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From Context-free Grammars with Priorities toCharacter Class GrammarsEelco VisserPriority and associativity declarations are used to disambiguate ambiguous frag-ments of context-free grammars. Usually this concerns expression grammars. Itis possible to describe the same language by means of an unambiguous context-free grammar only, but using auxiliary non-terminals and extra chain produc-tions resulting in a grammar that generates di�erent and larger trees and extraparse steps.In this paper we introduce a grammar transformation that translates acontext-free grammar with priorities to a character class grammar that doesonly generate trees without priority conicts. The transformed grammar hasthe property that each production corresponds to a production in the originalgrammar and that no extra productions are used. The parse trees over thetransformed grammar are therefore isomorphic to parse trees over the originalgrammar.1 Introduction1.1 Priority and AssociativityPriority and associativity are notions that exist ever since formal languages havebeen used in mathematics. To read the mathematical expression x � y 	 z itis necessary to know the priority relation between the operators � and 	. Forinstance, if � has higher priority than 	 the expression is read as (x�y)	z. Inorder to use mathematical expressions in a programming language the notions ofpriority and associativity have to be formalized in the description of the syntaxof the language. Several formalizations have been developed.Floyd (1962) introduced operator precedence grammars that allow the dec-laration of precedence and associativity among the operators of a context-freegrammar over a single non-terminal in which no two non-terminals are adjacent.A restricted version of operator precedence can still be encountered in most ref-erence manuals of programming languages that give a list of operators orderedby precedence. However, operator precedence is a very restricted method. It isnot de�ned for grammars with �-productions and cannot cope with `invisible'operators such as the application operator in functional languages.Another way to express priority and associativity is to encode the informa-tion in the context-free grammar of the language. This produces a considerableoverhead (1) in the number of non-terminals, since each priority level is en-coded by means of a non-terminal and (2) in the number of productions, sinceextra chain productions are needed. The e�ect is more parse steps (reductions1



with chain rules) and parse trees that are di�erent from the desired abstract syn-tax. Moreover, this encoding `hardwires' priority information in the productionsmaking the grammar harder to understand and to extend.To overcome these drawbacks a number of more declarative methods havebeen proposed to separate the priority rules from the grammar rules and di-rectly use the notions of priority and associativity. An ambiguous grammar ofexpressions is combined with a declaration of priority and associativity betweenthe productions of the grammar. This results in better abstract syntax becauseno auxiliary non-terminals and chain rules have to be used. Earley (1975) andAho et al. (1975) independently introduced priority declarations as a numberof binary relations (priority, and left-, right-, and non-associativity) on produc-tions of context-free grammars. These relations were restricted to range overunary and binary operators.Aho et al. (1975) interpret such declarations by solving conicts in an LR(1)parse table. Certain patterns of shift/reduce conicts produced by ambiguousbinary expressions can be solved by considering priority declarations. For in-stance, a shift/reduce conict between the items E�+E ! E and E+E� ! E issolved in favor of reduce if + is declared as left-associative. This implementationmethod is used in the YACC parser generator of Johnson (1975).1.2 Disambiguation FiltersHeering et al. (1989) introduce a more general de�nition of priorities in thesyntax de�nition formalism SDF. Priority declarations can range over arbi-trary productions in the grammar. The YACC approach cannot be used forthis more general de�nition of priorities, because it cannot deal with mix�xoperators or binary expressions with an implicit operator (e.g., application infunctional languages). Furthermore, SDF parsers are required to cope with ar-bitrary context-free grammars because this eases grammar development. Theseproblems are solved by the following approach to parsing: A string is parsedusing the context-free grammar part of a syntax de�nition using Generalized-LRparsing (Tomita, 1985; Rekers, 1992). The result is a parse forest representingall possible parses for the string. This forest is pruned using a �lter that inter-prets the priority declarations. In fact two consecutive �lters are used, one thatselects trees without priority conicts and a second one that selects the smallesttree in a multi-set ordering on parse trees based on priorities. In this paper wewill concentrate on the �rst phase. The method is formalized by Klint (1988)who also gives a large number of examples.Aasa (1992) and Thorup (1994) explore variants of priorities interpretedas �lters. Aasa (1992) gives an alternative interpretation of priorities that ismore complete than the de�nition of SDF. It is de�ned as a �lter on sets ofparse trees and in a variation of Earley's parsing algorithm. Thorup (1994)introduces disambiguation by means of tree rewrite rules. This can be used forinstance to translate a right-associative tree to a left-associative one, therebydeclaring that the construct should be interpreted as left-associative. A specialcase is a rewrite rule that rewrites a tree to �, meaning any other tree. The e�ectis that the tree in the rule is excluded as a subtree. This method is interpretedby an algorithm that tries to solve conicts in an LR(k) parse table based onthe rewrite rules. An important consideration is that the method should becomplete, i.e., the resulting parser should be able to parse all strings generated2



by the original grammar.Klint and Visser (1994) generalize the notion of a �lter on sets of parse treesproviding a framework of disambiguation �lters for formalization and compari-son of disambiguation methods independent of parsing algorithms. Implemen-tation of disambiguation is achieved by composing a Generalized-LR parser forthe context-free part of the grammar with a �lter expressing the disambiguationmethod. The �lter prunes the parse forest produced by the GLR parser, deletingall trees that are not selected by the disambiguation method. This frameworkgives a very general account of disambiguation of context-free grammars. InKlint and Visser (1994) and Visser (1997d) several applications are discussed.As an implementation paradigm disambiguation �lters are not adequate forall disambiguation methods. If the number of possible trees generated by thegrammar is very large, �ltering after parsing leads to a bad performance of theresulting parsers. By partially evaluating the composition of a GLR parser anda �lter this performance might be improved. In Visser (1997a) a case study insuch a partial evaluation is discussed: a parser generation time interpretation ofpriorities is derived from the composition of the SLR(1) algorithm and a �lterbased on priority conicts. Parsers produced by this partial evaluation do notconstruct parse trees with priority conicts, thus saving computation time andmemory. The method is used in the implementation of a parser generator forSDF2 (Visser, 1997c, 1997d), which is a redesign of SDF.1.3 Grammar TransformationIn this paper we introduce a grammar transformation to interpret priorities. Theadvantage of this method is that it simpli�es the parser generator by shiftingthe computation with priority rules from the parser generator to a grammartransformer. The main idea is to use character classes, compact representationsof sets of numbers, to represent the priority levels in the grammar. By usingsuch sets, no chain productions are needed and the exact structure of the originalgrammar can be preserved.The paper is structured as follows. In x2 context-free grammars with pri-orities are introduced. A grammar generates a family of sets of parse trees.Priorities give a restriction on this set of parse trees by excluding trees match-ing certain patterns. In x3 character class grammars are introduced. Grammarsymbols are restricted to sets of characters represented by numbers. By meansof such character classes a non-terminal can be represented by the set of pro-duction numbers that de�ne the non-terminal. It is shown how context-freegrammars can be expressed in terms of character class grammars and vice versaIn x4 priorities are expressed as an operation on a character class grammar.The result is a character class grammar that represents the original context-freegrammar with priorities.2 Context-free Grammars with PrioritiesIn this section we introduce context-free grammars, the interpretation of con-text-free grammars as tree generators, and the framework of priority and as-sociativity declarations for the disambiguation of a certain class of ambiguouscontext-free grammars. 3



2.1 Context-Free GrammarsContext-free grammars were introduced by Chomsky (1956) to describe thephrase structure of natural language sentences. In most later work this aspectof context-free grammars is often ignored and the emphasis is on the stringrewriting interpretation of context-free productions. Here we will use the phrasestructure view to de�ne context-free grammars because we are not just interestedin the language de�ned by a grammar, but particularly in the structure assignedto sentences, since that will be the input for compilers and interpreters.A commonly used notation for context-free grammars is BNF introduced byNaur et al. (1960) for the de�nition of Algol60. We use the notation of thesyntax de�nition formalism SDF (Heering et al., 1989). The most signi�cantdi�erence is the � ! A notation for productions, instead of the traditionalA ! � or A ::= �, to emphasize the use of productions as mix�x functiondeclarations.Formally, we have the following de�nition of context-free grammars.De�nition 2.1 (CFG) A context-free grammar G is a triple hVN ; VT ;Pi, withVN a �nite set of nonterminal symbols, VT a �nite set of terminal symbols, Vthe set of symbols of G is VN [ VT , and P(G) = P � V � � VN a �nite set ofproductions. We write �! A for a production p = h�;Ai 2 P .Observe that we do not distinguish a start symbol from which sentences arederived. Each nonterminal in VN generates a set of phrase structures or parsetrees as is de�ned in the following de�nition.De�nition 2.2 (Parse Trees) A context-free grammar G generates a familyof sets of parse trees T (G) = (T (G)(X) j X 2 V ) that contains the minimal setsT (G)(X) such that X 2 VTX 2 T (G)(X)A1 : : : An ! A 2 P(G); t1 2 T (G)(A1); : : : ; tn 2 T (G)(An)[t1 : : : tn ! A] 2 T (G)(A)We will write t� for a list t1 : : : tn of trees where � is the list of symbolsX1 : : :Xnand ti 2 T (G)(Xi) for 1 � i � n. Correspondingly we will denote the set ofall lists of trees of type � as T (G)(�). Using this notation [t1 : : : tn ! A] canbe written as [t� ! A] and the concatenation of two lists of trees t� and t� iswritten as t�t� and yields a list of trees of type ��.The yield of a tree is the concatenation of its leaves. The language L(G) de-�ned by a grammar G is the family of sets of strings L(G)(A) = yield(T (G)(A)).De�nition 2.3 (Parsing) A parser is a function � that maps each string w 2V �T to a set of parse trees. A parser � accepts a string w if j�(w)j > 0. A parser� is deterministic if j�(w)j � 1 for all strings w. A parser for a context-freegrammar G that accepts exactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T (G)(A) j A 2 VN ; yield(t) = wgExample 2.4 As an example consider the following ambiguous grammar ofexpressions: 4



[\+] -> "+"[\*] -> "*"[a-z] -> EE "+" E -> EE "*" E -> EIn this examples character classes are used to denote a number of alternativeterminal characters. According to this grammar the string a + a � a has twoparses: �(G)(a + b � c) = f[[[a! E] + [b! E]! E] � [c! E]! E][[a! E] + [[b! E] � [c! E]! E]! E]g2.2 PrioritiesEarley (1975) de�nes a priority declaration by means of the binary relations L,R and N that declare left-, right- and non-associativity, respectively, betweenproductions and the relation > that declares priority between productions. InSDF (Heering et al., 1989) a formalism with the same underlying structure butwith a less Spartan and more concise syntax is used. In SDF one writes leftfor L, right for R and non-assoc for N. We will use both notations, the formalde�nition is the following:De�nition 2.5 (Priority Declaration) A priority declaration Pr(G) for a con-text-free grammar G is a tuple hL;R;N; >i, where � � P�P for � 2 fL;R;N; >g, such that L, R and N are symmetric and > is irreexive and transitive. 2A priority declaration is interpreted as the declaration of a set of parse treepatterns that cannot be used as subtrees of parse trees.De�nition 2.6 (Priority Conict) The set conicts(G) generated by the pri-ority declaration of a grammar G is the smallest set of parse tree patterns of theform [�[� ! B] ! A] de�ned by the following rules.�B ! A > � ! B 2 Pr(G)[�[� ! B] ! A] 2 conicts(G) 6= �; � ! B (right [ non-assoc) B ! A 2 Pr(G)[[� ! B] ! A] 2 conicts(G)� 6= �; � ! B (left [ non-assoc) �B ! A 2 Pr(G)[�[� ! B]! A] 2 conicts(G)This set de�nes the patterns of trees with a priority conict. 2Using the de�nition of priority conict we can de�ne a �lter on sets of parsetrees that selects parse trees without a conict.De�nition 2.7 (Priority Conict Filter) A tree t has a root priority con-ict if its root matches one of the tree patterns in conicts(G). A tree t has apriority conict, if t has a subtree s that has a root priority conict. The �lterFPr is now de�ned by FPr(�) = ft 2 � j t has no priority conictg. The pairhG;Pri de�nes the disambiguated grammar G=FPr. 25



Example 2.8 Consider the following grammar with priority declarationsyntax[a-z] -> EE "*" E -> E {left}E "+" E -> E {left}prioritiesE "*" E -> E >E "+" E -> EHere the attribute left of a production p abbreviates the declaration pLp. Thetree [[[a! E] + [a! E]! E] � [a! E]! E]has a priority conict over this grammar|it violates the �rst priority conditionsince multiplication has higher priority than addition. The tree[[a! E] + [[a! E] � [a! E]! E]! E]does not have a conict. These trees correspond to the (disambiguated) strings(a + a) � a and a + (a � a), respectively. The implication operator in logic isan example of a right associative operator: a ! a ! a should be read asa! (a! a). Non-associativity can be used to exclude unbracketed nested useof the equality operator in expressions using the production E "=" E -> E. 23 Character Class GrammarsIn the next section we will de�ne a grammar transformation that embeds thede�nition of priorities in the productions of the grammar. For this purposewe introduce the notion of character class grammars in this section. In char-acter class grammars the grammar symbols are character classes. Characterclasses are compact representations of sets of characters, i.e., numbers. Charac-ter classes originate from the de�nition of lexical syntax (for example, in LEX(Lesk and Schmidt, 1986)), where they are used to summarize a large number ofchain productions. For instance, [a-z] denotes the set of all lowercase letters.Character class grammars are used to reduce the complexity in the number ofproductions and non-terminals. Character classes denote an arbitrary collectionof productions. Any character class grammar can be translated to a context-freegrammar as we will show below, but this can lead to an exponential amountof non-terminals and for each non-terminal a number of chain productions. Wealso explore the reverse translation from context-free grammars to characterclass grammars. This translation will be the basis for the interpretation ofpriorities.3.1 Character ClassesA character class is a compact representation of a set of characters.De�nition 3.1 (Character Class) A character class is a list [cr1 : : : crn] ofnumbers and pairs of numbers that represents the set of those numbers that6



are either contained in the list or that are contained in one of the intervals.Operations on character classes are union (_), intersection (^), di�erence (=)and complement with respect to the interval \0� \TOP.Proposition 3.2 (Normal Form) For each �nite set of characters there is aunique, most compact character class representing it.Character classes can be speci�ed using symbolic characters. These aretranslated to numbers using some character encoding. In this paper we usethe ASCII encoding for characters in the ASCII range. An example characterclass is [a-zA-Z] denoting the set of all lower and uppercase characters. It'snormal form is [\65-\90\97-\122]. Usually the characters in a character classare restricted to a �xed range, for instance, the 127 ASCII characters, the256 characters that can be represented by a byte or the 16 bit characters ofUniCode. However, there is no fundamental reason for this restriction. We canjust as easily work with character classes in which there is no upperbound forcharacters or character ranges.Visser (1997b) gives a speci�cation of character classes in ASF+SDF includ-ing the normalization to the most compact normal form using rewrite rules. Inthe rest of this paper we will consider character classes modulo equivalence, i.e.,assume that character classes are in normal form.3.2 Character Class GrammarsCharacter classes are usually used in grammars to abbreviate a set of terminalcharacters. For example, the productions[a-z] -> IdId [a-z] -> Idde�ne the syntax of identi�ers as a sequence of one or more lowercase letters.We generalize the use of character classes in grammars by allowing charactersas non-terminals. In fact in character class grammars only character classes areused as grammar symbols.De�nition 3.3 (Character Class Grammar) A character class grammar isa �nite set of productions �! A such that � 2 CC� and A = [c] is a singletoncharacter class.A character is a non-terminal in a CCG G if it is de�ned by at least one ofthe productions. Otherwise it is a terminal character.De�nition 3.4 (Parse Trees for CCGs) Given a character class grammarG, the family of sets of parse trees T (G) = (T (G)(cc) j cc 2 CC) contains theminimal sets T (G)(cc) such thatc 2 cc; c is a terminal in Gc 2 T (G)(cc) (Ch)cc1 : : : ccn ! cc0 2 P(G); t1 2 T (G)(cc1); : : : ; tn 2 T (G)(ccn)[t1 : : : tn ! cc] 2 T (G)(cc) (App)t 2 T (G)(cc); cc � cc0t 2 T (G)(cc0) (Sub)7



3.3 From CCG to CFGAny character class grammar can be expressed by means of a context-free gram-mar. This translation shows us why character class grammars are useful.Algorithm 3.5 (CCG to CFG) Given a character-class grammar G constructthe context-free grammar cfg(G)according to the following algorithm:(0) De�ne the terminal alphabet VT of cfg(G) as the terminal characters of G.(1) Assign to each character class cc used in some of the productions a non-terminal nt(cc).(2) For each production cc1 : : : ccn ! cc0 in the grammar G de�ne the pro-duction nt(cc1) : : : nt(ccn)! nt(cc0).(3) For each non-terminal nt(cc) de�ne the chain productions nt([n])! nt(cc)for each n 2 cc. 2Theorem 3.6 The trees genererated by a character class grammar G and itscorresponding context-free grammar cfg(G) are isomorphic, that is, T (G) �=T (cfg(G)).Proof. Extend the translation cfg to trees, i.e., de�ne the function cfg :T (G)! T (cfg(G)) as follows: c 2 VTcfg(c) = ccc1 : : : ccn ! cc0 2 P(G)cfg([t1 : : : tn ! cc0]) = [[cfg(t1)! nt([cc1])] : : : [cfg(tn)! nt([ccn])]! nt(cc0)]This translation is clearly a bijection. 2In this translation we see that character classes are more concise than context-free grammars because of the chain rules implied by the character classes.3.4 From CFG to CCGConversely, and more interestingly for our intended application, character classgrammars can be used to describe context-free grammars. The following algo-rithm constructs a character class grammar for a given context-free grammarsuch that it generates trees with the same structure. This time the structure ismore faithfully copied.Algorithm 3.7 (CFG to CCG) Given a context-free grammar G, constructthe character-class grammar ccg(G) according to the following algorithm:(0) Assign a character num(X) to each terminal symbol X in G.(1) Assign a unique number num(� ! A) to each production � ! A in thegrammar such that the smallest production number is larger than thelargest character number.(2) Assign to each non-terminal A in the grammar a character class nums(A)containing the numbers of the productions for that non-terminal, i.e., suchthat if �! A is a production then num(� ! A) 2 nums(A).8



(3) For each production � ! A: (3a) Replace the result A by the charac-ter class [num(� ! A)] containing the number of the production. (3b)Replace each non-terminal Ai in � by the character class nums(Ai). 2Theorem 3.8 The trees genererated by a context-free grammar G and its cor-responding character class grammar ccg(G) are isomorphic, that is, T (G) �=T (ccg(G)).Proof. Extend the translation ccg to trees, i.e., de�ne the function ccg :T (G)! T (ccg(G)) as follows: X 2 VTccg(X) = num(X)A1 : : : An ! A0 2 P(G)ccg([t1 : : : tn ! A0]) = [ccg(t1) : : : ccg(tn)! num(A0)]It is clear that ccg(t) 2 T (ccg(G)) and that this translation is a bijection. 2Example 3.9 Take the following grammar of expressions[\+] -> "+"[\*] -> "*"[a-z] -> EE "*" E -> EE "+" E -> EApplying the algorithm to this grammar leads to the following steps. (0) Theterminals of this grammar are already character classes. Note that the normalform of [\+] is [\43]. (1) Assign numbers to the productionsnum([\43] -> "+") = \258num([\42] -> "*") = \259num([\97-\122] -> E) = \260num(E "*" E -> E) = \261num(E "+" E -> E) = \262(2) Assign character classes to the non-terminals.nums(E) = [\260-\262]nums("*") = [\259]nums("+") = [\258](3) Replace the non-terminals.[\43] -> [\258][\42] -> [\259][\97-\122] -> [\260][\260-\262] [\259] [\260-\262] -> [\261][\260-\262] [\258] [\260-\262] -> [\262]Observe that this is not the most compact encoding possible for this gram-mar. A more compact encoding of the example grammar is:9



[\97-\122] -> [\260][\260-\261] [\42-\43] [\260-\261] -> [\261]But the point of the encoding is not the compact representation for pure context-free grammars. In the next section we will use the encoding above as basis forthe grammar transformation to embed priorities.4 Priorities as Grammar TransformationGiven a context-free grammar with priorities we can derive a character classgrammar (without priorities) that exactly describes the parse trees of the orig-inal grammar. The idea is to remove from a character class at some position ina left-hand side the numbers of productions that would cause a priority conictat that position. For instance, to express that an addition should not occuras the child of a multiplication the production number for the addition can beremoved from the class [\260-\262] resulting in the adapted production[\260-\261] [\259] [\260-\261] -> [\261]for multiplication. The functions L, M and R in the algorith refer to left posi-tions, middle positions and right positions in the left-hand side of a production.Algorithm 4.1 (Priority CFG to CCG) Given a context-free grammar Gwith priorities Pr(G), construct the character-class grammar pccg(G) accordingto the following algorithm:(1) Construct the CCG for the context-free part of the grammar according toAlgorithm 3.7.(2) Translate the priorities to three functions L, M and R mapping produc-tions numbers to sets of numbers as follows:p1 (> [ right [ non-assoc) p2num(p2) 2 L(num(p1)) (L)p1 > p2num(p2) 2M(num(p1)) (M)p1 (> [ left [ non-assoc) p2num(p2) 2 R(num(p1)) (R)(3) Filter the character classes cc1 : : : ccn in the left-hand side of each produc-tion cc1 : : : ccn ! [p] as follows:(a) If n = 0 (�-production) or n = 1 (empty production), then do noth-ing.(b) If n > 1: take cc01 := cc1=L(p), take for 1 < i < n: cc0i := cci=M(p),and take cc0n := ccn=R(p). Replace the production by cc01 : : : cc0n ![p]. 2Theorem 4.2 The trees genererated by a character class grammar pccg(G) donot contain priority conicts. 10



Proof. For each of the clauses of De�nition 2.6 we have to check that theexcluded parse tree patterns are not generated by pccg(G).(1) [�[� ! B] ! A] 2 conicts(G) due to the priority �B ! A > � ! B.Consider the translation of the production: First the non-terminals arereplaced by character classesccg(�B ! A) 7! nums(�) nums(B) nums()! num(�B ! A)Then these character classes are �ltered. In particular, because of thepriority rule, num(� ! B) 62 cc0B . Hence, ccg([t�[t� ! B]t ! A]) 62T (pccg(G))(A) for any t�, t� and t .(2,3) The other cases are similar. 2Example 4.3 (1) Take the character class grammar obtained in Example 3.9.(2) We derive the following encoding of the priority rules:L(\261) = [\262] L(\262) = []M(\261) = [] M(\262) = []R(\261) = [\261-\262] R(\262) = [\262](3) Filter the non-terminal classes using this encoding[\43] -> [\258][\42] -> [\259][\97-\122] -> [\260][\260-\261] [\259] [\260] -> [\261][\260-\262] [\258] [\260-\261] -> [\262]Observe that the transformed grammar has the exact same structure as theoriginal context-free grammar, i.e., each production in the transformed grammarcorresponds to a production in the original grammar and the left-hand sides ofproductions also have the same structure. The only di�erence is a more �ne-grained speci�cation of usage of productions at speci�c positions in left-handsides. After parsing the production numbers can be used to construct parsetrees over the original grammar.Compare this to the usual encoding using extra non-terminals and extrachain productions. To help the comparison the production numbers have beenadded.[\43] -> "+" [\258][\42] -> "*" [\259][a-z] -> F [\260]T "*" F -> T [\261]F -> TE "+" T -> E [\262]T -> EIn this grammar chains F ! T ! E are built to include `simple' expressionsinto sums. The length of such chains grows with the number of priority levels.Now consider again our example string a+b*c. According to the transformedgrammar above, this string has only one parse tree, which is the following:11



[[\97 -> \260] [\43 -> \258][[\98 -> \260] [\42 -> \259] [\99 -> \260] -> \261]-> \262]This corresponds to the tree[[a! E] + [[b! E] � [c! E]! E]! E]that is declared by the priority rules.5 DiscussionWe have de�ned a transformation on context-free grammars that compiles prior-ity and associativity declarations into the productions of the grammar by usingcharacter classes to concisely encode sets of productions.Even though transformed grammars do not generate trees with priority con-ict this does not mean that they are unambiguous or do not cause conictsin parse tables. Conicts and ambiguities can have been overlooked or causedby constructs that can not be dealt with by means of priorities. See (Visser,1997d) for further discussions and solutions.A �rst prototype of the transformation algorithm has been implementedas part of the implementation of a parser generator for the syntax de�nitionformalism SDF2. The usage of character classes in context-free grammars camenatural in this setting because SDF2 integrates lexical and context-free syntaxof languages by combining them into a single context-free grammar. Parsersfor such grammars do not need separate lexical analyzers and are thus calledscannerless parsers (Visser, 1997d).Although the parser generator spends no time on the lookup of informationin the priority table, more time is spent on character class computations. Ane�cient implementation of character classes is therefore essential for a successfulimplementation.Further optimizations can be achieved by further transforming the derivedcharacter class grammars. An obvious candidate is chain rule elimination. If[n]! [m] is a chain production, replace everywherem by n, e�ectively removinga production from the grammar.ReferencesAasa, A. (1992). User De�ned Syntax . Ph.D. thesis, Department of ComputerSciences, Chalmers University of Technology and University of G�oteborg, S-412 96 G�oteborg, Sweden.Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975). Deterministic parsing ofambiguous grammars. Communications of the ACM , 18(8), 441{452.Chomsky, N. (1956). Three models for the description of language. IRE Trans-actions on Information Theory , 2, 113{124.Earley, J. (1975). Ambiguity and precedence in syntax description. Acta Infor-matica, 4(1), 183{192. 12
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[7] succ(c1) = c2,[pn�2] = [pn�1 hc2, � ! A $i],[sn�2] = [h[c2], Ai sn�1]number(� ! A $ p �; h[pn�1], [sn�1], c1i) =number(p �; h[pn�2], [sn�2], c2i)[8] [hcc1, Ai sn�1 hcc2, Ai sn�2] = [sn�1 hcc1 _ cc2, Ai sn�2]Looking up numbers[9] h[pn�1 hc, p1i pn�2], [sn �], c 0i[p2] = c when p1 �= p2 = >[10] h[pn �], [sn�1 hcc, Ai sn�2], c 0i[A] = cc[11] h[pn �], [sn �], c 0i[A] = mk-charclass(A) otherwise[12] mk-charclass(cc) = cc[13] mk-charclass(A) = [] otherwisemodule PCFG-to-CCGimports CC-Sdf-Syntax Priority-Sdf-Syntax Character-Class-NormalizationKernel-Sdf-Projection Priority-Sdf-ProjectionRestrictions-Sdf-Projection ProdSym-NumbersAexportssorts PrioRel NumPrior NumPriors NumPriority NumPrioritiescontext-free syntaxCharacter \[" CharClass \;" CharClass \;" CharClass \]" ! NumPriorityfNumPriority \;"g� ! NumPrioritiesNumPriorities \�" Character ! NumPriorityNumPriorities \++" NumPriorities ! NumPriorities frightgvariables\npr"[0-9 0]� ! NumPriority\npr�"[0-9 0]� ! fNumPriority \;"g�context-free syntaxccg(Grammar) ! Grammarrejected(Attributes) ! Attributesprods(PSNumbers, Productions) ! Productionssyms(PSNumbers, Symbols) ! Symbolsrestrs(PSNumbers, Restrictions) ! Restrictionsunion(PSNumbers, Symbols) ! CharClasspriors(PSNumbers, Priorities) ! NumPriorities�lter(NumPriorities, Productions) ! Productions�lter(NumPriority, Symbols, Symbols) ! Symbolsrestr(PSNumbers, Restrictions) ! RestrictionsequationsFrom CFG to CCG[1] P(G) = p �, number(p �; new-numbers) = psnccg(G) = numbers psnsyntax �lter(priors(psn; Pr(G)); prods(psn; p �))restrictions restrs(psn; R(G))15



[2] prods(psn; ) =[3] prods(psn; � ! A $) = syms(psn; �) ! [psn[� ! A $]] rejected($)[4] prods(psn; p+1 p+2 ) = prods(psn; p+1 ) ++ prods(psn; p+2 )[5] syms(psn; ) =[6] syms(psn; A) = psn[A][7] syms(psn; �+ � +) = syms(psn; �+) ++ syms(psn; �+)[8] rejected(fattr�1; reject; attr�2g) = frejectg[9] rejected($) = otherwise[10] restrs(psn; ) =[11] restrs(psn; restr+1 restr+2 ) = restrs(psn; restr+1 ) ++ restrs(psn; restr+2 )[12] restrs(psn; � {/{ cc) = union(psn; �) {/{ cc[13] union(psn; ) = [][14] union(psn; �+ � +) = union(psn; �+) _ union(psn; � +)[15] union(psn; cc) = cc[16] union(psn; A) = psn[A] otherwiseTranslating a priority relation to a numeric priority relation[17] priors(psn; ) =[18] psn[p1] = c1, psn[p2] = c2priors(psn; p1> p2) = c1[[c2]; [c2]; [c2]][19] psn[p1] = c1, psn[p2] = c2priors(psn; p1 assoc p2) = c1[[]; []; [c2]]; c2[[]; []; [c1]][20] psn[p1] = c1, psn[p2] = c2priors(psn; p1 left p2) = c1[[]; []; [c2]]; c2[[]; []; [c1]][21] psn[p1] = c1, psn[p2] = c2priors(psn; p1 right p2) = c1[[c2]; []; []]; c2[[c1]; []; []][22] psn[p1] = c1, psn[p2] = c2priors(psn; p1 non-assoc p2) = c1[[c2]; []; [c2]]; c2[[c1]; []; [c1]][23] priors(psn; pr; pr+) = priors(psn; pr+) ++ priors(psn; pr)[24] npr�1 ++ = npr�1[25] npr�1 ++ npr; npr�2 = npr�1; npr ++ npr�2Joining entries[26] npr�1; c[cc11; cc12; cc13]; npr�2; c[cc21; cc22; cc23]= npr�1; c[cc11 _ cc21; cc12 _ cc22; cc13 _ cc23]; npr�216



Looking up priorities[27] npr�1; c[cc1; cc2; cc3]; npr�2 � c = c[cc1; cc2; cc3][28] npr � � c = c[[]; []; []] otherwiseFiltering the CCG[29] �lter(npr �; ) =[30] �lter(npr �; p+1 p+2 ) = �lter(npr �; p+1 ) ++ �lter(npr �; p+2 )[31] �lter(npr �; � ! [c] $) = �lter(npr � � c; ; �) ! [c] $[32] �lter(npr; ; ) =[33] �lter(npr; ; A) = A[34] npr = c[cc1; cc2; cc3]�lter(npr; ; cc �+) = �lter(npr; cc = cc1; �+)[35] npr = c[cc1; cc2; cc3]�lter(npr; �+; cc � +) = �lter(npr; �+ cc = cc2; � +)[36] npr = c[cc1; cc2; cc3]�lter(npr; �+; cc) = �+ cc = cc3
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