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From Context-free Grammars with Priorities to
Character Class Grammars

Eelco Visser

Priority and associativity declarations are used to disambiguate ambiguous frag-
ments of context-free grammars. Usually this concerns expression grammars. It
is possible to describe the same language by means of an unambiguous context-
free grammar only, but using auxiliary non-terminals and extra chain produc-
tions resulting in a grammar that generates different and larger trees and extra
parse steps.

In this paper we introduce a grammar transformation that translates a
context-free grammar with priorities to a character class grammar that does
only generate trees without priority conflicts. The transformed grammar has
the property that each production corresponds to a production in the original
grammar and that no extra productions are used. The parse trees over the
transformed grammar are therefore isomorphic to parse trees over the original
grammar.

1 Introduction

1.1 Priority and Associativity

Priority and associativity are notions that exist ever since formal languages have
been used in mathematics. To read the mathematical expression © ® y © z it
is necessary to know the priority relation between the operators @ and &. For
instance, if @ has higher priority than © the expression is read as (@ y)©z. In
order to use mathematical expressions in a programming language the notions of
priority and associativity have to be formalized in the description of the syntax
of the language. Several formalizations have been developed.

Floyd (1962) introduced operator precedence grammars that allow the dec-
laration of precedence and associativity among the operators of a context-free
grammar over a single non-terminal in which no two non-terminals are adjacent.
A restricted version of operator precedence can still be encountered in most ref-
erence manuals of programming languages that give a list of operators ordered
by precedence. However, operator precedence is a very restricted method. It is
not defined for grammars with e-productions and cannot cope with ‘invisible’
operators such as the application operator in functional languages.

Another way to express priority and associativity is to encode the informa-
tion in the context-free grammar of the language. This produces a considerable
overhead (1) in the number of non-terminals, since each priority level is en-
coded by means of a non-terminal and (2) in the number of productions, since
extra chain productions are needed. The effect is more parse steps (reductions



with chain rules) and parse trees that are different from the desired abstract syn-
tax. Moreover, this encoding ‘hardwires’ priority information in the productions
making the grammar harder to understand and to extend.

To overcome these drawbacks a number of more declarative methods have
been proposed to separate the priority rules from the grammar rules and di-
rectly use the notions of priority and associativity. An ambiguous grammar of
expressions is combined with a declaration of priority and associativity between
the productions of the grammar. This results in better abstract syntax because
no auxiliary non-terminals and chain rules have to be used. Earley (1975) and
Aho et al. (1975) independently introduced priority declarations as a number
of binary relations (priority, and left-, right-, and non-associativity) on produc-
tions of context-free grammars. These relations were restricted to range over
unary and binary operators.

Aho et al. (1975) interpret such declarations by solving conflicts in an LR(1)
parse table. Certain patterns of shift/reduce conflicts produced by ambiguous
binary expressions can be solved by considering priority declarations. For in-
stance, a shift /reduce conflict between the items Ee+FE — E and E+FEe — E'is
solved in favor of reduce if + is declared as left-associative. This implementation
method is used in the YACC parser generator of Johnson (1975).

1.2 Disambiguation Filters

Heering et al. (1989) introduce a more general definition of priorities in the
syntax definition formalism SDF. Priority declarations can range over arbi-
trary productions in the grammar. The YACC approach cannot be used for
this more general definition of priorities, because it cannot deal with mixfix
operators or binary expressions with an implicit operator (e.g., application in
functional languages). Furthermore, SDF parsers are required to cope with ar-
bitrary context-free grammars because this eases grammar development. These
problems are solved by the following approach to parsing: A string is parsed
using the context-free grammar part of a syntax definition using Generalized-LR
parsing (Tomita, 1985; Rekers, 1992). The result is a parse forest representing
all possible parses for the string. This forest is pruned using a filter that inter-
prets the priority declarations. In fact two consecutive filters are used, one that
selects trees without priority conflicts and a second one that selects the smallest
tree in a multi-set ordering on parse trees based on priorities. In this paper we
will concentrate on the first phase. The method is formalized by Klint (1988)
who also gives a large number of examples.

Aasa (1992) and Thorup (1994) explore variants of priorities interpreted
as filters. Aasa (1992) gives an alternative interpretation of priorities that is
more complete than the definition of SDF. It is defined as a filter on sets of
parse trees and in a variation of Earley’s parsing algorithm. Thorup (1994)
introduces disambiguation by means of tree rewrite rules. This can be used for
instance to translate a right-associative tree to a left-associative one, thereby
declaring that the construct should be interpreted as left-associative. A special
case is a rewrite rule that rewrites a tree to *, meaning any other tree. The effect
is that the tree in the rule is excluded as a subtree. This method is interpreted
by an algorithm that tries to solve conflicts in an LR(k) parse table based on
the rewrite rules. An important consideration is that the method should be
complete, i.e., the resulting parser should be able to parse all strings generated



by the original grammar.

Klint and Visser (1994) generalize the notion of a filter on sets of parse trees
providing a framework of disambiguation filters for formalization and compari-
son of disambiguation methods independent of parsing algorithms. Implemen-
tation of disambiguation is achieved by composing a Generalized-LR parser for
the context-free part of the grammar with a filter expressing the disambiguation
method. The filter prunes the parse forest produced by the GLR parser, deleting
all trees that are not selected by the disambiguation method. This framework
gives a very general account of disambiguation of context-free grammars. In
Klint and Visser (1994) and Visser (1997d) several applications are discussed.

As an implementation paradigm disambiguation filters are not adequate for
all disambiguation methods. If the number of possible trees generated by the
grammar is very large, filtering after parsing leads to a bad performance of the
resulting parsers. By partially evaluating the composition of a GLR parser and
a filter this performance might be improved. In Visser (1997a) a case study in
such a partial evaluation is discussed: a parser generation time interpretation of
priorities is derived from the composition of the SLR(1) algorithm and a filter
based on priority conflicts. Parsers produced by this partial evaluation do not
construct parse trees with priority conflicts, thus saving computation time and
memory. The method is used in the implementation of a parser generator for
SDF2 (Visser, 1997c, 1997d), which is a redesign of SDF.

1.3 Grammar Transformation

In this paper we introduce a grammar transformation to interpret priorities. The
advantage of this method is that it simplifies the parser generator by shifting
the computation with priority rules from the parser generator to a grammar
transformer. The main idea is to use character classes, compact representations
of sets of numbers, to represent the priority levels in the grammar. By using
such sets, no chain productions are needed and the exact structure of the original
grammar can be preserved.

The paper is structured as follows. In §2 context-free grammars with pri-
orities are introduced. A grammar generates a family of sets of parse trees.
Priorities give a restriction on this set of parse trees by excluding trees match-
ing certain patterns. In §3 character class grammars are introduced. Grammar
symbols are restricted to sets of characters represented by numbers. By means
of such character classes a non-terminal can be represented by the set of pro-
duction numbers that define the non-terminal. It is shown how context-free
grammars can be expressed in terms of character class grammars and vice versa
In §4 priorities are expressed as an operation on a character class grammar.
The result is a character class grammar that represents the original context-free
grammar with priorities.

2 Context-free Grammars with Priorities

In this section we introduce context-free grammars, the interpretation of con-
text-free grammars as tree generators, and the framework of priority and as-
sociativity declarations for the disambiguation of a certain class of ambiguous
context-free grammars.



2.1 Context-Free Grammars

Context-free grammars were introduced by Chomsky (1956) to describe the
phrase structure of natural language sentences. In most later work this aspect
of context-free grammars is often ignored and the emphasis is on the string
rewriting interpretation of context-free productions. Here we will use the phrase
structure view to define context-free grammars because we are not just interested
in the language defined by a grammar, but particularly in the structure assigned
to sentences, since that will be the input for compilers and interpreters.

A commonly used notation for context-free grammars is BNF introduced by
Naur et al. (1960) for the definition of Algol60. We use the notation of the
syntax definition formalism SDF (Heering et al., 1989). The most significant
difference is the @ — A notation for productions, instead of the traditional
A — a or A ::= a, to emphasize the use of productions as mixfix function
declarations.

Formally, we have the following definition of context-free grammars.

Definition 2.1 (CFG) A context-free grammar G is a triple (Viy, Vi, P), with
VN a finite set of nonterminal symbols, Vp a finite set of terminal symbols, V'
the set of symbols of G is Viy U Vp, and P(G) = P C V* x Vy a finite set of
productions. We write @ — A for a production p = {a, A) € P.

Observe that we do not distinguish a start symbol from which sentences are
derived. Each nonterminal in Vjy generates a set of phrase structures or parse
trees as is defined in the following definition.

Definition 2.2 (Parse Trees) A context-free grammar G generates a family
of sets of parse trees T(G) = (T(G)(X) | X € V) that contains the minimal sets
T(G)(X) such that

X eVrp

X e T(G)(X)

Ay .. A, = AEP(G), t1 €T(G)(AL), ..., ta € T(G)(A,)
[t1...t, = Al € T(G)(A)

We will write t,, for a list t; .. .t, of trees where « is the list of symbols X ... X,
and t; € T(G)(X;) for 1 < i < n. Correspondingly we will denote the set of
all lists of trees of type a as 7(G)(«a). Using this notation [t; ...t, — A] can
be written as [to — A] and the concatenation of two lists of trees t, and tg is
written as tot3 and yields a list of trees of type af.

The yield of a tree is the concatenation of its leaves. The language L(G) de-
fined by a grammar G is the family of sets of strings L(G)(A) = yield(7(G)(A)).

Definition 2.3 (Parsing) A parser is a function IT that maps each string w €
V' to a set of parse trees. A parser Il accepts a string w if |II(w)| > 0. A parser
IT is deterministic if |II(w)| < 1 for all strings w. A parser for a context-free
grammar G that accepts exactly the sentences in L(G) is defined by

II(G)(w) = {t € T(G)(A) | A € Vn,yield(t) = w}

Example 2.4 As an example consider the following ambiguous grammar of
expressions:



[\+] =>
[\*] => "
[a-z] -> E
E"+"E ->E
E"x"E ->E

In this examples character classes are used to denote a number of alternative
terminal characters. According to this grammar the string a 4+ a * a has two
parses:

I(G)(a+bxc)={[[[a = E]+[b = E] = E] *x[c > E] = E]
[[@a— E]+[b— E]x[c —» E] = E] = E|}

2.2 Priorities

Earley (1975) defines a priority declaration by means of the binary relations L,
R and N that declare left-, right- and non-associativity, respectively, between
productions and the relation > that declares priority between productions. In
SDF (Heering et al., 1989) a formalism with the same underlying structure but
with a less Spartan and more concise syntax is used. In SDF one writes left
for L, right for R and non-assoc for N. We will use both notations, the formal
definition is the following:

Definition 2.5 (Priority Declaration) A priority declaration Pr(G) for a con-
text-free grammar G is a tuple (L, R, N, >), where ® C Px P for ® € {L,R,N, >
}, such that L, R and N are symmetric and > is irreflexive and transitive. 0O

A priority declaration is interpreted as the declaration of a set of parse tree
patterns that cannot be used as subtrees of parse trees.

Definition 2.6 (Priority Conflict) The set conflicts(G) generated by the pri-
ority declaration of a grammar G is the smallest set of parse tree patterns of the
form [a[B8 — B]y — A] defined by the following rules.

aBy — A > B — B € Pr(G)
[a[8 — B]y — A] € conflicts(G)
v #¢, B — B (right U non-assoc) By =+ A € Pr(G)
[[8 = Bly — A] € conflicts(G)
a #¢€, f — B (left Unon-assoc) aB — A € Pr(G)
[a[8 — B] — A] € conflicts(G)

This set defines the patterns of trees with a priority conflict. O

Using the definition of priority conflict we can define a filter on sets of parse
trees that selects parse trees without a conflict.

Definition 2.7 (Priority Conflict Filter) A tree t has a root priority con-
flict if its root matches one of the tree patterns in conflicts(G). A tree t has a
priority conflict, if t has a subtree s that has a root priority conflict. The filter
FP* is now defined by FF*(®) = {t € ® | ¢ has no priority conflict}. The pair
(G,Pr) defines the disambiguated grammar G/F**. i



Example 2.8 Consider the following grammar with priority declaration

syntax
[a-z] > E
E "x" E -> E {left}
E "+" E -> E {left}
priorities
E "x" E -> E >
E"+" E -> E

Here the attribute left of a production p abbreviates the declaration pLp. The
tree

[[[a = E]+[a = E] = E] x[a — E] = E]

has a priority conflict over this grammar—it violates the first priority condition
since multiplication has higher priority than addition. The tree

[[a—= E]+[[a = E] *x[a = E] —» E] = E]

does not have a conflict. These trees correspond to the (disambiguated) strings
(a + a) * a and a + (a * a), respectively. The implication operator in logic is
an example of a right associative operator: a — a — a should be read as
a — (a = a). Non-associativity can be used to exclude unbracketed nested use
of the equality operator in expressions using the production E "=" E -> E. O

3 Character Class Grammars

In the next section we will define a grammar transformation that embeds the
definition of priorities in the productions of the grammar. For this purpose
we introduce the notion of character class grammars in this section. In char-
acter class grammars the grammar symbols are character classes. Character
classes are compact representations of sets of characters, i.e., numbers. Charac-
ter classes originate from the definition of lexical syntax (for example, in LEX
(Lesk and Schmidt, 1986)), where they are used to summarize a large number of
chain productions. For instance, [a-z] denotes the set of all lowercase letters.

Character class grammars are used to reduce the complexity in the number of
productions and non-terminals. Character classes denote an arbitrary collection
of productions. Any character class grammar can be translated to a context-free
grammar as we will show below, but this can lead to an exponential amount
of non-terminals and for each non-terminal a number of chain productions. We
also explore the reverse translation from context-free grammars to character
class grammars. This translation will be the basis for the interpretation of
priorities.

3.1 Character Classes

A character class is a compact representation of a set of characters.

Definition 3.1 (Character Class) A character class is a list [cry ... cry,] of
numbers and pairs of numbers that represents the set of those numbers that



are either contained in the list or that are contained in one of the intervals.
Operations on character classes are union (V), intersection (A), difference (/)
and complement with respect to the interval \0 — \TOP.

Proposition 3.2 (Normal Form) For each finite set of characters there is a
unique, most compact character class representing it.

Character classes can be specified using symbolic characters. These are
translated to numbers using some character encoding. In this paper we use
the ASCII encoding for characters in the ASCII range. An example character
class is [a-zA-Z] denoting the set of all lower and uppercase characters. It’s
normal form is [\65-\90\97-\122]. Usually the characters in a character class
are restricted to a fixed range, for instance, the 127 ASCII characters, the
256 characters that can be represented by a byte or the 16 bit characters of
UniCode. However, there is no fundamental reason for this restriction. We can
just as easily work with character classes in which there is no upperbound for
characters or character ranges.

Visser (1997b) gives a specification of character classes in ASF+SDF includ-
ing the normalization to the most compact normal form using rewrite rules. In
the rest of this paper we will consider character classes modulo equivalence, i.e.,
assume that character classes are in normal form.

3.2 Character Class Grammars

Character classes are usually used in grammars to abbreviate a set of terminal
characters. For example, the productions

[a-z] -> Id
Id [a-z] -> Id

define the syntax of identifiers as a sequence of one or more lowercase letters.
We generalize the use of character classes in grammars by allowing characters
as non-terminals. In fact in character class grammars only character classes are
used as grammar symbols.

Definition 3.3 (Character Class Grammar) A character class grammar is
a finite set of productions @ — A such that @ € CC* and A = [¢] is a singleton
character class.

A character is a non-terminal in a CCG @ if it is defined by at least one of
the productions. Otherwise it is a terminal character.

Definition 3.4 (Parse Trees for CCGs) Given a character class grammar
G, the family of sets of parse trees T(G) = (T(G)(cc) | cc € CC) contains the
minimal sets 7(G)(cc) such that

c € cc, cis a terminal in G

ce€T©0)(co) (Ch)

cey ...ce, = ccg € P(G), t1 € T(G)(eer), .., tn € T(G)(cen)
[t1...tn — cc] € T(G)(cc) (App)
t € T(G)(cc), ccCec (Sub)

teT(G)(cc)



3.3 From CCG to CFG

Any character class grammar can be expressed by means of a context-free gram-
mar. This translation shows us why character class grammars are useful.

Algorithm 3.5 (CCG to CFG) Given a character-class grammar G construct
the context-free grammar cfg(G)according to the following algorithm:

(0) Define the terminal alphabet Vi of cfg(G) as the terminal characters of G.

(1) Assign to each character class cc used in some of the productions a non-
terminal nt(cc).

(2) For each production cc ...cc, — ccp in the grammar G define the pro-
duction nt(ccy) ... nt(ce,) = nt(cco).

(3) For each non-terminal nt(cc) define the chain productions nt([n]) — nt(cc)
for each n € cc. O

Theorem 3.6 The trees genererated by a character class grammar G and its

~

corresponding context-free grammar cfg(G) are isomorphic, that is, T(G) =

T (cfg(9)).

Proof. Extend the translation cfg to trees, i.e., define the function cfg :

T(G) = T (cfg(G)) as follows:

ceVr
clg(c) = ¢
cey . ..ce, = ccp € P(G)
clg([ty ... tn — cco]) = [[cfg(tr) = nt([cer])] . - [cfg(tn) — nt([ec,])] — nt(cco)]

This translation is clearly a bijection. O
In this translation we see that character classes are more concise than context-
free grammars because of the chain rules implied by the character classes.

3.4 From CFG to CCG

Conversely, and more interestingly for our intended application, character class
grammars can be used to describe context-free grammars. The following algo-
rithm constructs a character class grammar for a given context-free grammar
such that it generates trees with the same structure. This time the structure is
more faithfully copied.

Algorithm 3.7 (CFG to CCG) Given a context-free grammar G, construct
the character-class grammar ccg(G) according to the following algorithm:

(0) Assign a character num(X) to each terminal symbol X in G.

(1) Assign a unique number num(a — A) to each production @ — A in the
grammar such that the smallest production number is larger than the
largest character number.

(2) Assign to each non-terminal A in the grammar a character class nums(A)
containing the numbers of the productions for that non-terminal, i.e., such
that if @ — A is a production then num (8 — A) € nums(A).



(3) For each production @ — A: (3a) Replace the result A by the charac-
ter class [num(a — A)] containing the number of the production. (3b)
Replace each non-terminal A; in a by the character class nums(4;). O

Theorem 3.8 The trees genererated by a context-free grammar G and its cor-

~

responding character class grammar ccg(G) are isomorphic, that is, T(G) =

T (ccg(9)).

Proof. Extend the translation ccg to trees, i.e., define the function ccg :

T(G) = T (ccg(9)) as follows:

X e Vr
ccg(X) = num(X)
Ay .. A, = Ay € P(G)
ceg([ty ... tn = Ao]) = [ccg(ty) . .. ceg(t,) — num(Ap)]

It is clear that ccg(t) € T (ccg(G)) and that this translation is a bijection. O

Example 3.9 Take the following grammar of expressions

[\+] _> l|+l|
[\*] —> Nxn
[a-z] -> E

E ll*ll E _> E
E ll+ll E -> E

Applying the algorithm to this grammar leads to the following steps. (0) The
terminals of this grammar are already character classes. Note that the normal
form of [\+] is [\43]. (1) Assign numbers to the productions

num ( [\43] => "+") = \258
num( [\42] -> "x") = \259
num([\97-\122] -> E) = \260
num(E "x" E -> E) = \261
num(E "+" E -> E) = \262

(2) Assign character classes to the non-terminals.

nums (E) [\260-\262]
nums ("*x") = [\259]
nums ("+") = [\258]

(3) Replace the non-terminals.

[\43] -> [\258]
[\42] -> [\259]
\97-\122] -> [\260]

[\260-\262] [\259] [\260-\262] -> [\261]
[\260-\262] [\258] [\260-\262] -> [\262]

Observe that this is not the most compact encoding possible for this gram-
mar. A more compact encoding of the example grammar is:



\97-\122] -> [\260]
[\260-\261] [\42-\43] [\260-\261] —> [\261]

But the point of the encoding is not the compact representation for pure context-
free grammars. In the next section we will use the encoding above as basis for
the grammar transformation to embed priorities.

4 Priorities as Grammar Transformation

Given a context-free grammar with priorities we can derive a character class
grammar (without priorities) that exactly describes the parse trees of the orig-
inal grammar. The idea is to remove from a character class at some position in
a left-hand side the numbers of productions that would cause a priority conflict
at that position. For instance, to express that an addition should not occur
as the child of a multiplication the production number for the addition can be
removed from the class [\260-\262] resulting in the adapted production

[\260-\261] [\259] [\260-\261] -> [\261]

for multiplication. The functions L, M and R in the algorith refer to left posi-
tions, middle positions and right positions in the left-hand side of a production.

Algorithm 4.1 (Priority CFG to CCG) Given a context-free grammar G
with priorities Pr(G), construct the character-class grammar pceg(G) according
to the following algorithm:

(1) Construct the CCG for the context-free part of the grammar according to
Algorithm 3.7.

(2) Translate the priorities to three functions L, M and R mapping produc-
tions numbers to sets of numbers as follows:

p1 (> Uright Unon-assoc) ps
num(p;) € L(num(py))
P1 > P2
num(p;) € M(num(py))
p1 (> U left U non-assoc) py
num(p) € R(num(p;))

(3) Filter the character classes cc; . .. cc, in the left-hand side of each produc-
tion cey ... cen, — [p] as follows:

(a) If n = 0 (e-production) or n = 1 (empty production), then do noth-
ing.

(b) If n > 1: take cc} := cc1/ L(p), take for 1 < i < n: cc := ce;/ M(p),
and take cc!, := cc,/ R(p). Replace the production by ccj ...ccl, —

n

[p]. O

Theorem 4.2 The trees genererated by a character class grammar pceeg(G) do
not contain priority conflicts.

10



Proof. For each of the clauses of Definition 2.6 we have to check that the
excluded parse tree patterns are not generated by pceg(G).

(1) [e[8 = Bly — A] € conflicts(G) due to the priority aBy - A > 8 — B.
Consider the translation of the production: First the non-terminals are
replaced by character classes

ccg(aBy — A) — nums(a) nums(B) nums(y) — num(aBy — A)

Then these character classes are filtered. In particular, because of the
priority rule, num(8 — B) & cclz. Hence, ccg([ta[tsg — Blty = A]) &
T (peeg(G))(A) for any to, tg and t..

(2,3) The other cases are similar. a

Example 4.3 (1) Take the character class grammar obtained in Example 3.9.
(2) We derive the following encoding of the priority rules:

L(\261) = [\262] L(\262) = []
M(\261) = [] M(\262) = []
R(\261) = [\261-\262] R(\262) = [\262]

(3) Filter the non-terminal classes using this encoding

[\43] -> [\258]
[\42] -> [\259]
[\97-\122] -> [\260]
[\260-\261] [\259] [\260] -> [\261]

[\260-\262] [\258] [\260-\261] -> [\262]

Observe that the transformed grammar has the exact same structure as the
original context-free grammar, i.e., each production in the transformed grammar
corresponds to a production in the original grammar and the left-hand sides of
productions also have the same structure. The only difference is a more fine-
grained specification of usage of productions at specific positions in left-hand
sides. After parsing the production numbers can be used to construct parse
trees over the original grammar.

Compare this to the usual encoding using extra non-terminals and extra
chain productions. To help the comparison the production numbers have been

added.

[\43] => "4n [\258]
[\42] => %! [\259]
[a-z] -> F [\260]
T "x" F ->T [\261]
F -> T

E"+" T -> E [\262]
T -> E

In this grammar chains F — T — E are built to include ‘simple’ expressions

into sums. The length of such chains grows with the number of priority levels.
Now consider again our example string a+b*c. According to the transformed

grammar above, this string has only one parse tree, which is the following;:

11



[[\97 -> \260] [\43 -> \258]
[LI\98 -> \260] [\42 -> \259] [\99 -> \260] -> \261]
-> \262]

This corresponds to the tree
[[a— E]+[b— E]*[c— E] - E] = E]

that is declared by the priority rules.

5 Discussion

We have defined a transformation on context-free grammars that compiles prior-
ity and associativity declarations into the productions of the grammar by using
character classes to concisely encode sets of productions.

Even though transformed grammars do not generate trees with priority con-
flict this does not mean that they are unambiguous or do not cause conflicts
in parse tables. Conflicts and ambiguities can have been overlooked or caused
by constructs that can not be dealt with by means of priorities. See (Visser,
1997d) for further discussions and solutions.

A first prototype of the transformation algorithm has been implemented
as part of the implementation of a parser generator for the syntax definition
formalism SDF2. The usage of character classes in context-free grammars came
natural in this setting because SDF2 integrates lexical and context-free syntax
of languages by combining them into a single context-free grammar. Parsers
for such grammars do not need separate lexical analyzers and are thus called
scannerless parsers (Visser, 1997d).

Although the parser generator spends no time on the lookup of information
in the priority table, more time is spent on character class computations. An
efficient implementation of character classes is therefore essential for a successful
implementation.

Further optimizations can be achieved by further transforming the derived
character class grammars. An obvious candidate is chain rule elimination. If
[n] — [m] is a chain production, replace everywhere m by n, effectively removing
a production from the grammar.
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A Specification of the Transformation

This appendix contains the specification in ASF+SDF of the transformation to
character class grammars described in the paper. The transformation works on
SDF2 syntax definitions in normal form. That is, it transforms the productions
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in the ‘syntax’ sections interpreting the priorities in the priorities section as-
suming that the latter are normalized according to the specification in Visser
(1997c¢).

The specification is divided into two modules. Module ProdSym-Numbers
defines a table for storing the assignment of characters to productions and char-
acter classes to symbols. For convenience an extra grammar section with the
keyword ‘numbers’ is introduced for storing this table. Module PCFG-to-CCG
defines the transformation proper.

module ProdSym-Numbers
imports CC-Sdf-Syntax Character-Class-Normalization Kernel-Sdf-Projection

Grammar-Normalization
exports

sorts PSNumbers ProdNum ProdNumbers SymNum SymNumbers
context-free syntax

PSNumbers “[” Production “]” — Character
PSNumbers “[” Symbol “]” — CharClass
new-numbers — PSNumbers
number (Productions, PSNumbers) — PSNumbers

“<” ProdNumbers “” SymNumbers “” Character “>" — PSNumbers

“<” Character “)” Production “>” — ProdNum

“[” ProdNums “)” — ProdNumbers

“<” CharClass “,” Symbol “>” — SymNum

“I” SymNumsx* “)” — SymNumbers

numbers PSNumbers — Grammar

“N”(Grammar) — PSNumbers
variables

“psn”[0-9']* — PSNumbers
“pn”[0-9']* — ProdNum
“sn”[0-9']* — SymNum
“pnx”[0-9']% — ProdNumsx
“snx”[0-9']%* — SymNumsx
hiddens
context-free syntax

mk-charclass(Symbol) — CharClass

equations

[1] N(numbers psn) = psn

[2] N(G numbers psn) = psn

(3] N(#) = new-numbers

4] N(G1 G2) = N(G;) otherwise

Assigning numbers to symbols and productions

5] new-numbers = ([], [], succ(succ(\TOP)))

[6] number(, psn) = psn
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succ(cy) = ca,
[pn;] = [pnf <C27 a— A $)]7
[sn3] = [([cal, A) sni]

7 number(a — A $ p*, ([pn}], [sni], c1)) =
number(p*, ([pni], [sn3], c2))
8 [feer, A) s {ces, Ay sns] = [an (eer V ces, A) sn)

Looking up numbers

[9] ([pni (e, py) pn3); [sn*], c")[po] = when p; =p, =T

(0] ([pn7], [sn] (cc, A) sn3], c')[A] = cc

[11] ([pn*], [sn*], c")[A] = mk-charclass(A) otherwise
[12] mk-charclass(cc) = cc

[13] mk-charclass(A) =[] otherwise

module PCFG-to-CCG
imports CC-Sdf-Syntax Priority-Sdf-Syntax Character-Class-Normalization
Kernel-Sdf-Projection Priority-Sdf-Projection

Restrictions-Sdf-Projection ProdSym-Numbers
exports

sorts PrioRel NumPrior NumPriors NumPriority NumPriorities
context-free syntax
Character “[” CharClass “” CharClass “,” CharClass “|” — NumPriority

{NumPriority “)” }x — NumPriorities

NumPriorities “-” Character — NumPriority

NumPriorities “+” NumPriorities — NumPriorities {right}
variables

ccnpr” [0-9’]* — NumPriority
“npbk” [0_9’]* — {NumPriority “;” }*
context-free syntax

ccg(Grammar) — Grammar
rejected(Attributes) — Attributes
prods(PSNumbers, Productions) — Productions
syms(PSNumbers, Symbols) — Symbols
restrs(PSNumbers, Restrictions) — Restrictions
union(PSNumbers, Symbols) — CharClass
priors(PSNumbers, Priorities) — NumPriorities
filter(NumPriorities, Productions) — Productions

filter(NumPriority, Symbols, Symbols) — Symbols

restr(PSNumbers, Restrictions) — Restrictions

equations
From CFG to CCG

P(G) = p*, number(p*, new-numbers) = psn

[1]

ccg(G) = numbers psn
syntax filter(priors(psn, Pr(G)), prods(psn, p*))
restrictions restrs(psn, R(G))
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S

prods(psn, ) =
prods(psn, « = A $) = syms(psn, o) = [psn[a — A §]] rejected($)
prods(psn, p;” py") = prods(psn, p;”) + prods(psn, p;")

=

syms(psn, ) =
[6 syms(psn, A) = psn[A]

syms(psn, at f7) = syms(psn, a) + syms(psn, 37)

RS2

=

8] rejected({ attr], reject, attrl}) = {reject}

[9] rejected($) = otherwise

[10] restrs(psn, ) =

[11] restrs(psn, restr;” restr;") = restrs(psn, restr;”) + restrs(psn, restr;")

[12] restrs(psn, o -/ cc) = union(psn, o) /- cc

]

un 10n(psn a*t) V union(psn, 871)

union(psn,

[13] ) =
[14] union(psn, a™ 1)
[15] union(psn, cc) =
[16] union(psn, A) = psn[ ] otherwise

Translating a priority relation to a numeric priority relation

[17] priors(psn, ) =
psn[p;] = c1, psn[p,] = co

- priors(pm, 11> 72) = eillea) [e2] [
9] psn[p,] = c1, psn[p,] =

priors(psn, p; assoc p,) = cif], [], [ ]] 2], [], [e]]
" ponlpy] = <1, pomi) =

priors(psn, py left p,) = ci[[], [], [c2]], co[[], [], [e1]]
" ponlpy] = <1, pemip) =

priors(psn, py right p,) = ci[[c2], [], [I], czl[ed], [], [l]
22 psn[p;] = c1, psn[p,] = c2

priors(psn, p; non-assoc p,) = cif[cz], ], [e2]], c2f[ea] [], [ea]]

[23] priors(psn, pr, prt) = priors(psn, pr™) + priors(psn, pr)
(24] npri + = npry
[25] npri - npr, npry = npry, npr + nprj

Joining entries

* *
[26] npry, c[cein, ceiz, ceis], nprs, cleear, ceaz, ceas)
_ * *
= npry, cleerr V ocear, cera2 V ocean, ceiz Voceas), npr
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Looking up priorities

[27] npry, c[cer, cea, ces], nprs - ¢ = cleey, cez, ccs)
[28] npr* -c=c[[],[],[]] otherwise

Filtering the CCG

[29] filter(npr*, ) =

[30] filter(npr*, p;” p,") = filter(npr*, p;") + filter(npr*, p;")
[31] filter(npr*, a — [c] $) = filter(npr* - ¢, , @) = [c] $

[32] filter(npr, , ) =

[33] filter(npr, , A) = A

npr = c[cey, ce2, ccs)

34
[34] filter(npr, , cca™) = filter(npr, cc / ccr, a™)
35] npr = c[cey, ce2, ccs)

filter(npr, at, cc B1) = filter(npr, a® cc / cca, BT)
36] npr = c[cey, cea, ccs)

filter(npr, a™, cc) = a™ cc/ ccs
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