cations de�ned in the previous section allows many
degrees of freedom� In this section we narrow this down to the subset of one�level
equational speci�cations with monomorphic types and no overloading� In Section
 we
will extend this to multi�level signatures with polymorphism and overloading� Here
we avoid the complications introduced by multi�level speci�cations to make it easier
to explain the architecture and basic ideas of the speci�cation of the type system�

In Section ��
 �Module OLS�WF� the well�formedness of fully annotated speci��
cations is de�ned� The de�nition of well�formedness only speci�es the correct cases�
i�e�� it contains a function which yields
 i� the speci�cation is well�formed� It does
not deal with erroneous cases� The translation of these to human readable error
messages is taken care of in Section ��� �Module OLS�NWF��

Since fully annotated speci�cations are di�cult to read and write� programmers
are not expected to actually write such speci�cations �although it is possible to supply
partial annotations in terms to constrain their typing�� Instead� plain speci�cations
without annotations are annotated with types by a type assignment function de�ned
in Section ��� �Module OLS�TA��

� � Multi�Level Speci�cations

Finally� the typechecker de�ned in Section ��� �Module OLS�TC� �rst applies
the type assignment function to a speci�cation and then checks the result for well�
formedness� This setup gives a separation between typechecking and type assignment
that saves a great deal of bookkeeping and makes the de�nitions accessible� Moreover�
annotated speci�cations can be used as input for tools other than a well�formedness
checker� for instance a theorem prover or term rewriter�

First we de�ne projection functions to �nd the type of a function or variable in a
signature�

��� Projection

The projection function � yields the type of the �rst declaration for a variable or
function in a list of declarations� The type of a function symbol f in a signature
is �f � �� The type of a variable symbol x in a signature is �x� �� Observe that
variable declarations in a �functions� section and function declarations in a �variables�
section are ignored�

imports OLS���

exports

context�free syntax

��� � � Var ��� Decls ��� � Term
��� � � Fun ��� Decls ��� � Term
��� � � Var ��� Sig ��� � Term
��� � � Fun ��� Sig ��� � Term

equations
Looking up a function in a list of declarations� If no declaration is found the term

�nil� is returned�

�p�b� �f�d
�� � nil when d � �

�p�b� �f�f � � � d
�� � �

�p�b� �f�d� d
�� � �f�d

�� otherwise

The projection of a variable from a list of declarations is de�ned similarly�

�p�a� �x�d
�� � nil when d � �

�p�a� �x�x � � � d
�� � �

�p�a� �x�d� d
�� � �x�d

�� otherwise

Looking up the type of a function in a signature consists of looking it up in the list
of function declarations� The type of a variable is found by looking it up in the list
of variable declarations�

�pf� �f� � � �f�F� ��

�px� �x� � � �x�V� ��

�� Typechecking One�Level Speci�cations �

signature

sorts nat�

functions

�
 nat�

s
 nat �	 nat�

���
 nat � nat �	 nat �

variables

X
 nat� Y
 nat�

equations

����
 nat � nat �	 nat� ���
 nat� X
 nat�
 nat � nat�
 nat

 X
 nat�

����
 nat � nat �	 nat�

���s
 nat �	 nat� �X
 nat�
 nat� Y
 nat�
 nat � nat�
 nat

�s
 nat �	 nat� �����
 nat � nat �	 nat�

��X
 nat� Y
 nat�
 nat � nat�
 nat�
 nat

Figure �� A fully annotated one�level speci�cation� This is an annotation of the
speci�cation in Figure ��

��� Well�formedness �OLS�WF	

Well�formedness judgements on terms characterize the well�formed� fully annotated
terms over a signature� i�e�� given a signature the set Tfa� � de�ned as

Tfa� � � ft j t � Term � 	term tg

is the set of fully annotated terms t that satisfy the well�formedness judgement 	term
t� The plain terms �without annotation� over a signature can be obtained by taking
the spines of the well�formed� fully annotated� terms� i�e�� the set T� � of plain terms
over de�ned as

T� � � fspine�t� j t � Term � 	term tg

In this section we de�ne well�formedness of fully annotated terms� In Section ��� we
de�ne a type assignment function that produces a fully annotated term for a plain
term� Figure � shows a fully annotated speci�cation�

We de�ne not only the well�formedness of terms� but also the well�formedness of
signatures and equations� In general� well�formedness judgements de�ne which syn�
tactically correct expressions are well�formed� The well�formedness of fully annotated
one�level speci�cations is de�ned by means of the following judgements�

imports OLS��� Projection��� VariablesB�
 Error�BooleansA�� Term�Analysis���

� � Multi�Level Speci�cations

exports

context�free syntax

�	spec� Spec � EBool
�	sig� Sig � EBool
�	sorts� Terms � EBool
Sig �	decls� Decls � EBool
Sig �	sort� Term � EBool
Sig �	term� Term � EBool
Sig �	eqs� Eqs � EBool

The well�formedness of a fully annotated speci�cation S is de�ned by means of
the judgement 	spec S� It is de�ned in terms of several other judgements of the form
 	r r� which stands for �construct r �of type r� is correct with respect to signature
 �� For instance� the judgement 	term t determines whether t is a well�formed term
with respect to � Equations de�ning judgements will� in general� have the form

C��q� �� � � � � Cm�q� �

 	q q�r�� � � � � rn� � 	r� r� � � � � � 	rn rn

to express that a construct q with subconstructs ri is well�formed if conditions Ci

hold for q and and if the subconstructs are well�formed�
Judgements are functions that yield a term of the sort EBool of error Booleans�

This sort is a version of the booleans �de�ned in Appendix A��� with a constant

��true� or �correct�� but with no constant for �false� or �incorrect�� Instead all elements
of the sort Error act as values representing incorrectness� Two operations are de�ned
on error Booleans� The symmetric conjunction � yields
 in case both arguments
are
 and yields the addition of the errors otherwise� The asymmetric conjunction
� yields
 if both arguments are
 and otherwise it prefers the error of the left
argument�

In this subsection only the positive cases for the judgements are de�ned� In
the next subsection the other� negative� cases are de�ned to yield errors that give a
description of the well�formedness rule that is violated�

equations
A speci�cation is well�formed if its signature is well�formed and its equations are

well�formed with respect to the signature�

�wf�spec� 	spec S � 	sig � 	eqs E�S� when Sg�S� �

Signatures A signature is well�formed if all its sort� function and variable declara�
tions are well�formed�

�wf�srt� 	sig � 	sorts S� � � 	decls F� � � 	decls V� �

The terms declared as sorts in the sorts section should be constant terms� i�e�� function
symbols�

�wf�sort� 	sorts f �

�� Typechecking One�Level Speci�cations �
�

�wf�sort� 	sorts �

�wf�sort�prd� 	sorts �

	
� � �

	
� � 	sorts �

	
� � 	sorts �

	
�

A declaration is correct if the type assigned to the function or variable is a well�formed
sort �see below� and if the function or variable is not overloaded�

�wf�d�fun� 	decls f � � � 	sort � when �f� � � �

�wf�d�var� 	decls x � � � 	sort � when �x� � � �

�wf�d�cnc� 	decls �

�wf�d�cnc� 	decls d

	
� � d

	
� � 	decls d

	
� � 	decls d

	
�

Recall that �f� � gives the type of f in � The condition �f � � � � for a declaration
f � � expresses that there should be only one declaration for f in the signature� If
there are more �with di�erent types�� the condition will fail when checking the second
declaration because �f � � will yield the type of the �rst declaration�

Sorts Sorts are terms composed by � and� from function symbols� which are the
basic sorts� A basic sort should be declared in the sorts section as expressed by the
condition of equation �wf�sort�fun��

�wf�sort�fun� 	sort f �
 when f � S� � �

�wf�sort�prd� 	sort t� � t� � 	sort t� � 	sort t�
�wf�sort�arr� 	sort t� � t� � 	sort t� � 	sort t�

Terms A term is well�formed if all its subterms are annotated with a type in a
correct way corresponding to the signature� Variables and functions are well�formed
if their annotation is equal to their declared type in the signature and if that type is
a well�formed sort� This additional condition is needed because �t� � yields �nil� if
t is not declared� If the annotation is also �nil�� this would wrongly imply that the
term is correct� Since �nil� cannot be a sort� this extra condition is su�cient� A pair
is well�formed if its type is the product of the types of its arguments� An application
is well�formed if the its type is the codomain of the type of the function and if the
type of the argument is equal to the domain of the type of the function�

�wf�var�
�x� � � � � 	sort � �

 	term x � � �

�wf�fun�
�f� � � � � 	sort � �

 	term f � � �

�wf�pr�
type�t�� � type�t�� � �

 	term �t�� t�� � � � 	term t� � 	term t�

�wf�app�
type�t�� � type�t��� �

 	term t� t� � � � 	term t� � 	term t�

�� � Multi�Level Speci�cations

There is no need to check the well�formedness of the types of applications and pairs�
because equations �wf�app� and �wf�pr� preserve well�formedness of type annotations�
In equation �wf�pr�� if type�ti� are well�formed� then their product is also well�formed�
In equation �wf�app�� if type�ti� are well�formed� then � must also be well�formed�
because it is a subterm of type�t���

Equations An equation is well�formed if both sides have the same type and if all
variables used in the right�hand side occur in the left�hand side� The last condition
ensures that no new variables are introduced if the equations are interpreted as rewrite
rules oriented from left to right�

�wf�eqn�
type�t�� � type�t��� vars�t��
 vars�t�� �

 	eqs t� � t� � 	term t� � 	term t�

�wf�eqns�empty� 	eqs �

�wf�eqns�conc� 	eqs �
	
� � �

	
� � 	eqs �

	
� � 	eqs �

	
�

The following proposition states that a well�formed speci�cation preserves types�
This means that if two terms are equal according to a well�formed speci�cation �and
the rules of equational logic�� they have the same type and that the normal form of
a term has the same type as the term that is evaluated�

Proposition � �type soundness� Well�formed speci�cations preserve types� i�e�� if
	spec S and Sg�S� 	term ti then S 	 t� � t� implies type�t�� � type�t��� Furthermore�
eval�S���t��� � t� implies type�t�� � type�t���

Proof
 By the well�formedness of S it follows that all equations are type preserving
�equation �wf�eqn�� and by Proposition
 it then follows that equational derivations for
S are type preserving� The second part of the proposition follows from the �rst part
and the soundness of evaluation with respect to derivable equality �Proposition ��� �

The condition Sg�S� 	term ti implies that the terms ti are fully annotated� Nor�
mally� when considering a speci�cation� we think about equality of plain terms� By
means of the function spine and the well�formedness judgements we can characterize
the plain terms T� � over a signature �see beginning of this subsection�� The follow�
ing proposition states that well�formed speci�cations can only equate plain terms for
which well�formed full annotations exist�

Proposition � If 	spec S
�� S � spine�S ��� t� �� t� and S 	 t� � t�� then there are t��

and t�� such that spine�t��� � t�� spine�t
�
�� � t�� S

� 	term t�f���g and type�t
�
�� � type�t

�
���

�� Typechecking One�Level Speci�cations � ��

equations

� � X

 Y�

s�X� � Y

 s � �X� Y�

�a�

equation ������� X�

 Y� not well�formed

variables �Y� of rhs not in lhs �

application �����s � X � Y �� not well�formed

type of argument ��nat �	 nat� � nat � nat�

does not match type of domain �nat � nat�

�b�

Figure �� Non�wellformed speci�cation �a� and errors �b� corresponding to
the violations against the well�formedness rules� The signature part of the
speci�cation in �a� is not shown here but corresponds to the signature in
Figure ��a��

��� Non�wellformedness �OLS�NWF	

In the previous section we have de�ned which speci�cations are well�formed� In this
section we look at the cases not covered by the well�formedness rules� which are� by
de�nition� not well�formed� As an example of the type of error messages generated
by these rules� Figure � shows the errors for an incorrect version of equations of the
natural numbers speci�cation from Section �� We derive equations for the generation
of error messages for non�wellformed speci�cations by looking at which cases were
not covered by the equations above� If we had an equation of the form

C��q� �� � � � � Cm�q� �

 	q q�r�� � � � � rn� � 	r� r� � � � � � 	rn rn

the error case will be of the form

�C��q� � � � � � � �Cm�q� �

 	q q�r�� � � � � rn� � 	r� r� � � � � � 	rn rn � �q� not well�formed

If either of the conditions does not hold then construct q is not well�formed� But
we only want to report this fact if all its sub�constructs are well�formed� Otherwise
only the reasons for non�wellformedness of the sub�constructs are reported� which is
expressed by the use of the asymmetric conjunction�� Furthermore� we may choose
to generate more precise error messages that are related to the conditions Ci� We
then get equations of the form

C��q� �� � � � � Ci���q� ���Ci�q� �

 	q q�r�� � � � � rn� � 	r� r� � � � � � 	rn rn � �q� does not have property Ci

�
 � Multi�Level Speci�cations

Instead of negating the conditions we can use default equations to deal with the
remaining cases�

 	q q�r�� � � � � rn� � 	r� r� � � � � � 	rn rn � �q� not well�formed

otherwise

imports OLS�WF��� SPEC�ErrorsB��

equations

Declarations No terms other than constants can be declared as sorts�

�wf�sorts
� 	sorts � � � � � not a well�formed sort declaration otherwise

�wf�d�fun
� 	decls f � � � function � f � multiply declared otherwise

�wf�d�var
� 	decls x � � � variable � x � multiply declared otherwise

Sorts A term is a non�wellformed sort if it is a constant that is not declared or if
it is a term that is not a constant� product or arrow�

�wf�sort�fun
� 	sort f � sort � f � not declared when f � S� � � �
�wf�sort�� 	sort t � � t � not a well�formed sort otherwise

Functions and Variables If the result of looking up a function or variable in the
signature is �nil�� it is not declared� otherwise the declared sort is not well�formed�

�wf�fun
� 	term f � � � function � f � not declared when �f� � � nil

�wf�fun�� 	term f � � � 	sort � otherwise

�wf�var
� 	term x � � � variable � x � not declared when �x� � � nil

�wf�var�� 	term x � � � 	sort � otherwise

Pair and Application

�wf�pr
� 	term �t�� t�� � � � � 	term t� � 	term t��
� pair � spine�t�� t�� � not well�formed
otherwise

�wf�app
� 	term t� t� � �
� � 	term t� � 	term t��
� application � spine�t� t�� � not well�formed
�� if eq�dom�type�t���� nil�
then � spine�t�� � is not a function
else type of argument � type�t��

� does not match type of domain � dom�type�t��� �
otherwise

Note that the function �spine� is used to show a term without its type annotations�

�� Typechecking One�Level Speci�cations � ��

Annotation Terms without annotation or with double annotations are never well�
formed�

�wf�term�
type�t� � top

 	term t � term � t � not well�formed

�wf�ann� 	term �t � � �� � � �
� 	term t � � �
� annotation of � spine�t� � with � � � � not well�formed
� should be � spine�� �� �

For several constructors in the language of terms we did not formulate any rules
because they cannot be used at the level of terms at all�

�wf�term�prd� 	term t� � t� � � � term � spine�t� � t�� � not well�formed
�wf�term�arr� 	term t� � t� � � � term � spine�t� � t�� � not well�formed
�wf�term�top� 	term top � � � term � top � not well�formed
�wf�term�nil� 	term nil � � � term � nil � not well�formed

Equations

�wf�eqn
� 	eqs t� � t�
� � 	term t� � 	term t��
� equation � spine�t�� � spine�t�� � not well�formed
�� if � eq�type�t��� type�t���
then types do not match
else variables � trms�vars�t�� 	 vars�t��� � of rhs not in lhs

otherwise

The following proposition states that the de�nition of the well�formedness judge�
ment for terms is su�ciently�complete� i�e�� all cases are covered by the well�formedness
and non�wellformedness rules�

Proposition � For any term t and signature � 	term t � f
g � Error�

Proof
 by induction on terms� �

��� Type Assignment �OLS�TA	

Figure � shows that it is a tedious task to write fully annotated speci�cations� In this
subsection we de�ne the type assignment function Wt� ���t�� that annotates a term
with types according to signature � Terms for which no typing exists are assigned
the �nil� type� If a term is already partially annotated� these annotations are checked

�� � Multi�Level Speci�cations

against the derived annotations� In the one�level framework we are currently dealing
with there is not much use for such annotations because terms can have at most one
type� However� in the multi�level framework terms can be polymorphically typed and
we will also allow functions to be overloaded� In such a situation� partial annotations
are useful to enforce a more speci�c type for a term�

imports OLS��� Projection��� Term�Analysis���

exports

context�free syntax

�Wsp� ���� Spec ���� � Spec
�Wt� ��� Sig ��� ���� Term ���� � Term
�We� ��� Sig ��� ���� Eqs ���� � Eqs

equations
The function �Wsp� assigns types to the terms in equations of a speci�cation using

its signature�

�wsp�
 � Sg�S�

Wsp��S�� � signature � equations We� ���E�S���

Terms Functions and variables are annotated with their types in the signature� The
type of a pair is the product of the types of its arguments� The type of an application
is the codomain of the type of the function�

�wt�var�
�x� � � �

Wt� ���x�� � x � �

�wt�fun�
�f� � � �

Wt� ���f�� � f � �

�wt�pr�
Wt� ���t��� � t�� Wt� ���t��� � t�

Wt� ���t�� t��� � �t�� t�� � type�t�� � type�t��

�wt�app�
Wt� ���t��� � t�� Wt� ���t��� � t�

Wt� ���t� t��� � t� t� � cod�type�t���

A term that is already partially annotated is handled by �rst assigning a type to
the term without its annotation and then comparing the derived annotation with the
given annotation�

�wt�ann�
Wt� ���t�� � t �

Wt� ���t � � �� � if eq�type�t ��� �� then t � else t � � �

In case the given type and the derived type are equal� the annotated term is returned�
In case the types are di�erent� the term was inconsistently annotated by the user� To
be able to report this� the erroneous annotation is attached to the already annotated

�� Typechecking One�Level Speci�cations � ��

term� The resulting term is not well�formed� which will be reported by equation �wf�
ann� in Section ���� Observe that equation �wt�ann� guarantees that we can assign
types to fully annotated terms� We have that Wt� ���Wt� ���t���� � Wt� ���t��� i�e��
type assignment is idempotent�

Terms constructed from �nil�� �top�� ��� and ��� are assigned the error type �nil��
since these constructors cannot occur in well�formed terms�

�wt�nil� Wt� ���nil�� � nil � nil
�wt�top� Wt� ���top�� � top � nil
�wt�prd� Wt� ���t� � t��� � Wt� ���t��� �Wt� ���t��� � nil
�wt�arr� Wt� ���t� � t��� � Wt� ���t����Wt� ���t��� � nil

Equations Both sides of an equation are assigned types�

�we�eqn��� We� ���t� � t��� � Wt� ���t��� �Wt� ���t���
�we�eqns��� We� ����� �
�we�eqns�n� We� ����	

� � �
	
� �� � We� ����

	
� �� �� We� ����

	
� ��

In Section ��
 we saw that well�formedness judgements identify the fully annotated
terms that are well�formed with respect to a signature� The type assignment function
de�ned in this section allows us to produce fully annotated terms from plain terms�
The following proposition states that for any plain term the type assignment function
�nds a well�formed� full annotation if one exists�

Proposition � �correctness of �Wt�� The function Wt �nds a well�formed typ�
ing for a term if one exists� i�e�� if t is a fully annotated term and 	term t then
Wt� ���spine�t��� � t�

Proof
 by induction on terms� �Hint� equations �wt�var� until �wt�app� assign types
to terms as required by �wf�var� until �wf�app� in Section ��
�� �

��� Typechecking �OLS�TC	

typechecking can now be de�ned in terms of type assignment and well�formedness
checking� We de�ne three typecheck functions� The �rst checks a term against
a signature� the second checks a list of equations against a signature and the last
checks a complete speci�cation� The functions are de�ned in terms of well�formedness
judgements �Section ��
� and type assignment functions �Section �����

imports OLS�NWF��� OLS�TA���

exports

context�free syntax

tc ��� Sig ��� ���� Term ���� � EBool

�� � Multi�Level Speci�cations

tc ��� Sig ��� ���� Eqs ���� � EBool
tc ���� Spec ���� � EBool

equations

�tc�terms� tc� ���t�� � 	sig � 	term Wt� ���t��
�tc�eqns� tc� ���E �� � 	sig � 	eqs We� ���E��
�tc�spec� tc��S�� � 	spec Wsp��S��

Now we have seen the complete speci�cation of a typechecker for a monomorphic
applicative language� In the next two sections we will repeat this exercise for a multi�
level polymorphic speci�cation language�

� Multi�Level Speci�cations

In the one�level framework of sections � and � the algebra of types used for the
declaration of functions and variables is the subset of terms consisting of the closure
under product ��� and arrow ��� of a set of sort constants� In such a framework one
has higher�order functions �due to the applicative term format� but no polymorphism
and no user�de�nable type constructors�

A two�level speci�cation is a pair of speci�cations� called level � and level �� The
signature of the level � speci�cation speci�es a set of terms �like a one�level signature
would� that are used at level � as types� In other words the signature at level �
determines the type algebra of level �� A type variable can be instantiated to any
type� A term that has a type containing variables is polymorphic� it denotes all terms
obtained by substituting ground types for type variables� As in the one�level case� the
type algebra of signatures at level � is determined by the implicit signature generated
from the sorts of level � and the constructors ��� and ����

Multi�level speci�cations generalize two�level speci�cations by allowing arbitrary
many levels of speci�cations� The signature at level n uses terms from the signature
at level n�� as types and determines the type algebra of the signature at level n���
The types used in the highest level are members of the closure of the sorts at that level
under ��� and ���� i�e�� there is an implicit signature at the top that is generated by
the sort declarations of the highest level� Figure
 illustrates the concepts of one�level�
two�level and multi�level speci�cations� The arrow from a signature means that the
terms over that signature are used at the target of the arrow�

In the next two sections we de�ne the extension of one�level speci�cations to
multi�level speci�cations� In this section we start with an extensive list of examples
that introduce the key ideas of the formalism� The examples are motivated by data
type speci�cation� For examples of application of multi�level speci�cation to logical
frameworks see �Hearn and Meinke� ����� and �Hearn� ������ It is not necessary to
read all examples to continue with the rest of the chapter� Indeed for the under�

�� Multi�Level Speci�cations � �

signature

equations

implicit ���

signature

�a� One�level

signature

equations

level �

signature

equations

level �

implicit ���

signature

�b� Two�level

signature

equations

level n

� � �

signature

equations

level �

implicit ���

signature

�c� Multi�level

Figure
� Speci�cations with one� two and multiple levels of signatures�

standing of some of the later examples it might be a good idea to �rst continue with
Section �� where the syntax of multi�level speci�cations is de�ned�

��� Natural Numbers

The running example of sections � and �� successor naturals with addition� can be
speci�ed as a one�level speci�cation� The declaration of sort nat generates the implicit
sort signature consisting of the basic sort nat and the sort operators ��� and ����
As a consequence� terms like nat� nat �	 nat and nat � nat �	 nat are sorts that
can be used in the signature that declares the functions composing the algebra of
natural numbers� The signature is summarized in the diagram in Figure ��a��

module nat

level �

signature

sorts nat�

functions

�
 nat�

s
 nat �	 nat�

���
 nat � nat �	 nat�

variables

�� � Multi�Level Speci�cations

nat
(+)

0

s

�a� nat

type (#) (->)

�b� type

Figure �� Signature diagrams of modules nat and type

I� J
 nat�

equations

� � I

 I�

s�I� � J

 s�I � J��

��� Signature of Types

Just like module nat de�nes a language of nat expressions� module type below de�nes
a language of type expressions built from type variables A� B and C by means of the
binary operators ��	� and ���� Examples of such terms are A� A �	 A� A � B �	 A�
etc� These terms have type type� The signature of module type is summarized by
the diagram in Figure ��b��

module type

level �

signature

sorts type�

functions

���� ��	�
 type � type �	 type�

variables

A� B� C
 type�

��� Functions

The di�erence between module nat and module type is that the signature of types is
a level � signature� This entails that type expressions can be used as sorts at level �
in signatures of modules that import module type�

The next module function introduces several polymorphic operations on func�
tions� It �rst imports module type to use type expressions as sorts at level �� The
sorts declaration declares all expressions over level � that match the term A� as sorts�
This means that all terms of type type can be used as sorts� but other terms over

�� Multi�Level Speci�cations � ��

level � cannot �because A is a type variable�� For instance� A �	 A is a type expres�
sion� but ��	�� which is also a term over level �� is not a type expression� Next� the
module de�nes a number of common functions� The identity function i takes any
value to itself� The function k creates a constant function k�X� that always yields
X� The function s is a duplication function that copies its third argument� The com�
position G � H of two functions G and H applies G to the result of applying H to the
argument of the composition�

All these functions are polymorphic� The types of the functions contain type

variables� which can be instantiated to arbitrary type expressions� The signature
is actually an abbreviation of an in�nite signature� declaring each function for each
possible instantiation of the type variables� For instance� if nat is a type �as we will
de�ne in the next paragraph�� then the instantiation i
 nat �	 nat is the identity
function on the natural numbers�

module function

imports type�

level �

signature

sorts A�

functions

i
 A �	 A�

k
 A �	 B �	 A�

s
 �A �	 B �	 C� �	 �A �	 B� �	 A �	 C�

���
 �B �	 C� � �A �	 B� �	 A �	 C�

variables

X
 A� Y
 B� Z
 C� G
 A �	 B� H
 B �	 C�

equations

i�X�

 X�

k�X��Y�

 X�

s�X��Y��Z�

 X�Z��Y�Z���

�G � H��X�

 G�H�X���

Observe that the speci�cation in module function can also be considered as a
logical framework in which the types are propositional logic formulas and the types
of the functions the axioms of propositional logic� together with the implicit type of
the application operator� which represents the modus ponens rule�

��� Typing Natural Numbers

In module nat typed� the natural numbers as speci�ed in module nat are incorpo�
rated in the world of types by declaring nat as a type constant� This is illustrated
by the diagram in Figure �� This provides the polymorphic functionality de�ned for
arbitrary types to natural numbers�

�� � Multi�Level Speci�cations

type nat
(#) (->)

nat
s

0

(+)

Figure �� Signature diagram of module nat�typed�

module nat�typed

imports function� nat�

level �

signature

functions

nat
 type�

��� Cartesian Product

The product A � B of two types A and B is the type of pairs �X� Y� of elements X
of A and Y of B� In MLS the pairing constructor function � is implicitly declared
as ���
 A � B �	 A � B� This means that if at level n � � a declaration for ���
is given� then at level n the constructor � is de�ned implicitly� The declaration is
implicit because binary in�x operators are de�ned in terms of � by means of the
equation t�� t� � ����t�� t��� If � would be treated like an ordinary binary operator
this would lead to a circular de�nition t�� t� � �� ��t�� t�� � �� ���� ��t�� t���

Module product de�nes a number of general functions on products� The projec�
tion functions exl and exr give the left and right elements of a pair� The product
G � H of two functions is a function that applies the �rst function to the �rst argu�
ment of a pair and the second function to the second argument resulting in a new
pair� The function split takes two functions that split the values of a type C into the
components of a pair� For instance� the function swap de�ned as �exr �split� exl�

swaps the elements of a pair� i�e�� �exr �split� exl��X� Y�

 �Y� X��� The func�
tion curry converts a binary function �a function on pairs� into a curried binary
function that �rst takes its �rst argument and returns a function that when applied
to a second argument returns the application of the function to its arguments� The
function uncurry is the inverse of curry that uncurries a function� i�e�� converts it
from a curried binary function to a function on pairs� It is de�ned in terms of dupli�

�Recall that T� �T�� T� can be written as an abbreviation of T��T��T���

�� Multi�Level Speci�cations � ��

cation� projection and composition� Finally� the function pair is the curried version
of the built�in pairing operator ����

module product

imports function�

level �

signature

sorts A � B�

functions

exl
 A � B �	 A�

exr
 A � B �	 B�

���
 �A �	 B� � �A� �	 B�� �	 �A � A�� �	 �B � B���

split
 �C �	 A� � �C �	 B� �	 C �	 A � B�

curry
 �A � B �	 C� �	 A �	 B �	 C�

uncurry
 �A �	 B �	 C� �	 A � B �	 C�

pair
 A �	 B �	 A � B�

swap
 A � B �	 B � A�

variables

X
 A� Y
 B� Z
 C� G
 A �	 B� H
 B �	 C�

equations

exl�X� Y�

 X�

exr�X� Y�

 Y�

�G � H��X� Y�

 �G�X�� H�Y���

�G �split� H��X�

 �G�X�� H�X���

curry�G��X��Y�

 G�X� Y��

uncurry�G�

 s�G � exl��exr��

pair

 curry�i��

swap

 �exr �split� exl��

��
 Disjoint Sum

The disjoint union or sum A � B of two types A and B contains all elements from
A and B� The elements of both types are tagged by means of injection functions
inl and inr� such that their original type can be reconstructed and such that there
are no clashes� the union of bool and bool contains two elements� while the sum
bool � bool contains the four elements inl�t�� inl�f�� int�t� and inr�f�� The
sum G � H of two functions G and H is the function that takes the sum of codomains
to the sum of the domains of G and H by applying G to left�tagged values and H to
right�tagged values� The function case applies either of two functions with the same
codomain depending on the tag of the value it is applied to�

The signature diagram in Figure �� illustrates the structure of the algebra� Due
to polymorphism� the number of sorts of a speci�cation becomes in�nite� Therefore�

�
 � Multi�Level Speci�cations

type

A + B A -> B
A

(->) (#) (+)

caseinrinl (+)

Figure ��� Signature diagram of module sum�

signature diagrams do not provide an accurate description of the structure of the
algebra described by a speci�cation� Nonetheless we will continue to use approximate
signature diagrams to give insight in the examples�

module sum

imports function�

level �

signature

functions

���
 type � type �	 type�

level �

signature

sorts A � B�

functions

inl
 A �	 A � B�

inr
 B �	 A � B�

���
 �A �	 B� � �A� �	 B�� �	 �A � A�� �	 �B � B��

case
 �A �	 C� � �B �	 C� �	 �A � B� �	 C�

equations

�G � H��inl�X��

 inl�G�X���

�G � H��inr�Y��

 inr�H�Y���

�G �case� H��inl�X��

 G�X��

�G �case� H��inr�Y��

 H�Y��

��� Lists

A list is a structure built by the functions ��� the empty list� and �

� �cons�
that adds an element to a list� A great number of generic functions have been

�� Multi�Level Speci�cations � ��

de�ned on lists� see for instance �Bird� ���
� ������ Here we give some common
list functions� The function ��� �map� applies a function G to each element of a
list� The function ��� �fold right� takes a pair �G� Z� of a function and a constant
to replace the constructors �� and �

� such that �X�

 ���

 �Xn

 ����

is transformed into �X� �G� ��� �G� �Xn �G� Z��� The function ��� �fold left� is
similar to ��� but starts adding the elements at the left side of the list resulting
in ��Z �G� X�� �G� ��� �G� Xn�� The fold operations can be seen as signature
morphisms consisting of replacements for the list cons function and the empty list�
The function ���� concatenates the elements of two lists� The function size gives
the length of a list� The functions ���� and size are de�ned in terms of the fold
functions ��� and ���� Finally� the function zip takes a pair of lists into a list of the
pairs of the heads of the lists��

module list

imports product� nat�typed�

level �

signature

functions

list
 type �	 type�

level �

signature

sorts list�A��

functions

��
 list�A��

�

�
 A � list�A� �	 list�A��

���
 �A �	 B� � list�A� �	 list�B��

���
 �A � B �	 B� � B �	 list�A� �	 B�

���
 �A � B �	 A� � A �	 list�B� �	 A�

size
 list�A� �	 nat�

����
 list�A� � list�A� �	 list�A��

zip
 list�A� � list�B� �	 list�A � B��

variables

L
 list�A��

equations

G � ��

 ���

G � �X

 L�

 G�X�

 �G � L��

�G � Z�����

 Z�

�G � Z��X

 L�

 X �G� ��G � Z��L���

�G � Z�����

 Z�

�Note that a variable declaration like L � list�A� declares all variables with �base� L as list�A�
variables� e�g�� L�� L� and L� are also declared by this declaration�

�� � Multi�Level Speci�cations

�G � Z��X

 L�

 �G � �Z �G� X���L��

size

 �s � exl� � ��

����

 s����� � pair�

�� � exr��exl��

zip���� L�

 ���

zip�L� ���

 ���

zip�X

 L� X�

 L��

 �X� X��

 zip�L� L���

��� Strati�ed Stacks

All examples we have seen until now use only one sort �type� at level �� The next
module gives an example of a speci�cation that uses an additional sort at level ��

The data type of stacks can be speci�ed by means of �polymorphic� push� pop and
top functions� A well�known disadvantage of the normal formulation is that the top
of the empty stack is either unde�ned or part of the type of stack elements� leading to
a pollution of that type� All other operations that use the type have to take account
of the top of the empty stack as an additional element� Another solution is to take a
default value from the type of stack elements as result of the top of the empty stack�
The problem of this solution is that the distinction between failure and success of a
partial function is lost�

The solution of Hearn and Meinke ������ is to �stratify� the type of stacks� The
stack type constructor does not just construct a type from a type� but has a natural
number as argument that records the number of elements on the stack� The type
operator stack takes a type� which is the type of the elements on the stack� and a
nat� which represents the height of the stack� The type of stacks is strati�ed into
stacks with elements of type A and height � indicated by the type stack�A���� stacks
of height s��� indicated by the type stack�A�s����� etc� A new type constant
error is introduced to represent errors� The usual stack operators are now typed as
follows� The empty stack has type stack�A� ��� i�e�� is a polymorphic constant for
stacks with arbitrary types of elements and with height �� The push function takes
an A element and a stack of A�s with height I and produces a stack of A�s of height
s�I�� The operations pop and tops come in two variants� one for empty stacks and
one for non�empty stacks� The top of an empty stack �which has type stack�A����
results in an error element and not in an A� The error element is not added to the
sort of stack elements�

The natural numbers in the types of stacks are used at level � while the speci�
�cation in module nat speci�es naturals at level �� This means that just importing
module nat is not enough to reuse the speci�cation� The reuse is achieved by the
operation lift that increases all levels of its argument speci�cation by �� The signature
diagram in Figure �� gives an overview of the signature in module stratified�stack�

�� Multi�Level Speci�cations � ��

type

lift

nat

stack

nat

(->) (#)

error
tops

stack(A,0) stack(A,s(0))

A

push

pop pop
...

empty pushtops
flag

pop

Figure ��� Signature diagram of module stratified�stack�

module stratified�stack

imports types�

lift�imports nat��

level �

signature

functions

error
 type�

stack
 type � nat �	 type�

level �

signature

functions

flag
 error�

empty
 stack�A� ���

push
 A � stack�A� I� �	 stack�A� s�I���

pop
 stack�A� �� �	 stack�A� ���

pop
 stack�A� s�I�� �	 stack�A� I��

tops
 stack�A� �� �	 error�

tops
 stack�A� s�I�� �	 A�

variables

St
 stack�A� I��

equations

pop�push�X�St��

 St�

tops�push�X�St��

 X�

pop�empty�

 empty�

tops�empty�

 flag�

�� � Multi�Level Speci�cations

��
 Kinds

The type expressions we have used so far are described by a signature at the highest
level of speci�cations� This entails that only type constructors over the signature
ftype� ���� ���g can be constructed� This is not su�cient for all type constructors�
For instance� the type of tuples contains a list of types� We can provide more structure
in the sort space of types just as we provided more structure in the sort space of values�
by building yet another level� Module kind introduces the sort kind at level
 and
de�nes type to be a kind constant�

module kind

imports type�

level �

signature

sorts kind�

functions

type
 kind�

���� ��	�
 kind � kind �	 kind�

variables

K
 kind�

level �

signature

sorts K
 kind�

From here on we can proceed by adding useful kind constructors to level
 and
using them in the signatures at level �� However� to construct tuples we need lists of
types� Since there is not yet a de�nition of list
 kind �	 kind� we would have
to redo module lists but now one level higher� Since this is a waste of time we use
another approach� Module type�type also introduces the constant type at level
�
but uses type itself as its type! The types de�ned in module type are used as kinds�
by lifting the contents of that module� Now we can reuse all type constructors de�ned
so far for level � at level
� by simply lifting their speci�cation�

module type�type

lift�imports type��

imports type�

level �

signature

functions

type
 type�

���� Generalized Product

Lists and stacks are homogeneous data types that are parameterized by one sort�
All elements of a list or stack are members of the same sort� A tuple on the other

�� Multi�Level Speci�cations � �

type

Alist(A) (::)

[]

type

prod

(->) (#)
type

list

(->) (#)

list

prod(LT) Alist(A) (::)

(^)

[]<>

Figure �
� Signature diagram of module generalized�product with lifted list
and type�

hand is a heterogeneous structure with various types of elements� In the next module
we de�ne a type constructor prod that constructs a generalized product type from
a list of types� To construct a list of types we import the de�nition of level � lists
and lift it to the level of types� Now we can use the same polymorphic operations
on lists that we de�ned before� A tuple is constructed by means of the functions �	
�empty tuple� and ���� which adds an element to a tuple� �Recall from Section
��
that �X�� ���� Xn	 is an abbreviation for X� � ��� � Xn � �	�� For instance� the
tuple ��� ���� t	 has type prod��nat� list�nat�� bool��� The �rst element of
a tuple is given by exl and the rest by exr� Observe that these functions are not
partial� they are only well�formed if applied to a non�empty tuple�

module generalized�product

imports type�type�

lift�imports list��

level �

signature

functions

prod
 list�type� �	 type�

variables

LT
 list�type��

level �

signature

sorts prod�LT��

�� � Multi�Level Speci�cations

functions

�	
 prod�����

���
 A � prod�LT� �	 prod�A

 LT��

exl
 prod�A

 LT� �	 A�

exr
 prod�A

 LT� �	 prod�LT��

variables

P
 prod�LT��

equations

exl�X � P�

 X�

exr�X � P�

 P�

In Hindley	Milner type systems it is not possible to construct the type of strati�ed
stacks nor the type of generalized products� because only one sort �type� can be used
at the level of types� The next paragraph shows an example of a speci�cation that
goes even further by using operations at the level of types� This can be expressed in
the MLS formalism� but is not supported by the MLS typechecker de�ned Section
�

���� Generalized Zip

The function zip as de�ned in module list above takes a pair of lists into a list
of pairs by pairing the heads of both lists until one of the lists is empty� Vari�
ants of zip can also be constructed for triples of lists� quadruples of lists and so
on� Unzip is the inverse of zip that maps a list of products to a product of lists�
The following generalized de�nition of zip takes a generalized product of lists into
a list of products by tupling the heads of the lists� For instance� if the argument
of zip has type prod��list�nat�� list�bool�� list�list�bool������ its result
has type list�prod��nat� bool� list�bool����� The declaration of zip has to
relate the contents of the list types in the domain to the types in the codomain� In
the declaration below this is achieved by declaring the domain as prod�list � LT��
The type constructor list is mapped using operator ��� �see module list� over
the list of types LT� This means that the argument of zip should be a product with
all its arguments of the form list�A�� For the example above� we can see that ac�
cording to the equations for ��� �in module list� prod��list�nat�� list�bool��

list�list�bool����� is equal to prod�list � �nat� bool� list�bool����� This
type can be uni�ed syntactically with the domain type of zip �take the substi�
tution �LT �� �nat� bool� list�bool����� from which the type of the codomain
list�prod��nat� bool� list�bool���� follows�

In order to re�ect this in the type assignment for speci�cations� E�uni�cation has
to be used� Given a set of equations E and two terms t� and t�� an E�uni�er is a
substitution � such that E 	 ��t�� � ��t��� If the ti are ground terms this question
reduces to E 	 t� � t�� Here E�uni�cation has to be applied to unify the types of
actual argument and domain type of the function zip given the equations for ����
This problem is undecidable in general �see Jouannaud and Kirchner ������ for a

�� Multi�Level Speci�cations � ��

survey of uni�cation�� but for the equations of functions like ��� it seems decidable�
However� the type assignment function presented in Section
�� does not consider
equations over types�

module generalized�zip

imports generalized�product� list�

level �

signature

functions

zip
 prod�list � LT� �	 list�prod�LT���

unzip
 list�prod�LT�� �	 prod�list � LT��

variables

L� M� N
 list�A��

equations

�� empty tuple

zip��	�

 ���

�� singleton tuple

zip����	�

 ���

zip��X

 L	�

 �X	

 zip��L	��

�� pairs of lists

zip����� L	�

 ���

zip��L� ��	�

 ���

zip��X

 L� Y

 M	�

 �X� Y	

 zip��L� M	��

�� tuples with at least three lists

zip�L � �M � �N � P���

 zip�L � zip�M � �N � P����

unzip����

 �	�

unzip��X	

 L�

 �X

 �exl � L�	�

unzip��X � �Y � P��

 L�

 �X

 �exl � L��

� unzip��Y � P�

 �exr � L���

���� Type Classes

Another example of a speci�cation that uses equations over types� is the following
module that models the restriction of the polymorphism of the equality function by
means of a type class like mechanism� The module imports module bool that de�nes
the standard operations on the Boolean values t �true� and f �false�� At level � a
unary boolean function �a predicate� eq on types is de�ned such that the type nat is
in the eq class and such that a list type is in the eq class if its content type is in the
class� The operator �
	� constrains a type by some boolean condition� At level � the

�� � Multi�Level Speci�cations

equality function eq is now declared with type eq�A�
	 �A � A �	 bool�� which
expresses that the function only applies to types in the eq class� The function ���

is used to apply a function with a constrained type to an argument� It requires that
the condition is equal to t� This ensures that eq cannot be applied to function types
or other types not in the eq class�

module equality

imports type�

lift�imports bool��

imports list� nat�typed� bool�typed�

level �

signature

functions

eq
 type �	 bool�

�
	�
 bool � type �	 type�

equations

eq�nat�

 t�

eq�list�A��

 eq�A��

level �

signature

functions

���
 �t
	 A �	 B� � A �	 B�

eq
 eq�A�
	 �A � A �	 bool��

equations

eq���� ��

 t�

eq���� s�I��

 f�

eq��s�I�� ��

 f�

eq��s�I�� s�J��

 eq��I� J��

eq����� ���

 t�

eq��X

 L� ���

 f�

eq����� X

 L�

 f�

eq��X

 L� X�

 L��

 eq��X� X�� �� eq��L� L���

Here we conclude our discussion of MLS examples and proceed to formalize the
MLS language in the remaining sections�

� Syntax of Multi�Level Speci�cations

In this section we de�ne the syntax of multi�level speci�cations� extend these with a
module mechanism and de�ne the semantics of multi�level speci�cations�

�� Syntax of Multi�Level Speci�cations � ��

�� Syntax �MLS	

A multi�level speci�cation is either empty� a level composed of a natural number
indicating the level and a speci�cation� or a concatenation of multi�level speci�cations�

imports OLS��� NaturalsA��

exports

sorts MLS

context�free syntax

� MLS
�level� Nat Spec � MLS
MLS ��� MLS � MLS fleftg
��� MLS ��� � MLS fbracketg

priorities

Sig ���Sig � Sig � MLS ���MLS � MLS

variables

�"����� ��� � MLS

Arrow and Product Functions Since types are terms over a signature� the con�
structors arrow and product must also be declarable� For this purpose the functions
��� and ��� are introduced with the same notation as used to make other in�x
operators into pre�x functions�

exports

context�free syntax

����� � Fun
����� � Fun

Speci�cation Projections As for the OLS case we de�ne several projection func�
tions to decomposing a speci�cation� Most noteworthy is the function �up� that gives
a speci�cation without its lowest level� The projection function �n gives the speci��
cation at level n� The function �lift� increases the level indicators of all levels by ��
The function �drop� decreases the indicators of all levels by one and removes the
speci�cation at level ��

exports

context�free syntax

��� � � Nat ��� MLS ��� � Spec
max�MLS� � Nat
lift�MLS� � MLS
drop�MLS� � MLS
up�MLS� � MLS
top�sig � MLS
decl�Terms� Term� � Decls

�
 � Multi�Level Speci�cations

equations

�ms�assoc� "�� �"�� "�� � "�� "�� "� �ms�lu� � " � "
�ms�el� level n � �ms�ru� "� � "

The projection �n gives the n�th level of a speci�cation�

�p�� �n�� �

�p�� �n�level n S� � S

�p	� �n�level m S� � when eq�n� m� � �

�p�� �n�"�� "�� � �n�"��� �n�"��

The function �max� gives the index of the highest level of a speci�cation� Note that
�max� is also the maximum function on natural numbers�

�max�� max�� � �
�max�� max�level n S� � n
�max�� max�"�� "�� � max�max�"��� max�"���

Any speci�cation is equal �modulo commutativity of ���� to the concatenation of all
levels� i�e�� for any speci�cation "�

" � level max�"� �max��
�"�� � � � � level � ���"�� level � ���"�

The function �lift� increments all levels by one�

�lift�� lift�� �
�lift�� lift�level n S� � level succ�n� S
�lift	� lift�"�� "�� � lift�"��� lift�"��

The function �drop� lowers all levels by one level and drops the lowest level�

�drop�� drop�� �
�drop�� drop�level � S� �
�drop	� drop�level n S� � level pred�n� S when zero�n� � �
�drop�� drop�"�� "�� � drop�"��� drop�"��

For �� �lift� and �drop� we have �modulo associativity and commutativity of ����

�lift�drop� lift�drop�"��� level � ���"� � "

A multi�level speci�cation is actually a stack of speci�cations� with �drop� as the
pop operation and �� as top� The term lift� �� level � corresponds to pushing a
speci�cation on the stack�

The constant �top�sig� is the implicit signature that determines the sorts of the
highest signature�

�topsig� top�sig � level � signature functions ���� ��� � top � top� top

�� Syntax of Multi�Level Speci�cations � ��

The operation �up� is like �drop� with an extra property� In case level � is not the
highest level� i�e� max is not equal to �� then �up� just drops level �� If level � is
the highest level� �up� is the signature �top�sig� extended with the sorts of the highest
level declared as constants of type �top�� This is the implicit signature of the types
used at the highest level of a speci�cation� Observe that if max�"� � �� then after
one iteration up�up�"�� � up�"��

�up�� up�"� � top�sig� level � signature functions decl�S�Sg����"���� top�

when zero�max�"�� �

�up�� up�"� � drop�"� when zero�max�"�� � �

The function �decl� constructs a list of declarations from a list of terms and a sort�
It is used in the de�nition of �up� above to create a declaration for each sort of the
highest level� Only the function constants in the list are declared�

�decl�� decl�� � � �
�decl�� decl�f� � � � f � �
�decl	� decl�t	� � t

	
� � � � � decl�t

	
� � �� �� decl�t

	
� � ��

�decl�� decl�t� � � � otherwise

�� Normalization �MLS�Norm	

According to the syntax of signatures and multi�level speci�cations� speci�cation el�
ements like levels� signatures and declarations can be written in any order and can
be repeated� For instance� a speci�cation can contain several sections for level �

and a signature can contain several functions sections� The function �norm� below
normalizes a speci�cations such that the levels are presented in decreasing order and
speci�cations consists of one signature section and one equations section� Further�
more� signatures are normalized such that they contain a single sorts� functions and
variables section� Finally� redundant declarations� sort declarations and equations are
removed�
imports MLS
��

exports

context�free syntax

norm�MLS� � MLS
norm�Spec� � Spec

equations

�n��� norm�"� � level � norm����"�� when max�"� � �

�n��� norm�"� � lift�norm�drop�"���� level � norm����"��

when zero�max�"�� � �

�� � Multi�Level Speci�cations

�n�	� norm�S� � signature �� equations E�S�
when Sg�S� � �

 � � sorts S� ��
functions F� ��
variables V� ��

�n��� d��� d� d
�
�� d� d

�
� � d��� d� d

�
�� d

�
�

�n��� sorts t��� t� t
�
�� t� t

�
� � sorts t

�
�� t� t

�
�� t

�
�

�n��� equations ���� �� �
�
�� �� �

�
� � equations �

�
�� �� �

�
�� �

�
�

�� Modular Multi�Level Speci�cations �MMLS	

We de�ne a simple modularization scheme based on syntactic inclusion� It adds con�
siderably to the expressive power of the language by the ability to share speci�cations
at more than one level� as we saw in the examples in Section �� A module binds a
multi�level speci�cation to a module name� An import is a reference to the body
of a module� It denotes the speci�cation that would be obtained by replacing the
import by the module body� Name clashes between functions imported from di�erent
modules are not problematic� because overloading permits such functions to coexist�
Functions from di�erent origins with identical names and types are identi�ed� Al�
though this seems a reasonable choice� extension with renaming operators would be
useful� but is not further considered here�

imports MLS
�� MLS�Norm
��

exports

sorts Module Modules
context�free syntax

�imports� fFun ���g� � MLS
�module� Fun MLS ��� � Module
Module� � Modules
Modules ���� Modules � Modules frightg
� � � Fun ��� Modules ��� � MLS

variables

�M ����� ��� � Module
�M �������� ��� � Module�
�M �������� ��� � Module�

equations
Concatenation of module lists

�mod�cnc� M�
� ��M�

� � M�
� M

�
�

A list of imports denotes the concatenation of the imported speci�cations�

�imp� imports f	� � f
	
� � imports f	� � imports f

	
�

�� Syntax of Multi�Level Speci�cations � ��

The projection of a module name in a list of modules yields the module body� If more
than one module with the same name exists� the bodies are concatenated�

�p�� �f�� �

�p�� �f�module f "�� � "

�p	� �f�module f
� "�� � when eq�f� f �� � �

�p�� �f�M
	
� M	

� � � �f�M
	
� �� �f�M

	
� �

Note that the function �f is overloaded� lookup of the type of a function in a list of
declarations and lookup of a module in a list of modules�

Modules have a simple syntactic replacement semantics� The normalization func�
tion ��at� �attens all modules in a list of modules� by replacing imports by module
bodies�

imports Term�SetsB��

exports

context�free syntax

�at ��� Modules ��� � Modules
�at ��� Modules ��� ���� Modules ���� � Modules
�at ��� Modules ��� TermSet ��� ���� MLS ���� � MLS

equations
The unary function ��at�� �attens the body of each module in a list of modules

with respect to the entire list of modules�

��at�main� �at�M �� � �at�M ����M ���
��at�mods�� �at�M ������ �
��at�mods�� �at�M ����M	

� M	
� �� � �at�M

����M	
� �� �� �at�M

����M	
� ��

��at�mods	� �at�M ����module f "��� � module f norm��at�M �� fg���"����

An import of a module is replaced by its body� The imports in the body of a module
have to be �attened in turn� A loop caused by cyclic imports is prevented by adding
the module name to the set of modules already seen �the second argument of function
��at��� An import is not expanded if a module was already imported �equation ��at�
imp
���

��at�imp��
f � # � �

�at�M �� #���imports f�� � �at�M �� # � ffg����f�M
����

��at�imp��
f � # �

�at�M �� #���imports f�� �

Imports inside other constructs are replaced by distributing ��at� over all operators
except �imports��

��at�ml�� �at�M �� #���"�� � when " �

�� � Multi�Level Speci�cations

��at�ml�� �at�M �� #���"�� "��� � �at�M
�� #���"���� �at�M

�� #���"���
��at�ml�� �at�M �� #���level n S�� � level n �at�M �� #���S��
��at�ml	� �at�M �� #����n�"��� � �n��at�M

�� #���"���

��at�ml�� �at�M �� #���lift�"��� � lift��at�M �� #���"���
��at�ml�� �at�M �� #���drop�"��� � drop��at�M �� #���"���
��at�ml�� �at�M �� #���up�"��� � up��at�M �� #���"���
��at�ml
� �at�M �� #���max�"��� � max��at�M �� #���"���

The function ��at� has to consider all projection operations on speci�cations and
has to be extended to all sorts embedded in speci�cations by means of distribution
equations like the ones above� These equations are not shown�

�� Multi�Level Equational Logic

We rede�ne equational logic for multi�level speci�cations� An equation is an axiom if
it is an equation at level �� The equations at higher levels apply to type annotations�
in equation �mlel�ann� it is stated that two annotated terms are equal if their term
parts are equal and if the annotations are equal with respect to the next level�

imports MLS
�� SubstitutionB��

exports

context�free syntax

MLS �	� Eq � Bool

equations

�mlel�ax�
E����"�� � ���� t� � t�� �

�
�

" 	 t� � t� �

�mlel�ann�
" 	 t� � t� �
� up�"� 	 � � � � � �

" 	 t� � � � � t� � � � �

The standard rules for re�exivity� symmetry� transitivity� substitution and congruence
for the other binary term operators �application� pair� arrow and product� are not
shown�

If only free constructors �functions over which no equations are de�ned� are used
in type annotations� then the types �i in equation �mlel�ann� have to be syntactically
equal� In that case multi�level equational logic reduces to the typed equational logic
of Section ����� and we have

" 	 t� � t� � ���"� 	 t� � t�

Under the same assumption term rewriting with a multi�level speci�cation reduces
to the typed term rewriting of Section ����
� Rewriting of annotated terms in a system
with type equations is more complicated because E�matching is needed� Given a set

	� Typechecking Multi�Level Speci�cations � �

of equations E � term t� E�matches term t� if there exists a substitution � such that
E 	 ��t�� � t��

Meinke ����
a� gives an equational logic for two levels of equations similar to the
multi�level equational logic above� Meinke ������ considers the rewrite relation re�
sulting from a set of equations over terms and types by taking the transitive� re�exive
closure of the equations considered as rewrite rules in both directions�

� Typechecking Multi�Level Speci�cations

In this section we de�ne a typechecker for multi�level speci�cations following the
same approach as for one�level speci�cations� Well�formedness of fully annotated
multi�level speci�cations is de�ned in Section
�
� Rules for the complementary cases
produce error messages for non�wellformed constructs in Section
��� Type assignment
functions� de�ned in Sections
�� and
��� produce a fully annotated speci�cation for a
plain speci�cation an example of which is shown in Figure ��� Finally� the typechecker
is de�ned in Section
�
 as the composition of type assignment and well�formedness
checking�

Typechecking of multi�level speci�cations di�ers at several points from typecheck�
ing one�level speci�cations� First of all� types at level n are terms over the signature
at level n � �� Secondly� types can be polymorphic� Finally� functions and variables
can be overloaded� i�e�� have more than one declaration in a signature�

��� Projection

We de�ne a new projection function that �nds the type of a function or variable in
a list of declarations� The di�erence with the projection function from Section ���
is that the function yields the set of all types that are assigned to the function or
variable� instead of the �rst type� If no declaration exists the empty set is produced�
Furthermore� � takes a set of function or variable names as �rst argument and yields
the set of all types for all functions or variables in the set�

imports MLS
�� RenamingB��� Term�SetsB��

exports

context�free syntax

��� � � TermSet ��� Decls ��� � TermSet
��� � � Var ��� MLS ��� � TermSet
��� � � Fun ��� MLS ��� � TermSet

equations
The projection function �t �nds the types of a set of functions or variables in a

list of declarations�

�p�� ���� � fg

�p�� ���f � �� � if f � # then f�g else fg

�� � Multi�Level Speci�cations

�p�� ���x � �� � if x � # then f�g else fg

�p	� ���d
	
� � d

	
� � � ���d

	
� � � ���d

	
� �

The projection function � applied to a speci�cation �nds the type of a function or
variable in the function or variable declarations of the signature of the lowest level�

�pf� �f�"� � �ffg�F�Sg����"����

�px� �x�"� � �fx� base�x
g�V�Sg����"����

In case of a variable not only the type of the variable� but also the type of its �base�
�variable without trailing digits or primes� see Appendix B���� is looked for� This
makes it possible to use many variants of a variable with only one declaration� For
example� if A
 type is declared� then A�� A�� A�
 type are implicitly declared as
well� This facility encourages a consistent use of variable names�

��� Well�Formedness �MLS�WF	

As in the one�level case in Section ��
� the well�formedness of fully annotated terms
and speci�cations is de�ned by several well�formedness judgements�functions that
yield an error Boolean value� An example of a fully annotated two�level speci�cation
is shown in Figure ���

imports MLS
�� MLS�Projection��� Error�BooleansA�� SPEC�ErrorsB��

MLS�TA�Aux��� MatchingB�� Term�Analysis���

exports

context�free syntax

�	mls� MLS � EBool
MLS �	spec� Spec � EBool
MLS �	sig� Sig � EBool
MLS �	sorts� Terms � EBool
MLS �	decls� Decls � EBool
MLS �	sort� Term � EBool
MLS �	trm� Term ��� Term � EBool
MLS �	term� Term � EBool
MLS �	eqs� Eqs � EBool

equations

A multi�level speci�cation is well�formed if each level is well�formed� The envi�
ronment in which a speci�cation is checked includes the speci�cation itself because
that may contain relevant sort declarations�

�wf�spec��� 	mls " � " 	spec ���"� when max�"� � �

�wf�spec��� 	mls " � 	mls up�"�� " 	spec ���"�

when zero�max�"�� � �

	� Typechecking Multi�Level Speci�cations � ��

level �

signature

sorts type �

functions

��	�
 type � type �	 type �

variables

A
 type� B
 type� C
 type �

level �

signature

sorts A
 type�

functions

k
 �A
 type� �	 �� B
 type� �	 �A
 type�
 type�
 type�

variables

X
 A
 type�

Y
 B
 type�

equations

��k
 �A
 type� �	 ��Q
 type� �	 �A
 type�
 type�
 type�

�X
 A
 type�
 �Q
 type � �	 �A
 type�
 type�

�Y
 Q
 type�
 A
 type

 X
 A
 type

Figure ��� Example of a fully annotated two�level speci�cation� Observe that
the types at level � are fully annotated terms over level ��

A speci�cation is well�formed if both the signature and the equations are well�formed�
The errors in the equations generally depend on errors in the signature� Therefore
equation �wf�spec� gives precedence to signature errors over equation errors�

�wf�spec� " 	spec S � " 	sig Sg�S�� " 	eqs E�S�

A signature is well�formed if the sorts section contains well�formed sort declarations
and if the function and variable declarations are well�formed�

�wf�sig� " 	sig � " 	sorts S� �� " 	decls F� � � " 	decls V� �

The terms in a sort declaration at level n should be well�formed terms over level n���

�wf�sorts��
up�"� 	term � �

" 	sorts � �

�wf�sorts�� " 	sorts �
	
� � �

	
� � " 	sorts �

	
� � " 	sorts �

	
�

�� � Multi�Level Speci�cations

�wf�sorts	� " 	sorts �

A function or variable declaration is well�formed if its type is a well�formed sort�

�wf�decls�vd� " 	decls x � � � " 	sort �
�wf�decls�fd� " 	decls f � � � " 	sort �
�wf�decls�empty� " 	decls �

�wf�decls�conc� " 	decls d

	
� � d

	
� � " 	decls d

	
� � " 	decls d

	
�

Sorts A term is a sort at level n if it is a term over level n � �� and if it matches
one of the terms declared as sort at level n�

�wf�sort�
zero�max�"�� � �� fS�Sg����"���g �� t �

" 	sort t � up�"� 	term t

The predicate # m t �Appendix B��� tests whether a term t matches one of the
elements of a set of terms #� in this case the set of sorts declared at level ��

For a term to be a sort at the highest level it is su�cient to be a term over the
next �implicit� level�

�wf�sort�
zero�max�"�� �

" 	sort t � up�"� 	term t

Otherwise all terms from the closure of the basic sorts under arrow and product that
are used in function and variable declarations� would have to be declared explicitly
as sorts�

Terms A complication with respect to the one�level case is that sorts are also an�
notated� except for the sorts at the highest level� We could solve this problem by
introducing two di�erent well�formedness predicates� Instead we use one predicate
and the implicit annotation of terms with �top�� The auxiliary judgement 	term� is
introduced to treat explicitly and implicitly annotated terms in the same way� The
annotation of a term is constructed explicitly by splitting it in its term and type�
This has the e�ect that terms that are annotated implicitly with �top� can be treated
in the same way as terms with explicit annotations�

�wf�term� " 	term t � " 	trm term�t� � type�t�

The term �top� has type �top�� Since �top� can not be declared as a function� this is
the only possible type it can have�

�wf�top� " 	trm top � top �

The types of functions and variables should be well�formed sorts� The type of a
function should match one of the types with which it is declared� If a variable is

	� Typechecking Multi�Level Speci�cations � ��

declared� its type should match one of its declared types� Variables are allowed to
be undeclared� The reason for this exception is that the type assignment algorithm
has to invent new variables in some cases to prevent name clashes� A result of this
choice is that variables can be used without declaration� if some reasonable type can
be inferred for it from the context� or if it is given some suitable annotation�

�wf�fun�
�f�"� �� � �

" 	trm f � � �

�wf�var�
�x�"� � #� # �� � � empty�#� �

" 	trm x � � � " 	sort �

A pair is well�formed if its type is the product of the types of its left and right
components� An application is well�formed if the type of the argument matches the
type of the domain of the type of the function and if the type of the annotation
matches the type of the codomain�

�wf�pr�
term��� � type�t�� � type�t��

" 	trm t�� t� � � � " 	term t� � " 	term t�

�wf�app�
term�type�t��� � type�t��� �

" 	trm t� t� � � � " 	term t� � " 	term t�

Products and arrows are well�formed if their pre�x versions ��� and ��� are declared
in the signature as binary functions� The product of the types of the arguments
t� and t� should be the domain and the annotation � should be the codomain of
the declaration of the function� This is checked in the same way as the annotation
of a function is checked� by matching the annotation of the function to one of its
declarations� Because the type of the product or arrow is reconstructed� it is not
clear what the annotations for the product and arrow in the types of ��� and ���
should be� For this purpose� the function �bterm� �Section ���� is used to strip the
annotation from the the declared types�

�wf�prd�
bterm�����
�"�� �� type�t�� � type�t��� � �

" 	trm t� � t� � � � " 	term t� � " 	term t�

�wf�arr�
bterm�����
�"�� �� type�t�� � type�t��� � �

" 	trm t� � t� � � � " 	term t� � " 	term t�

Equations An equation is well�formed if both sides have the same type� the vari�
ables of the rhs are contained in the variables of the lhs and all occurrences of a
variable on both sides have the same type�

�wf�eqn�

type�t�� � type�t��� vars�t��
 vars�t�� �
�
var�types�avars�t�� t��� � ��

" 	eqs t� � t� � " 	term t� � " 	term t�

�
 � Multi�Level Speci�cations

�wf�eqns�empty� " 	eqs �

�wf�eqns�conc� " 	eqs �
	
� � �

	
� � " 	eqs �

	
� � " 	eqs �

	
�

The following proposition states that equality according to a well�formed speci��
cation is type preserving� i�e�� a term can only be equal to another term if they have
the same type�

Proposition 	 �type soundness� Well�formed speci�cations preserve types� i�e� let
" be a fully annotated multi�level speci�cation such that declarations in " use only
free type constructors� if 	mls " and " 	term ti then ���"� 	 t� � t� implies type�t�� �
type�t���

Proof
 Since " is well�formed� all equations in ���"� have equal types in the lhs and
rhs and typed equational logic is type preserving for equations with that property
�Proposition
�� �

The following proposition relates equalities over plain terms to equalities over
fully annotated terms�

Proposition
 Equational derivability in a fully annotated speci�cation implies equa�
tional derivability in the plain speci�cation� Let " be a fully annotated multi�level
speci�cation such that declarations in " use only free type constructors and such that
	mls "� then " 	 t� � t� implies spine�"� 	 spine�t�� � spine�t��

In Section
�� we discuss the requirements for the reverse implication� when does
equality in the plain speci�cation preserve types$

��� Non�wellformedness �MLS�NWF	

The generation of error messages for the non�wellformed cases is very similar to
Section ���� therefore only the case of a non�wellformed application is presented�

	� Typechecking Multi�Level Speci�cations � ��

imports MLS�WF��� SPEC�ErrorsB��

equations

�wf�app
� " 	trm t� t� � �
� �" 	term t� � " 	term t��
� application � spine�t� t�� � not well�formed
�� if � A� B �� term�type�t���
then � spine�t�� � is not a function
else if � eq�dom�term�type�t����� type�t���

then type of argument � type�t��
� does not match type of domain � dom�term�type�t���� �

else type of result � spine�� �
� does not match type of codomain � cod�term�type�t���� �

otherwise

��� Preliminaries for Type Assignment �MLS�TA�Aux	

In the next section we will de�ne the type assignment functions for the multi�level
case� First� we de�ne several auxiliary functions that will make the de�nition of type
assignment easier� The two major complications are overloading and polymorphism�
Overloading caused by multiple declarations of variables and functions leads to mul�
tiple fully annotated terms for a single plain term� Therefore� the type assignment
function for terms yields a set of annotated terms instead of a single term� To assign
types to a composite term such as an application� �rst the subterms are assigned
types� resulting in a pair of sets of terms� Each combination from the two sets can
form a well�formed application� Therefore� each term in the Cartesian product of the
two sets has to be considered�

Join To handle polymorphism correctly� type variables of terms composed by appli�
cation� pairing etc� have to be renamed before types can be compared� because types
are implicitly universally quanti�ed� The function
� �join� combines the function of
renaming type variables and producing the cartesian product of two sets� Given two
sets #� and #� it renames the type variables in the terms in the two sets leading to sets
#� and #� such that the type variables are disjunct� i�e�� tvars�#�� � tvars�#�� � fg�
The operation rn#�#��� given a set of variables #�� produces a renaming of the vari�
ables in the set # such that they do not occur in #� �see Appendix B����� The result
of the operation is the Cartesian product #� � #�� i�e�� the set of all pairs �t�� t�� of
elements from t� � #� and t� � #� �see also Appendix B����

imports RenamingB���

�� � Multi�Level Speci�cations

exports

context�free syntax

TermSet �
�� TermSet � TermSet fnon�assocg

equations

�join�

vars�#�� � #
�
�� rn tvars�#�� � #

�
��vars�#�� � #

�
����#�� � #��

vars�#�� � #
�
�� rn tvars�#�� � #

�
��#

�
� � #

�
����#�� � #�

#�
� #� � #� � #�

Selection Once two sets of terms have been joined� the well�formed pairs have to be
selected and given a type annotation� This involves tests and type forming operations
for each construct applying the test to each element in the set of pairs thereby keeping
only the correct ones� This last aspect can be speci�ed generically for all constructs�
For each construct we use a function of sort �Term� Bool�TermSet��� which given
a term produces a pair of a Boolean value indicating whether the term is well�formed
and a set of terms resulting from assigning a type to that term� This function can
be mapped over a set of terms resulting from the join of two type�assignments by the
function ���� It applies the function to each element of the argument set remembering
whether a well�formed term was already encountered� If at the end of the list none of
the combinations turns out to be well�formed� then the last� non�wellformed one� is
returned� This guarantees that type assignment always returns a term� Furthermore�
from the non�wellformed term the well�formedness judgements can �nd out the cause
of the error�

imports Term�Analysis��� Term�FunctionsB��

exports

sorts �Bool� TermSet� �Term� Bool� TermSet�
context�free syntax

�h� Bool ��� TermSet �i� � �Bool� TermSet�
�Term� Bool� TermSet� ��� Term ��� � �Bool� TermSet�
�Term� Bool� TermSet� ��� ��� TermSet ��� � TermSet
�Term� Bool� TermSet� ��� ��� Bool ��� TermSet ��� � TermSet

variables

�G����� ��� � �Term� Bool� TermSet�

equations

�mf�� G��#� � G���� #�
�mf�� G��b� fg� � fg
�mf�� G��b� ftg� � if b � � b � then fg else # when G�t� � hb �� #i
�mf	� G��b� ft� t	g� � �if b � then # else fg� � G��b � b �� ft	g�

when G�t� � hb �� #i

�Note that we instructed ToLATEX to typeset the sort identi�er Term�BoolXTermSet as �Term�
Bool�TermSet�

	� Typechecking Multi�Level Speci�cations � ��

For functions of sort �Term� Bool� Eqs�� which yield a list of equations instead of
a set of terms� similar functions are de�ned�

Annotation with a Set of Types Due to overloading� the result of assigning
a type to a term is a set of terms instead of a single term� This means that the
assignment of types in declarations and type annotations also leads to a set of types�
These should be translated to lists of declarations and sets of terms� respectively� The
following functions can be used to construct the declaration of a function or variable
or the annotation of a term with a set of terms� The ambiguity in a declaration is
translated to multiple declarations for the function or variable� i�e�� f � f��� ��g � f �
��� f � ��� The annotation of a term with a set of terms is translated to the set of the
term with all the annotations from the set�

imports MLS
��

exports

context�free syntax

Fun ��� TermSet � Decl
Var ��� TermSet � Decl
Term ��� TermSet � TermSet

priorities

Term ���TermSet � TermSet � TermSet ���TermSet � TermSet

�decl�� d��� f � fg� d
�
� � d��� d

�
�

�decl�� d��� f � ftg� d
�
� � d��� f � t� d

�
�

�decl	� d��� f � ft
	
� � t

	
� g� d

�
� � d��� f � ft

	
� g� f � ft

	
� g� d

�
�

�decl�� d��� x � fg� d
�
� � d��� d

�
�

�decl�� d��� x � ftg� d
�
� � d��� x � t� d

�
�

�decl�� d��� x � ft
	
� � t

	
� g� d

�
� � d��� x � ft

	
� g� x � ft

	
� g� d

�
�

�trm�� t � fg � ft � nilg
�trm�� t � f�g � ft � �g
�trm	� t � ft	� � t

	
� g � t � ft	� g � t � ft	� g

Variable Type Consistency The function �var�types� checks whether the types
of the variables in a set of terms of the form x � � �annotated variables� are con�
sistent� i�e�� two occurrences of a variable should have types that are uni�able� If
this is the case the function returns a substitution that makes the types of all occur�
rences of the same variable equal� The functions is used as follows� Given a term t�
var�types�avars�t�� either gives �� which indicates that t contains two occurrences of
the same variable with incompatible type annotations or a substitution � that makes
all occurrences of the same variable in t the same�

imports Uni�cationB��

exports

context�free syntax

�� � Multi�Level Speci�cations

var�types�TermSet� � Subst�
var�eqs�TermSet� � Eqs

equations

�var�types�� var�types�#� � mgu�var�eqs�#��
�var�eqs�� var�eqs�fg� �
�var�eqs�� var�eqs�fx � � �� t

�
�� x � � �� t

�
�g� � � � � � � �� var�eqs�ft

�
�� x � � �� t

�
�g�

�var�eqs�� var�eqs�fx � � �� t
�g� � var�eqs�ft �g� otherwise

New Variables The function �new�var� generates a variable name that is not de�
clared in the signature at level �� Given a set of variables # �nv� picks the �rst element
of # that is not declared in "� If all variables are declared� the variables in # are
renamed by prepending an extra letter �Q� to each variable in #�

imports MLS�Projection���

exports

context�free syntax

new�var ��� MLS ��� � Term
nv ��� MLS ��� ��� TermSet ��� TermSet ��� � Term

equations

�new�var��� new�var�"� � nv�"��fg� fg�
�new�var��� nv�"��#� fg� � nv�"��# �� # �� when # � � add�Q� #�
�new�var��� nv�"��#� fx� t �g� � if empty��x�"�� then x else nv�"��#� ft

�g�

��� Type Assignment �MLS�TA	

The basic ideas for type assignment of multi�level speci�cations are similar to the
one�level case� For instance� the type of an application is the codomain of the �rst
�function� argument� The complications are caused by the multi�level aspect �types
are typed terms�� overloading and polymorphism� The basic idea in dealing with
overloading is to create a set of all possible typings for each term� type assignment
function �Wt� returns a TermSet� When terms are combined all possible combinations
of the associated sets have to be considered� The join and select functions of the
previous section are applied for this purpose�

Type assignment of multi�level speci�cations proceeds by �rst annotating the
higher levels and using the resulting annotated speci�cation to assign types to the
signature at level �� The resulting signature can be used to assign types to the
equations at level ��

imports MLS
�� MLS�TA�Aux��� MLS�Projection��� Term�Analysis��� MatchingB��

exports

context�free syntax

�Wm� ���� MLS ���� � MLS

	� Typechecking Multi�Level Speci�cations � �

�Wsp� ��� MLS ��� ���� Spec ���� � Spec
�Wsg� ��� MLS ��� ���� Sig ���� � Sig
�Wd� ��� MLS ��� ���� Decls ���� � Decls
�Ws� ��� MLS ��� ���� Term ���� � TermSet
�Wss� ��� MLS ��� ���� Terms ���� � Terms
�Wtv� ��� MLS ��� ���� Term ���� � TermSet
�Wt� ��� MLS ��� ���� Term ���� � TermSet
�Wts� ��� MLS ��� ���� Terms ���� � Terms
�We� ��� MLS ��� ���� Eqs ���� � Eqs

equations
Assigning types to a speci�cation consists of assigning types to all levels of the

signature and using the resulting signature to assign types to the equations�

�wm���
zero�max�"�� �

Wm��"�� � level � Wsp�lift�up�"��������"���

�wm�n�
zero�max�"�� � �� lift�Wm��up�"���� � " �

Wm��"�� � " �� level � Wsp�" �������"���

A speci�cation is annotated by �rst annotating the signature using the higher levels
and then annotating the equations using the higher levels extended with the annotated
signature�

�wsp�
Wsg�"���Sg�S��� � � " � � level � signature

Wsp�"���S�� � signature � equations We�"� " ����E�S���

Assign types to each section of a signature�

�w�cnc�
sorts Wss�"���S� ��� � �� "

� � "� level � signature �

Wsg�"��� �� � ��
functions Wd�" ����F� ����
variables Wd�" ����V� ���

The sorts in the declarations of sorts� functions and variables are treated as terms
over the signature at the next level�

�wd�e� Wd�"����� �
�wd�fun� Wd�"���f � � �� � f � Ws�"���� ��
�wd�var� Wd�"���x � � �� � x � rn vars�#��fxg���#�

when Ws�"���� �� � #
�wd�cnc� Wd�"���d	

� � d
	
� �� � Wd�"���d

	
� �� �� Wd�"���d

	
� ��

Sorts A sort at level n is a term over level n��� Only the annotations that match
a sort declaration are selected in case a declaration is ambiguous� The function �srt�
selects a term if it matches one of the terms in the set in its �rst argument�

�ws��� Ws�"���� �� � srt�fS�Sg����"���g���Wtv�up�"����� ���

�� � Multi�Level Speci�cations

�sort��� srt�#���� � h
� f�gi when # �� � �

�sort��� srt�#���� � h�� f�gi otherwise

A list of sort terms at level n is a list of terms over level n � ��

�ws�def� Wss�"���ts�� � Wts�up�"����ts��

Terms with Variables The function �Wt� de�ned below assigns types to a term
without considering the consistency of the types of variables� The function �Wtv�
�rst assigns a type to a term using �Wt� and then applies �var�types� �Section
��� to
make the types of di�erent occurrences of the same variable equal�

�wt�vars�
Wt�"���t�� � #� var�types�avars�#�� � ��

Wtv�"���t�� � if fail$���� then # else ��������#�

Functions and Variables Functions get assigned the type from the declaration in
the signature�

�wt�fun� Wt�"���f�� � f � �f�"�

The type assignment to variables is somewhat more complicated since undeclared
variables are taken into account according to the following rules� Equation �wt�var��
deals with variables in types of the top signature� Equation �wt�var
� �nds the set of
declared types # for a variable x� If # is not empty� i�e�� the variable is declared� x
is annotated with #� If there is no declaration �# is empty�� a new type variable is
generated to assign to x� which is assigned a type as a term over the next level� This
is necessary to ensure that a term has the right number of annotations�

�wt�var��
up�"� � top�sig

Wt�"���x�� � fxg

�wt�var��

up�"� �� top�sig� �x�"� � #�
if empty�#� then Wt�up�"����new�var�up�"���� else # � ftsg

Wt�"���x�� � x � frn vars �� ts��fxg���ts�g

Nil and Top Nil can not occur in well�formed speci�cations� Top can only occur
as a top�level type�

�wt�nil� Wt�"���nil�� � fnil � nilg
�wt�top� Wt�"���top�� � ftop � topg

	� Typechecking Multi�Level Speci�cations � ��

Auxiliary Functions For the type assignment of non�atomic terms we need the
following auxiliary functions�
hiddens

context�free syntax

srt�TermSet� � �Term� Bool� TermSet�
app�MLS� � �Term� Bool� TermSet�
pr�MLS� � �Term� Bool� TermSet�
arr � �Term� Bool� TermSet�
prd � �Term� Bool� TermSet�
ann � �Term� Bool� TermSet�
eqn � �Term� Bool� Eqs�
new�arrow�MLS� � Term

equations

Application An application term is assigned the codomain of the type of the func�
tion� To this end� both arguments are assigned types and the result terms are joined�
The type of the term in the argument position should conform to the argument type
of the function�

�wt�app� Wt�"���t� t��� � app�"� ���Wt�"���t���
�Wt�"���t����

� fa � new�arrow�"�g �

�app��
mgu�type�t�� � � �� type�t�� � � �� � �

app�"���t�� t��� a � �� �� � �� � ��� � h
� f��t� t� � � ��gi

�app�� app�"���t�� t��� �� � h�� ft� t� � nilgi
otherwise

The function �new�arrow� constructs an arrow type with new variables as domain and
codomain� annotates it with types and yields a triple of the arrow type� domain and
codomain�

�na�

new�var�up�"�� � x� x � � prime�x�� � � � x� x ��
if zero�max�"�� then f� �g else Wt�up�"����� ��� � f� �� t

�g

new�arrow�"� � � �� dom�term�� ���� cod�term�� ���

Pair A pair �t�� t�� has the product type �� � �� if �i is the type of ti� The product
is itself a term over the next level�

�wt�pr� Wt�"���t�� t��� � pr�"���Wt�"���t���
�Wt�"���t����
�pr�� pr�"��t�� t�� � h
� f�t�� t�� � type�t�� � type�t��gi

when zero�max�"�� �

�pr�� pr�"��t�� t�� � h
� t�� t� � Wt�up�"����type�t�� � type�t����i

when zero�max�"�� � �

� � Multi�Level Speci�cations

Arrow and Product Arrow and product are de�ned in terms of application of the
functions ��� and ��� to their arguments� After type assignment the binary notation
is restored for readability�

�wt�arr� Wt�"���t� � t��� � arr��Wt�"������ �t�� t�����
�arr�� arr�t� � h
� ft� � t� � type�t�gi

when bapp�t� � ��� �t�� t��
�arr�� arr�t� � h�� ftgi otherwise

�wt�prd� Wt�"���t� � t��� � prd��Wt�"������ �t�� t�����
�prd�� prd�t� � h
� ft� � t� � type�t�gi

when bapp�t� � ��� �t�� t��
�prd�� prd�t� � h�� ftgi otherwise

Annotation A term t � � that already has a type annotation � � has to be assigned
a type that conforms with � and � itself should be assigned a type as a term at the
next level of "�

�wt�ann� Wt�"���t � � �� � ann��Wt�"���t��
� a � Wt�up�"����� ���
�ann�� ann�t � � �� a � � �� � h
� f��t � � ��gi when mgu�� � � � �� � �
�ann�� ann�t� a � �� � h�� ft � �gi otherwise

Lists of Terms

�wt�terms�� Wts�"����� �
�wt�terms�� Wts�"���t�� � ts when ftsg � Wt�"���t��
�wt�terms	� Wts�"���t	� � t

	
� �� � Wts�"���t

	
� �� ��Wts�"���t

	
� ��

Equations An equation is annotated by annotating both sides of the equation� The
types of the resulting terms should be uni�able and if this is the case the uni�er is
applied to both term to make the types equal�

�wt�eqn� We�"���t� � t��� � eqn��Wt�"���t���
�Wt�"���t����
�eqn�� eqn�t�� t�� � h
� �� � ���t� � t��i

when var�types�avars�t�� t��� � ���
mgu����type�t�� � type�t���� � ��

�eqn�� eqn�t�� t�� � h�� t� � t�i otherwise

�we�eqns��� We�"����� �
�we�eqns�n� We�"����	

� � �
	
� �� � We�"����

	
� �� ��We�"����

	
� ��

	� Typechecking Multi�Level Speci�cations �
�

Correctness The type assignment functions de�ned above produce a fully anno�
tated speci�cation given an arbitrary plain� partially annotated or fully annotated
speci�cation� Type assignment always succeeds� but the resulting speci�cation is not
necessarily well�formed� The following propositions state that type assignment pro�
duces a well�formed result whenever that is possible� The expression # m t� expresses
that t� is an instantiation of one of the terms in #� Because we can choose t� arbitrar�
ily as long as it is well�formed the proposition states that Wt �nds all most general
annotations of t�

Proposition � �correctness of Wt� The function Wt �nds all correct typings for
a term if any exist� Let " be a multi�level speci�cation with free types such that 	mls "�
Given a term t� if there exists a full annotation t� of t �spine�t�� � spine�t�� such that
" 	term t� and if # � Wt�"���t��� then # m t� and for all t�� � #� " 	term t��

Proof
 by induction on t� �

If no functions are overloaded� terms have a single full annotation� The previous
proposition states that this single annotation is �principal�� i�e�� the most general type
assignment of the term�

Proposition �� Let " be a fully annotated multi�level speci�cation with free types
such that 	mls " and such that for each f � j�f �"�j � �� then we have jWt�"���t��j � ��

Similarly� we have that Wm �nds a well�formed full annotation for a speci�cation
if one exists�

Proposition �� �correctness of Wm� If 	mls " then 	mls Wm��spine�"����

The result of type assignment is an expression over the original language to which
type assignment can again be applied�

Proposition �� Type assignment is idempotent� i�e��
�

t��Wt��
��t��

Wt�"���t��� � Wt�"���t���

��
 Disambiguation and Con�uence

We saw in Section
�
 that well�formedness of a speci�cation ensures that derivable
equality is type preserving� As a corollary� term rewriting with a well�formed speci��
cation is type preserving� Furthermore� the type assignment function for multi�level
speci�cations yields a well�formed annotation of a speci�cation if one exists� How�
ever� we have not yet looked at the consequences of overloading resolution by type
assignment for term rewriting� Is the plain term rewrite system the same as the an�
notated rewrite system$ Although this is the case for some speci�cations� in general
the answer to this question is no�

 � Multi�Level Speci�cations

Non�Con�uence Caused by Overloading Due to overloading� the plain term
rewrite system �TRS� of a speci�cation can be non�con�uent while the annotated
TRS is con�uent� A TRS is con�uent if it does not matter which matching equation
is taken for a rewrite step� For example� the following module eqda de�nes equality
on Boolean values and on lists in the style of the data algebra of Bergstra and Sellink
������� Module list access extends module list from Section � with the function
empty for testing emptiness of a list and the functions hd and tl� which give the head
and tail of a list� The variables X and Y are generic variables�

module eqda

imports bool� list�access�

level �

signature

functions

eq
 A � A �	 bool�

equations

eq�X� Y�

 X ��	 Y�

eq�X� Y�

 �empty�X� �� empty�Y��

�� ����empty�X�� �� ��empty�Y���

�� �eq�hd�X�� hd�Y�� �� eq�tl�X�� tl�Y�����

The plain term rewrite system of this module is not con�uent because the two
eq equations have the same lhs but completely unrelated rhss� For instance� either
equation can be used to rewrite the term eq�t�f�� Only if the �rst equation is
chosen the expected result is achieved� The TRS of the module becomes con�uent
if we consider its full annotation� The types of variables X and Y on the rhss force
the right types in the lhss� The annotation of eq in the �rst equation becomes
bool � bool �	 bool and in the second equation list�A� � list�A� �	 bool�

The next example shows that even while the plain TRS is con�uent it can have
di�erent normal forms than the annotated TRS� The function ��� is used as con�
structor for positive rational numbers and as de�ned exclusive or function for the
Booleans� When regarded as a plain TRS� rationals of the form X�Y are rewritten
anyway�

signature

functions

���
 nat � nat �	 rat�

����� ����� ���
 bool � bool �	 bool�

equations

X � Y

 ��X �� Y� �� �X �� �Y�

These examples clearly show that� in general� types are needed to disambiguate
the equations of speci�cations� However� in many cases where matching is used and
constructors and de�ned functions do not have overlapping names� overloading is

	� Typechecking Multi�Level Speci�cations �
�

resolved by the choice of constructors in the lhs of an equation� An example is the
de�nition of the generalization of zip to generalized products� for which it is not
even clear how typed rewriting should be done� but untyped rewriting does not go
wrong� Although it is often clear by examination whether types can be discarded� it
is not clear how this property can be tested� For rewriting purposes it seems to be
su�cient to annotate only functions with their type� i�e�� apply function �fspine� to
the speci�cation which removes all annotations except those of functions� It is not
clear whether all ambiguities due to overloading are resolved in the fspine of a fully
annotated speci�cation�

Ambiguous Equations Due to overloading an untyped equation can actually de�
note several typed equations� An example is the equation size����

 � in Figure ��
Another example are the overloaded numerical operations in module num below� It
is clear that the equations for addition that involve � and s are valid for both natu�
rals and integers� The type assignment function �We� produces all annotations of an
equation for which the types of lhs and rhs match�

module num

level �

signature

sorts nat� int�

functions

�
 nat� �
 int�

s
 nat �	 nat� s� p
 int �	 int�

���
 nat � nat �	 nat� ���
 int � int �	 int�

i
 nat �	 int�

variables

X� Y
 nat� X� Y
 int�

equations

� � Y

 Y� s�p�X��

 X� i���

 ��

s�X� � Y

 X � s�Y�� p�s�X��

 X� i�s�X��

 s�i�X���

p�X� � Y

 X � p�Y��

��� Typechecking �MLS�TC	

The typecheck function for multi�level speci�cations is again constructed from a well�
formedness predicate and a type assignment function� The main typecheck function
checks a multi�level speci�cation� In addition there are two predicates to check terms
and equations over a multi�level signature�

imports MLS�TA��� MLS�NWF���

exports

context�free syntax

tc ���� MLS ���� � EBool

� � Multi�Level Speci�cations

tc ��� MLS ��� ���� Term ���� � EBool
tc ��� MLS ��� ���� Eqs ���� � EBool

equations

�tc�mspec� tc��"�� � 	mls Wm��"��

�tc�term�
Wm��"�� � " �� Wt�" ����t�� � ft �� t �g

tc�"���t�� � 	mls "
�
� " � 	term t �

�tc�eqns�
Wm��"�� � " �

tc�"���E�� � 	mls "
�
� " � 	eqs We�"

����E��

��� Typechecking Modular Speci�cations �MMLS�TC	

Finally� we de�ne typechecking of a list of modules� The approach is rather crude�
First all modules are �attened� then the MLS of each module is typechecked� This
is of course rather expensive because code is duplicated� Observe that with this
approach types and equations are disambiguated after being imported� This entails
that newly introduced function declarations of existing functions may cause previously
unambiguous equations to become ambiguous�

imports MMLS
�� MLS�TC���

exports

context�free syntax

tc ���� Modules ���� � EBool
tc� ���� Modules ���� � EBool

equations

�tc�mods� tc��M ��� � tc����at�M ����
�tc��mods�� tc����� �

�tc��mods�� tc���module f "��� � errors in module � f � �� tc��"��
�tc��mods�� tc���M	

� M	
� �� � tc���M

	
� �� � tc���M

	
� ��

This concludes the speci�cation of the syntax� semantics and typechecking of
modular multi�level speci�cations�

	 Discussion and Concluding Remarks

��� Related Work

In Section � we discussed several formalisms related to the formalism MLS described
in this chapter� Here we give some pointers to other related issues�

� Discussion and Concluding Remarks �
�

Type Surveys Cardelli and Wegner ������ give an informal introduction to types
in programming languages including polymorphism� existential types and subtypes�
Cardelli ������ discusses a wide variety of programming features and their types�
including mutable types� exception types� tuple types� option types� recursive types
and subtypes� Mosses ������ surveys the usage of sorts in �rst�order algebraic spec�
i�cation frameworks� discussing order�sorted algebra and partial functions� Mitchell
������ gives a survey of type systems for programming languages� Cardelli ������
provides a more informal introduction to type systems�

Typechecking in Asf�Sdf The speci�cation formalism Asf�Sdf has been ap�
plied to the description or design of several languages� We give some pointers to
papers that describe speci�cations of type systems similar to the one described in
this chapter� Hendriks ������ describes �in the �rst Asf�Sdf speci�cation� the
polymorphic type inference algorithm of Milner ���
�� in the language Mini�ML�
Chapter
 of van Deursen et al� ������ describes the speci�cation of a typechecker
for Pascal� Hillebrand and Korver ������ give a speci�cation of the well�formedness
of �CRL speci�cations� �CRL is a process speci�cation formalism with a monomor�
phic algebraic speci�cation language for the speci�cation of data in processes� Vigna
������ ����� speci�es a typechecker and compiler for the categorical programming lan�
guage IMP�G�� A special feature of the language is the associativity of the built�in
type constructors � and �� The typechecker makes extensive use of list matching in
Asf�Sdf to handle this associativity� In full MLS� associativity of type constructors
can be expressed by means of equations over types like A� �B �C� � �A�B��C�
Type checking such speci�cations requires E�uni�cation�

Polymorphic Typechecking The type inference algorithm of Milner ���
��� also
described in Damas and Milner ����
�� forms the core of all typecheckers for polymor�
phic languages� The basic idea of that algorithm is also used in the type assignment of
terms in multi�level speci�cations� Although Milner ���
�� mentions overloading as a
possible orthogonal extension of his type inference algorithm� such an extension is not
described in the literature� Ambiguities due to overloading in pure Hindley	Milner
systems are di�cult to resolve if no restriction on the type�s� of functions is given by
means of a signature� because then each occurrence of a function can have a di�erent
type� The overloading that is achieved by means of type classes �Wadler and Blott�
������ or more generally� quali�ed types �Jones� ���
�� is actually not overloading in
the sense used in this chapter� Rather� type classes provide the means to restrict the
set of types over which the universal quanti�er in the type of a polymorphic func�
tion ranges and they give an account of �non�parametric� function de�nitions of such
restricted polymorphic functions�

Types in Algebraic Speci�cation The basic type system of monomorphic many�
sorted algebraic speci�cation is explained in any introduction to algebraic speci�cation

� � Multi�Level Speci�cations

or universal algebra� see for instance Wechler ����
�� Mosses ������ surveys the many
variations and extensions of monomorphic type systems for algebraic speci�cation�
Extensions of many sorted algebraic speci�cation where the space of types is de�ned
by means of an algebraic speci�cation have been studied by various authors �Poign%e�
����� M&oller� ���
� Meinke� ���
a�� Meinke ����
b� develops a theory for universal
algebra in higher types� Meinke ������ gives the operational semantics of ATLAS via
term rewriting and proves its equivalence to the denotational semantics �i�e�� initial
model��

��� Extensions

The formalism MLS presented in this chapter is a sophisticated speci�cation formal�
ism for abstract data type speci�cation� Some aspects important for speci�cation and
execution of speci�cations have not yet been attended� We discuss several extensions
to the formalism and the issues they raise for further research�

Grammars as Signatures The motivation for this work is to extend the syntax
de�nition formalism Sdf of Heering et al� ������� In Sdf� context�free grammars
are used as monomorphic algebraic signatures� providing �exible notation for func�
tions and constructors� Like normal monomorphic algebraic signatures� Sdf does not
support polymorphism nor higher�order functions�

The �rst step towards an extended Sdf is made in Visser �����a�� where the
design of Heering et al� ������ is rationalized by orthogonally de�ning its features
such that the formalism can be seen as an instance of a family of formalisms� A
syntax de�nition formalism can be created by choosing a set of features� Many
features are expressed as conservative extensions of pure context�free grammars by
normalizing extended grammars to context�free grammars� As part of this approach�
the disambiguation of ambiguous context�free grammars by means of priorities is seen
as an instance of a more general view of disambiguation by means of disambiguation
�lters � functions that select a subset of a set of possible parse trees �Klint and
Visser� ������

In Visser �����b� the extension of context�free grammars to two�level grammars
and the correspondence of two�level grammars with two�level �rst�order signatures
are studied for the purpose of polymorphic syntax de�nition � polymorphic notation
for algebraic speci�cation�

In this chapter we have abstracted from the use of grammars as signatures� in
order to get a clear picture of a multi�level type system without the complications
caused by grammars� It is clearly desirable to extend MLS with arbitrary mix��x op�
erators and disambiguation capabilities like priorities to enhance the notation de�ned
in signatures� However� the generalization of multi�level speci�cations to multi�level
grammars is not straightforward if arbitrary grammars are allowed� The addition of
chain and empty productions to signatures makes the parsing problem undecidable in
general� Such rules are the cause of in�nite ambiguities �sentences can have in�nitely

� Discussion and Concluding Remarks �

many parses� already in context�free grammars� However� in multi�level grammars
the set of all parses for a sentence might not be �nitely representable� Due to over�
loading� terms in MLS can have more than one full annotation �the analogon of a
parse tree�� but always �nitely many� It seems possible to generalize MLS to a multi�
level grammar formalism with a decidable parsing problem by not allowing chain and
empty productions

Implicit Functions ATLAS provides implicit functions� which entails that func�
tions declared as fimplicitg do not have to be written explicitly in terms �Hearn
and Meinke� ����� Hearn� ������ This is used� for instance� to hide the explicitly
de�ned application function for user�de�ned function types� When used for unary
functions� this boils down to chain rules of grammars� For example� by introducing
an operator inc as

inc
 nat �	 int �implicit�

the naturals are embedded in the integers� The equations

� � X

 X�

s�X� � Y

 s�X � Y�

then apply both to naturals and integers� This feature gives rise to in�nite ambigui�
ties� Consider the declaration

inc
 A �	 list�A� �implicit��

����
 list�A� � list�A� �	 list�A� �implicit�

Given these declarations we can write lists like inc�X� �� inc�Y� �� inc�Z� as
X Y Z� The problem is that the inclusion operator inc is applicable to any term�
i�e�� we can interpret X as inc�X�� as inc�inc�X��� � � � � It is clear that this in�nite
ambiguity is recurrent and could somehow be represented in a �nite manner� How
this should be achieved is not clear�

In ATLAS only unary and binary functions can be declared as implicit� Implicit
constants� which are not allowed in ATLAS� are analogous to empty productions in
context�free grammars and make the typechecking problem undecidable� For instance�
if we declare

empty
 list�A� �implicit�

then the list X can be interpreted as inc�X�� as empty �� inc�X�� as empty ��

inc�X� �� empty� etc� The implicit constant can be inserted anywhere and arbitrar�
ily many times in the term�

� � Multi�Level Speci�cations

Type Equations Type equations are not interpreted by the type assignment al�
gorithm presented in this chapter� This is a pity� because many type features from
programming languages and abstract data types can be expressed in MLS by means
of type equations� In Section ���� the generalization of the zip function to arbitrary
products of lists is de�ned by means of functions at the level of types �the map func�
tion ����� In Section ���
 type classes are expressed as type predicates� In the same
way the more general quali�ed types of Jones ����
� can be expressed� There are
many other applications of type equations� Type de�nitions of the form

parser�A� B�

 list�A� �	 �B � list�A��

can be used to de�ne a type in terms of other types� The original constructor can be
eliminated� Recursive type de�nitions of the form

list�A�

 empty � �A � list�A��

can be used to de�ne recursive types� These type constructors can not be eliminated�
because the unfolding of the type results in an in�nite term� The associative type
constructors of Vigna ������ ����� can be expressed by the equations

A � �B � C�

 �A � B� � C�

A � �B � C�

 �A � B� � C

Jones ����
� also discusses record types as a special case of quali�ed types by providing
operations for looking up the type of a �eld in� and for removing a �eld from a record
type�

Simple type de�nitions can be accounted for by rewriting� For the other cases of
type equations E�uni�cation is required� E�uni�cation is undecidable in general �see
Jouannaud and Kirchner ������ for a survey of uni�cation�� However� if the equations
are known to belong to a certain class� a solution strategy based on that knowledge
might be found� For instance� a simple approach to E�uni�cation led to a uni�cation
algorithm that terminates for the uni�cation of the types in the generalization of the
zip function in Section ����� All the other examples of type equations mentioned
above are embedded in the typechecking of various programming languages� These
typecheckers thus use some kind of E�uni�cation optimized for the special case� For
instance� Nipkow and Prehofer ������ describe a typechecking algorithm for type
classes in terms of uni�cation with constraint solution� It is an interesting question
whether there exists a union of these solutions such that many cases of type equations
can be dealt with more generically�

Modules The formalism has a rudimentary modularization scheme based on syn�
tactic inclusion� i�e�� imports are expanded before typechecking� How di�cult is it
to keep the module structure while typechecking$ Furthermore� consider using arbi�
trary terms as module names� An import of a module name provides a term that is
at least as speci�c as a module name� The parameters of the module are determined
by matching the actual module name against the declared module name� Function
renaming operators applicable to imports would be another useful extension�

� Discussion and Concluding Remarks �
�

Rewriting A �rst experiment has been conducted with translating the level � equa�
tions of a multi�level speci�cation to the �rst�order rewrite rule language of the Epic
term rewrite compiler of Walters and Kamperman ������� Terms are translated to
�rst�order terms by keeping the same term structure as in the speci�cation� i�e��
terms are built by application� pairing� product� arrow and annotation from func�
tions and variables� Research issues here include� When are annotations necessary$
The translation is correct for the subset of MLS that uses only free type constructors
in declarations� If type equations are allowed� rewriting with type annotations is
complicated because matching has to consider type equations� Can this be expressed
in the rewrite system itself$

��� Conclusions

In this chapter we have de�ned the syntax� semantics and type system of the modu�
lar� applicative� multi�level equational speci�cation formalism MLS� Each level of an
MLS speci�cation is an applicative equational speci�cation that uses terms over the
next level as types� This is a generalization of type systems with two and three levels
that have separate de�nitions for each level� The type system of MLS is orthogo�
nal and uniform �typechecking is the same for each level� and combines parametric
polymorphism with overloading� These features form a formalism for the de�nition
of advanced generic data types�

The formalism is completely speci�ed in Asf�Sdf� The Meta�Environment
made it possible to interactively experiment with design choices and develop the
formalism and its prototype implementation in a short period of time �about four
months�� The typesetting and literate programming facilities provided by the Meta�
Environment played an important role in the design process� This chapter demon�
strates a number of speci�cation techniques applicable in other speci�cations� in�
cluding innermost term rewriting� the separation of well�formedness rules and non�
wellformedness rules producing descriptive error messages� type assignment by an�
notation� module import normalization� and a library of functions on terms� such as
sets� substitution� uni�cation and matching�

One of the shortcomings of Asf�Sdf is the poor reusability of speci�cations� due
to a lack of abstraction features such as polymorphism and parameterized modules�
If Asf�Sdf would be equipped with the higher�order functions and polymorphism
of MLS� speci�cations could reuse more standard data types directly� On the other
hand� MLS does not provide the syntax de�nition support of Sdf� A formalism that
combines the notational facilities of Sdf with the typing facilities of MLS into Multi�
Level Asf�Sdf� will be a powerful tool for designing and prototyping languages�

�� � Multi�Level Speci�cations

Appendices

A Library Modules

In this section several modules of common data types are presented�

A�� Layout

exports

lexical syntax

��ntnn� � LAYOUT
�''���nn�� � LAYOUT
�'����nn���'� � LAYOUT
������nn�� � LAYOUT
���� � Aux
�������	� � Aux
�	��Aux������	� � LAYOUT

A�� Booleans

imports LayoutA��

exports

sorts Bool

context�free syntax

�
� � Bool
��� � Bool
��� Bool � Bool
Bool ��� Bool� Bool fassocg
Bool ��� Bool� Bool fassocg
��� Bool ��� � Bool fbracketg

priorities

���Bool � Bool � Bool ���Bool � Bool � Bool ���Bool � Bool

variables

�b����� ��� � Bool

equations

�conj���
 � b � b �disj���
 � b �
 �neg��� �
 � �
�conj��� � � b � � �disj��� � � b � b �neg��� � � �

A� Library Modules � ��

A�� Error Booleans

Boolean predicates are either true or false� In case of type checking this is not
appropriate� In case the predicate does not hold a more re�ned value than false should
be returned that explains the cause of the error� Error Booleans are a re�nement of
the normal Booleans with a true value
 and a sort Error to represent the false values�

Errors The error e�� e� indicates that both errors ei occurred� The error e� � e�
indicates that error e� occurred and that e� is an explanation of that error� as in

equation ��X

 L� �� L�

 X

 �L� �� L��� not well�formed

variables �L�� L�� of rhs do not occur in lhs

imports LayoutA�� BooleansA��

exports

sorts Error
context�free syntax

Error ��� Error � Error frightg
Error ��� Error � Error frightg
�if� Bool �then� Error �else� Error � Error
��� Error ��� � Error fbracketg

priorities

�if�Bool �then�Error �else�Error � Error � Error ���Error � Error �
Error ���Error � Error

equations

�e�assoc�� �e�� e��� e� � e�� e�� e�
�e�assoc�� �e� � e�� � e� � e� � �e�� e��
�if�t� if
 then e� else e� � e�
�if�f� if � then e� else e� � e�

Error Booleans An error Boolean value is either
 �correct� true� or an error� The
place normally taken by the value false is here represented by the sort of errors� Since
it is unclear which error should be indicated by the negation of
� we do not provide
negation� The operations on EBool are �� � and ��� The operator � is a symmetric
conjunction that yields
 if both arguments do and otherwise the conjunction of the
errors� The operator� is an assymetric conjunction that prefers the error in its �rst
argument discarding the error in second� This operator should be used to indicate
a dependency between errors� If the well�formedness of a construct depends on the
well�formedness of its subconstructs and some conditions� then one can express that
the errors in the subconstructs are more important� Finally� the operator �� has
 as
right zero and as left unit� If both arguments are errors it yields the explanation of
the �rst by the second�

�
 � Multi�Level Speci�cations

exports

sorts EBool
context�free syntax

�
� � EBool
Error � EBool
EBool ���� EBool � EBool frightg
EBool ��� EBool � EBool frightg
EBool ��� EBool � EBool frightg
�if� Bool �then� EBool �else� EBool � EBool
��� EBool ��� � EBool fbracketg

priorities

�if�Bool �then�EBool �else�EBool � EBool � EBool ����EBool � EBool �
EBool ���EBool � EBool � EBool ���EBool � EBool

variables

�e����� ��� � Error
�eb����� ��� � EBool

equations

�conj��
 � eb � eb
�conj�� eb �
 � eb
�conj�� e� � e� � e�� e�
�kill��
� eb � eb
�kill�� e� eb � e
�blck� eb ��
 �

�blck�
 �� eb � eb
�blck� e� �� e� � e� � e�
�if�t� if
 then eb� else eb� � eb�
�if�f� if � then eb� else eb� � eb�

A�� Naturals

imports BooleansA��

exports

sorts Nat
lexical syntax

������ � Nat
context�free syntax

succ�Nat� � Nat
pred�Nat� � Nat
Nat ��� Nat � Nat fleftg
max�Nat� Nat� � Nat

B� Term Utilities � ��

zero�Nat� � Bool
eq�Nat� Nat� � Bool

variables

�mn����� ��� � Nat
�c������ ��� � CHAR�
�c������ ��� � CHAR�

The usual equations for the natural numbers are not shown�

B Term Utilities

In this section we de�ne several data types and operations on terms�

B�� Binary Operators

imports Types��� Terms���

exports

sorts BinOp
lexical syntax

�� ��ntnn���n�n������a�zA�Z��� ��ntnn���n�n�
�� � ��� ��ntnn���n�n��� � BinOp
context�free syntax

��� BinOp ��� � Fun
��� ��� � Fun
��� Term ��� � Term
�h� �i� � Fun
�h� Term �i� � Term
Term BinOp Term � Term fnon�assocg
Term ��� Term ��� Term � Term fnon�assocg

priorities

Term Term � Term � fnon�assoc� Term BinOp Term � Term�
Term ���Term ���Term � Termg � Term ���Term � Term

variables

������� ��� � BinOp

equations

�bin�� t� � t� � ��� �t�� t��
�bin�� t� �t�� t� � t� �t�� t��
�list�� �t�� t�� � t�

 �t��
�list�� �t� � t

 � � otherwise

�list�� ht�� t�i � t� � ht�i
�list�� hti � t � h i otherwise

�� � Multi�Level Speci�cations

B�� Errors over Terms and Signatures

To provide errors that convey information related to terms and equations we de�ne
several error constructors� An example error is

function ����� not declared

imports Error�BooleansA�� OLS���

exports

context�free syntax

�n�� Term �n�� not a well�formed sort declaration � Error
sort �n�� Term �n�� not declared � Error
�n�� Term �n�� not a well�formed sort � Error
sort �n�� Term �n�� matches no sort declaration � Error

function �n�� Term �n�� multiply declared � Error
variable �n�� Term �n�� multiply declared � Error
function �n�� Term �n�� not declared � Error
function �n�� Term �n��
with type �n�� Term �n�� not declared � Error
variable �n�� Term �n�� not declared � Error

term �n�� Term �n�� not well�formed � Error
pair �n�� Term �n�� not well�formed � Error
application �n�� Term �n�� not well�formed � Error
product �n�� Term �n�� not well�formed � Error
arrow �n�� Term �n�� not well�formed � Error
annotation of �n�� Term �n��
with �n�� Term �n�� not well�formed � Error

�n�� Term �n�� is not a function � Error
type of argument �n�� Term �n��
does not match type of domain �n�� Term �n�� � Error
type of result �n�� Term �n��
does not match type of codomain �n�� Term �n�� � Error

no declaration for function �n�� Term �n��
with type �n�� Term �n�� � Error

equation �n�� Eq �n�� not well�formed � Error
types do not match � Error
�variables� �n�� Terms �n�� of rhs not in lhs � Error

level �n�� Nat �n�� � Error
should be �n�� Term �n�� � Error

B� Term Utilities � ��

type �n�� Term �n�� of variable �n�� Term �n��
incompatible with declaration � Error
type �n�� Term �n�� of function �n�� Term �n��
incompatible with declaration � Error
type is �n�� Term �n�� � Error
types of variable �n�� Term �n�� incompatible
�n�� Term �n�� versus �n�� Term �n�� � Error

errors in �module� �n�� Term �n�� � Error

B�� Term Functions

The sort TermToTerm represents functions from terms to terms� The sort is de�ned in
order to reuse several common higher�order operations such as function composition
and mapping a function over a list� Furthermore� we de�ne a conditional for terms�
list membership� and term equality�

imports Terms��� BooleansA�� Types���

exports

sorts TermToTerm
context�free syntax

TermToTerm ��� Term ��� � Term
�id� � TermToTerm
TermToTerm ��� TermToTerm � TermToTerm fassocg
�if� Bool �then� Term �else� Term � Term
TermToTerm ��� ��� Terms ��� � Terms
eq�Term� Term� � Bool
Term ��� Terms � Bool

variables

������� ��� � TermToTerm

equations

�iden� id�t� � t
�comp� �� � ���t� � ������t��
�id�comp� id � � � �
�id�comp� � � id � �
�l�map�� ���� �
�l�map�� ���t� � ��t�
�l�map	� ���t	� � t

	
� � � ���t	� � �� ���t	� �

�if�t� if
 then t� else t� � t�
�if�f� if� then t� else t� � t�
�eq�� eq�t� t� �

�eq�� eq�t� t �� � � otherwise

�l�member�� t � � �

�� � Multi�Level Speci�cations

�l�member�� t � t � � eq�t� t ��
�l�member�� t � t	� � t

	
� � t � t	� � t � t	�

B�� Equation Functions

Map TermToTerm functions over equations and lists of equations�

imports Term�FunctionsB�� Equations���

exports

context�free syntax

TermToTerm ��� Eq ��� � Eq
TermToTerm ��e� ��� Eqs ��� � Eqs
�if� Bool �then� Eqs �else� Eqs � Eqs

equations

�map�eq� ��t� � t�� � ��t�� � ��t��
�map�eqs� ��e�� �� � when � � �
�map�eqs� ��e��� � �� � ���� �� ��e�� ��
�ift� if
 then E� else E� � E�

�ift� if� then E� else E� � E�

B�� Term Sets

The function f g creates a �set� of terms from a list of terms by removing the duplicates
from the list� The usual operations on sets are union ���� intersection ���� di�erence
�	�� emptiness ��empty��� membership ��� and subset �
�� The Cartesian product �
yields the set of pairs of the elements of two sets�

imports Term�FunctionsB�� Terms��� BooleansA��

exports

sorts TermSet
context�free syntax

�f� Terms �g� � TermSet
TermSet ��� TermSet � TermSet fleftg
TermSet ��� TermSet � TermSet fleftg
TermSet �	� TermSet � TermSet fleftg
TermSet ��� TermSet � TermSet frightg
TermToTerm ��� ��� TermSet ��� � TermSet
�if� Bool �then� TermSet �else� TermSet � TermSet
trms�TermSet� � Terms
��� TermSet ��� � TermSet fbracketg

B� Term Utilities � �

empty�TermSet� � Bool
Term ��� TermSet � Bool
TermSet �
� TermSet � Bool

priorities

TermSet ���TermSet � TermSet � TermSet �	�TermSet � TermSet �
TermSet ���TermSet � TermSet � TermSet ���TermSet � TermSet �
�if�Bool �then�TermSet �else�TermSet � TermSet

variables

�#����� ��� � TermSet

equations

�s�double� ft��� t� t
�
�� t� t

�
�g � ft��� t� t

�
�� t

�
�g

�s�union� ft��g � ft
�
�g � ft��� t

�
�g

�s�istc�� fg � # � fg
�s�isct�� ft	� � t

	
� g � # � ft	� g � # � ft

	
� g � #

�s�isct	� ftg � # � if t � # then ftg else fg
�s�di��� fg 	 # � fg
�s�di��� ft	� � t

	
� g 	 # � ft	� g 	 # � ft

	
� g 	 #

�s�di�	� ftg 	 # � if t � # then fg else ftg
�s�prd�� ft�g � ft�g � ft�� t�g
�s�prd�� fg � # � fg
�s�prd	� ft	� � t

	
� g � # � ft	� g � # � ft

	
� g � #

�s�prd�� # � fg � fg
�s�prd�� # � ft	� � t

	
� g � # � ft	� g � # � ft	� g

�s�map� ���ftsg� � f���ts�g
�s�ift� if
 then #� else #� � #�

�s�i�� if � then #� else #� � #�

�s�trms� trms�ftsg� � ts
�s�empty�� empty�fg� �

�s�empty�� empty�ft	g� � �
�s�member� t � ftsg � t � ts
�s�subset�� fg
 # �

�s�subset�� ftg
 # � t � #
�s�subset	� ft	� � t

	
� g
 # � ft	� g
 # � ft

	
� g
 #

B�
 Variables

To extract the variables from a term a family of functions is de�ned� The functions
di�er in their treatment of variables and the type annotation operator �� but share
their de�nition for the other operators� To prevent copying the same equations for
the four functions� the function names are put in a sort� The generic part of the
de�nition is expressed by means of a �variable function name� vs� The functions are

�� � Multi�Level Speci�cations

�var� that yields the set of all variables in a term� �tvars� that yields the set of all
type variables� i�e�� variables occurring in annotations� �ovars� that yields all �object
variables�� i�e�� variables that are not in type annotations� and �avars� that yields all
object variables with their annotation�

imports Term�SetsB��

exports

sorts Vars
context�free syntax

vars � Vars
tvars � Vars
avars � Vars
ovars � Vars
Vars ��� Term ��� � TermSet
Vars ���� Terms ��� � TermSet
Vars ��� TermSet ��� � TermSet

variables

�vs� � Vars

equations

�vs�fun� vs�f� � fg
�vs�nil� vs�nil� � fg
�vs�top� vs�top� � fg
�vs�pr� vs�t�� t�� � vs�t�� � vs�t��
�vs�app� vs�t� t�� � vs�t�� � vs�t��
�vs�prd� vs�t� � t�� � vs�t�� � vs�t��
�vs�arr� vs�t� � t�� � vs�t�� � vs�t��
�vs�set� vs�ftsg� � vs �� ts�
�vs�trms� vs �� � � fg
�vs�trms��� vs �� t� � vs�t�
�vs�trms�n� vs �� t	� � t

	
� � � vs �� t	� � � vs �� t	� �

�vars�var� vars�x� � fxg
�vars�ann�other� vars�t � � � � vars�t� � vars���
�ovars�var� ovars�x� � fxg
�ovars�ann� ovars�t � � � � ovars�t�
�tvars�var� tvars�x� � fg
�tvars�ann� tvars�t � � � � tvars�t� � vars���
�avars�ann� avars�x� � fg
�avars�ann� avars�x � � � � fx � �g
�avars�ann� avars�t � � � � avars�t� otherwise

B� Term Utilities � ��

B�� Substitution

A substitution is a mapping from variables to terms� When applied to a term all
variables occurring in the domain of the substitution are replaced by their result
in the substitution� A �nite substitution maps only a �nite number of variables to
other terms than themselves� Finite substitutions are represented by a list of atomic
substitutions of the form x �� t� which express the mapping from variable x to term
t� Note that �� is the empty substitution� The application ��t� of a substitution � to
a term t denotes t with each occurrence of a variable x in t replaced by ��x�� The
union ��� of two substitutions is simply the concatenation of their lists of atomic
substitutions� If a con�ict arises� i�e�� both substitutions contain an assignment to
the same variable� the assignment in the �rst substitution has priority over the second
as a result of the de�nition of ��x� in equations �s�var�i��

imports Term�FunctionsB�� Terms��� Types���

exports

sorts ASubst Subst
context�free syntax

Var ���� Term � ASubst
��� ASubst� ��� � Subst
Subst � TermToTerm
����TermToTerm� � Subst
Subst ��� Subst � Subst fassocg
��� Subst ��� � Subst fbracketg

variables

�as����� ��� � ASubst
�as�������� ��� � ASubst�
�as�������� ��� � ASubst�
������� ��� � Subst

equations

�s�var��� �x �� t as ���x� � t
�s�var��� �y �� t as ���x� � �as ���x� when eq�x� y� � �
�s�var�	� ���x� � x
�s�fun� ��f� � f
�s�nil� ��nil� � nil
�s�top� ��top� � top
�s�pr� ��t�� t�� � ��t��� ��t��
�s�app� ��t� t�� � ��t�� ��t��
�s�prd� ��t � �� � ��t� � ����
�s�arr� ��t� �� � ��t�� ����
�s�ann� ��t � �� � ��t� � ��� �
�s�back� ���� � �
�s�back� ��id� � ��

�� � Multi�Level Speci�cations

�s�union� �as��� � �as
�
�� � �as

�
� as

�
��

�s�empty� �� � � � �
�s�empty� � � �� � �
�s�comp�n� � � �x �� t as �� � �x �� ��t�� � � � �as ��

Failure Substitutions A failure substitution is a substitution or the value � �fail��
which denotes failure for partial functions producing substitutions like matching and
uni�cation� The operation �� is the strict extension of � to failure substitutions�
The operation is the consistent composition of two substitutions� Two substitutions
are consistent if they coincide on the same variable or are unde�ned�

sorts Subst�
context�free syntax

Subst � Subst�
��� � Subst�
Subst� ���� Subst� � Subst� fnon�assocg
Subst� ��� Subst� � Subst� fnon�assocg
Subst� ���� Subst� � Subst� fnon�assocg
�if� Bool �then� Subst� �else� Subst� � Subst�
�fail$��Subst�� � Bool
�����Subst�� � Subst
��� Subst� ��� � Subst� fbracketg

variables

�����
��� � Subst�

priorities

fnon�assoc� Subst� ����Subst� � Subst�� Subst� ���Subst� � Subst��
Subst� ����Subst� � Subst�g � �if�Bool �then�Subst� �else�Subst� � Subst�

equations

�fs�ift� if
 then �� else ��
� � ��

�fs�i�� if� then �� else ��
� � ��

�

�comp�� �� �� �� � �� � ��

�comp�� �� �� � � �
�comp�� � �� �� � �
�comp�� � � �� � �
�comp�� �� � � � �
�comp	� �� � �� � ��
�comp�� �� � �� � ��
�comp�� �x �� t as �� � � � if eq�t �� x� � eq�t �� t�

then �x �� t� �� ��as
�� � ��

else �

when ��x� � t �

B� Term Utilities � ��

�comp� � �� �� � �
�comp� �� �� � � �
�comp� �� �� �� � ���� � ���
�fail�f� fail$��� � �
�fail�t� fail$��� �

�back�fs� ����� � �

B�� Matching

A term t matches with a pattern term t�� notation t� �� t� if there exists a substitution
� such that ��t�� � t� If t matches t�� t� is said to more general than t� which is
expressed by means of the predicate �� as t� � t� If t� �� t we also say that t is an
instance of t�� This relation gives a partial order on terms� A substitution � is a
renaming if ��t�

�
� t for any t�

imports SubstitutionB�� Term�SetsB��

exports

context�free syntax

Terms ���� Terms � Subst�
Term ���� Term � Bool
Term �m� Term � Bool
Term �

�
�� Term � Bool

TermSet ���� Term � Bool

equations

�m�var� x �� t � �x �� t�
�m�fun� t �� t � ��
�m�pr� t�� t� �� t�� t� � t�� t� �� t�� t�
�m�app� t� t� �� t� t� � t�� t� �� t�� t�
�m�prd� t� � t� �� t� � t� � t�� t� �� t�� t�
�m�pr� t� � t� �� t� � t� � t�� t� �� t�� t�
�m�prd� t� � t� �� t� � t� � t�� t� �� t�� t�
�m�trms��� �� � ��
�m�trms�n� t�� t

	
� �� t�� t

	
� � t� �� t� � t	� �� t	�

�no�match� t �� t � � � otherwise

�m�geq� t� �� t� � � fail$�t� �� t��
�m�gtr� t� m t� � t� �� t� � � t� �� t�
�m�eq� t�

�
� t� � t� �� t� � t� �� t�

�m�set��� fg �� t � �
�m�set��t� ft �g �� t � t � �� t
�m�set�n� ft	� � t

	
� g �� t � ft	� g �� t � ft	� g �� t

�
 � Multi�Level Speci�cations

B�
 Uni�cation

Two terms t� and t� are uni�able if there exists a substitution � such that ��t�� �
��t��� The function �mgu� yields the most general uni�er � for a set of equations E �
such that for each equation t� � t� in E � ��t�� � ��t��� The de�nition is based on the
algorithm by Martelli and Montanari ����
�� Hendriks ������ speci�es in a similar
manner the uni�cation of types in ML� See also Jouannaud and Kirchner ������ for
a survey on uni�cation�

imports VariablesB�
 SubstitutionB�� Equation�FunctionsB��

exports

context�free syntax

mgu�Eqs� � Subst�

Term �
�
�� Term � Bool

equations

�u�re�� mgu�t � t� � ��
�u�var� mgu�x � t� � �x �� t� when x � vars�t� � �
�u�var
� mgu�t � x� � �x �� t� when x � vars�t� � �
�u�pr� mgu�t�� t� � t�� t�� � mgu�t� � t�� t� � t��
�u�app� mgu�t� t� � t� t�� � mgu�t� � t�� t� � t��
�u�prd� mgu�t� � t� � t� � t�� � mgu�t� � t�� t� � t��
�u�arr� mgu�t� � t� � t� � t�� � mgu�t� � t�� t� � t��
�u�ann� mgu�t� � t� � t� � t�� � mgu�t� � t�� t� � t��
�u�es��� mgu�� � ��
�u�es�n� mgu��	

� � �
	
� � � mgu��������e��

	
� �� �� ��

when mgu��	
� � � ��

�u�fail� mgu�E� � � otherwise

�ueq� t�
�
� t� � � fail$�mgu�t� � t���

B��� Renaming

It is sometimes necessary to rename variables in a term such that they are disjunct
from the variables in another term� To this end several functions are de�ned to
generate new variable names much like the functions in Chapter � of van Deursen
et al� ������ to rename variables in � expressions� The function get�fresh produces a
fresh variable �not occurring in some set of variables�� The function rn #��#��� with
#� and #� sets of variables� yields a substitution �� that renames the variables in #�

such that none occurs in #�� i�e�� ���#�� � #� � �� The other �rn� function renames
the variables of a term with respect to �the variables of� another term�

imports VariablesB�
 SubstitutionB��

B� Term Utilities � ��

exports

context�free syntax

prime�Var� � Var
deprime�Var� � Var
base�Var� � Var
get�fresh�Var� TermSet� � Term
rn TermSet ��� TermSet ��� � Subst
rn Term ��� Term ��� � Term
add�Var� TermSet� � TermSet

hiddens

variables

�c������ ��� � CHAR�

equations

�prm�var� prime�var�c	�� � var�c	 ����
�dprm�var��� deprime�var�c	 ����� � deprime�var�c	��
�dprm�var��� deprime�x� � x otherwise

The function �base� takes o� all trailing digits and primes of a variable� The equations
for the function �base� are not shown�

�add�� add�var�c	� �� fvar�c
	
� �g� � fvar�c	

� c	
� �g

�add�� add�x� fg� � fxg
�add	� add�x� ft	� � t

	
� g� � add�x� ft

	
� g� � add�x� ft

	
� g�

�add� add�x� ftg� � fxg otherwise

�f��� get�fresh�x� #� � if x � # then get�fresh�prime�x�� #� else x

�f�	� rn fg�#� � ��
�f��� rn fx� t �g�#� � �x �� y� � rn ft �g�fyg � #�

when get�fresh�deprime�x�� #� � y

Rename a term with respect to the variables in another term�

�f��� rn t��t�� � rn #� � #��#���t��
when vars�t�� � #�� vars�t�� � #�

�� � REFERENCES

References

Bergstra� J� and Sellink� M� ������� Sequential data algebra primitives�
Technical Report P���
� University of Amsterdam� Programming Research
Group� Available by anonymous ftp from ftp�fwi�uva�nl� �le pub	programming�
research	reports	����	P���
�ps�Z�

Bidoit� M�� Gaudel� M��C�� and Mauboussin� A� ������� How to make algebraic
speci�cations more understandable� An experiment with the PLUSS speci�cation
language� Science of Computer Programming � ��� �(���

Bird� R� S� ����
�� An introduction to the theory of lists� In M� Broy� editor� Logic
of Programming and Calculi of Discrete Design� pages �(�
� Springer�Verlag�

Bird� R� S� ������� Algebraic identities for program calculation� The Computer
Journal � ���
�� �

(�
��

Broy� M�� Facchi� C�� Grosu� R�� Hettler� R�� Hussmann� H�� Nazareth� D�� Regens�
burger� F�� Slotosch� O�� and St)len� K� ������� The requirement and design spec�
i�cation language spectrum� An informal introduction� version ���� Technical
Report TUM�I���� and TUM�I���
� Technische Universit&at M&unchen� M&unchen�
Germany�

Cardelli� L� ������� Typeful programming� SRC Research Report ��� May
�� �����
Revised January �� ����� Digital Equipment Corporation�

Cardelli� L� ������� Type systems� Draft� To appear in CRC Handbook of Computer
Science and Engineering�

Cardelli� L� and Wegner� P� ������� On understanding types� data abstraction and
polymorphism� ACM Computing Surveys� �	���� �
�(�

�

Damas� L� and Milner� R� ����
�� Principal type�schemes for functional programs�
In Conference Record of the Ninth Annual ACM Symposium on Principles of Pro�
gramming Languages� pages
�
(
�
� ACM�

Futatsugi� K�� Goguen� J�� Jouannaud� J��P�� and Meseguer� J� ������� Principles of
OBJ
� In B� Reid� editor� Conference Record of the Twelfth Annual ACM Sympo�
sium on Principles of Programming Languages� pages �
(��� ACM�

Gordon� M�� Milner� R�� Morris� L�� Newey� M�� and Wadsworth� C� ���
��� A meta
language for interactive proof in LCF� In Conference Record of the Fifth An�
nual ACM Symposium on Principles of Programming Languages� Tucson� Arizona�
pages ���(���� ACM�

Hearn� B� M� ������� The Design and Implementation of Typed Languages for Alge�
braic Speci�cation� Ph�D� thesis� University of Wales� Swansea�

REFERENCES � ��

Hearn� B� M� and Meinke� K� ������� ATLAS� A typed language for algebraic speci��
cation� In J� Heering� K� Meinke� B� M&oller� and T� Nipkow� editors� Proc� First Int�
Workshop on Higher�Order Algebra� Logic and Term Rewriting � HOA 	�
 � volume
��� of lecture Notes in Computer Science� pages ���(���� Berlin� Springer�Verlag�

Heering� J�� Hendriks� P� R� H�� Klint� P�� and Rekers� J� ������� The syntax de�nition
formalism SDF � reference manual� SIGPLAN Notices� ������� ��(
�� Most recent
version available at ftp�		ftp�cwi�nl	pub	gipe	reports	SDFManual�ps�Z�

Hendriks� P� R� H� ������� Typechecking Mini�ML� In J� Bergstra� J� Heering� and
P� Klint� editors� Algebraic Speci�cation� ACM Press Frontier Series� pages
��(��
�
The ACM Press in co�operation with Addison�Wesley� Chapter
�

Hillebrand� J� and Korver� H� ������� A well�formedness checker for �CRL� In
A� Ponse� C� Verhoef� and S� F� M� van Vlijmen� editors� Algebra of Communi�
cating Processes �ACP 	���� pages ��(���� Eindhoven University of Technology�
Computing Science Report ��	���

Hindley� R� ������� The principal type�scheme of an object in combinatory logic�
Transactions American Mathematical Society � ����
�(���

Hudak� P�� Peyton Jones� S�� and Wadler� P�� editors ����
�� Report on the Program�
ming Language Haskell� A Non�strict� Purely Functional Language� �Version ��
��
ACM SIGPLAN Notices�

Jones� M� P� ����
�� A theory of quali�ed types� In B� Krieg�Bruckner� editor� ESOP
	�
� �th European Symposium on Programming� Rennes� France� February ���
�
Proceedings� volume ��
 of Lecture Notes in Computer Science� pages
�
(����
Springer�Verlag� New York�

Jones� M� P� ������� A system of constructor classes� Overloading and implicit higher�
order polymorphism� Journal of Functional Programming � �� �(���

Jouannaud� J� P� and Kirchner� C� ������� Solving equations in abstract algebras� A
rule�based survey of uni�cation� In J� L� Lassez and G� Plotkin� editors� Computa�
tional Logic� Essays in Honour of Alan Robinson� chapter �� pages
�
(�
�� M�I�T�
Press� Cambridge �MA��

Klint� P� and Visser� E� ������� Using �lters for the disambiguation of context�free
grammars� In G� Pighizzini and P� San Pietro� editors� Proc� ASMICS Work�
shop on Parsing Theory � pages �(
�� Milano� Italy� Tech� Rep� �
�(����� Dipar�
timento di Scienze dell�Informazione� Universit*a di Milano� Also as TR P��
��
Programming Research Group� University of Amsterdam� ftp�		ftp�fwi�uva�nl
	pub	programming�research	 reports	����	 P��
��ps�Z�

�� � REFERENCES

Martelli� A� and Montanari� U� ����
�� An e�cient uni�cation algorithm� ACM
Transactions on Programming Languages and Systems� ��
��(
�
�

Meinke� K� ����
a�� Equational speci�cation of abstract types and combinators�
In E� Boerger� G� Jaeger� H� K� Buening� and M� M� Richter� editors� Computer
Science Logic � CSL	�� � volume �
� of Lecture Notes in Computer Science� pages

�
(

�� Berlin� Springer�Verlag�

Meinke� K� ����
b�� Universal algebra in higher types� Theoretical Computer Science�
���� ���(��
�

Meinke� K� ������� Algebraic semantics of rewriting terms and types� In J� Remy and
M� Rusinowitch� editors� Proc� Third Int� Workshop on Conditional Term Rewriting
Systems� volume ��� of Lecture Notes in Computer Science� pages �(
�� Berlin�
Springer�Verlag�

Milner� R� ���
��� A theory of type polymorphism in programming� Journal of
Computer and System Sciences� �	���� ���(�
����(�
��

Milner� R�� Tofte� M�� and Harper� R� ������� The De�nition of Standard ML� MIT
Press�

Mitchell� J� ������� Type theories in programming languages� In J� van Leeuwen�
editor� Handbook of Theoretical Computer Science� volume B� Formal Models and
Semantics� chapter �� pages ���(���� Elsevier Science Publishers�

M&oller� B� ����
�� Algebraic speci�cation with higher�order operators� In L� Meertens�
editor� Program Speci�cation and Transformation� pages ��
(���� Elsevier Science
Publishers B�V� �North�Holland��

Mosses� P� D� ������� The use of sorts in algebraic speci�cations� In M� Bidoit and
C� Choppy� editors� Recent Trends in Data Type Speci�cation �WADT 	���� volume
��� of Lecture Notes in Computer Science� pages ��(�
� Springer�Verlag�

Nazareth� D� ������� A Polymorphic Sort System for Axiomatic Speci�cation Lan�
guages� Ph�D� thesis� Technische Universit&at M&unchen� Technical Report TUM�
I����� http�		www��informatik�tu�muenchen�de	�nazareth	phd�html�

Nipkow� T� and Prehofer� C� ������� Type reconstruction for type classes� Journal of
Functional Programming � ��
��
��(

��

Poign%e� A� ������� On speci�cations� theories� and models with higher types� Infor�
mation and Control � �
� �(���

Turner� D� A� ������� Miranda� A non�strict functional language with polymorphic
types� In J��P� Jouannaud� editor� Proceedings IFIP International Conference on
Functional Programming Languages and Computer Architecture� volume
�� of
Lecture Notes in Computer Science� pages �(��� Nancy� France� Springer�Verlag�

REFERENCES � �

van Deursen� A�� Heering� J�� and Klint� P�� editors ������� Language Prototyping� An
Algebraic Speci�cation Approach� AMAST Series in Computing� World Scienti�c
Publishing Inc�� Singapore�

Vigna� S� ������� Specifying IMP�G� using ASF�SDF� A case study� In M� G� J�
v� d� Brand� A� v� Deursen� T� B� Dinesh� J� F� T� Kamperman� and E� Visser� ed�
itors� Proc� ASF�SDF	��� A Workshop on Generating Tools from Algebraic Spec�
i�cations� pages ��(��� Technical Report P����� Programming Research Group�
University of Amsterdam�

Vigna� S� ������� Distributive Computability � Ph�D� thesis� Universit*a degli Studi di
Milano e di Torino�

Visser� E� �����a�� A family of syntax de�nition formalisms� In M� G� J� v� d�
Brand et al�� editors� ASF�SDF	��� A Workshop on Generating Tools from Alge�
braic Speci�cations� pages ��(�
�� Technical Report P����� Programming Research
Group� University of Amsterdam�

Visser� E� �����b�� Polymorphic syntax de�nition �extended abstract�� In A� Nijholt�
G� Scollo� and R� Steetskamp� editors� Algebraic Methods in Language Processing
AMiLP	�� � volume �� of Twente Workshops in Language Technology � pages ��(���
Enschede� The Netherlands� Twente University of Technology�

Wadler� P� and Blott� S� ������� How to make ad�hoc polymorphism less ad hoc� In
��	th Symposium on Principles of Programming Languages� Austin� Texas� ACM
Press�

Walters� H� and Kamperman� J� ������� Epic ��� �unconditional�� an equa�
tional programming language� Technical Report CS�R����� CWI� Available as
http�		www�cwi�nl	epic	articles	epic���ps�

Wechler� W� ����
�� Universal Algebra for Computer Scientists� volume
� of EATCS
Monographs on Theoretical Computer Science� Springer�Verlag�

Index

ambiguous
declarations� ��
equations�
�

application� ��
implicit declaration of� in MLS� �

arrow function ���� �� ��
ASF�SDF

features
CHAR� �

LAYOUT� ��
otherwise� ��� �

priorities� ��

ASF�SDF Modules
Binary�Operators� �
� ���
��
�
Booleans� ���
�� ��� �
� ��� ��
Equation�Functions�
�� �

Equational�Logic� ��
Equations� ��� ��� ���
�� ��
Error�Booleans�

� ���
�� ��
Layout� ���
�� ��
Matching� ���
�� ��� ��� ��
MLS� ��� ��� ��� ��(��� ��� ��
MLS�Norm� ��� ��
MLS�NWF� ���
�
MLS�Projection� �	� ��� ��
MLS�TA� ���
�
MLS�TA�Aux� ��� ��� ��
MLS�TC� 	��
�
MLS�WF� �
� ��
MMLS� ���
�
MMLS�TC� 	�
Multi�Level Equational Logic� ��
Naturals� ���
�
OLS� ���
�(

� ��� ��� ��
OLS�NWF� ��� ��
OLS�TA� ��� ��
OLS�TC� ��
OLS�WF� �	� �

Projection� ���

� ��
Renaming� �
� ��� ��

SPEC�Errors� �
� ��� ���
�
Spec�Semantics� ��
Substitution� ���
�� ���
�� ��� �

Term�Analysis� ���

� ��� ��� ���

��
Term�Functions� ��� ���
�� ��� ��
Term�Rewriting� ��
Term�Sets� ��� �
�
�� ��� ��
Terms� ��� �
� ��� ���
�� ��� ���

��� ��
Types� �
� ���
�� ��� ��� ��
Uni�cation� ��� ��
Variables�

�
	� �

ATLAS� see speci�cation tools and for�
malisms

codomain�
�
con�uence�

and disambiguation�
�

default equation� see ASF�SDF features
disambiguation

and con�uence�
�
domain�
�

E�uni�cation�
� ��
equational logic�
� ��

multi�level� ��
typed�
�

equational speci�cation� �
syntax� �

untyped� ��

equations� �

error� ��

Booleans� ��
in well�formedness judgements�
�

handling
for MLS� �

for OLS� �

message
human�readable� ��

INDEX � ��

fully annotated� �

function

declaration�
�
type� ��

functional programming�

grammar
as signature�
�

Haskell� see programming languages
Hindley	Milner type system�
� ��

IMP�G�� see programming languages
implicit function�

in�x operators� ��

in MLS� ��
injection�

level� �
literate speci�cation� ��(
�

matching
in MLS� ��
in term rewriting� ��

�CRL� see speci�cation tools and for�
malisms

Mini�ML� see programming languages
Miranda� see programming languages
ML� see programming languages
MLS �multi�level speci�cation�� �� ��

examples� �
(��
extensions�
�
MMLS �modular MLS�� ��
normalization� ��
semantics� ��
syntax� ��
typechecking� �

modular speci�cation�

multi�level speci�cation� see MLS

natural numbers� �

non�wellformedness

of multi�level speci�cations� �

of one�level speci�cations� ��

normal form� ��

OBJ� see speci�cation tools and formalisms
OLS �one�level speci�cation�� ��

example� ��
semantics�
�
syntax�
�

order�sorted algebra�

overloading� �� �

example� �
non�con�uence caused by�

pair� ��
implicit declaration of� in MLS� �

Pluss� see speci�cation tools and for�
malisms

polymorphism� �
example� ��
parametric� �
restricted� �

PolySpec� see speci�cation tools and for�
malisms

product� ��
function ���� �� ��

programming languages
Haskell� �
IMP�G��
�
Mini�ML�
�
Miranda� �
ML�

Quest� �

Quest� see programming languages

renaming� ��
for polymorphic types� ��

SDF
extensions�
�

semantics�
�
�
signature� ��

grammar used as�
�
syntax�

terms over�

sort
declaration�
�

��� � INDEX

well�formedness of �s in MLS� ��
speci�cation tools and formalisms

ATLAS� ��
��

�CRL�
�
MLS� see MLS
OBJ�

OLS�

Pluss�

PolySpec� �
Spectrum� �

Spectrum� see speci�cation tools and
formalisms

spine�
�
substitution

in equational logic� ��
in MLS� ��
in term rewriting� ��

term
algebraic structure�
� �
annotation� ��
applicative structure� �� �� ��
fully annotated�

set of� ��
syntax� ��
well�formedness of �s in MLS� ��
well�formedness of �s in OLS�
�

term rewriting� ��
typed�
�

ToLATEX
sort abbreviation� ��
subscript� ��

two�level speci�cation� ��
type

annotation� ��
assignment
correctness� ���
�
for MLS� ��
for OLS� ��

classes� �� ��
equations�
�
�
example� ��

of an annotated term�
�

operators� �
polymorphic� �
principal�
�
soundness� ��� �

syntax of �s in OLS� MLS� ��
system�

typechecker
in ASF�SDF�
�
modular multi�level speci�cations�

�
multi�level speci�cations� 	�� �
(
�
one�level speci�cations� ���
�(��

uni�cation
in MLS� �

variable
declaration�
�
in term� �

well�formedness� ��
judgements�

of fully annotated speci�cations�

of multi�level speci�cations� ��
of one�level speci�cations�

Tecnical Reports of the Programming Research Group

Note
 These reports can be obtained using the technical reports overview on our
WWW site �URL http
��www�fwi�uva�nl�research�prog�reports�� or using anony�
mous ftp to ftp�fwi�uva�nl� directory pub�programming�research�reports��

�P����� E� Visser� Multi�level speci�cations�

�P����� M�G�J� van den Brand� P� Klint� and C� Verhoef� Reverse engineering and
system renovation� an annotated bibliography�

�P���
� J�A� Bergstra and M�P�A� Sellink� Sequential data algebra primitives�

�P����� P�A� Olivier� Embedded system simulation� testdriving the ToolBus�

�P���
� J�J� Brunekreef� TransLog� an interactive tool for transformation of logic
programs�

�P����� J�A� Bergstra� J�A� Hillebrand� and A� Ponse� Grid protocols based on syn�
chronous communication� speci�cation and correctness�

�P����� P�H� Rodenburg� Termination and con�uence in in�nitary term rewriting�

�P����� J�A� Bergstra and Gh� Stefanescu� Network algebra with demonic relation
operators�

�P����� J�A� Bergstra� C�A� Middelburg� and Gh� Stefanescu� Network algebra for
synchronous and asynchronous data�ow�

�P���
� E� Visser� A case study in optimizing parsing schemata by disambiguation
�lters�

�P����� M�G�J� van den Brand and E� Visser� Generation of formatters for context�
free languages�

�P����� J�M�T� Romijn� Automatic analysis of term rewriting systems� proving
properties of term rewriting systems derived from Asf�Sdf speci�cations�

�P����� M�G�J� van den Brand� A� van Deursen� T�B� Dinesh� J�F�Th� Kamperman�
and E� Visser �editors�� Asf�Sdf	��� a workshop on Generating Tools
from Algebraic Speci�cations� May ����
� ����� CWI Amsterdam�

�P����� J�A� Bergstra and A� Ponse� Frame�based process logics�

�P�
��c� J�C�M� Baeten and J�A� Bergstra� Discrete time process algebra �revised
version of P�
��b��

�P���
� J�A� Bergstra and P� Klint� The discrete time ToolBus�

�P����� J�A� Hillebrand and H�P� Korver� A well�formedness checker for �CRL�

�P��
�� P� Klint and E� Visser� Using �lters for the disambiguation of context�free
grammars�

�P��
�� B� Diertens and A� Ponse� New features in PSF II� iteration and nesting�

�P��
�� M�A� Bezem and A� Ponse� Two �nite speci�cations of a queue�

�P��
�� J�J� van Wamel� Process algebra with language matching�

�P��

� R�N� Bol� L�H� Oei J�W�C� Koorn� and S�F�M� van Vlijmen� Syntax and
static semantics of the interlocking design and application language�

�P��
�� J�A� Bergstra and A� Ponse� Frame algebra with synchronous communica�
tion�

�P��
�� M�G�J� van den Brand and E� Visser� From Box to TeX� An algebraic
approach to the construction of documentation tools�

�P����� J�C�M� Baeten� J�A� Bergstra� and Gh� Stefanescu� Process algebra with
feedback�

�P����� L�H� Oei� Pruning the search tree of interlocking design and application
language operational semantics�

�P���
� B� Diertens� New features in PSF I� interrupts� disrupts� and priorities�

�P����� S�M� &Usk&udarl+� Generating visual editors for formally speci�ed languages�

�P����� S�F�M� van Vlijmen� P�N� Vriend� and A� van Waveren� Control and data
transfer in the distributed editor of the ASF�SDF meta�environment�

�P����� M�G�J� van den Brand and C� Groza� The algebraic speci�cation of anno�
tated abstract syntax trees�

�P����� A� Ponse� C� Verhoef� and S�F�M� van Vlijmen �editors�� Workshop on
Algebra of Communicating Processes May ������ ���� Utrecht University�

�P�
��b� J�C�M� Baeten� J�A� Bergstra� and S�A� Smolka� Axiomatizing probabilistic
processes� ACP with generative probabilities �revised version of P�
����

�P���
� C� Groza� An experiment in implementing process algebra speci�cations in
a procedural language�

�P����� M�J� Koens and L�H� Oei� A real time muCRL speci�cation of a system for
tra�c regulation at signalized intersections�

