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Abstract

Disambiguation methods for context-free grammars enable concise specifi-
cation of programming languages by ambiguous grammars. A disambiguation
filter is a function that selects a subset from a set of parse trees—the possi-
ble parse trees for an ambiguous sentence. The framework of filters provides
a declarative description of disambiguation methods independent of parsing.
Although filters can be implemented straightforwardly as functions that prune
the parse forest produced by some generalized parser, this can be too inefficient
for practical applications.

In this paper the optimization of parsing schemata, a framework for high-
level description of parsing algorithms, by disambiguation filters is considered
in order to find efficient parsing algorithms for declaratively specified disam-
biguation methods. As a case study the optimization of the parsing schema of
Earley’s parsing algorithm by two filters is investigated. The main result is a
technique for generation of efficient LR-like parsers for ambiguous grammars
modulo priorities.

1 Introduction

The syntax of programming languages is conventionally described by context-free
grammars. Although programming languages should be unambiguous, they are often
described by ambiguous grammars because these allow a more natural formulation
and yield better abstract syntax. For instance, the grammar

FE—-F+FE,F—>ExEFE—a
gives a clearer description of arithmetic expressions than the grammar
E—-FE+T,E—=T;T —-TxaT —a

To obtain an unambiguous specification of a language described by an ambiguous
grammar it has to be disambiguated. For example, the grammar above can be
disambiguated by associativity and priority rules that express that £ — F % E has
higher priority than £ — FE 4+ F and that both productions are left associative.
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In [KV94] a framework for specification and comparison of disambiguation meth-
ods is set up. In this framework a disambiguation method is described as a filter on
sets of parse trees. A disambiguation filter is interpreted by parsing sentences accord-
ing to the ambiguous context-free grammar with some generalized parsing method,
for instance Generalized LR [Tom85, Rek92], and then prune the resulting parse
forest with the filter. Because this method of specification of disambiguation is inde-
pendent of parsing, a language definition can be understood without understanding
parsing and it can be implemented by any generalized parser.

Although filters provide a uniform model for the description of disambiguation,
they are too inefficient for many applications because all possible parse trees for a
sentence have to be built before the intended ones are selected. (The number of
possible parse trees for the first grammar above grows exponentially with the length
of strings.) The optimization problem for filters is to find an efficient parser for the
combination of a context-free grammar and a disambiguation filter. The filter can
be used to prevent parse steps that lead to parse trees that would be removed by
the filter after parsing. Parsing schemata [Sik93, Sik94], high-level descriptions of
parsing algorithms that abstract from control- and data-structures, provide a suitable
framework for the study of the interaction between filters and parsers.

Since it is not clear how to solve the optimization problem in general, if that is
possible at all, an instance of the problem is studied in this paper: The optimization
of the underlying parsing schema of Earley’s parsing algorithm [Ear70] by a filter
for disambiguation by priorities. This method, the disambiguation method of the
formalism SpDF [HHKR92], interprets a priority relation on context-free productions
as two consecutive filters: the first selects trees without a priority conflict, the second
selects trees that are minimal with respect to a multiset ordering on trees induced
by the priority relation.

The main result of this paper is a parsing schema for parsing with priorities.
The schema specifies a complete implementation of parsing modulo priority conflicts
and a partial implementation for the multiset order. The schema can easily be
implemented as an adaptation of any parser generator in the family of LR parser
generators. The resulting parsers yield parse trees without priority conflicts.

The method of specifying a disambiguation method by a filter and applying it to
optimize the parsing schema of some parsing algorithm appears to be fertile soil for
growing new parsing algorithms from old ones.

The rest of the paper is structured as follows. In section 2 some preliminary
notions are defined. In section 3 disambiguation filters are defined. In section 4
parsing schemata are informally introduced. In section 5 priority rules and the notion
of priority conflict are defined and a parsing schema optimized for the priority conflict
filter is derived. In section 6 the relation between Earley parsing and LR parsing
is discussed and it is shown how optimization results can be translated from the
former to the latter. In section 7 the multiset filter induced by a priority declaration
is defined and a partial optimization of the Earley schema for this filter is derived.
The two optimizations can be combined in a single schema, obtaining an efficient
implementation of disambiguation with priorities.



2 Preliminaries

2.1 DEFINITION. (CFG) A context-free grammar (CFG) G is a triple (Viy, Vi, P),
where Vi is a set of nonterminal symbols, V; a set of terminal symbols, V' the set
of symbols of G is Vy U Vp, and P C Vy x V* a set of productions. We write A — «
for a production p = (4, a) € P. a

2.2 DEFINITION. (parse trees) A CFG G generates a family of sets of parse trees
T9 = (T¢ | « € V*), which contains the minimal sets 7.9 such that

XeTY =XeV
[A—=t,)eTy «A—acPAt, €Ty
troo bt €ETY x, < Niti €T

The signature of a tree is the production used to construct the root of a tree:
sign([A — t.]) = A — «a. The yield of a tree is the concatenation of its leaves.
]

2.3 DEFINITION. (parsing) A parser is a function I that maps each string w € V!
to a set of parse trees. A parser II accepts a string w if [II(w)| > 0. A parser II
is deterministic if |IT(w)| < 1 for all strings w. A parser for a CFG G that accepts
exactly the sentences in L(G) is defined by

() (w) = {t € T | yield(t) = w} 0

2.4 EXAMPLE. As an example consider the ambiguous grammar G = E — FE +
E;E — Ex E; E — a from the introduction. According to this grammar the string
a + a % a has two parses:

HG)a+axa)={[F = [E = [E—a]l+[F —a]] x[E — al
[E = [E —al+[F — [E—ax[E—d]} O

3 Disambiguation Filters

3.1 DEFINITION. (disambiguation filter) A filter F for a CFG G is a function F :
©o(T) — p(T) that maps sets of parse trees to sets of parse trees, where F(®) C ®
for any ® C 7. The disambiguation of a CFG G by a filter F is denoted by G/F.
The language L(G/F) generated by G/F is the set

L(G/F)={w eV} |30 C T : yield®) = {w} A F(®) = o}

The interpretation of a string w by G/F is the set of trees F(I1(G)(w)). A filter F; is
also applicable to a disambiguated grammar G/F;, which is denoted by (G/F;)/F>
and is equivalent to G/(Fy o Fy). O



Several properties and examples of filters are discussed in [KV94]. In sections 5 and 7
two examples of disambiguation filters will be introduced. Now the optimization
problem for disambiguation filters can be formulated as:

3.2 DEFINITION. (optimization by filter) Given a CFG G and a filter F, a parser 7
is an optimization of I1(G) if for any string w

F(I(G)(w)) C w(w) C TI(G)(w)

We say that m approzimates F o II(G). m is an optimal approximation if m(w) =

F(II(G)(w)) for any w. O

4 Parsing Schemata

Parsing schemata [Sik93, Sik94] abstract from the details of control- and data-
structures of full parsing algorithms by only considering the intermediate results
of parsing. A parsing system is a deduction system that specifies how from a set
of hypotheses (the tokens of a sentence) assertions (the intermediate parser states)
can be derived according to a set of deduction rules for some context-free grammar.
A parsing schema is a parsing system parameterized with a context-free grammar
and a sentence. Below parsing schemata are described informally by an example. A
formal treatment can be found in [Sik93].

Definition 4.1 defines a parsing schema for Earley’s parsing algorithm [Ear70].
Its specification consists of an implicit definition of the set of hypotheses H, the
definition of a set of items Z and the definition of a set of deduction rule schemata
D. For each string ay ...a, the set of hypotheses H is the set containing the items
la;,i — 1,i] for 1 < i < n. The set of items Z is the domain of the deduction
system, i.e. the items are the subject of deductions. According to this definition,
Earley items are of the form [A — « e 3,4, j], where A — «af3 is a production of
grammar G. The indices refer to positions in the string a;...a,. The intention of
this definition is that an item [A — a e 3,14, j| can be derived if @ —§ a;41...a; and
S —¢ ay...a;Ay. The deduction rules D! through D€ describe how these items can
be derived. Rule D!, the initialization rule, specifies that the item [S — ev,0,0],
where S is the start symbol of the grammar, can always be derived. The predict
rule D states that a production B — « can be predicted at position j, if the item
[A — « e BA3,i,j] has already been derived. Finally, the rules DS and D¢ finalize
the recognition of a predicted and recognized token or nonterminal—witnessed by
the second premise—Dby shifting the e over the predicted symbol.

4.1 DEFINITION. (Earley) Parsing schema for Earley’s parsing algorithm [Ear70].
I = {[A—-aefijlfAd—afecGA0<i<j},

DI = {F[S — v,0,0]},

DP = {[A— aeBp,i,jl+- [B— ey,j 4]},

DS = {[A— aeaBijl[a,j,j+1]F[A— aaep,ij+1]},
D¢ = {[A = e Bf,h,i],[B— ~ve,ijlF[A— aBeg h,j|},

D = D'uDPuDSuUD¢ 0



A derivation according to a parsing schema is a sequence Iy, ..., I,, of items such
that for each ¢ (0 <4 <m) I; € H or there isa J C {Iy,...,I; 1} such that J - I
is (the instantiation of) a rule in D. A string w = ay...a, is in the language of
context-free grammar G if the item [S — ~e,0,n] is derivable from the hypotheses
corresponding to w in the instantiation of parsing schema 4.1 with G. The expression
w l—g I denotes: there is a derivation Iy, ..., I,, = I of the item I from the hypotheses
generated from string w in the instantiation of parsing schema P with grammar G.

The schema in example 4.1 only defines how strings can be recognized. Since
disambiguation filters are defined on sets of trees and not on items a way to relate
items to trees is needed. The following definition gives an extension of schema 4.1
that describes how trees can be build as a result of the deduction steps. The items
in this schema have the form [A — « e 3,1, j] = [A — t,] and express the fact ‘from
position ¢ to position j the string o has been recognized and the partial parse tree
[A — t,] has been built as a result’. Note how the shift and complete rules extend
partial parse trees.

4.2 DEFINITION. (Earley with trees) Parsing schema for Earley’s algorithm with
construction of parse trees.

IT={[A—aefijl=[A—=t)]]|A—=aBEGAN0<i<jAt, € TI}

a;

lai, i —1,1] :>ai(H) S — 7,0,0] = [S —] (1)

[A— aeBf h,i] = [A—t,]
[B — ev,i,i] = [B —]

(P)

A= aeafhil = [A > to].faig] = a g
Ao anefhi oAt O

[A— ce BB, h,i] = [A—t.],[B—7e,i,j]=ts
A= aBep,hjl = [A— l.ig]

(©) =

4.3 ExaMPLE. Figure 1 shows the derivation of a parse tree for the string a + a
with the grammar from example 2.4. O

The following theorem states that parsing as defined in definition 2.3 and deriva-
tion with parsing schema 4.2 are equivalent.

4.4. THEOREM. (correctness) {t € 7§ | w &2 [S — ve,0,n] = t} =11(G)(w)

PROOF. See Appendix A. O

The following proposition states that the decoration of items with partial parse trees
in parsing schema Earley makes no difference to what can be derived. Items in
a parsing schema can be annotated with trees as long as they do not affect the
deduction.



[a

[

[a, 2 ] =a
[E—>0E+EOU] = [F —]
[E — ea,0,0] = |

[E — ae,0,1] = |

(B — Ee+E,0,1] = |

[F — E+eE,0,2] = [E— [F — a]+]
[E — ea,?2,2] = |

[E — ae, 2, 3] = |

[E — E + FEe,0,3] =]

E — [E —a]l+ [E — dl

Figure 1: Derivation with parsing schema 4.2 and the grammar from example 2.4.

4.5. PROPOSITION.
wh' A= aefig] <= 3, €T wH? [Asas i) = [A>t,] O

The optimization problem can now be rephrased as:

4.6 DEFINITION. (optimizing parsing schemata) The optimization of a parsing
schema P by a disambiguation filter F constitutes in finding a derived parsing schema
P’ such that

FANG)(w)) C{t |whg =t} C{t |whkg [ =t}

where [ is some final item. O

5 Optimization 1: Priority Conflicts

In this section and the next the optimization of parsing schema Earley by two dis-
ambiguation filters that are used to interpret the priority disambiguation rules of the
formalism SpF [HHKR92], will be considered. The subject of this section is a filter
that removes trees with a priority conflict. This filter is similar to the conventional
precedence and associativity filter. The declaration of the priority rules will also be
used in the definition of the multiset filter in section 7.

5.1 DEFINITION. (priority declaration) A priority declaration R for a CFG G is a
tuple (I, R, N, >), where @ C P x P for @ € {I,R,N, >}, such that L, R and N are
symmetric and > is irreflexive and transitive. O

The relations L., R and N declare left-, right- and non-associativity, respectively,
between productions. The relation > declares priority between productions. A tree
with signature p; can not be a child of a tree with signature ps if po > p;. The syntax
of priority declarations used here is similar to that in [Ear75]. In Spr [HHKR92]



a formalism with the same underlying structure but with a less Spartan and more
compact syntax is used.

5.2 DEFINITION. (priority conflict filter) A tree ¢ has a root priority conflict C*(t)
if it violates a right- or non-associativity rule

CR*(A = [B —=tg]s.)) & (A= BaR®*B =)V (A— BaN*B —=p3) (1)
or violates a left- or non-associativity rule

CR(A = 54 [B—t5]]) & (A—=aBL®B = pB)V(A—aBNfB = 3) (2
or violates a priority rule

CR([A— s, [B—tg]s,] & A= aBy>"B—p (3)

A tree t has a priority conflict, aR(t), if ¢ has a subtree s that has a root priority
—R —R —

conflict C®(s). The filter F€ is now defined by F¢ (®) = {t € @ | ﬁCR(t)}. The

pair (G, R) defines the disambiguated CFG Q/]-"E . O

5.3 EXAMPLE. Take grammar G from example 2.4 and priority declaration R =
E — Ex E{left} > E — E + E{left} where p{left} is a shortcut for p L p. The
tree

[E — [E— [E —a]+[E —a]] % [E — a]]

has a priority conflict in (G, R) it violates the priority condition (3) because of

F—-FExE>FE—FE+FE, but
[E — [F —al+[F — [E—a|*[E — dl

is conflict free. These trees correspond to the (disambiguated) strings (a4 a) *a and
a + (a * a), respectively. The implication operator in logic is an example of a right
associative operator: a — a — a should be read as a — (a — a) a

The priority conflict filter induced by a priority declaration can be used to op-
timize the Earley parsing schema. By the following observation a more general
optimization problem can be solved.

5.4 DEFINITION. (subtree exclusion) A subtree exclusion filter based on a set @ of
excluded subtrees is defined by

FP)={ted|-t<Q}
where t< @ (t is excluded by Q) if ¢ has a subtree that matches one of the patters in
Q. m

5.5. PROPOSITION. A tree has a root priority conflict if and only if it matches a tree
in the set Q™ of excluded subtrees that contains all tree patterns t = [A — a[B —
v]B] such that CR(t). O



*
jg:i*da E SE~Es
Fns[ e
E —seE+FE| E
a
+
E el + F FESEetE
FEF —eFEx FE FE —ae
F —FexE
FE —ea *
a
§:ﬁf‘E E ESETEe
R
FE —eE + F +

Figure 2: LR(0) goto graph for the grammar of example 2.4

The optimized parsing schema should not derive trees that contain a subtree
contained in (). As is shown in definition 4.2 such patterns are constructed in the
complete rule and predicted in the predict rule. The construction of trees with
priority conflicts can be prevented by adding an extra condition to these rules. This
leads to the following adaptation of the Earley parsing schema.

5.6 DEFINITION. (Earley modulo @) Parsing schema Earley modulo @), where @ is
a set of parse trees of the form [A — a[B — ~|f], which are excluded as subtrees.
The set of items Z and the deduction rules (H), (I) and (S) are copied unchanged
from definition 4.2.
|[A— aeBf, h,i] = [A— t,]
[B — ev,i,i| = [B —]

[A—alB—1]6] ¢ Q (P)

[A— ae BB, h,i] = [A —t,],[B— ve,i,j] = tg
(A= aBefhjl = [A— taig)

[A—=a[B—=1]l¢Q (C)

O

The following theorem states that parsing schema 5.6 is an optimal approximation
of the composition of a subtree exclusion filter (with trees of the form [A — a[B —
v]8]) and a generalized parser.

5.7. THEOREM. {t € T§ | w 5%, [S — ve,0,n] = t} = F(II(G)(w))

PROOF. See Appendix A. 0O
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Figure 3: LR(0) goto graph for the grammar of example 5.3.

6 Intermezzo: From Earley to LR

There is a close correspondence between Earley’s algorithm and LR parsing [Knu65].
In fact, parsing schema 4.1 can also be considered the underlying parsing schema of
an LR(0) parser. The main difference between the algorithms is that in LR parsing
the instantiation of the parsing schema with a grammar is compiled into a transition
table. Definition 6.1 defines a parsing schema for ‘compiled” LR(0) parsing. The
intermediate results of an LR parser, the LR states, are sets of LR items closed
under prediction, defined by the function closure. The function goto computes the
set of items that results from a state by shifting the dot in the items over a symbol
X. The schema defines two deduction rules. Rule (Sh) obtains a new state from a
state by shifting a terminal. Rule (Re) reduces a number of states to a new state
upon the complete recognition of a production B — By ... B,,. It is clear that the
function closure corresponds to the predict rule (P) in Earley, that (Sh) corresponds
to (S) and that (Re) corresponds to (C). A goto-graph is a precomputation of the
goto function. Figure 2 shows a goto-graph for the grammar of example 2.4.

6.1 DEFINITION. (LR(0) parsing)
Iir={[A—aep]|A=af e}t IT={[1j]|®CIr}

closure(®) ={I | T € ®V I =[B — ey| AN[A — e B3] € closure(®)}
goto(X, @) = closure({{[A - aX e ] | [A - a e X3] € ®})

(D, h,il,[a,i,i+ 1] F [goto(a, @), h,i + 1] (Sh)

[@LA=oeBA ), (@ PPl i) (@ BBl ]

[goto(B, ®), h, i,,]
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In the same way that an LR parser is derived from the Earley schema an LR parser
can be derived from the optimized parsing schema of definition 5.6 by adapting the
closure and goto functions.

6.2 DEFINITION. (LR(0) parsing modulo Q)

closure(®) ={I | [ € PV I=[B — ey| A[A — ae Bf| € closure(®)
A[A = alB—=1pl ¢ Q}

goto(B — v, ®) = closure({{A > aBe 3] |[A > aeBflc ®
NA—=alB—=19lpl¢Q}) O

Note that the goto function has to be parameterized with the production that is
recognized instead of with just the symbol. (For the (Sh) rule the old goto function is
used.) Figure 3 shows the goto-graph for grammar from example 5.3 disambiguated
with an appropriate priority declaration. In appendix B the extension of LR(0) to
SLR(1) and its optimization with the priority conflict filter are described.

Conventional methods for disambiguating grammars that apply to LR parsing
disambiguate the grammar by solving conflicts in an existing LR table. The classical
method of [AJUT75] uses associativity and precedence information of a limited form
a linear chain of binary operators that have non-overlapping operator syntax—to
solve shift/reduce conflicts in LR tables. The method is based on observations on
how such conflicts should be solved given precedence information, without a real
understanding of the cause of the conflicts. In a recent paper Thorup [Tho94a]
describes a method that tries to find a consistent solution for all conflicts in an LR
table starting from, and producing a set of excluded subtrees.

Both methods fail on grammars that are inherently non-LR(k), i.e., for which
there is no complete solution of all conflicts in any LR table for the grammar. An
example is the grammar

L—-#L—,L—-LL;E—FL+LE;E— FELxLE;FE —a

that models arithmetic expressions with layout; the tokens of expressions can be
separated by any number of spaces (#), which requires unbounded lookahead. This
grammar can be disambiguated completely (it has no ambiguous sentences) with
priorities, resulting in an LR table that contains some LR-conflicts, but that does
not, produce trees with priority conflicts. In combination with a nondeterministic
interpreter (e.g., Tomita’s Generalized LR algorithm [Tom85]) of the parse tables this
gives an efficient disambiguation method for languages on the border of determinism.

In [Tho94b] Thorup describes a transformation on grammars based on a set
of excluded subtrees to disambiguate a grammar. This method could be used to
generate conflict free parse tables as far as possible. Because such a transformation
introduces new grammar symbols, more states and transitions are needed in the parse
table than for the original grammar. Since the method defined above also introduces
some extra states, it would be interesting to compare the LR tables produced by
both methods.
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7 Optimization 2: Multiset Filter

The multiset ordering on parse trees induced by a priority declaration solves ambi-
guities not solvable by priority conflicts. A certain class of ambiguities solved by the
multiset order does not need the full power of multisets, only a small part of both
trees are actually compared. Based on this observation an optimization of the Earley
schema that partially implements the multiset filters can be defined.

7.1 DEFINITION. (multisets) A multiset is a function M : P — N that maps
productions to the number of their occurrences in the set. The union M & N of two
multisets M and N is defined as (M @& N)(p) = M(p) + N(p). The empty multiset
is denoted by 0, i.e., B(p) = 0 for any p. We write p € M for M(p) > 0. A multiset
with a finite number of elements with a finite number of occurrences can be written
as M = {p1,p1,...,pa,...}, where M(p) is the number of occurrences of p in the list.
A parse tree t is interpreted as a multiset of productions by counting the number of
times a production acts as the signature of a subtree of t. O

7.2 DEFINITION. (multiset order [J1.82]) Given some priority declaration R, the
order <® on multisets is defined as

M<RN << M#N
A VyeM:M(y)>N(y) =3z € N:y>FxAM(z) < N(z) O

7.3 DEFINITION. (multiset filter) Given a priority relation R, the multiset filter
F=" is defined by
FE@)={ted|-Tse d:s <Rt} O

The motivation for this filter is that it prefers parse trees that are constructed
with the smallest possible number of productions of the highest possible priority.

7.4 EXAMPLE. Consider the grammar
R—-R+RN-—->N+N;R—>r;N—>nR—>N

that describes the language of ‘naturals’ and ‘reals’ with an overloaded addition
operator. The sentence n + n can be parsed as [N — [N — n| + [N — n]] and
as [R - [R — [N — n]]+[R — [N — n]]]. This ambiguity can be solved,
choosing either the first or the second tree, by declaring one of the priority rules
N—-N+N>R—-R+RorR— R+ R>N — N+ N, respectively. Note that
with the second priority rule, the production N — N + N is only used as a parse
tree in a context where no R is allowed. Therefore, the first priority rule is assumed
in further examples. O

The multiset order is too strong for this kind of disambiguation. To solve the
ambiguity there is no need to compare the complete trees, as the multiset order
does; comparing the patterns [R — [N — N + N]|] and [R — [R — N|+ [R — N]|]
is sufficient. The goto graph corresponding to the Earley parser for the example
grammar (Figure 4) shows that the string n+ causes a conflict after completing the
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R—R+eR
R—>eR+ R
+ R—).’f‘ R R—>R+R.
R —-Re+R R —eN R —Re+R
N —eN + N
r N —en
N —eN + N R —re
R—eR+ R y N
g—nn R—+Ne
— or
R —eN N —ne Mot g
n +
N 5N e+N x:iz\;:% N =N + Ne
R Ne T N |N =Ne+N
N —en

Figure 4: Goto graph for the grammar of example 7.4

production [N — n]|. The parser can either shift with 4+ or complete with the chain
rule of R — N. However, only after having seen what follows the + a decision can
be made. In the following adaptation of the Earley parsing schema the cause of these
early decision problems is solved by not predicting and completing chain production,
but instead storing them in items.

7.5 DEFINITION. (Earley modulo chain rules) The set Vi contains all chain symbols
[B — C], where B and C' are nonterminals in CFG G and B = C or B —g By —g
o =g By —¢ C, (m > 0). Symbols [A — A] and A are identified. A production
with chain symbols [B — C] in in its right-hand side is identifiable (member of
grammar, priority relation) with a production where the chain symbols are replaced

with their heads B. The (I) and (S) rules are as usual.
T={[A—aepigl| A aBeGn (afl #1Vaf=ae V) AD<i<)
[A — a e Bf, h,i]
[C' — ev,1,1]
[A — ae B, h,i],[C — ve,i,j]
A alB o Cle b

[A— ae B, h,i],[C — ve,i, j],=[A" — de, h,j]
[A — a|B — Cle, h, j]

B Ce Ve (P)

Bl >0 (Ch)

(A= o > A— aB) (Cy)

The negative premise —[A — «e, i, j] in combination with the condition A’ —
o > A — aB is used in rule (C2) to express that: an item [A — «a[B — Cle, h, j]
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R —R+eR
R —eR+ R
R — R+ Re
R—=Re+R N —eN + N R —Re+tR
N —en
R R —er
N
R —eR+ R |, R —re
R er R —R+[R — NJe R —[R — N]+ Re
N SeN + N R —[R— N]e+R R —>Re+R
N —en N —me N —-Ne+N
+
N
g:f};:’%ﬂ}? N =N+ Ne
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e+ R i ’ ’ N —N e+N
N —en
R —[R— N]e+R
R —er

Figure 5: Goto graph for grammar of example 7.4 corresponding to parsing

schema 7.5. The item marked with a % is present if the negative premise of rule
(C2) is absent.

can be derived from [A — «ae B, h,i] and [C — ~e,i, j| only if no item [A" — o'e, h, j]
can be derived such that A" — o/ has higher priority than A — aB.

With the introduction of negative premises we leave the domain of parsing schemata
as defined in [Sik93] and this deserves a more thorough investigation than is possible
in the scope of this paper. However, two points about this feature can be observed:
(1) As used here the notion has a straightforward implementation in an LR-like
compilation scheme: first construct the complete set of items and then choose the
maximal items from it. (2) The priority relation > on productions is irreflexive by
definition, which entails that rule (C5) has no instantiation of the form Iy, I, =13 - I3
that would make the schema inconsistent.

7.6 EXAMPLE. Figure 5 shows the goto graph for the grammar of example 7.4
according to parsing schema 7.5. The shift /reduce conflict between the items [N —
N e +N] and [R — Ne] is changed into a reduce/reduce conflict between the items
[N - N + Ne| and [R — [R — N] + [R — N]Je|. If the negative premise of rule
(Cy) is taken into account the item marked with a x can not be derived, and is not
present in the goto-graph; conflict solved. 0O

The method does not help for grammars where the ambiguity is not caused
by chain rules, for instance consider the grammar (example from [Kam92|) £ —
E E;E —- F — E; E — —F that can be disambiguated by taking ¥ - K £ > F —
—-F>F—F-FE.

The methods can be combined into a parsing schema that handles both priority
conflicts and the partial implementation of multiset filters by adding the subset
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exclusion conditions to the (P), and (C;) rules of parsing schema 7.5. As a bonus
this combined parsing schema handles priority conflicts modulo chain rules.

8 Conclusions

In this paper two disambiguation methods specified as a filter on sets of parse trees
were considered. These filters were used to optimize parsers for context-free gram-
mars by adapting their underlying parsing schema.

The first optimization uses priority conflicts to prevent ambiguities. The result-
ing Earley parsers modulo priority conflicts are guaranteed not to produce trees with
priority conflicts, even for grammars with overlapping operators, layout in produc-
tions or other problems that need unbounded lookahead. In combination with a GLR
interpreter of the parse tables this gives an efficient disambiguation method for lan-
guages on the border of determinism. A subset of the ambiguities solved by multiset
filters is solved by our second optimization. Together these optimizations can be
used in the generation of efficient parsers for a large class of ambiguous context-free
grammars.

Parsing schemata provide a high-level description of parsing algorithms that is
suitable for the derivation of new algorithms. The introduction of negative items
was needed to express the optimization for the multiset filter and needs more re-
search. This first experiment in implemenation of disambiguation methods from
formal specifications encourages research into a fuller optimization of multiset filters
and application of this approach to other disambiguation methods.
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A Proofs

This appendix contains the proofs for theorems 4.4 and 5.7. The proofs are written
in the style of [Lam93]. Since the proofs of Lemma’s A.1 and A.2 are included in the
proofs of Lemma’s A.4 and A.5, respectively, these proofs are only shown as proof
outlines. The proofs of the latter are shown in detail.

A.1. LEMMA. (soundness of parsing schema 4.2) For all context-free grammars G,
w=ay...a, €V}, A€ Vy, a,BE€V*, i< jEN,ty, €TY such that A — aff € G
we have that

whg? [A— aefi gl =[A—t)] = A yield[A = taf]) = a1 ... a8
A Ttgle] € TS : yield(ts[A]) = a1 ... a;AS

PRrROOF SKETCH: By induction on derivations. We have to prove for the last step
in the derivation that it satisfies the condition above, assuming that this has been
proven for all previous steps in the derivation. The last item derived is derived by
one of the rules of the parsing schema. Therefore, it suffices to check the condition
for the rules of the schema.

(1)1. CAsE: 55 e7.0,0]= [S 5] (I)

1 [A— ae BB, h,i| = [A—)ta](P)
' [B — ev,i,i| = [B —]

2. yield(ty = [A = t,Bf]) = apy1...a;Bp

3. yield(ts[A]) = ay ... apAd

1 [A —Qae aHlﬁ, h,’L] = [A — ta], [(l,j+1,’1:, 1+ 1] = A4 (S)

[A— aai 100, hi+ 1] = [A— tyai]

2. yzeld(tA = [A — taa“H—l/B]) = ap41--- a‘ia‘i—klﬁ

3. yield(ts[A]) = a1 ... apAd

1

2

3

4

5!

(1)2. CASE:

(1)3. CASE:

_ [A— ae B h,i]=[A—t,],[B— ve,i,j] :>tB(C)

(1)4. Case: (A= aBep,hj] = |A> b

(1)5. QED.

A.2. LEMMA. (completeness of parsing schema 4.2) For all context-free grammars
G, w=ua..a, € Vi, A€ Vy, o, € V¥, i < j €N, t, € TY such that
A — aff € G we have that

whg? [A— aefi j]=[A—t) < A yield[A = taf]) = a1 ... a8
A Ttgle] € TS : yield(ts[A]) = a1 ... a;AS

PROOF SKETCH: By simultaneous induction on « and tg. We have to check all
combinations of « and tg and construct the corresponding derivation.
(1)1. CasE: 1. yield([B — 7]) =~

2. yield(ts[B]) = ay...a; B
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3. tsle] = e
(1)2. CasE: 1. yield([B — 7]) =~
2. yield(ts[B]) = ay...a; B
3. ts[e] = t5[[A — t, @ 3]] for some A, « and
(1)3. CaASE: 1. yield([A — toaj1103]) = ait1 ... aja;110
2. yield(ts[A]) = a1 . ..a;Ad
(1)4. CASE: 1. yield([A — t,[B = t,]0]) = aps1 ... a;f
2. yield(ts[A]) = a1 ...apAd
(1)5. Q.E.D.

A.3. THEOREM. For all context-free grammars G and w = ay...a, € V5 we have

{t € %g w l—é'2 (S — ve,0,n] =t} =11(G)(w)

(1)1. ay...a, - [S — ve,0,n] =[S —=t,] < yield([S—1t,]) =ai...qa,
PROOF: by Lemma’s A.1 and A.2. O

(2. teT(G)(ay...a,) < t € TsAyieldt) =ay...a,
PROOF: by definition of IT (Def. 2.3). O

(1)3. Q.E.D.
PROOF: by (1)1 and (1)2. O

A.4. LEMMA. (soundness of parsing schema 5.6) For all context-free grammars G,
w=ay...a, €V, A€ Vy, a,€V* i<j€N,t, € TE such that A — aff € G,
and set Q) of parse tree patterns of the form [A — «|B — ]3] we have that

w l—g'FQ [A— aefi,j| = [A—ty] = A yieldlty =[A = t.0]) = aiz1...a;0
A Ttgle] € TS : yield(ts[A]) = ay ... a;AS
A —ts[ta] <@

PROOF sSkETCH: By induction on derivations. We have to prove for the last step
in the derivation that it satisfies the condition above, assuming that this has been
proven for all previous steps in the derivation. The last item derived is derived by
one of the rules of the parsing schema. Therefore, it suffices to check the condition
for the rules of the schema.

(1)1. CASsE: 55 e7.0,0] =[S 5] (I)
(2)1. yield([S —~]) = v
PROOF: by definition of yield. O
(2)2. Ftgle] € TS : yield(ts[S]) = ay . ..agSH
PROOF: take tg[e] = . O
(2)3. =[5 -] 90
PROOF: [S — 7] is not of the form [A — a[B — v|g]. O
(2)4. Q.E.D.
PROOF: by (2)1, (2)2 and (2)3. O
A— aeBf hil=[A—t,
(1)2. Casg: 1. | s .fi’i] L= [g = L(p)
2. yield(ty = [A = t,Bf]) = apy1...a;BS
3. yield(ts[A]) = a1 ... apAd
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4, ﬁtg[tA] < Q
(2)1. yield([B —7]) =y
PROOF: by definition of yield. O
(2)2. 3t's[e] € Ts : yield(ts[A]) = ay...a;AS
PROOF: take t';[®] = ts[A — t, ® 3] then
yield(ts[A — to,BB]) = a;...apyield([A — t,BB])6 [by (1)2:3]
= ay...a0;BBd [by (1)2:2] O
(2)3. —ts[[A — ta|B — v|f]] <@
PROOF: by (1)2:4 and the restriction on rule (P). O
(2)4. Q.E.D.
PROOF: by (2)1, (2)2 and (2)3. O
[A — ()[.(124_1/8 h ] = [A — 1 ] [(li+1,'l:,7;+ 1] = a’i-l-l(S)

(1)3. Casg: 1. A= aain B hit 1 = [A — toa]
2. yield(ta = [A —t a7+1ﬁ]) = apy1 ... 00510
3. yield(ts[A]) = a1 ...apAd
4. —tsltal <Q
(2)1. Q.E.D.

PROOF: by (1)3:2,3,4. O
[A— aeBf hi] = [A—t,],[B—ye,ijl=tp

(1)4. CasE: 1. [A— aBef h j]=[A— tip] (C)
2. yield(ta = [A — toBf]) = apy1 ... a; B
3. yield(ts[A]) = a1 ... apAd
4. yield(tg) = ait1 ... a;
5. yield(t's[B]) = a1 ...a; B¢
6. ﬁts['/fA] < Q
7. =t [1’3] < Q

(2)1. yield([A — tatpf]) = aptr ... a;f
PROOF: yield([A — t, tpf]) = wyield(ty)yield(tg)F  [by def. yield
= api1-.-0iQi41...a;0 [by (1)4:2/4] O
(2)2. —tg[[A = totpf]] <@
PROOF: by (1)4:6,7 and the condition on rule (C). O
(2)3. QE.D.
PROOF: by (2)1 and (1)4:3. O
(1)5. Q.E.D.
PROOF: by cases (1)1, (1)2, (1)3, (1)4 and induction on derivations. O

A.5. LEMMA. (completeness of parsing schema 5.6) For all context-free grammars
G, w=oua...a, € Vi, A€ Vy, o, € V*, i < j €N, t, € TY such that
A — aff € G we have that

whF (A= aefijl=[A—t,] < Ayieldlts =[A = tu.B]) = ais1...a;8
A Ttgle] € TS : yield(ts[A]) = a1 ... a; AS
A ﬁtg[tA} <1Q

PROOF SKETCH: By simultaneous induction on o and tg. We have to check all
combinations of a and tg and construct the corresponding derivation.
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(1)1. CASE: 1. yield([B — v]) =
2. yield(ts[B]) = ay...a; B
3. tg[e] = e
(2)1. B=S
PROOF: by (1)1:3. O
(2)2. i =5 =0

PROOF: i = j because a;;1...a;y = v = yield([B — v]) by (1)1:1 and
i = 0 because ay ...a;S6 =S = yield(ts[S]). O
(2)3. whk [S — ev,0,0] = [S —]
PROOF: by rule (/). O
(2)4. Q.E.D.
PROOF: by (2)1, (2)2 and (1)1. O
(1)2. CasE: 1. yield([B — ~]) =~
2. yield(ts[B]) = ay...a;Bé
3. ts[e] = t5[[A — t, e 3]] for some A, o and 8
4. =ts[[B — v]] <@
(2)1. There is some 1 < h < i such that
1. yield([A — t,BB]) = apy1...a;Bp
2. yield(t's[A]) = ay ...ap A
(3)1. yield(ts[[A — t,BB]]) = a1 ...a; B
PROOF: by (1)2:2,3. O
(3)2. a1...a;B0 = ay ...apyield([A — t,B3])d
PROOF: by (3)1 and the definition of yield. O
(3)3. Q.E.D.
PROOF: by (3)2 O
(2)2. 1. =ts[[A — t,BB]] < Q
2.[A—a[B—=10]¢Q
PROOF: by (1)2:4 and the definition of <. O
(2)3. whk[A— aeBf, hi| = [A —t,]
PROOF: by (2)1.1,2, (2)2.1 and (0). O
(2)4. Q.E.D.
PROOF: w i [B — ev,i,i] = [B —| by (2)3, (2)2.2 and rule (P). O
(1)3. CaAsE: 1. yield([A — toaj1103]) = ait1 ... ajaj110
2. yield(ts[A]) = a1 ...a;Ad
3. ~tslaja] <@
1. wk[A— aea;j16,i,j] = [A—t,]
PROOF: by (1)3:1,2 and (0). O
(2)2. wl [aj11,7, 7+ 1] = aj
PROOF: by rule (H) O
(2)3. Q.E.D.
PROOF: w - [A — aaj 0 (,4,j + 1] = [A — t,] by (2)1, (2)2 and rule
(S). O
(1)4. CASE: 1. yield(ty = [A — to[B — t,]8]) = aps1 ... a;f
2. yield(ts[A]) = a1 ...apAd
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A.6. THEOREM. (correctness of parsing schema 5.6) For all context-free grammars

G and w =ay...a, € V3 and set QQ of parse tree patterns of the form [A — a|B —

PROOF: by (1)1,

3. ﬁtg[tA] < Q
(2)1. There is some h + 1 <4 < j such that
1. yield([A — t,BB]) = apy1...a;Bp
2. yield([B = t,]) = ajt1 ... a;
PROOF:
yield([A — t,|B — t,|0]) = yield(t,)yield([B — t,])5 [by def. yield|
= Api1 .- QG - .. a0 [by (1)4:1] O
(2)2. yield(ts[[A — toBp]]) = a1 ...a; BB
PROOF:
yield(ts[[A — toBB]]) = a; . .. apyield([A — t,Bf])d [by (1)4:2]
=ay...apapyq ... a; BB [by (2)1.1] O
(2)3. 1. ~(t4][A - 1 BS]) = t5[[A - 1. BH]) <Q
2 ~((51B] = t5][A - taBA]) < Q
3145 o[B 1] ¢ Q
PROOF: by (1)4:1,3 and the definition of <. O
(2)4. wk[A— ae Bﬁ h,i] = [A — t,]
PROOF: by (2)1.1 <1> , (2)3.1 and (0). O
(2)5. wk [B — ve,i,j] = [B—)t ]
PROOF: by (2)1.2, (2)2, (2)3.2 and (0) O
(2)6. Q.E.D.
PROOF: w - [A — aB e 3, h,i] = [A — t,tg] by (2)4, (2)5, (2)3.3 and
rule (C). O
. QED.

esis with a smaller « or tg.) O

v]B] we have that

(1)1.

(1)3.

ay ...

{teTd wri%[S — ve,0,n] =t} = FUU(G)(w))

a, F [S — 'yo,(],n] = [S — t,] iff yield([S — t,]) = a1...a, and

A[S = 1t,]<Q

PROOF: by Lemma’s A4 and A.5. O

(1)2. t € FUI(G)(ay .. .ay)) iff t € Ts A yield(t) =ay...an A=[S = t,]<Q
PROOF: by definition of IT and F? (Defs. 2.3 and 5.4). O

Q.E.D.

PROOF: by (1)1 and (1)2. O

(1)2, (1)3 and (1)4 and mutual induction on « and tg. (The
cases cover all combinations of a and t5. Each case uses the induction hypoth-
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B SLR(1) Parsing

The LR(0) goto graphs in figures 2 and 3 from section 6 contain shift /reduce conflicts
that are easy to prevent with the SLR(1) (Simple LR(1)) extension of LR(0) parsing
due to [DeR71]. The SLR algorithm is based on the observation that a reduction is
only useful if the next symbol in the string can follow the symbol that is recognized
by the reduction, i.e. the left hand-side of the production that is reduced. This is
expressed in the following adaptation of the LR(0) parsing schema of definition 6.1.
The function First(a, ¥) yields the set of symbols that can start a sentence derived
from a string of symbols « followed by a symbol from the set W. The expression
Follow(B, V) denotes the set of symbols that can follow symbol B in a sentence
that is followed by a symbol from the set W. The reduce rule now only applies if
a production has been recognized and the next symbol in the string can follow the
left-hand side of the production.

B.1 DEFINITION. (SLR(1) parsing) This schema adapts the reduce rule of schema 6.1.

First(e, ¥) = U
First(aa, ¥) = {a}
First(Aa, ¥) = Ua_geg First(Ba, ¥)
Follow(B,¥) = {a | A — aBf € G A a € First(3, Follow(A, ¥))}
[@[A—m.Bg]’ h, i], [(I)%Ba-Bl...Bm}’ i, Z.L
o (@B BBl ) [ay G i + 1]

[goto(B, ®), h, i,,]

a € Follow(B, {$})

O

The SLR(1) schema can be adapted in the same way as the LR(0) schema to
account for priority conflicts (or @ subtree exclusion). However, the definition of
Follow above is too weak for this extended schema. For instance, in the grammar of
example 5.3 x is in the Follow set of E. However, % can not follow an E if it is a
E — FE+ E| i.e., if a reduction is done with ¥ — F + E, no action for % is possible.
The following parsing schema optimizes the SLR(1) parsing schema by defining the
Follow set for a production instead of for a symbol and adapting the reduce rule
accordingly. Figure 6 shows the SLR(1) table for the grammar of example 5.3.

B.2 DEFINITION. (SLR(1) parsing modulo @) This schema defines SLR(1) pars-
ing modulo ) using the definition of the closure and goto functions from parsing
schema 6.2 and the definition of First from B.1.

Follow(B = v, ¥)={a | A — aBB € G
A a € First(f3, Follow(A — aBf, ¥))
A[A = a[B —9]6] ¢ Q}
[@[A—m.B,(ﬂ’ h, Z'L [@EB‘)'BI---Bm,}’ ’i, 'l.},
oy (@B BBl ] @y iy i + 1]

[goto(B — By ... By, ®), h, i)

a € Follow(B — By ... B,,,{$})
O
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‘stateHa ‘* ‘—|— ‘$ “1‘2‘3‘4‘
0 s1 313|142
1 rl|{rl|rl

3 s8|sbH | acc

4 s 5 | acc

5 s1 7|7

7 s8|rd3|r3

8 s 9

9 r2|r2|r?2

Figure 6: SLR(1) table for the grammar of example 5.3. s n denotes shift to state
n, r n denotes reduce with production n, acc denotes accept. The right part of the

table contains the goto entries for the productions. This parse table corresponds to

the goto graph of figure 3.



