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Character Classes

Eelco Visser

Character classes are used in syntax definition formalisms as compact represen-
tations of sets of characters. A character class is a list of characters and ranges
of characters. For instance, [A-Z0-9] describes the set containing all uppercase
characters and all digits. One set of characters can be represented in many
ways with character classes. In this paper an algebraic specification of char-
acter classes is presented. We define a normalization of character classes that
results in unique, most compact normal forms such that equality of character
classes becomes syntactic equality of their normal forms.

1 Introduction

Program or data text is usually written as a list of characters in some character
encoding. The syntax of a programming language describes the structure im-
posed on such lists of characters by the language definition. Character classes
are used in syntax definition formalisms as compact representations of sets of
characters. A character class is a list of characters and character ranges. For
instance, the character class [A-Za-z] denotes the set of all upper- and lower-
case letters. Character classes are used in context-free grammars to abbreviate
productions. For instance, the lexical production®

[A-Za-z] [A-Za-z0-9]* -> Id

defines identifiers to be lists of characters starting with an upper- or lowercase
letter and followed by zero or more digits or upper- or lowercase letters. The
character classes in this production are implicitly defined by productions

"A" > [A-Za-z]
"B" -> [A-Za-z]

"z" -> [A-Za-z]
"a" -> [A-Za-z]

"z > [A-Za-z]

Operations on character classes are the standard set operations union, dif-
ference, intersection and complement with respect to a fixed set of characters.
Typical use of such operations is in the lexical production

n the syntax definition formalism SDF (Heering et al., 1989), a context-free production
that generates a string o from a non-terminal A is written as a — A, whereas conventionally
this is written as A - a or A ::= a in BNF.



[(\%1 [\%] “[\nl*x -> Comment

that defines comments as starting with two percent signs followed by zero or
more characters from the set of all characters except newline.

Characters can be encoded as numbers. The American Standard Code for
Information Interchange is a 7 bit character set standard established by ANSI
for representing alphanumeric and control characters. We will use this encoding
to uniquely identify characters and character ranges. Using AScCII the character
class [A-Za-z] becomes [\65-\90\97-\122]. However, this encoding is not a
crucial part of the techniques discussed in this paper. Other encodings and
larger character sets can also be accommodated.

Each set of characters can be represented by character classes in many ways.
For instance, [A-Za-7] is equivalent to [a-zA-Z] and to [A-Hk-zC-Za-1]. In order
to establish equality of classes one might test membership. A more efficient
way is to transform a class to a unique normal form, i.e., to find a unique
representation for each set of characters, by ordering the ranges in a class and
combining overlapping or neighboring ranges.

In this paper we give an algebraic specification of characters and character
classes and describe how character classes can be normalized to unique, most
compact normal forms. This includes a translation of characters to their numeric
encoding and simple arithmetic on numeric character codes. We define the
equivalence of two character classes and show that any two equivalent character
classes have the same normal form.

Requirements on the definition are (1) orthogonal and unrestrictive syntax,
i.e., all syntactically correct expressions should have a meaning and (2) efficient
rewriting implementation of the transformation.

1.1 Related Work

Character classes were introduced in many contexts as informal abbreviations
of a number of productions in a context-free grammar. The oldest explicit
description of character classes that we have found is in the manual of the lexical
syntax definition formalism LEX (Lesk and Schmidt, 1986)—that stems from
the early 70s—character classes are used in regular expressions. Here we start
from character classes in the syntax definition formalism SDF (Heering et al.,
1989). We have changed the definition to fit in the redesign of SDF described in
Visser (1995, 1997a). A predecessor of the specification in this paper appeared
in Visser (1994). See Section 9 for a comparison of these definitions.

The specification of character classes is written in the algebraic specification
formalism ASF+SDF. An introduction to and further literature on ASF+SDF
can be found in Van Deursen et al. (1996).

1.2 Overview

In Section 2 we define the syntax of numeric character codes and the syntax
of Ascit shortcuts for these codes. In Section 3 we define the normalization
of these Ascil shortcuts to their numeric equivalents. In Section 4 we define
some simple arithmetic on numeric character codes. In Section 5 we define
the syntax of character classes and several operations on character classes. In
Section 7 we define the normalization of character classes. In Section 8 sets of



character classes are introduced and are applied to partitioning character classes
into mutually disjoint sets.

2 Characters

A character is a constant of the form \d; ...d,, where the d; are decimal digits,
denoting the d; ...d,-th member of some finite, linearly ordered universe of
characters. Since specifying characters by their index in some encoding scheme is
difficult, we provide easier syntax for specification of characters. Alphanumeric
characters (letters and digits) can be specified as themselves. Other visible
characters in the ASCII set can be specified by escaping them using a backslash,
e.g., \ ( for left parenthesis, \- for a hyphen and \ (a backslash followed by a
space) for space. The characters \t and \n represent tabs and newlines. Finally,
there are two special characters, \EOF and \TOP. \EOF is the character used
to indicate represent the end of a file. \TOP is used to represent the largest
character in the character universe.

module Character-Syntax
imports Layout
exports
sorts Character NumChar ShortChar
lexical syntax
[\][0-9]+ — NumChar
[a-zA-Z0-9] — ShortChar
[\]~[\000-\037A-Za-mo-su-z0-9] — ShortChar
context-free syntax
NumChar — Character
ShortChar — Character
“\TOP” — Character
“\EOF” — Character
variables
“c”[0-9']x — Character

Remark In SDF numeric character codes in character classes are interpreted
as octal numbers, whereas in the character classes defined in this paper the deci-
mal encoding is used. Therefore, the definition above defines as short characters
all symbols composed of a backslash followed by a character not in the range
\0-\37, i.e, all AscII characters until and not including the space character.

3 Character Normalization

The short characters introduced in the previous section are mnemonic shortcuts
for numeric character codes, according to the following rules. (1) Each printable
AscTI character preceded by a backslash (\) denotes its ASCIT number, except
for \t and \n that denote tab and newline. (2) The letters A-Z and a—z and
the digits 0-9 denote their ASCII numbers. The following equations translate
short characters to numeric characters according to these rules and the AsciI
encoding scheme.

module Character-Normalization
imports Character-Syntax>



equations
Leading zeros are redundant.

(1] numchar("\" "0" ¢*) = numchar("\" ¢*)

The constant \TOP denotes the highest character. In this setting we define top
to be \255 such that all byte represented characters can be handled.

(2] \TOP = \255
(3] \EOF = \0

All asciI symbols preceded by a backslash are translated to their corresponding
ASCII code. Digits and letters have the usual encoding except for \t and \n,
which conventionally denote tab and newline.

[4] \t = \9 5] \n = \10

6] \u = \32 [7] \! = \33 8] \" = \34
[9] \# = \35 [10] \$ = \36 [11] \% = \37
[12] \& = \38 [13] \’ = \39 [14] \( = \40
[15] \) = \41 [16] \*x = \42 [17] \+ = \43
[18] \, = \44 [19] \- = \45 [20] \. = \46
[21] \/ = \47

[22] 0 = \48 [23] 1 = \49 [24] 2 = \b0
[25] 3 = \51 [26] 4 = \b2 [27] 5 = \53
[28] 6 = \54 [29] 7 = \55 [30] 8 = \56
[31] 9 = \57

[32] \: = \58 [33] \; = \59 [34] \< = \60
[35] \= = \61 [36] \> = \62 [37] \? = \63
[38] \@e = \64

[39] A = \65 [40] B = \66 [41] C = \67
[42] D = \68 [43] E = \69 [44] F = \70
[45] G = \71 [46] H = \72 [47] I =\73
[48] J =\74 [49] K = \75 [50] L = \76
[51] M = \T77 [52] N = \78 [53] 0 =\79
[54] P = \80 [55] Q = \s1 [56] R = \82
[57] S = \83 [58] T = \84 [59] U = \85
[60] Vv = \86 [61] W = \87 [62] X = \88
[63] Y = \89 [64] Z = \90

[65] \[ = \91 [66] \\ = \92 [67] \]l = \o3
[68] \" = \94 [69] \_ = \95 [70] \‘ = \96
[71] a = \97 [72] b = \98 [73] c = \99
[74] d = \100 [75] e = \101 [76] f = \102

=~



[77] g = \103 [78] h = \104 [79] i = \105
[80] j = \106 81] k = \107 82] 1 = \108
[83] m = \109 [84] n = \110 [85] o = \111
[86] p = \112 [87] q = \113 (88] r = \114
[89] s = \115 [90] t = \116 [91] u = \117
[92] v = \118 [93] w = \119 [94] x = \120
[95] y = \121 [96] z = \122

[97] \{ = \123 [98] \| = \124 [99] \} = \125
[100] \" = \126

4 Character Arithmetic

We define some simple arithmetic functions on characters, namely, predecessor
and successor functions, maximum and minimum of two characters and the
inequality relations < and <. These functions will be needed to compute normal
forms of character ranges. The functions are defined by translating character
codes to integers and using the appropriate integer operations to perform the
computation. See Appendix B.3 for the specification of integers.

module Character-Arithmetic

imports Character-Normalization® Integers®-?

exports
context-free syntax
int(Character) — NatCon
char(Int) — Character
pred(Character) — Character
succ(Character) — Character
Character “=” Character — Bool

Character “<” Character — Bool
Character “<” Character — Bool
max(Character, Character) — Character
min(Character, Character) — Character

equations

[1] int(numchar("\" ¢*)) = natcon(c™)

[2] char(natcon(¢™)) = numchar("\" ¢T)
3] pred(c) = char(int(c) — 1)

[4] succ(c) = char(int(c) + 1)

[5] max(cy, cz) =¢; when ¢y <c; =T
[6] max(cy, cz) = ¢z otherwise
[7] min(cy, c2) =¢; when ¢ <co =T
8] min(cy, c2) = ¢o  otherwise



Characters can be compared with the relational operators =, < and <. A
character ¢y is < than a character cs if they are equal or if ¢; is less than ¢,

9] g <cy =1 when pred(\000) = c,
[10] ¢; < ¢ =int(c;) < int(c2) otherwise
[11] c<c=T

[12] c1 <cpg=cy3 <cy when c; #co

[13] c=c=T

[14] ¢t =c2 =1 otherwise

5 Character Classes

A character class is represented by a list of character ranges. A range is either
a single character or a pair of characters connected with a hyphen denoting the
characters in the inclusive interval between the two boundaries. A list of ranges
is either a single range or the concatenation of two lists. The list of ranges
in a class is optional, i.e., can be empty. Operations on character classes are
complement ~, difference /, intersection A, and union V.

module Character-Class-Syntax

imports Character-Syntax>

exports
sorts CharRange CharRanges OptCharRanges CharClass
context-free syntax

Character — CharRange

Character “—” Character — CharRange

CharRange — CharRanges

CharRanges CharRanges — CharRanges {right}

“(” CharRanges “)” — CharRanges {bracket}
— OptCharRanges

CharRanges — OptCharRanges

“I” OptCharRanges “|” — CharClass

“~” CharClass — CharClass

CharClass “/” CharClass — CharClass {left}

CharClass “A” CharClass — CharClass {left }

CharClass “V” CharClass — CharClass {left }

“(” CharClass “)” — CharClass {bracket}

priorities

“~”CharClass — CharClass > CharClass “/”CharClass — CharClass
> CharClass “A” CharClass — CharClass >
CharClass “V”CharClass — CharClass

variables
“er’[0-9']% — CharRange
“er” “x”[0-9']%* — OptCharRanges
“er” “47[0-9']%* — CharRanges
“cc”[0-9"]x — CharClass



6 Membership

The semantics of character classes is defined by means of the predicate € that
determines whether a character is a member of a character class. We can then
define that a character class cc corresponds to the set {c|c € ec}. The crucial
equation is equation [in3] that defines the membership of a character in a range.
Furthermore, concatenation of ranges is union (disjunction) and complement is
defined with respect to the class [\0 — \TOP]. The subset relation and equiva-
lence on character classes can then be defined in terms of €. The predicate C
characterizes the inclusion of a class in another class, i.e., a class ¢; is included
in a class cy if all characters in c¢; are also contained in c».

module Character-Class-Membership
imports Character-Class-Syntax® Character-Arithmetic* Booleans
exports
context-free syntax
Character “€” OptCharRanges — Bool
Character “€” CharClass — Bool
CharClass “C” CharClass — Bool
CharClass “=” CharClass — Bool
equations
List of ranges: range corresponds to interval and concatenation corresponds to

B.1

union.

[1] cec=T

[2] cec’'=1 when c#c’
3] c€cp—c=cg<cAc<c
[4] ce =1

[5] cEcrf'crj:cEcrf‘VcEcr;'

Character classes: membership of character class is defined in terms of mem-
bership of its range list.

6] c€ler*]=cé€cr*

Boolean operations: complement is defined with respect to the range \0 — \TOP.

[7] c€~cc=ce[\000 — \TOP] A ~c € cc
8] CEcey [ cca =CEcey N~cCE ceo

[9] cEccg Ncco =c€E€ccy NCE cep

[10] cCE€ccp Veey=c€Ececr VceE cer

[11] Cecc=T

[12] [c]Cecc=c€E ce

[13] [c—c]Cecc=c€Ece

[14] [c1 —ce] Cec=cy € cc A [succ(cy) —ca] Cece when ¢y <co=T
[15] [er;™ ery’] € ce=[er] C cc A [ersf] C cc

Equivalence: two character classes are equivalent if both are subsets of each
other.

[16] ccy = cca = ccqp € ceo A cea C ceq



Later we will also formulate equivalence as Vc: ¢ € cc; <= ¢ € cco, which is
equivalent to [eqv].

7 Character Class Normalization

In this section we define equations for range list concatenation that reduce range
lists such that two classes are equivalent if and only if they have the same normal
form, i.e., Veey, ceo : cey = ceca <= decg 1 cep —» ceg 4— ceo.

An obvious normal form would be to expand all ranges to lists of characters,
and sort the resulting set of characters. However, with large character sets this
is an expensive representation. The normal form of a character class defined
below consists of a list of characters and ranges such that the ranges are mutually
non-overlapping and such that they are sorted in increasing order. For example,
the normal form of [A-Z0-9\%z-a] is [\37\48-\57\65-\90]. This is the most
compact representation of a set of characters. In the worst case, when every
other character is included in a class, it has size n/2 with n the number of
characters. But in most cases this will be much smaller. The expansion method
always produces a class the size of the number of characters in the class.

module Character-Class-Normalization

7.1 Preliminaries

imports Character-Class-Syntax® Character-Arithmetic*
Character-Class-Membership®

hiddens
context-free syntax
“p” — CharRange
if(Bool, CharClass, CharClass) — CharClass
head(CharRanges) — CharRange
tail(CharRanges) — CharRanges

CharRange “<” CharRange  — Bool
CharRange “<«” CharRange — Bool
CharRange “~<«” CharRange — Bool

sorted(OptCharRanges) — Bool
sorted(CharClass) — Bool
equations

A range from a character to itself denotes just the set containing that character.
[1] c—c=c

The constant range () denotes an empty range, i.e., a set containing no charac-
ters. It can thus be removed from a class. The constant is used to normalize
degenerate ranges like \10 — \9 that are empty.

[2] ci —co=0 when ¢; <cp =1
From now on we will assume that all ranges ¢; —c5 in left-hand sides of equations
are proper, i.e., ¢; < Cs.

Conditional: choose between two character classes depending on condition.

[3] if(T, cer, ce2) = ceq



[4] if(L, cer, cea) = ceo
The head and tail of a list of character ranges.

[5] head(cr) = ecr 6] tail(cr) =0
[7] head(cr cr™) cr 8] tail(cr cr™) ert

A range crq is left-smaller than a range cro if cry’s left edge is smaller than cra’s
left edge. We have, for instance, that \10 — \35 < \16 — \92.

[9] cp <c3=c¢; <c3
[10] ] <C3 —¢c4=¢c; <cC3
[11] cp —Cy <c3=c; <cg
[12] g —C<c3—cg=c <C3

A range cry is smaller than a range cro if cry’s right edge is smaller than cra’s
left edge. For example, \10 — \35 <« \36 — \92.

[13] cp ¥c3=c <c3
[14] C] KC3 —C4=¢ <C3
[15] Cp —Cy K C3 =cCy <C3
[16] Cp —C KC3 —C4g=cCy <C3

A range cry is strictly smaller than a range cry if cry’s right edge is at least
one smaller than cry’s left edge. For example, \10 — \34 <&k \36 — \92, but not
\10 —\35 <K \36 — \92. This entails that if cr; <& crs, the ranges cr; and crs
do not overlap.

[17] €1 <K ¢z =succcr) < c3
[18] €1 <K c3 — cq =suce(ey) < c3
[19] €1 — €2 <K c3 = succ(cp) < c3
[20] €1 — Cp <K ¢c3 — ¢q = succ(cp) < c3

A list of ranges is sorted if each range is strictly smaller than its successor. A
character class is sorted if its list of ranges is sorted.

[21] sorted() =T

[22] sorted(cer) =T

[23] sorted(er; cre) = e¢rp <K cry

[24] sorted(cry cry ert) = crp <K cry A sorted(ery cr™)
[25] sorted([er*]) = sorted(er*)

7.2 Sorting and Merging Range Lists

We define normalization of the concatenation of character ranges such that its
normal forms are always sorted.

hiddens
sorts Result
context-free syntax
“<” CharRange “>” — Result
CharRange “>” CharRange — Result



equations

First we define the operator > that merges to overlapping ranges, provided
that the first is smaller than the second. The following five cases have to be
considered.

[26] c>c = (c)

succ(cy) = co

[27]

cg>ce = (¢ —ca)
[28] C1 S C3 = T, C3 S SuCC(Cz) =T
cp —ca > cg = {c; — max(ca, c3))
[29] L =¢c V succ(cl) = Cy = T
cg>ce—c3 = (¢ —c3)
0] c1 <c3=T, c3 <suce(ec) =T

cp —Cy > cg —¢g = (c; — max(ca, cyq))

Using this operation we can define the normalization of a concatenation of
ranges. In the first place, the empty range is a unit for concatenation and
a class with only an empty range is equal to the empty class.

[31] [0] =1
[32] 0 ert=crt
[33] crt ) =crt

The steps involved in normalizing a list of character ranges are
e make the list right associative
e order the ranges with respect to <
e merge overlapping ranges.

We could achieve this by means of the following equations.

(eri erf) erd = cerf (er] ord)
cro <crp =T cro <crp =T
cri cry = cry crq ery (erg ert) =cry (crqg ert)
cry D> ere = (crs) cry D> erg = {crs)
cry cry = cr3 cry (ery ert) =crz ert

However, if we assume that the lists that are being concatenated are already in
normal form, we can achieve a more efficient definition of concatenation. This
is formalized in the next three equations. The head range of the first list is
only made the head range of the new list if it is strictly smaller than the head
of the second list. (By induction it is already strictly smaller than the head
of the rest of its own list.) The second equation commutes the arguments of a
concatenation if the second is smaller than the first. The third equation merges

10



the heads of two lists into a single range and then concatenates the result with
the tail of the first list.

cry <& head(ery ) =T

34
134 (cry eryt) ery = er ery ery
head(cry") < head(er) =T
[35] ¥ o+ _ F 7
cry” cry = cry cr
36] head(cr;") > head(cry') = (crs)
eriter = (crs tail(erh)) tail(ery”)

Union of character classes is now defined by concatenating the range lists of the
two classes.

[37] [V ce=ce
(38] ce V[ = e
[39] [ery "]V [ery] = [er{” er)]

7.3 Difference

The difference ccy /ces of two classes ce; and ces is the class ees that contains all
characters that are in ccy, but not in cc. We introduce the following auxiliary
function.
hiddens
context-free syntax
CharRange “/” CharRange — CharClass
equations

First we define the difference of single character ranges.

[40] C1 / Cy = if(Cl = Cog, [], [Cl])
[41] C1 / C3 — C = if(Cg S C1 A} C1 S Cyq, [], [Cl])
[42] Ci — Co / C3 = if(Cl S c3 N\ C3 S Ca,

[c1 — pred(c3) succ(cz) — ¢z, [e1 — c2])

succ(eq) = ¢

[43] . /
cg—ce/c3—cg = if(cz <ca A <cy,

[c1 — pred(cs) ¢ — ¢z, [e1 — ¢2])

If either character class is empty, the difference is immediate.

[44] [/ ce=1l

[45] ce [ [] = cc

If there is no overlap between the first two ranges in the list, then the smallest
can be skipped.

head(er,") < head(er’) =T

) (e 1/ lerg] = [ery]/ frail(ery )]

11



head(cr;") < head(cr,”) =T
[er"] / [ery"] = [head(er)] V [tail(er,")] / [er,']

[47]

If the conditions of the previous two equations fail, then the first two ranges
have an overlap. In this case the differences between these ranges are taken.

head(crl—"_) =cr, head(cr;) = Crp

[er] [ [ersT] = (ery /[ ery V [tail(eryT)])
/ (ers [ er V [tail(cr;)])

[48] otherwise

7.4 Other Operations

Now we can define the other operations on character classes. The complement
with respect to [\0 — \TOP]. The complement of classes of more than one range
is defined in terms of difference.

[49] ~ [] = [\0 — \TOP]
[50] ~ [ert] =[\0 — \TOP] / [erT]

Intersection is defined in terms of difference.
[51] cer A cea = cey [ (eer [ ees)
Equality boils down to syntactic equality. See Appendix A for a justification.

[52] cc=cc=T
[53] ccy = ceo = 1L when cep # ceo

A character is a member of a character class if it is contained in one of its ranges.

[54] cec=T

[55] cec’'=1 when c#c’
[56] c€cp —c=ci <cAc<cy

[67] ce =1

[58] c€crer™=1 when c<cr=T
[59] c€crer™=T when c€cr=T
[60] c€crert=ceert

[61] c€ler*]=cé€cr*

A character class cc; is a subset of a character class ccy if the union of the two
classes equals cco.

[62] ccCecc=T
[63] [c]Cecc=c€E ce
[64] ccy € cca = ccp V cey = cecp  otherwise

In Appendix A we will prove the following lemmas and the correctness the-
orem they entail. The first main lemma states that the equations for sorting
range lists are sound with respect to equivalence.

12



Lemma 7.1 (Soundness) [cr] =g [cr3] = [cr]] = [er}]

The completeness lemma states that every range list reduces to a sorted
range list. Two other lemmas state that sorted range lists are in normal form
and that no two different sorted range lists are equivalent.

Lemma 7.2 (Completeness) Very3ers : sorted(cry) A erf —» crl

Finally, the correctness theorem states that any two equivalent character
classes have the same sorted normal form.

Theorem 7.3 (Correctness) Vccy,ces @ cop = cep < Jees @ cop —» ceg 4—
ceo A sorted(ces)

This concludes the specification of character classes. In the next section an
application of character classes is defined.

8 Sets of Character Classes

As an application we define the data type of sets (or rather lists) of character
classes. The difference and intersection operators work on the product of sets
of character classes, i.e., they apply the corresponding character class operation
to each pair in the cartesion product of the argument sets. These operations
are used to define the partioning of sets of character classes. The result is a set
of character clases that are pairwise disjunct, as is illustrated in Figure 1. This
partioning operator can be applied to determine the smallest partioning of a set
of transitions with characters that may overlap. For example, the partitioning

of
{3 : [\t\n\ 1 : [A-Za-z] : [t]
is
{[\116] [\009-\010\032] [\065-\090 \097-\115 \117-\122]}

This is used in the parser generator for SDF2 (Visser, 1997b) to compute max-
imal common lookahead between productions.

module Character-Class-Sets
imports Character-Class-Normalization”
exports
sorts CharClassSet
context-free syntax
“{” CharClassx “}” — CharClassSet
CharClassSet “H” CharClassSet — CharClassSet {assoc}
CharClassSet “/” CharClassSet — CharClassSet {left}
CharClassSet “A” CharClassSet — CharClassSet {left}
CharClassSet “:” CharClass — CharClassSet
“(” CharClassSet )” — CharClassSet {bracket}
priorities
CharClassSet “A” CharClassSet — CharClassSet >
CharClassSet “/”CharClassSet — CharClassSet >
CharClassSet “+”CharClassSet — CharClassSet

13



variables
“ec” “x”[0-9']* — CharClass*
“cc” “47[0-9']%* — CharClass+
“ces”[0-9']*  — CharClassSet

equations

Remove empty classes

1] {et [] ces} = {ef ces}
Concatenation

[2] feei} + {ecs} = {ecf et}

The difference ccsy /cesy takes the difference of each class in ces; with all classes
in ccss.

3] ces [ {} = ces

[4] {} / ces={}

[5] {ech [ {ec'} = {ec [ e’}

[6] ces [ {ee; ces y = ces | {eet}y [ {eesS}

[7] {eefm eest} [ ces = {ceft} | ces + {ce) } ] ces

The pairwise intersection ccs; A ccsy is the set of classes cecss that contains the
intersection of each pair of classes in ccs; and ccss.

8] ces A} = {}

[9] {} Aces={}

[10] {ec} Aec'} ={ccA ec'}

[11] ces A {ee;t eety = ces A {eelt} H ces A {ees )
[12] {ee cest} A ces = {ce] } A ces +H {ees ) A ces

The partitioning of two sets.

[13] ces: cc = ces A\ {cec} H ces [ {ec} H {cc} [ ces

9 Related Work

In this section we briefly compare our definition with the character classes in
LEX and SDF and discuss some previous attempts to specify character classes

in ASF+SDF.

Character Classes in LEX LEX is the lexical syntax definition formalism
of YACC (Lesk and Schmidt, 1986). Basic character classes look like the ones
defined in this paper: a list of characters and character ranges between square
brackets. The use of the backslash as escape character is also the same. The
differences are: Numeric characters can be specified in the same way but are
interpreted as octal numbers. The character ~ as first in the list indicates the
complement of the class. The list of ranges is lexical, meaning that spaces are
significant and denote the space character. No other operations on character
classes than complement are provided.

The character classes in LEX are summarized by the following table (due to

Aho et al. (1986)):
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((C/(A/B))/(ANB))
/(B/A)

Figure 1: The partitioning of three sets A, B and C. This can be expressed by
{}:A:B:C.

Expression Matches Example
c any non-operator character ¢ a
\¢ character c literally \*
\ddd character with Ascit code ddd (octal) \040
any character but newline a.xb
- beginning of line ~abc
$ end of line abc$
c1—Co any character in range ¢; — co A-Z
[s] any character in s [abc]
["s] any character not in s [“abc]

Character Classes in SDF In SDF character classes are defined lexically as
a list of characters between square brackets. This is interpreted after parsing
as a list of characters and character ranges. Therefore, the space character
is significant. Only complement is provided as operation on character classes.
Numeric characters use octal encoding.

10 Concluding Remarks

We have defined an algebraic specification of character classes that defines
unique normal forms for character classes. The specification of the redesigned
syntax definition formalism SDF (Visser, 1995, 1997a) makes use of the speci-
fication of characer classes in this paper. The partitioning of a list of character
class is used in the specfication of a parser generator for context-free grammars
with character classes (Visser, 1997b).
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A Correctness

Now we will show that any character class has a unique, most compact normal
form that has the same meaning as the original class, i.e., denotes the same set
of characters. We use the following notation:

e — indicates literal, syntactic equality

e = indicates equivalence of character classes according to the definition in
Section 6.

e —p indicates equality derivable by equations above

e —» indicates reducible by equations above as rewrite rules oriented from
left to right

e nf(z) indicates that z is in normal form with respect to the rewrite rules

First we check the soundness with respect to equivalence of the equations
that sort a range list. As an auxiliary result we need the following lemma about
the merging of ranges.

Lemma 1.1 cry > cry =g {(cr3) = Ve: (c Ecry Ve € cra < c € cr3)

Proof. We have to check for each of the equations [26] until [30] that the
condition holds. For [26], [27] and [29] this is trivial.
For equation [28] we have the following argument

c€cp—caVcEcs

<= by definition of range membership
(a1 <che<e)Ve=c3

<= by conditions of [mrg3]
¢1 < cAce< max(es,cs)

For equation [30] we distinguish two cases. In case (1) range c3 — ¢4 partially
overlaps and partially extends to the right of the range ¢; — ¢o, i.e., we have
cy |_|Cz

the situation . In case (2) range ¢z — ¢4 is included in range

Cs| |C4
c1 |—|Cz

€1 — co, i.e., we have . We then argue as follows

c3 |_|C4
(c€cr—c2)V(c€Ecz —cq)
<= by definition of range membership
(1 <cNhe<er) V(s <cAc<ey)
case (1) assume ¢z < c4:
<= by condition ¢; < c3 < ¢o
(c1 <cAhc<e)V(es<cAc<e)V(ca<cAhe<ey)
c1 |—|62
|
(c1 <cAhec<e)V(ea<che<Ley)
—
(c1 <cAhe< )
<= by assumption max(cs,cq4) = ¢4

<= by diagram:

Cs| |C4
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(n

(c1 < cAe < max(ca,cq))

case (2) assume ¢4 < ¢3 :
c1 |

<= by diagram: s —fes |
(c1 <cAhe<e)

<= by assumption max(cs,cq4) = co
(c1 < cAe < max(ca,cq))

<= by definition of range membership for case (1) and (2)
¢ € ¢ — max(cg, cq)

O
Now we can verify that the equations on range-list concatenation preserve
membership.

Lemma 1.2 (Soundness) crf =g cry = Ve: (c € orf < c € cri)

Proof. We have to check that the equations over range concatenation preserve
membership of character ranges. For equations [32] and [33] this is clear since
() denotes the empty range. Equations [34] and [35] only permute the order of
the ranges and therefore leave the membership intact. For equation [36] we get
soundness via the previous lemma. O

From this lemma follows that the equations above preserve character class
equivalence.

Corollary 1.3 (Soundness) [crf] =g [er3] = [erf] = [er]]

Next we show that every character class reduces to a sorted character class
that is in normal form. First we show some properties of sortedness. If a
character class is sorted it can not be rewritten, i.e., is in normal form.

Lemma 1.4 (Normal Form) sorted(cr*) = nf(cr*)

Proof. If cr* is sorted it must be right-associative and not contain ()s. Fur-
thermore, equation [35] does not apply because cry <K cra = —(cr; < erz).
Also equation [36] does not apply because cr; <& cry implies that crq and cry
have no overlap. O

Lemma 1.5 The smallest element of a character class is the first element in
the sorted range list.

The next lemma shows that there is exactly one unique sorted character
class per equivalence class.

Lemma 1.6 (Unique) sorted(cry) A sorted(cry) A [erf] = [er3] = crf = cr}
Proof. By induction on the lengths n and m of the lists X = ¢rj and Y = cry.

= 0) then m must also be 0.

(n+ 1) : by induction on m:

(m = 0) Contradiction with equivalence.
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(m + 1) Consider the first range in X and Y. Their first element must be the
same (previous lemma). If their last element is also the same, then,
by induction hypothesis, we have that the rest of the ranges are also
the same. On the other hand, if the right edge of X; = ¢; — ¢2 is not
equal to right edge of Y] then take ¢ = succ(ez). Then ¢ ¢ X and by
equivalence c ¢ Y. a

Lemma 1.7 (Merge) —(cra < cri) A—(crp <& cry) <= cry > crg — {(crs)

Proof. For each combination of ranges we have to check this. We examine
the case of two ranges, i.e., cry = ¢; — ¢s and cry = ¢3 — ¢4. The premisses
(ery < erp) A—(erp =<K ery) then entail =(e3 < ¢1) = ¢ < ¢3 and ~(succ(ez) <
c3) = ¢z < succ(ez), which fullfills the conditions of equation [30] such that
cry D> ere = {1 — max(ca, cq))- O

Any character class reduces to a sorted character class. Since the equations,
and thus the rewrite rules, preserve equivalence, we have that each character
class is equivalent to a sorted character class.

Lemma 1.8 (Completeness) Veri3ers : sorted(ery) A crf —» cr

Proof. (Sketch) If erf is the empty list then this is immediate. Therefore,
assume that crf = crf‘, a non-empty list. Furthermore, we can safely assume
that the ranges in crf‘ are proper. If this is not the case we can first rewrite
the ranges using equations [1] and [2]. Equations [34], [35] and [36] merge two
range lists that are already sorted into a sorted list. O

Finally, we show that any two character classes are equivalent if and only if
they have the same, sorted normal form.

Theorem 1.9 (Correctness) Vcey,ceo : cop = cea <= Jees @ cep —» cez 4—
ceo A sorted(ces)

Proof. (=) According to Lemma 1.8 there are sorted ccs3 and ccy such that
ccp —» cez and ceg —» cey. By Lemma 1.3 we have that cez = ec; and ceqy = ces.
We now have cc3 = cc; = cea = ceq and thus ceg = cey. By sortedness of ccs
and ccy and Lemma 1.6 it then follows that cc3 = cey.

(<) By Lemma 1.3 we have that cc; = cez and cea = ces. By transitivity of
=, cc; = ces. g

B Auxiliary Modules
B.1 Booleans

module Booleans
imports Layout
exports
sorts Bool
context-free syntax

“T” — Bool
“1” — Bool
“~” Bool — Bool
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Bool “A” Bool — Bool {assoc}

Bool “@” Bool — Bool {assoc}
Bool “v” Bool — Bool {assoc}
“(” Bool “)? — Bool {bracket}
“if” Bool “then” Bool “else” Bool “i” — Bool

priorities

“~"Bool — Bool > Bool “A”Bool — Bool > Bool “©”Bool — Bool >
Bool “V”Bool — Bool

variables
“Bool”[0-9"]* — Bool

equations
[1] ~1l=T
2] ~T=1
[3] T A Bool = Bool
[4] 1 A Bool= 1
[5] T & Bool = ~ Bool
[6] 1 @ Bool = Bool
[7] TV Bool=T
[8] 1V Bool = Bool
[9] if T then Bool; else Bools fi = Bool;
[10] if 1L then Bool; else Bool, fi = Bool,

B.2 Basic Integers

module Basic-Integers
imports IntCon

exports
sorts Int
context-free syntax
IntCon — Int

con(Int)  — IntCon
abs(Int) — NatCon
Int “+” Int — Int {left}
hiddens
variables
“c”[0-9]* — CHAR
“cx”[0-9x — CHARx
“c+7[0-9x — CHAR+
equations
Constant

[1] con(z) = z
Absolute value

2] abs(n) = n
3] abs(—n) =n
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Addition

[4]
[5]

O+n=mn
n+0=mn

Addition of single digit natural numbers

6
9
1
1
1
2
2

]
]
2
5

W W W N
S W O N = 0

w
o

4

[
[
[
[
[
[
[
[
[
[
[
[
[
[4
[
[
[
[
[
[
[
[
[
[
[
[
[

[SA )

4

(S
—_

~N OO oS ot ot
LN O O WO N

]
(e

8
8

1

AR O O3 WO N 00 0L O WO e 00 O

=~

1+1 =2 7] 1+2 =3 8] 1+3 =
1+4 =5 [10] 1+5 =26 [11] 1+6 =
147 =8 [13] 1+8 =09 [14] 149 =
2+1 =3 [16] 242 =4 [17] 2+3 =
2+4 =6 [19] 245 =7 [20] 246 =
247 =9 [22] 2+8 = 10 [23] 249 =
3+1 =4 [25] 3+2 =75 [26] 3+3 =
344 =17 [28] 345 =38 [29] 3+6 =
347 =10  [31] 348 =11 [32] 3+9 =
441 =75 [34] 442 =6 [35] 4+3 =
4+4 =38 [37] 445 =09 [38] 446 =
447 =11 [40] 448 =12 [41] 449 =
541 =6 [43] 5+2 =17 [44] 5+3 =
544 =09 [46] 5+5 = 10 [47] 5+6 =
547 = 12 [49] 5+8 = 13 [50] 5+9 =
6+1 =7 [52] 6+2 =8 [53] 6+3 =
6+4 =10  [55] 6+5 =11 [56] 6+6 =
6+7 =13  [58] 6+8 = 14 [59] 6+9 =
7+1 =38 [61] T+2=09 [62] 7T+3 =
T+4 =11 [64] T+5 = 12 [65] T+6 =
T+7 =14  [67] 7+8 = 15 [68] 7T+9 =
8+1 =09 [70] 8+2 =10 [71] 8+3 =
8+4 = 12 73] 8+5 =13 [74] 8+6 =
8+7 =15 [76] 8+8 = 16 [77] 8+9 =
9+1 =10  [79] 9+2 =11 [80] 9+3 =
9+4 =13  [82] 9+5 =14 [83] 9+6 =
9+7 =16  [85] 9+8 =17  [s6] 9+9 =

Addition of multiple digit natural numbers

[87]

[88]

[89]

natcon(c;) + natcon(cz) = natcon(c* ¢),
natcon(c;”) + natcon(c;”) + natcon("0" ¢*) = natcon(c™)

natcon(c;” ¢;) + natcon(c;” ¢2) = natcon(c™ c)

natcon(c;) + natcon(cz) = natcon(c* ¢),
natcon("0" ¢) + natcon(c,” ) + natcon("0" ¢*) = natcon(c™)

natcon(c} ¢;) + natcon(c,” ¢2) = natcon(c™ c)

natcon(c;) + natcon(cz) = natcon(c* ¢),
natcon(e¢;") + natcon("0" ¢4) + natcon("0" ¢*) = natcon(c™T)

natcon(c;” ¢;) + natcon(ch c2) = natcon(c™ c)
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B.3 Integers

module Integers

imports Basic-Integers®-? Booleans?!
exports
context-free syntax
Int “=” Int — Int  {left}

Int “¢” Int — Int  {left}
“(” Int ) — Int  {bracket}

Int “>” Int — Bool
Int “>” Int — Bool
Int “<” Int — Bool
Int “<” Int — Bool
priorities
Int “«”Int — Int > {left: Int “4+”Int — Int, Int “—"Int — Int}

hiddens

context-free syntax
NatCon “—/” NatCon — NatCon
NatCon “—//” NatCon — NatCon
NatCon “>" NatCon — NatCon
“(” NatCon ¢)” — NatCon {bracket}
gt “(” NatCon “,” NatCon “)” — Bool

variables

“c”[0-9]* — CHAR
“cx”[0-9x — CHARx
“c+7[0-9x — CHAR+
equations
Cut off subtraction

[1] natcon(e) —// natcon(c) =0
[2] natcon(c) —// 0 = natcon(c)

Cut off subtraction for single digit natural numbers

3] 2-//1 =1

[4] 3-//1 =2 [5] 3-//2 =1

] 4-//1 =3 [ 4-//2 =2 [§ 4-//3
9] 5-//1 =4 [0 5-//2 =3 1] 5-//3
2] 5-//4 =1

) 6-//1 =5 [14 6-//2 =4 [15] 6-//3
6] 6-//4 =2 171 6-//5 =1

[18] T—//1 =6 [19] T-//2 =5 [20] 7—//3
1] 7-//4 =3 221 T7-//5 =2 [23] T7-//6
24 8-//1 =7 [25) 8-//2 =6 [26] 8-//3
271 8-//4 =4 28] 8-//5 =3 [299 8-//6
[30] 8—//7 =1

[31] 9-//1 =8 [32] 9-//2 =7 [33] 9-//3
34 9-//4 =5 3] 9-//5 =4 [36] 9-//6
3717 9-//7 =2 [38] 9-//8 =1
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39] 10-//1=9 [40] 10-//2=8 [4] 10-//3=7
[42]  10—//4 10-//5 10—-//6
[45] 10—/ 7 = 10-//8 =2 [471 10-//9 =1

Il
(@2}
=~
)
Il
ot
i~
o
Il
I

|
w
=
2

Greater than

natcon(e;) —// natcon(ez) = natcon(c), natcon(c) # 0

48] gt(natcon(c;), natcon(e2)) = T

[49] gt(natcon(c;" ¢1), natcon(cz)) = T

[50]  gt(natcon(c™ ¢1), natcon(c™ ¢2)) = gt(natcon(cr), natcon(ez))
1] gt(natcon(¢;"), natcon(cy")) = T

gt(natcon(c;" ¢;), natcon(cy™ ) = T

Partial substraction

[52] n>0=n
[53] natcon(e;) > natcon(ez) = natcon(e;) —// natcon(cz)
natcon(c;) —// natcon(cz) = natcon(cs),
54] natcon(c;”) = natcon("0" ¢;) = natcon(c™)
natcon(c;” ¢;) = natcon(cs c2) = natcon(ct c3)
natcon(cz) —// natcon(c;) = natcon(cs),
10 —// natcon(c¢s) = natcon(c),
natcon("0" ¢3) + 1 =n,
5] natcon(c;") = n = natcon(c™)

natcon(c;” ¢;) = natcon(c} ¢;) = natcon(ct ¢)
Cut off subtraction -/

[56] n —/ n2=mn1 = ny when gt(ng, ny) =T
[57] n —/ n2 =0 when gt(ng, ny) # T

Subtraction of naturals

[58] n — ng =m = ny when gt(ng, ny) =T
[59] m —ng = —ny >=mn; when gt(ng, ny) #T

Multiplication of naturals
[60] nx0 = 0
[61] nxl = n

gt(natcon(c), 1) =T

[62]

n * natcon(c¢) = n + n* (natcon(c) — 1)
631 natcon(e¢;") * natcon(c;”) = natcon(ct)
3]

natcon(c;") * natcon(c,” ¢) = natcon(ct "0") + natcon(c;") * natcon(c)
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Addition, subtraction, and multiplication of integers

[64] m + —no =Ny — no
[65] —ny + no =Ny — My
[66] —m +—n=—n when nj + o =n
[67] Ny — — Ng = N1 + Ny
[68] —n —np=—mn when n; +no=n
[69] — M — — Ny =Ny — My
[70] nm ¥ —ny=—n when nxny,=mn
[71] —myxnp=—n when njxn=mn
[72] — Nk — Ng = Ny * Ny

Relational operators

[73] ng >mne =T when gt(ng, ny) =T
[74] ng >mng =1 when gt(ng, na) #T
[75] ng > — No = T

[76] —n >ne =1

[77] —Mm > —Ne=MNg > M

[78] 2>z =2z >z when z # 2
[79] z22>2z=T

[80] n<zZp=~2z > 2

[81] 21SZ2:N21>22
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