i %) (University of Amsterdam

% Programming Research Group

<>([](S))K) !

/NN /N

Specification of Rewriting Strategies

Bas Luttik
Eelco Visser

Report 9710 June 1997

&3
&S
&3

University of Amsterdam
Department of Computer Science

Programming Research Group

Specification of rewriting strategies

Bas Luttik
Eelco Visser

Report P9710 June 1997

Bas Luttik

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

E. Visser

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7590
e-mail: visser@wins.uva.nl

Universiteit van Amsterdam, 1997

CWI

P.O. Box 94079
NL-1090 GB Amsterdam
The Netherlands

tel. +31 20 592 4247
e-mail: luttik@cwi.nl

Specification of Rewriting Strategies

Bas Luttik!'? Eelco Visser?

1: CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands.
2: Programming Research Group, University of Amsterdam,
Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands.
email: luttik@cwi.nl, visser@wins.uva.nl

June 17, 1997

Abstract

User-definable strategies for the application of rewrite rules provide a
means to construct transformation systems that apply rewrite rules in a
controlled way. This paper describes a strategy language and its interpre-
tation. The language is used to control the rewriting of terms using labeled
rewrite rules. Rule labels are atomic strategies. Compound strategies are
formed by means of sequential composition, non-deterministic choice, se-
quential choice, fixed point recursion, and a primitive for expressing term
traversal. The traversal primitive called ‘push-down’ applies a strategy to
the direct descendants of a term. Several complex term traversal strategies
such as bottom-up and top-down application and innermost and outer-
most reduction can be defined in terms of push-down. The paper contains
two case studies of the application of strategies.

1 Introduction

Term rewriting is an ideal technique for program transformation where the
transformation of one construct into another is defined by means of rewrite rules.
Usually, the rewrite engine contracts redexes according to some fixed redex
selection scheme, and the possibilities the user has to control the order in which
rules are tried are rather limited. For example, ASF+SDF implements a leftmost
innermost redex selection scheme and the only way the user can explicitly control
the order in which rules are tried is by means of default equations.

Often it is desirable to have more control over the reduction process. For
instance, some rewriting systems exhibit better termination behaviour under a
leftmost innermost scheme, while others behave better under a parallel outer-
most scheme. Also, it often yields more efficient normalization if rules are tried
according to some specific priority ordering.

The usual solution to get more control over the strategy used to apply trans-
formation rules is to write an explicit transformation function that traverses an
expression performing transformations in the right order. This gives a great
overhead in the specification and distracts from the conceptually simple trans-
formation rules.

In this paper we show how the definition of a transformation in terms of
rewrite rules can be separated from a specification of the order in which these

rules should be applied. We define a language of strategies inspired by the
strategy mechanism of the rewriting language Elan (Vittek, 1994; Borovansky
et al., 1996) and demonstrate its use in ASF4+SDF (Van Deursen et al., 1996).
This leads to a small set of generic modules that can easily be instantiated for
any target language.

We illustrate this approach in two case studies. In the first example, we give
an implementation of the proof of a basic term lemma in a setting of process
algebra with conditionals. Strategies are necessary there, because one of the
transformation rules is non-terminating. In the second example we discuss the
normalization of box expressions in a typesetting language. The transforma-
tion rules form a weakly terminating rewrite system that does not terminate
with standard innermost rewriting. Using the strategy language a terminating
strategy is specified.

Overview In §2 we introduce the basic strategy operators: labels indicat-
ing axioms, the identity strategy, sequential composition of strategies, non-
deterministic choice and sequential choice between strategies. In §3 we extend
this basic language with a fixed point operator for the expression of recursive
strategies. As an application an iteration operator for strategies is defined using
the fixed point operator. In §4 several strategies traversing terms are defined
using a generic primitive called push-down that applies a strategy to the direct
descendants of a term. The traversal strategies include bottom-up application
of a strategy and innermost and outermost normalization using a strategy. In
85 the strategy language is applied to the transformation of process expressions.
In §6 an application to transformation of box expressions is discussed.

2 Basic Strategies

Labels are the basic building blocks of strategies. They refer to rewrite rules or
sets of rewrite rules. For example, the expression

[RAssoc| (1 + x2) + 23 = 1 + (22 + 23)

is a rewrite rule labeled RAssoc that transforms a left-associative application of
+ into a right-associative one.

A strategy defines a transformation function on the terms of a language. For
instance, RAssoc defines the function [RAssoc]. According to the rule above,
applying this function to (a + b) + ¢ gives a + (b + ¢). Such an application does
not have to succeed; for instance, [RAssoc]| applied to a + (b + ¢) is not defined
here.

Module Term-SA below defines the syntax of the application of strategies
to terms. The application of a strategy s to a term ¢, written as [s] ¢, results
in a ‘reduct’. This is either a term, denoting the succesful application of the
strategy, or the original application, denoting failure of the application of the
strategy. Consequently, a reduct can be seen as a pair of a term and a Boolean
value indicating success or failure. Given a reduct r the function 7 (r) gives the
term part of this pair and the function 7m,(r) determines the Boolean value.

module Term-SA
imports Basic-Strategies®! Booleans
exports

sorts Term Reduct

context-free syntax

Term — Reduct

“[” Strategy “]” Term — Reduct

my (Reduct) — Term

7 (Reduct) — Bool
variables

“t”[0-9']* — Term
“r"[0-9'* — Reduct

equations
(1] () =t [2]
[3] m([s]) = ¢ [4]

(1) = true
m([s] t) = false

This section and the next two sections will be concerned with the defini-
tion of operators for the composition of strategies and their interpretation as

transformation functions.

2.1 Syntax

Labels are atomic strategies. A label is an identifier starting with an uppercase
letter. Their interpretation is defined by the user by means of labeled rewrite
rules. Basic strategies are composed from labels by means of the identity com-
position (€), sequential composition (s - s2), non-deterministic choice (s + s3)

and sequential choice (s1 D> s2).

module Basic-Strategies
imports Layout
exports
sorts Label Strategy
lexical syntax
[A-Z][A-Za-z0-9\—]* — Label
context-free syntax
Label — Strategy
“e” — Strategy
Strategy “.” Strategy — Strategy {left}
Strategy “+” Strategy — Strategy {left}
Strategy “>” Strategy — Strategy {right}
“(” Strategy “)” — Strategy {bracket}
priorities
Strategy “.”Strategy — Strategy > Strategy

Strategy “+”Strategy — Strategy
variables

44177[0_9’]* — Label
“57’[0-9,]* — Strategy

“>”Strategy — Strategy >

2.2 Interpretation

Given a set of labeled rewrite rules, the application of a strategy expression to a
term is interpreted according to the following rules and the user-defined labeled
rewrite rules. A label that is undefined, or undefined for some term, fails, i.e., if
label { is undefined for ¢, then [{] ¢ is in normal form. In the rules below, success
of an application is tested in a condition [s] ¢ = ¢/, where the right-hand side is
a term t' injected into Reduct.

module Term-BS

imports Basic-Strategies®! Term-SA>

equations

The identity strategy e always succeeds and yields the term t itself.

[1]] t=t

The sequential composition s - so succeeds if s; applied to t succeeds and yields
a term t' and s, applied to t' succeeds and yields ¢".

[s1] t=t/, [so] £ = t"

[51 '82] t = t”

(2]

The non-deterministic choice s; + so succeeds if either s; or s, succeeds.

[s1] t= ¢’
2 sl =7
[4] [52] t= tl

[51 +52] t = t,

The sequential choice s1 [> s succeeds if either sy or s, succeeds, with a prefer-
ence for s;. That is, if s; succeeds, then it will be applied and ss is only tried
when s; fails.

[s1] =1’
[51 > 32] t =t

[5]

[50] £ =t
!

ﬁ otherwise
S1 D So =

[6]

Generic Modules The Term-* modules defined above and in the next sec-
tions are generic modules that define the application and interpretation of
strategies to some language of terms. These modules are intended to be in-
stiantiated to each sort under consideration by renaming the sorts Term and
Reduct. The tool of De Jonge (1997) can be used to automate this instantia-
tion.

3 Recursive Strategies
In this section we provide a fixed point operator for the definition of recursive

strategies in order to repeatedly apply a strategy. At the end of this section we
show how the fixed point operator can be used to define iterative strategies.

3.1 Syntax

The fixed point operator u v.s denotes a recursive strategy with recursion point
v. The variable v is bound by the fixed point operator.

module Recursive-Strategies
imports Basic-Strategies?-!
exports
sorts Var
lexical syntax
[a-z][A-Za-z0-9\— "]* — Var
context-free syntax

Var — Strategy
“u” Var “” Strategy — Strategy
priorities

Strategy “+”Strategy — Strategy > “u”Var “.”Strategy — Strategy
variables
“p”[0-9']% — Var

3.2 Interpretation

A fixed point p v.s denotes the infinite strategy expression obtained by recur-
sively replacing the entire expression for the free occurences of the variable v in
s, i.e., we have

Hv.s=5s[v:i=puv.s]

where s[v := s'] denotes the substitution of all free occurences of v in s by s'.
Substitution is defined in §A. Because this equation leads to a non-terminating
innermost rewrite system, we interpret the fixed point operator lazily as defined
in the following module.

module Term-RS

imports Term-BS?'? Recursive-Strategies®! Strategy-Substitution®

equations

The application of a fixed point strategy to a term is interpreted by unfolding
the fixed point one step. In this way unfoldings are performed by need.

[1] [pv.s|t = [s[vi=pv.d]t

3.3 Example: Iteration of Strategies

As a first example application of recursive strategies we introduce the operators
* and 4+ to express the iteration of a strategy zero or more and one or more
times, respectively.

module Complex-Strategies
imports Basic-Strategies®-!
exports
context-free syntax
Strategy “x” — Strategy
Strategy “4+” — Strategy
priorities

Wy

{Strategy “«” — Strategy, Strategy “+” — Strategy} >
Strategy “.”Strategy — Strategy

The strategy sx is defined by means of a recursive strategy that applies the
strategy s as long as it succeeds and then terminates successfully. This entails
that the strategy always succeeds. The function get-fresh is used to create a
binding variable v that does not occur freely in the strategy s. Observe how the
sequential choice operator > is used to enforce as many applications as possible.
If s can not be applied the sequential composition s - v fails and € is applied and
succeeds. The s+ operator is expressed in terms of the * operator. A strategy
s+ succeeds if s succeeds at least once.

module CS-Interpretation
imports Complex-Strategies®? Strategy-Substitution”

equations

o get-fresh(x, s) = v
Sx = pu.s-vbe

2] s+ = s-s%

4 Traversal Strategies

The strategies we have discussed until now apply to the root of a term. Now we
introduce a strategy operator that can be used to define a wide range of term
traversals. The ‘push-down’ of a strategy applies it to all arguments of the root
function symbol. Using this operator we can define bottom-up and top-down
traversals of terms, as well as innermost and outermost redex selection schemes.

4.1 Preliminaries

Before we introduce the traversal strategies we need the following definition
of Boolean operators generalized to arbitrary many arguments, i.e., lists of
Booleans. The application A{b1,... ,b,} denotes by A...Ab, and \/{by,... ,b,}
denotes by V ...V b,. The operators are defined as a separate sort such that
they can be used as parameters of the function ‘pd’ defined below.

module Booleans-Generalized
imports Booleans
exports
sorts BoolOp
context-free syntax
“N\” — BoolOp
“\” — BoolOp
BoolOp “{” Boolx “}” — Bool
variables
“@”[0-9']x — BoolOp
hiddens
variables
“b7[0-9'* — Bool
“b” “x”[0-9']% — Boolx
equations

[1] A}
3] A{b b7}

true [2] VA{} = false
bAA{B"} [4] V{b b} = bvV{eT}

4.2 Syntax

We define the following strategy operators: the parameterized push-down oper-
ator (pdg), the conjunctive (O) and disjunctive (<) push-down operators, the
bottom-up (bu) and top-down (td) traversals, and the ‘once’; ‘innermost’ and
‘outermost’ selection schemes.

module Traversal-Strategies
imports Recursive-Strategies®! Booleans-Generalized?-!
exports
context-free syntax
pd “” BoolOp “(” Strategy “)” — Strategy

O(Strategy) — Strategy
& (Strategy) — Strategy
bu(Strategy) — Strategy
td(Strategy) — Strategy
once(Strategy) — Strategy
innermost (Strategy) — Strategy
outermost(Strategy) — Strategy

4.3 Interpretation

The interpretation of these strategies is presented in two parts. First we define
the generic schema for the parameterized push-down operator in module Term-
TS. Then we define the other strategies in terms of this push-down.

Push-Down The push-down pdg(s) applies s to each argument of the root
symbol of term t and substitutes the result for each of the arguments for which
application s succeeds. The strategy is parameterized with a Boolean operator
@ that determines the ‘succes behaviour’.

The push-down strategy is defined by a schema that should be instantiated
for each function symbol f of arity n in the signature of the language under con-
sideration. Strictly speaking we only need to instiantiate it for the constructors
of the language. This schema can be instantiated for a given SDF definition
using the specification generation techniques described in Van den Brand and

Visser (1996).

module Term-TS

imports Term-RS3? Traversal-Strategies!? Booleans-Generalized?:!

equations

For each function f : sy X --- X s,, = sg in the signature' of a specification
define a rule

[s]t1 =71, ..., [s] tn =7n, &{mp(r1),... ,Tb(rn)} = true

[pdEB(s)] f(tlv"' >tn) = f(ﬂ-t(rl)v"' 77Tt(rn))

The first n conditions apply the strategy s to the respective arguments t;. These
conditions always succeed because the r; are variables of sort Reduct. The
application of the boolean operator @& then determines the success or failure
of the strategy from the list of Boolean values denoting the success or failure
of the argument applications. If the outcome is true the resulting term is the
application of f to the term components of the reducts. Note that if the push-
down succeeds, but s fails on t;, then ¢; = m(r;).

In the case of a constant ¢ (n = 0; an application without arguments) we
thus have

@{} = true
[pda(s)] c=c

This entails that a push-down on a constant succeeds depending on the default
value of the boolean operator ¢. In case it is a conjunction it succeeds and in
case of a disjunction it fails.

Associative lists can be considered as functions with an arbitrary number of
arguments. A push-down on such a list entails the application of the strategy to
each of the elements of the list. This is expressed by means of the following equa-
tion schemata that should be instantiated for each list sort in the specification.
The empty list is treated as a constant.

@{} = true
[pde (s)] =
For a non-empty list the strategy is applied to the head t of the list and the
push-down to the tail t* of the list.
[s]t =7, [pde(s)] t* =r*, &{m(r), s (r*)} = true
[pde ()] ¢ t* = m(r) m(r*)

!In the schemata in this section we abstract from the grammatical (mix-fix function) aspect
of SDF signatures.

Traversal Strategies Given the push-down strategy we can define several
term traversal strategies.

module TS-Interpretation

imports Traversal-Strategies?? CS-Interpretation®? Strategy-Substitution“
equations

The strategies O(s) and <(s) are the conjunctive and disjunctive instantiations
of push-down. This entails that O(s) succeeds if s succeeds on all direct descen-
dants and that <(s) succeeds if s succeeds for at least one direct descendant.

[1] O(s) = pdp ()
[2] O(s) = pdy (s)

The strategies bu(s) and td(s) apply s bottom-up and top-down to a term. In
the case of bu(s), O(v) is used to recursively apply the strategy to all descendants
of the term, after which the strategy s is applied to the result. Top-down is the
dual of bottom-up obtained by reversing the order of the sequential composition.

get-fresh(x, s) = v
3
13 bu(s) = pov.0O(v)-s
] get-fresh(x, s) = v

td(s) = pv.s-O(v)

The strategy once(s) applies a strategy s once to each node in a term. In case
s does not apply to a node the strategy succeeds with the identity strategy.

[5] once(s) = bu(s > €)

The strategy innermost(s) applies a strategy s bottom-up to a term until it is
no longer applicable. The strategy outermost(s) applies a strategy top-down
until it no longer applies.

get-fresh(x, s) = v

[6]

innermost(s) = p v.bu(s-v>e€)

get-fresh(x, s) = v

7 outermost(s) = (pv. s> O(v)) *

The innermost strategy works by two recursion steps: the bottom-up loop
applies the strategy s to each node of a term starting at the leafs. If that
succeeds the entire innermost strategy is recursively applied again to the term,
otherwise the term is in normal form. This entails that when s is applied to a
term, its direct descendants are in normal form.

The outermost strategy works also by means of two loops. The outer loop is
an iteration that applies the inner loop as long as it is applicable. The inner loop
is a disjunctive variant of the top-down strategy. It tries to apply the strategy
s. If that succeeds the strategy terminates succesfully. If it fails the recursive
application < (v) tries to apply s to at least one of the descendants of the term.
In this manner all outermost redexes of s are rewritten one step.

5 Process Expressions

In process algebra (see Baeten and Weijland, 1990) it is common to prove a
lemma stating that every term is equal to some term with a simpler inductive
structure, a so-called basic term. Usually, such a lemma is proved by defining of
a terminating rewriting system consisting of rules that are sound with respect
to the process algebraic theory, such that the set of basic terms coincides with
the set of normal forms of this system.

A transformation of arbitrary process terms to basic terms is part of a tool
that takes pCRL process specifications to linear format (we refer to Groote
and Ponse (1994b) for pCRL and to Bosscher and Ponse (1995) for an informal
description of the tool). In this particular setting it is a natural approach to first
preprocess process terms with a rule that is non-terminating, and then reduce
the result in another rewriting system. Below we discuss an implementation of
this using the strategy language just defined.

5.1 Syntax

We consider a small fragment of pCRL allowing only one datatype IB of booleans
and a restricted syntax for the actions A.

module BoolTerms

exports
sorts 1B
context-free syntax
“T” — B
“l” — B
“and” “" B “” B “)” —» B
((not” “(” IB “)77 _>]B
variables
“b”[0-9'1x — B
module NerlTerms
imports BoolTerms®-!
exports
sorts A IP

lexical syntax
[abc][0-9']x — A
context-free syntax

“5” — 1P

A - P

P “” P — P {right}

P “ B “” P - P {right}

P “+” P — IP {assoc}

“«rr Iy — P {bracket}
priorities

PP —-P>P%B“%P—-P>P“"P—>P
variables

“a”[0-9"1x —» A

“p”[0-9']x —» IP

10

5.2 Transformation Rules

The set of basic terms that we are interested is in inductively defined as follows:
1. §, @« and a < b > § are basic terms (a € A, b € B);
2. if p is a basic term, then so are a-p and a-p<1b> 6 (o € A, b€ B);
3. if p; and p- are basic terms, then so is p; + ps.

The following rules are all derivable in the proof theory for yCRL (see Groote
and Ponse, 1994a); in fact, the rules [R2], [R3] and [R4] respectively correspond
to axioms A4, A5 and A7 of process algebra.

module NcrlAxioms

equations
Rilzab>y =x S+ y<Inot(b) >4
[R2] (z+ y)- 2z =z z+ vy z
R3] (2-9) - 2 — ey
[R4] 0 -z =0
[RE]d < bD> 6 =0
[R6] (z< bD>6)-y =z-ydb>4
R7] (z+y) < bD> S =z4b>d+yabr>d
[R8]

R8] (<0 by >0) A by > =u<and(b, ba) > 5

It follows by means of the method of lexicographic path orderings (see
Bergstra and Klop, 1985) that the rewriting system consisting of [R2],...,[R8]
is terminating. Process terms not containing conditionals of the form p; po
with g not equal to ¢ are basic terms iff they are in normal form with respect
to these rules.

The rule [R1] can be used to remove conditionals with a rightmost argument
not equal to &, but it is clearly non-terminating. Notice, however, that it is
enough to apply [R1] only once at every subterm to arrive at a term that does
not contain conditionals with a rightmost argument not equal to 4.

5.3 Normalization Strategy

We respectively obtain the modules NcrlTerm-SA, NerlTerm-BS and NerlTerm-
RS by applying the tool of De Jonge (1997) to Term-SA, Term-BS and Term-RS,
with renaming [Term = [P Reduct = IPReduct]. The module NerlTerm-TS
can be generated according to the scheme of §4.3.

The transformation ‘to-basic’ below transforms a process term into an equiv-
alent basic term. For instance,

to-basic(((a1 + az2) - b1) -c1 <and(T,L) > 6§ as)
normalizes to the basic term

ay-by -y <and(T,L)>d+as-by-cp <and(T,L)> 6+ 0.

11

module ToBasic
imports NcrlAxioms®? NerlTerm-TSB! TS-Interpretation?-3
exports
context-free syntax
“to_basicﬁ LL(”]P 54)77 _>]P
equations

[once(R1) - outermost(R2 + R3 + R4 + R5 + R6 + R7 + R8)] p = p’

!

to-basic(p) = p

6 Box Expressions

Box expressions are used in typesetting languages to indicate the layout struc-
ture of a piece of text. Horizontal boxes are used for horizontal composition,
vertical boxes for vertical composition, etc. The language of box expressions
Box (Van den Brand and Visser, 1994, 1995, 1996) is a target independent in-
termediate language for pretty-printing and typesetting programs. Typically,
a pretty-printer for some programming language translates the abstract syntax
tree of a program to a box expression, which is then translated to the input for-
mat for the displaying device desired. A further discussion of this application
can be found in Van den Brand and Visser (1996).

One of the target languages of the Box language is the typesetting language
TEX. In order to express box expressions in TEX, box expressions are flattened
by means of a (large) number of transformation rules (Van den Brand and
Visser, 1994, 1995). One of the problems that we encountered was the following.
The combination of the rules for repositioning comment boxes and the rules
for flattening box expressions leads to a weakly terminating rewrite system
that causes non-termination with innermost rewriting. The solution chosen
in the implementation was to first apply the rewrite rules for comments and
then apply the flattening rules. This could only be achieved outside ASF+SDF
by consecutively applying the rewrite rules in two different modules. In this
section we discuss the fragment of the language and the transformation rules
that contain the problem and show how it is solved inside ASF+SDF using
strategies.

6.1 Syntax

Boxes are either strings or expressions composed by means of one of the opera-
tors H, V, HV, and VPAR. (In fact there are more operators in the full language,
but these are not of interest for the current paper.)

module Box
imports Layout Strings
exports
sorts Box BoxList
context-free syntax
String — Box

12

“H” “[” BoxList “]” — Box

“V” “” BoxList “]” — Box

“HV” “[” BoxList “]” — Box

“VPAR” “” BoxList “|” — Box

Boxx — BoxList
variables

[A-E][0-9"]% — Box
[A-E]“«”[0-9"]%* — Boxx
[A-E)“+7[0-9']% — Box+

6.2 Transformation Rules

The specification of the Box language contains a large number of transformation
rules on box expressions that are used to flatten expressions as much as possible.
Here we show a few of these to discuss the transformation problem, but they are
not sufficient to get the desired normal forms. The first two rules are in the set
of rules that flatten terms by moving horizontal compositions (H) inside vertical
compositions (V and HV). The rules take the part of a horizontal composition
after a vertical composition and attach it horizontally to the last box in the
vertical composition. The last two rules move a comment box (VPAR) outside
horizontal and horizontal-vertical boxes until they are in a vertical environment.

module Box-Laws

imports Box®! Box-SAB-2

equations
[H-V] H[A* V[B* B] C*] =H[A* V[B* H[B C™]]]
[H-HV] H[A* HV[B* B] C"] = H[A* HV[B* H[B C™]]]

[H-VPAR] B* H[C* VPAR[D*]] E* = B* H[C*] VPAR[D*] E*
[HV-VPAR] B* HV[C* VPAR[D*]] E* = B* HV[C*] VPAR[D*] E*

The labels Flatten and Comment are abbreviations for the systems for flattening
and normalizing comments, repectively.

Flatten = H-V 4+ H-HV
Comment = H-VPAR + HV-VPAR

Each of the sets of rules Flatten and Comment is a terminating rewrite
system, but their combination is non-terminating. Consider for instance the
following sequence of transformations:

(1) V[H["a" HV["b" H["C" VPAR["d"]]]]]
= {H-VPAR}

(2) V[H["a“ HV["b" H["C"] VPAR.["d"]]]]
= {HV-VPAR}

(3) V[H["a" HV["b" H["C"]] VPAR["d"]]]
= {H-VPAR}

(4) V[H["a“ HV["b" H["C“]]] VPAR["d"]]

13

The last box expression is in normal form with respect to the rules above.
However, after step (3) we could also have done

(3) V[H["a" HV["b" H["C"]] VPAR["d"]]]
= {H-HV}
(47) V[H[llau Hv[llbll H["C" VPAR["d"]]]]]

to get back our original box expression. In fact, an innermost strategy will
do exactly this, leading to a non-terminating rewriting system.

6.3 Normalization Strategy

To overcome this termination problem we define a strategy that applies the
comment rules and the flattening rules in sequence. In fact for the rules discussed
above it suffices to apply the comment rules in a bottom-up fashion to each
operator in a box-expression.

module Box-Normalization
imports Box-TSP-2 Box-Laws®? TS-Interpretation®
exports

context-free syntax

normalize(BoxList) — BoxListReduct

equations
The normal form of a box list is obtained by first applying comment rules in a
bottom-up traversal and then applying the flattening rules with an innermost
strategy.

3

[bu(Comment) -innermost(Flatten)] B* = C*

normalize(B*) = C*

[1]

7 Conclusion

We have described the setup of a language of term rewriting strategies and its
interpretation in ASF+SDF. This approach gives us the possibility to control
the transformation of expression given a set of labeled rewrite rules. The main
result of this paper is the definition of the push-down strategy as a primitive to
define a wide range of term traversal strategies.

7.1 Future Work

The work in this paper opens up a range of further research issues.

Generic Specification In this paper we have made use of generic specifica-
tions to express the semantics of strategies. This genericity is of two kinds. The
first kind requires the instantiation of a generic module, achieved by renaming
its sorts. A tool for this purpose is discussed by De Jonge (1997). The second
kind requires the generation of equations for the push-down operator for each
constructor in the signature of the language under consideration. This can be
achieved by a variant of the pretty-printer generation techniques described by

Van den Brand and Visser (1996).

14

Strategy Operators We have defined parallel innermost and parallel outer-
most in terms of the push-down operators O and ¢. These operators could be
called greedy; they apply to as many arguments as possible. Using the non-
greedy variants of these operators, say B and ¢, other schemes may be defined.
For instance,

reduce(s) = (p v.(s + #(v)))*

defines arbitrary reduction; the operator ‘reduce’ repeatedly () selects redexes
non-deterministically (+).

Parameterized Strategies We have considered strategies without data. By
parameterizing labels with data we can define still more powerful transformation
systems. Consider for example the substitution of terms for variables. The
substitution of a term t for variable z in a term t' consists of a traversal of
the term ¢’ replacing all occurences of = by t. Using strategies this is concisely
specified by defining the label strategy = := t as [z := t] x = t to express the
replacement of a variable. Substitution is then expressed as a traversal over the
term t' applying the replacement everywhere, i.e., [once(z := t)] ¢'. Here we
directly reuse the generated traversal. There are many similar applications of
strategies parameterized with data.

It is thus straightforward to distribute data over a term. Accumulation of
data is not so straightforward and is an issue to be addressed in future research.

Optimization In this paper we have discussed the interpretation of strategies
in ASF+SDF using the built-in innermost rewrite engine. Once more experience
with controlled rewriting has been obtained it might be interesting to consider
the integration of strategies in the rewrite engine of ASF+SDF itself to get a
more efficient interpretation.

Another approach to the optimization of strategies is to consider transforma-
tion of strategy expressions to more efficient expressions. For example, merging
of nested loops. Such optimizations require an algebra of strategies.

Correspondences At a first glance it seems that there is a correspondence
between the operators of process algebra (Baeten and Weijland, 1990) and of
strategies. However, if we consider their semantics the correspondence is not
so clear. For instance, consider the distribution laws for sequential composition
over choice.

(x+y)-z=(z-2)+(y-2) (1)
z-(y+2)=(z-y) +(z-2) (2)

In BPA the first one holds and not the second, whereas in our strategies, the
second one holds and not the first. In BPA the success or failure (deadlock) of
the second element in a sequential composition does not affect the choice in the
first element (equation (1)).

Another correspondence that comes to mind is the relation to modal logic.
Clearly the operators - and + correspond to conjunction and disjunction of
success. The push-down operators O and < are so chosen because of their
similarity to the modalities in modal logic. (Blackburn et al. (1993) discuss a

15

modal logic of trees that contains modalities to traverse a tree.) However, the
influence of the outcome of z on the outcome of y in x - y is not expressible by
a logical conjunction only.

The strategies defined in this paper form a mixture between the actions of
process algebras—transformation of a term—and the thruth of modal logic—
success or failure of a strategy. Further research is needed to find the algebraic
and logic laws of the interaction of process and logic in strategies.

References

Baeten, J. and Weijland, W. (1990). Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press.

Bergstra, J. and Klop, J. (1985). Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1), 77-121.

Blackburn, P., Gardent, C., and Meyer-Viol, W. (1993). Talking about trees. In
Proceedings of the 6th Conference of the Furopean Chapter of the Association
for Computational Linguistics, pages 21-29.

Borovansky, P., Kirchner, C., and Kirchner, H. (1996). Controlling rewriting
by rewriting. Flectronic Notes in Theoretical Computer Science, 4. In J.
Meseguer (ed.) First International Workshop on Rewriting Logic and its Ap-
plications. Asilomar Conference Center, Pacific Grove, CA, September 3-6,
1996.

Bosscher, D. and Ponse, A. (1995). Translating a process algebra with symbolic
data values to linear format. In U. H. Engberg, K. G. Larsen, and A. Skou,
editors, Proceedings of the Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), number NS-95-2 in BRICS Notes
Series. BRICS.

Van den Brand, M. and Visser, E. (1994). From Box to TEX: An algebraic
approach to the generation of documentation tools. Technical Report P9420,
Programming Research Group, University of Amsterdam.

Van den Brand, M. G. J. and Visser, E. (1995). Box: Language, laws and
formatters (version 1.4). Technical documentation, Programming Research
Group, University of Amsterdam.

Van den Brand, M. G. J. and Visser, E. (1996). Generation of formatters
for context-free languages. ACM Transactions on Software Engineering and
Methodology, 5(1), 1-41.

Van Deursen, A., Heering, J., and Klint, P., editors (1996). Language Proto-
typing. An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore.

Groote, J. F. and Ponse, A. (1994a). Proof theory for uCRL: A language for
processes with data. In D. Andrews, J. Groote, and C. Middelburg, editors,
Proceedings of the International Workshop on Semantics of Specification Lan-
guages, Workshops in Computing, pages 232-251, Utrecht, The Netherlands.
Springer-Verlag. An extended version appeared as chapter 4 of Ponse (1992).

16

Groote, J. F. and Ponse, A. (1994b). The syntax and semantics of pCRL. In
A. Ponse, C. Verhoef, and S. van Vlijmen, editors, Algebra of Communicating
Processes, Workshops in Computing, pages 26—62, Utrecht, The Netherlands.
Springer-Verlag.

De Jonge, M. (1997). Reusing ASF+SDF specifications by means of renaming.
Technical report, Programming Research Group, University of Amsterdam.
(Submitted for publication).

Ponse, A. (1992). Process Algebras with Data. Ph.D. thesis, University of
Amsterdam.

Vittek, M. (1994). ELAN: Un cadre logique pour le prototypage de language de
programmation avec contraintes. Ph.D. thesis, Université Henri Poincaré —
Nancy I, Nancy, France.

A Substitution

In this section we define the substitution of strategies for strategy variables.
This operation is used to define the semantics of the fixed point operator y v.s.
Because this operator is a binding operator we have to take care that free vari-
ables do not become bound.

module Strategy-Substitution
imports Basic-Strategies®! Recursive-Strategies®>! Complex-Strategies®
Traversal-Strategies-? TS-Interpretation*-3

3

exports
sorts StratSubst
context-free syntax

Var “€” “FV” “(” Strategy “)” — Bool

“prime” “(” Var ¢)” — Var

“get-fresh” “(” Var “” Strategy “)” — Var

“[” Var “:=" Strategy “|” — StratSubst

Strategy StratSubst — Strategy
priorities

Strategy StratSubst — Strategy > Strategy “.”Strategy — Strategy
variables
““4?[0-9"]x - CHAR+
equations
Free variables. The predicate v € FV(s) determines whether the variable v has
a free occurence in s.

1] v € FV(I) = false

[2] v € FV(v) = true

3] ve FV(v') =false when v# v’

[4] v € FV(e) = false

[5] vEFV(sy + s) =v€FV(s)) VveEFV(s)
6] vEFV(s -s) =veFV(sy) VuveFV(sy)
[7] vE€ FV(s%) = ve FV(s)

8] veFV(s+) =veFV(s)

[9] vEFV(si > s) =veFV(s)) VoeFV(sy)
[10] v € FV(pdg(s)) = ve FV(s)

[11] vEFV(pv. s) = false

[12] veFV(pv' .s)=veFV(s) when v# v’

The function ‘prime’ renames a variable by adding a prime as its last character.
[13] prime(var(c™)) = var(ct "’ ")
The function ‘get-fresh’ primes a variable as long as it occurs freely in a strategy
s.

v € FV(s) = true
get-fresh(v, s) = get-fresh(prime(v), s)

v € FV(s) = false
get-fresh(v, s) = v

[14]

[15]

Substitution. Replace all free occurences of a variable v by a strategy s. For all
operators except the fixed point operator this entails a simple traversal of the
strategy term replacing v everywhere.

(16] lv:=1s=1

(17] v[jv:=1s8=3s

(18] v[v':=s=v when v#uv

[19] eflvi=s]=¢€

[20] (s1+ s2)[vi=8=s [v:i=8] + 82 [v:=]
[21] (81 52) [vi=8 =8 [v:=8] 8 [v:= 4]
[22] x[vi=o =s' [v:i=s]

(23] s'+vi=sl=s"[vi=s +

[24] (51> 82) [v:=38] =81 [v:=8] > 83 [v:= 3]
5] b (s") [v:= o = pdg(s” [v:= 5)

If v is bound by a fixed point operator it is not replaced.

[26] (pv.s)[vi=s"]=pov.s

If the bound variable v’ does not occur free in s’ then the substitution can be
applied to the body of the fixed point operator.

v# v, v € FV(s') = false
(pov'.s)[vi=s"] = pv' . s[v:i=s]

27]

If v’ occurs free in s’, then we must apply a-conversion. The occurence of v’ in
s’ must not become bound.

[28]

v# v, v' € FV(s') = true, get-fresh(v’, s') = v"
s

(o' .s)vi=s"] = pov" . s :=0"][v:=15"]

18

B Instantiated Modules

In this appendix we list the instantiations of the generic modules Term-* for

the Process and Box case studies.

B.1 Processes

module NcrlTerm-SA
imports Basic-Strategies®! Booleans NcrlTerms
exports
sorts PReduct
context-free syntax
P — IPReduct
“[” Strategy “]” IP — IPReduct

5.1

mt (IPReduct) - P
7 (IPReduct) — Bool
variables
“10-9% — P
“r’[0-9']%x — IPReduct
equations
[1] m(t) =t 2] 7 (2)
3] mi([s] 8) = ¢ [4] ™ ([s] #)

module NcrlTerm-BS
imports NerlTerm-SAB-1

equations
(1] [t =1t
1] 2] 120 herwise

[51 > 52] t =t

19

= true
= false

module NcrlTerm-RS
imports NcrlTerm-BSB! Recursive-Strategies®! Strategy-Substitution?
equations

[1] [pv.slt=[s[vi=pv.s||t

module NcrlTerm-TS

imports NcrlTerm-RS® ! Traversal-Strategies*>

equations
®{} = true
. Plg(a - a
®{} = true
2 pd(]0 = 3
3] [s] py =11, [8] Py = 12, B{mp(r1) Tp(r2)} = true

[Pde(s)] p1-py = me(ry) - me(ra)

Note: we implement first-order, single-sorted rewriting for terms of the sort
NcrlTerm. Therefore, we consider as a binary operator taking two arguments
of the sort NerlTerm.

(4] [s] pr =71, [8] Py = 12, ®{mn(m) TH(r2)} = true
[pdg(s)] py py = m(r) < b> m(rs)
[5] [s] pr =11, [8] Py = 12, ®{mn(m) TH(r2)} = true
[Pdg (9)] Py + Py = me(r1) + (1)
B.2 Box

module Box-SA
imports Basic-Strategies?! Booleans Box®!
exports
sorts BoxReduct BoxListReduct
context-free syntax

Box — BoxReduct

“[” Strategy “]” Box — BoxReduct
BoxList — BoxListReduct
“[” Strategy “]” BoxList — BoxListReduct
7t (BoxReduct) — Box

m, (BoxReduct) — Bool

my (BoxListReduct) — BoxList

m, (BoxListReduct) — Bool

20

variables
“r’[0-9'1* — BoxReduct
“r«”[0-9']% — BoxListReduct

equations
[1] mi(A) = A [2] m(A) = true
ﬂ ﬂtg[j] 1)4) = ﬁ ﬁ WbEEz] 34) = false
5 m(A* = A" 6 (A" = true
[7] m([s] A*) = A" 8] mp([s] A*) = false
module Box-BS
imports Box-SA B2
equations
Boxes
[1] [e] B=B
[2] [s1] B=B’, [s;] B'=B"
[81 '82] B = B”
[51] B= B’
3] [s1 + 5] B = B’
[52] B = BI
[4] [51 + 52] B = B’
[51] B= BI
R [s1 > 8] B = B’
[52] B = Bl .
[6] 555 B = B otherwise
1 2 =
Lists
[7] [e] B = B*
[8] [51] B* = BI*, [52] BI* _ BII*
[31 ~82] B* = B
[51] B* — BI*
1] [s1 + 2] B* = B"™
[52] B* — BI*
10 Py a—
[81] B* = B/*
1] [s1 > s2] B* = B"™
[12] [] B” = B” otherwise

[s1 > s2] B* = B"™

21

module Box-RS
imports Box-BSP? Recursive-Strategies®! Strategy-Substitution
equations

[1] [pv.s]B = [s[vi=pv.s]B

[2] [uv.s]B* = [s[vi=pv.s|] B

module Box-TS

imports Box-RS?2 Traversal-Strategies*?

equations
Strings
0 @{} = true
[pdg(s)] a = a

Box lists

@{} = true
2 -
? (9] =

[B=r, [pdg(s)] B* =r*, &{mp(r) mp(r*)} = true, m(r*) = C*

13 Plo() BB = m(n) C°

Box operators

[s] B* = r*, @&{mp(r*)} = true

’ [pde(9)] HIB"] = Him(r")]
[5] [s] B* = r*, @{m,(r*)} = true
[pdg(s)] VIB*] = V[m(r*)]
6] [s] B = r*, &{m,(r*)} = true
[pdg(s)] HV[B*] = HV[m(r*)]
7] [s] B = r*, &{m,(r*)} = true

[pdg (s)] VPAR[B*] = VPAR[m(r*)]

22

Technical Reports of the Programming Research Group

Note: These reports can be obtained using the technical reports overview on
our WWW site (URL http://www.wins.uva.nl/research/prog/reports/)
or using anonymous ftp to ftp.wins.uva.nl, directory
pub/programming-research/reports/.

[P9710]
[P9709)]

[P9705]

[P9704]

[P9703)]

[P9702]

[P9701]
[P9618]

[P9617]

[P9616]
[P9615)

[P9614]

[P9613]
[P9612]

[P9611]
[P9610]

[P9609)]
[P9603]

B. Luttik and E. Visser. Specification of Rewriting Strategies.

J.A. Bergstra and M.P.A. Sellink. An Arithmetical Module for Ratio-

nals and Reals.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation
of Components for Software Renovation Factories from Context-free
Grammars.

P.A. Olivier. Debugging Distributed Applications Using a Coordination
Architecture.

H.P. Korver and M.P.A. Sellink. A Formal Aziomatization for Alpha-
bet Reasoning with Parametrized Processes.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Reengineering
COBOL Software Implies Specification of the Underlying Dialects.

E. Visser. Polymorphic Syntax Definition.

M.G.J. van den Brand, P. Klint, and C. verhoef. Re-engineering needs
Generic Programming Language Technology.

P.I. Manuel. ANSI Cobol III in SDF + an ASF Definition of a Y2K
Tool.

P.H. Rodenburg. A Complete System of Four-valued Logic.

S.P. Luttik and P.H. Rodenburg. Transformations of Reduction Sys-
tems.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core Technologies

for System Renovation.
L. Moonen. Data Flow Analysis for Reverse Engineering.

J.A. Hillebrand. Transforming an ASF+SDF Specification into a Tool-
Bus Application.

M.P.A. Sellink. On the conservativity of Leibniz Equality.

T.B. Dinesh and S.M. Uskiidarli. Specifying input and output of visual
languages.

T.B. Dinesh and S.M. Uskiidarh. The VAS formalism in VASE.

J.A. Hillebrand. A small language for the specification of Grid Proto-
cols.

23

[P9607]

[P9606]

[P9605]

[P9602b]

[P9604]
[P9603)]

[P9602]
[P9601]
[P9512]

[P9511]

[P9510]

[P9509)]

[P9508]

[P9507]

[P9506]

[P9505]

[P9504]

[P9503]
[P9208c]

J.J. Brunekreef. A transformation tool for pure Prolog programs: the
algebraic specification.

E. Visser. Solving type equations in multi-level specifications (prelim-
inary version,).

P.R. D’Argenio and C. Verhoef. A general conservative extension the-
orem in process algebras with inequalities.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives
(revised version of P9602).

E. Visser. Multi-level specifications.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering
and system renovation: an annotated bibliography.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives.
P.A. Olivier. Embedded system simulation: testdriving the ToolBus.

J.J. Brunekreef. TransLog, an interactive tool for transformation of
logic programs.

J.A. Bergstra, J.A. Hillebrand, and A. Ponse. Grid protocols based on
synchronous communication: specification and correctness.

P.H. Rodenburg. Termination and confluence in infinitary term
rewriting.

J.A. Bergstra and Gh. Stefanescu. Network algebra with demonic re-
lation operators.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra
for synchronous and asynchronous dataflow.

E. Visser. A case study in optimizing parsing schemata by disambigua-
tion filters.

M.G.J. van den Brand and E. Visser. Generation of formatters for
context-free languages.

J.M.T. Romijn. Automatic analysis of term rewriting systems: proving
properties of term rewriting systems derived from ASF+4SDF specifica-
tions.

M.G.J. van den Brand, A. van Deursen, T.B. Dinesh, J.F.Th. Kam-
perman, and E. Visser (editors). ASF+SDF’95: a workshop on Gen-
erating Tools from Algebraic Specifications, May 11612, 1995, CWI
Amsterdam.

J.A. Bergstra and A. Ponse. Frame-based process logics.

J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (re-
vised version of P9208b).

24

