
A Case Study inOptimizing Parsing Schemataby Disambiguation FiltersEelco VisserAbstractDisambiguation methods for context-free grammars enable concise speci�-cation of programming languages by ambiguous grammars. A disambiguation�lter is a function that selects a subset from a set of parse trees|the possi-ble parse trees for an ambiguous sentence. The framework of �lters providesa declarative description of disambiguation methods independent of parsing.Although �lters can be implemented straightforwardly as functions that prunethe parse forest produced by some generalized parser, this can be too ine�cientfor practical applications.In this paper the optimization of parsing schemata, a framework for high-level description of parsing algorithms, by disambiguation �lters is consideredin order to �nd e�cient parsing algorithms for declaratively speci�ed disam-biguation methods. As a case study the optimization of the parsing schema ofEarley's parsing algorithm by two �lters is investigated. The main result is atechnique for generation of e�cient LR-like parsers for ambiguous grammarsmodulo priorities.1 IntroductionThe syntax of programming languages is conventionally described by context-freegrammars. Although programming languages should be unambiguous, they are oftendescribed by ambiguous grammars because these allow a more natural formulationand yield better abstract syntax. For instance, the grammarE ! E + E;E ! E � E;E ! agives a clearer description of arithmetic expressions than the grammarE ! E + T ;E ! T ;T ! T � a;T ! aTo obtain an unambiguous speci�cation of a language described by an ambiguousgrammar it has to be disambiguated. For example, the grammar above can bedisambiguated by associativity and priority rules that express that E ! E � E hashigher priority than E ! E + E and that both productions are left associative.Technical Report P9507, Programming Research Group, University of Amsterdam, July 1995.Available as: ftp://ftp.fwi.uva.nl/pub/programming-research/reports/1995/P9507.ps.ZThis is an extended version of [Vis95].

2 In [KV94] a framework for speci�cation and comparison of disambiguation meth-ods is set up. In this framework a disambiguation method is described as a �lter onsets of parse trees. A disambiguation �lter is interpreted by parsing sentences accord-ing to the ambiguous context-free grammar with some generalized parsing method,for instance Generalized LR [Tom85, Rek92], and then prune the resulting parseforest with the �lter. Because this method of speci�cation of disambiguation is inde-pendent of parsing, a language de�nition can be understood without understandingparsing and it can be implemented by any generalized parser.Although �lters provide a uniform model for the description of disambiguation,they are too ine�cient for many applications because all possible parse trees for asentence have to be built before the intended ones are selected. (The number ofpossible parse trees for the �rst grammar above grows exponentially with the lengthof strings.) The optimization problem for �lters is to �nd an e�cient parser for thecombination of a context-free grammar and a disambiguation �lter. The �lter canbe used to prevent parse steps that lead to parse trees that would be removed bythe �lter after parsing. Parsing schemata [Sik93, Sik94], high-level descriptions ofparsing algorithms that abstract from control- and data-structures, provide a suitableframework for the study of the interaction between �lters and parsers.Since it is not clear how to solve the optimization problem in general, if that ispossible at all, an instance of the problem is studied in this paper: The optimizationof the underlying parsing schema of Earley's parsing algorithm [Ear70] by a �lterfor disambiguation by priorities. This method, the disambiguation method of theformalism Sdf [HHKR92], interprets a priority relation on context-free productionsas two consecutive �lters: the �rst selects trees without a priority conict, the secondselects trees that are minimal with respect to a multiset ordering on trees inducedby the priority relation.The main result of this paper is a parsing schema for parsing with priorities.The schema speci�es a complete implementation of parsing modulo priority conictsand a partial implementation for the multiset order. The schema can easily beimplemented as an adaptation of any parser generator in the family of LR parsergenerators. The resulting parsers yield parse trees without priority conicts.The method of specifying a disambiguation method by a �lter and applying it tooptimize the parsing schema of some parsing algorithm appears to be fertile soil forgrowing new parsing algorithms from old ones.The rest of the paper is structured as follows. In section 2 some preliminarynotions are de�ned. In section 3 disambiguation �lters are de�ned. In section 4parsing schemata are informally introduced. In section 5 priority rules and the notionof priority conict are de�ned and a parsing schema optimized for the priority conict�lter is derived. In section 6 the relation between Earley parsing and LR parsingis discussed and it is shown how optimization results can be translated from theformer to the latter. In section 7 the multiset �lter induced by a priority declarationis de�ned and a partial optimization of the Earley schema for this �lter is derived.The two optimizations can be combined in a single schema, obtaining an e�cientimplementation of disambiguation with priorities.

32 Preliminaries2.1 Definition. (CFG) A context-free grammar (CFG) G is a triple hVN ; VT ;Pi,where VN is a set of nonterminal symbols, VT a set of terminal symbols, V the setof symbols of G is VN [VT , and P � VN � V � a set of productions. We write A! �for a production p = hA; �i 2 P. 22.2 Definition. (parse trees) A CFG G generates a family of sets of parse treesT G = (T G� j � 2 V �), which contains the minimal sets T G� such thatX 2 T GX (X 2 V[A! t�] 2 T GA (A! � 2 P ^ t� 2 T G�t1 : : : tn 2 T GX1:::Xn (Vni=1 ti 2 T GXiThe signature of a tree is the production used to construct the root of a tree:sign([A ! t�]) = A ! �. The yield of a tree is the concatenation of its leaves.22.3 Definition. (parsing) A parser is a function � that maps each string w 2 V �Tto a set of parse trees. A parser � accepts a string w if j�(w)j > 0. A parser �is deterministic if j�(w)j � 1 for all strings w. A parser for a CFG G that acceptsexactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T GS j yield(t) = wg 22.4 Example. As an example consider the ambiguous grammar G = E ! E +E;E ! E � E;E ! a from the introduction. According to this grammar the stringa+ a � a has two parses:�(G)(a + a � a) = f[E ! [E ! [E ! a] + [E ! a]] � [E ! a]][E ! [E ! a] + [E ! [E ! a] � [E ! a]]]g 23 Disambiguation Filters3.1 Definition. (disambiguation �lter) A �lter F for a CFG G is a function F :}(T) ! }(T) that maps sets of parse trees to sets of parse trees, where F(�) � �for any � � T . The disambiguation of a CFG G by a �lter F is denoted by G=F .The language L(G=F) generated by G=F is the setL(G=F) = fw 2 V �T j 9� � T G : yield(�) = fwg ^ F(�) = �gThe interpretation of a string w by G=F is the set of trees F(�(G)(w)). A �lter F2 isalso applicable to a disambiguated grammar G=F1, which is denoted by (G=F1)=F2and is equivalent to G=(F2 � F1). 2

4Several properties and examples of �lters are discussed in [KV94]. In sections 5 and 7two examples of disambiguation �lters will be introduced. Now the optimizationproblem for disambiguation �lters can be formulated as:3.2 Definition. (optimization by �lter) Given a CFG G and a �lter F , a parser �is an optimization of �(G) if for any string wF(�(G)(w)) � �(w) � �(G)(w)We say that � approximates F � �(G). � is an optimal approximation if �(w) =F(�(G)(w)) for any w. 24 Parsing SchemataParsing schemata [Sik93, Sik94] abstract from the details of control- and data-structures of full parsing algorithms by only considering the intermediate resultsof parsing. A parsing system is a deduction system that speci�es how from a setof hypotheses (the tokens of a sentence) assertions (the intermediate parser states)can be derived according to a set of deduction rules for some context-free grammar.A parsing schema is a parsing system parameterized with a context-free grammarand a sentence. Below parsing schemata are described informally by an example. Aformal treatment can be found in [Sik93].De�nition 4.1 de�nes a parsing schema for Earley's parsing algorithm [Ear70].Its speci�cation consists of an implicit de�nition of the set of hypotheses H, thede�nition of a set of items I and the de�nition of a set of deduction rule schemataD. For each string a1 : : : an the set of hypotheses H is the set containing the items[ai; i � 1; i] for 1 � i � n. The set of items I is the domain of the deductionsystem, i.e. the items are the subject of deductions. According to this de�nition,Earley items are of the form [A ! � � �; i; j], where A ! �� is a production ofgrammar G. The indices refer to positions in the string a1 : : : an. The intention ofthis de�nition is that an item [A! � � �; i; j] can be derived if �!�G ai+1 : : : aj andS !�G a1 : : : aiA. The deduction rules DI through DC describe how these items canbe derived. Rule DI, the initialization rule, speci�es that the item [S ! �; 0; 0],where S is the start symbol of the grammar, can always be derived. The predictrule DP , states that a production B ! can be predicted at position j, if the item[A ! � � B�; i; j] has already been derived. Finally, the rules DS and DC �nalizethe recognition of a predicted and recognized token or nonterminal|witnessed bythe second premise|by shifting the � over the predicted symbol.4.1 Definition. (Earley) Parsing schema for Earley's parsing algorithm [Ear70].I = f[A! � � �; i; j] j A! �� 2 G ^ 0 � i � jg;DI = f` [S ! �; 0; 0]g;DP = f[A! � �B�; i; j] ` [B ! �; j; j]g;DS = f[A! � � a�; i; j]; [a; j; j + 1] ` [A! �a � �; i; j + 1]g;DC = f[A! � �B�; h; i]; [B ! �; i; j] ` [A! �B � �; h; j]g;D = DI [DP [DS [DC 2

5A derivation according to a parsing schema is a sequence I0; : : : ; Im of items suchthat for each i (0 � i � m) Ii 2 H or there is a J � fI0; : : : ; Ii�1g such that J ` Iiis (the instantiation of) a rule in D. A string w = a1 : : : an is in the language ofcontext-free grammar G if the item [S ! �; 0; n] is derivable from the hypothesescorresponding to w in the instantiation of parsing schema 4.1 with G. The expressionw `PG I denotes: there is a derivation I0; : : : ; Im = I of the item I from the hypothesesgenerated from string w in the instantiation of parsing schema P with grammar G.The schema in example 4.1 only de�nes how strings can be recognized. Sincedisambiguation �lters are de�ned on sets of trees and not on items a way to relateitems to trees is needed. The following de�nition gives an extension of schema 4.1that describes how trees can be build as a result of the deduction steps. The itemsin this schema have the form [A! � � �; i; j]) [A! t�] and express the fact `fromposition i to position j the string � has been recognized and the partial parse tree[A ! t�] has been built as a result'. Note how the shift and complete rules extendpartial parse trees.4.2 Definition. (Earley with trees) Parsing schema for Earley's algorithm withconstruction of parse trees.I = f[A! � � �; i; j]) [A! t�] j A! �� 2 G ^ 0 � i � j ^ t� 2 T G� gai[ai; i� 1; i]) ai (H) [S ! �; 0; 0]) [S !] (I)[A! � �B�; h; i]) [A! t�][B ! �; i; i]) [B !] (P)[A! � � a�; h; i]) [A! t�]; [a; i; j]) a[A! �a � �; h; j]) [A! t�a] (S)[A! � �B�; h; i]) [A! t�]; [B ! �; i; j]) tB[A! �B � �; h; j]) [A! t�tB] (C) 24.3 Example. Figure 1 shows the derivation of a parse tree for the string a + awith the grammar from example 2.4. 2The following theorem states that parsing as de�ned in de�nition 2.3 and deriva-tion with parsing schema 4.2 are equivalent.4.4. Theorem. (correctness) ft 2 T GS j w `4:2G [S ! �; 0; n]) tg = �(G)(w)Proof. See Appendix A. 2The following proposition states that the decoration of items with partial parse treesin parsing schema Earley makes no di�erence to what can be derived. Items ina parsing schema can be annotated with trees as long as they do not a�ect thededuction.

6 [a; 0; 1]) a[+; 1; 2]) +[a; 2; 3]) a[E ! �E + E; 0; 0]) [E !][E ! �a; 0; 0]) [E !][E ! a�; 0; 1]) [E ! a][E ! E �+E; 0; 1]) [E ! [E ! a]][E ! E + �E; 0; 2]) [E ! [E ! a]+][E ! �a; 2; 2]) [E !][E ! a�; 2; 3]) [E ! a][E ! E + E�; 0; 3]) [E ! [E ! a] + [E ! a]]Figure 1: Derivation with parsing schema 4.2 and the grammar from example 2.4.4.5. Proposition.w `4:1G [A! � � �; i; j] () 9t� 2 T G� : w `4:2G [A! � � �; i; j]) [A! t�] 2The optimization problem can now be rephrased as:4.6 Definition. (optimizing parsing schemata) The optimization of a parsingschema P by a disambiguation �lter F constitutes in �nding a derived parsing schemaP 0 such that F(�(G)(w)) � ft j w `P 0G I) tg � ft j w `PG I) tgwhere I is some �nal item. 25 Optimization 1: Priority ConictsIn this section and the next the optimization of parsing schema Earley by two dis-ambiguation �lters that are used to interpret the priority disambiguation rules of theformalism Sdf [HHKR92], will be considered. The subject of this section is a �lterthat removes trees with a priority conict. This �lter is similar to the conventionalprecedence and associativity �lter. The declaration of the priority rules will also beused in the de�nition of the multiset �lter in section 7.5.1 Definition. (priority declaration) A priority declaration R for a CFG G is atuple hL;R;N; >i, where � � P �P for � 2 fL;R;N; >g, such that L, R and N aresymmetric and > is irreexive and transitive. 2The relations L, R and N declare left-, right- and non-associativity, respectively,between productions. The relation > declares priority between productions. A treewith signature p1 can not be a child of a tree with signature p2 if p2 > p1. The syntaxof priority declarations used here is similar to that in [Ear75]. In Sdf [HHKR92]

7a formalism with the same underlying structure but with a less Spartan and morecompact syntax is used.5.2 Definition. (priority conict �lter) A tree t has a root priority conict CR(t)if it violates a right- or non-associativity ruleCR([A! [B ! t�] s�]) ((A! B� RR B ! �) _ (A! B� NR B ! �) (1)or violates a left- or non-associativity ruleCR([A! s� [B ! t�]]) ((A! �B LR B ! �) _ (A! �B NR B ! �) (2)or violates a priority ruleCR([A! s� [B ! t�] s] (A! �B >R B ! � (3)A tree t has a priority conict, CR(t), if t has a subtree s that has a root priorityconict CR(s). The �lter FCR is now de�ned by FCR(�) = ft 2 � j :CR(t)g. Thepair hG;Ri de�nes the disambiguated CFG G=FCR. 25.3 Example. Take grammar G from example 2.4 and priority declaration R =E ! E � Efleftg > E ! E + Efleftg where pfleftg is a shortcut for p L p. Thetree [E ! [E ! [E ! a] + [E ! a]] � [E ! a]]has a priority conict in hG;Ri|it violates the priority condition (3) because ofE ! E � E > E ! E + E, but[E ! [E ! a] + [E ! [E ! a] � [E ! a]]]is conict free. These trees correspond to the (disambiguated) strings (a+a)�a anda + (a � a), respectively. The implication operator in logic is an example of a rightassociative operator: a! a! a should be read as a! (a! a) 2The priority conict �lter induced by a priority declaration can be used to op-timize the Earley parsing schema. By the following observation a more generaloptimization problem can be solved.5.4 Definition. (subtree exclusion) A subtree exclusion �lter based on a set Q ofexcluded subtrees is de�ned byFQ(�) = ft 2 � j :t / Qgwhere t /Q (t is excluded by Q) if t has a subtree that matches one of the patters inQ. 25.5. Proposition. A tree has a root priority conict if and only if it matches a treein the set QR of excluded subtrees that contains all tree patterns t = [A ! �[B !]�] such that CR(t). 2

8
E !�E +EE !�E � EE !�a E E !E �+EE !E � �E * E !E � �EE !�aE !�E � EE !�E +E E !E �E�E !E � �EE !E �+EE

+ E !E + �EE !�aE !�E � EE !�E +E E !E +E�E !E � �EE !E �+EEE !a�a
a
a *+

+

*

Figure 2: LR(0) goto graph for the grammar of example 2.4The optimized parsing schema should not derive trees that contain a subtreecontained in Q. As is shown in de�nition 4.2 such patterns are constructed in thecomplete rule and predicted in the predict rule. The construction of trees withpriority conicts can be prevented by adding an extra condition to these rules. Thisleads to the following adaptation of the Earley parsing schema.5.6 Definition. (Earley modulo Q) Parsing schema Earley modulo Q, where Q isa set of parse trees of the form [A ! �[B !]�], which are excluded as subtrees.The set of items I and the deduction rules (H), (I) and (S) are copied unchangedfrom de�nition 4.2.[A! � �B�; h; i]) [A! t�][B ! �; i; i]) [B !] [A! �[B !]�] 62 Q (P)[A! � �B�; h; i]) [A! t�]; [B ! �; i; j]) tB[A! �B � �; h; j]) [A! t�tB] [A! �[B !]�] 62 Q (C)2The following theorem states that parsing schema 5.6 is an optimal approximationof the composition of a subtree exclusion �lter (with trees of the form [A! �[B !]�]) and a generalized parser.5.7. Theorem. ft 2 T GS j w `5:6G;Q [S ! �; 0; n]) tg = FQ(�(G)(w))Proof. See Appendix A. 2

9
E !�E +EE !�E � EE !�a E � E ! Ea! E E !E �+EE !E � �E * E !E � �EE !�a a! E E !E � E�

+ E !E + �EE !�aE !�E � EE � E ! Ea! E E !E +E�E !E � �E
E !a�aE !E �+EE +E ! E + a

a *
Figure 3: LR(0) goto graph for the grammar of example 5.3.6 Intermezzo: From Earley to LRThere is a close correspondence between Earley's algorithm and LR parsing [Knu65].In fact, parsing schema 4.1 can also be considered the underlying parsing schema ofan LR(0) parser. The main di�erence between the algorithms is that in LR parsingthe instantiation of the parsing schema with a grammar is compiled into a transitiontable. De�nition 6.1 de�nes a parsing schema for `compiled' LR(0) parsing. Theintermediate results of an LR parser, the LR states, are sets of LR items closedunder prediction, de�ned by the function closure. The function goto computes theset of items that results from a state by shifting the dot in the items over a symbolX. The schema de�nes two deduction rules. Rule (Sh) obtains a new state from astate by shifting a terminal. Rule (Re) reduces a number of states to a new stateupon the complete recognition of a production B ! B1 : : : Bm. It is clear that thefunction closure corresponds to the predict rule (P) in Earley, that (Sh) correspondsto (S) and that (Re) corresponds to (C). A goto-graph is a precomputation of thegoto function. Figure 2 shows a goto-graph for the grammar of example 2.4.6.1 Definition. (LR(0) parsing)ILR = f[A! � � �] j A! �� 2 Gg I = f[�; i; j] j � � ILRgclosure(�) = fI j I 2 � _ I = [B ! �] ^ [A! � �B�] 2 closure(�)ggoto(X;�) = closure(f[A! �X � �] j [A! � �X�] 2 �g)[�; h; i]; [a; i; i + 1] ` [goto(a;�); h; i+ 1] (Sh)[�[A!��B�]; h; i]; [�[B!�B1:::Bm]0 ; i; i]; : : : [�[B!B1:::Bm�]m ; i; im][goto(B;�); h; im] (Re)2

10 In the same way that an LR parser is derived from the Earley schema an LR parsercan be derived from the optimized parsing schema of de�nition 5.6 by adapting theclosure and goto functions.6.2 Definition. (LR(0) parsing modulo Q)closure(�) = fI j I 2 � _ I = [B ! �] ^ [A! � �B�] 2 closure(�)^ [A! �[B !]�] 62 Qggoto(B ! ;�) = closure(f[A! �B � �] j [A! � �B�] 2 �^ [A! �[B !]�] 62 Qg) 2Note that the goto function has to be parameterized with the production that isrecognized instead of with just the symbol. (For the (Sh) rule the old goto function isused.) Figure 3 shows the goto-graph for grammar from example 5.3 disambiguatedwith an appropriate priority declaration. In appendix B the extension of LR(0) toSLR(1) and its optimization with the priority conict �lter are described.Conventional methods for disambiguating grammars that apply to LR parsingdisambiguate the grammar by solving conicts in an existing LR table. The classicalmethod of [AJU75] uses associativity and precedence information of a limited form|a linear chain of binary operators that have non-overlapping operator syntax|tosolve shift/reduce conicts in LR tables. The method is based on observations onhow such conicts should be solved given precedence information, without a realunderstanding of the cause of the conicts. In a recent paper Thorup [Tho94a]describes a method that tries to �nd a consistent solution for all conicts in an LRtable starting from, and producing a set of excluded subtrees.Both methods fail on grammars that are inherently non-LR(k), i.e., for whichthere is no complete solution of all conicts in any LR table for the grammar. Anexample is the grammarL! #;L!;L! LL;E ! EL + LE;E ! EL � LE;E ! athat models arithmetic expressions with layout; the tokens of expressions can beseparated by any number of spaces (#), which requires unbounded lookahead. Thisgrammar can be disambiguated completely (it has no ambiguous sentences) withpriorities, resulting in an LR table that contains some LR-conicts, but that doesnot produce trees with priority conicts. In combination with a nondeterministicinterpreter (e.g., Tomita's Generalized LR algorithm [Tom85]) of the parse tables thisgives an e�cient disambiguation method for languages on the border of determinism.In [Tho94b] Thorup describes a transformation on grammars based on a setof excluded subtrees to disambiguate a grammar. This method could be used togenerate conict free parse tables as far as possible. Because such a transformationintroduces new grammar symbols, more states and transitions are needed in the parsetable than for the original grammar. Since the method de�ned above also introducessome extra states, it would be interesting to compare the LR tables produced byboth methods.

117 Optimization 2: Multiset FilterThe multiset ordering on parse trees induced by a priority declaration solves ambi-guities not solvable by priority conicts. A certain class of ambiguities solved by themultiset order does not need the full power of multisets, only a small part of bothtrees are actually compared. Based on this observation an optimization of the Earleyschema that partially implements the multiset �lters can be de�ned.7.1 Definition. (multisets) A multiset is a function M : P ! N that mapsproductions to the number of their occurrences in the set. The union M]N of twomultisets M and N is de�ned as (M] N)(p) = M(p) + N(p). The empty multisetis denoted by ;, i.e., ;(p) = 0 for any p. We write p 2 M for M(p) > 0. A multisetwith a �nite number of elements with a �nite number of occurrences can be writtenasM = fp1; p1; : : : ; p2; : : :g, where M(p) is the number of occurrences of p in the list.A parse tree t is interpreted as a multiset of productions by counting the number oftimes a production acts as the signature of a subtree of t. 27.2 Definition. (multiset order [JL82]) Given some priority declaration R, theorder �R on multisets is de�ned asM �R N () M 6= N^ 8y 2M :M(y) > N(y)) 9x 2 N : y >R x ^M(x) < N(x) 27.3 Definition. (multiset �lter) Given a priority relation R, the multiset �lterF�R is de�ned by F�R(�) = ft 2 � j :9s 2 � : s �R tg 2The motivation for this �lter is that it prefers parse trees that are constructedwith the smallest possible number of productions of the highest possible priority.7.4 Example. Consider the grammarR! R +R;N ! N +N ;R! r;N ! n;R! Nthat describes the language of `naturals' and `reals' with an overloaded additionoperator. The sentence n + n can be parsed as [N ! [N ! n] + [N ! n]] andas [R ! [R ! [N ! n]] + [R ! [N ! n]]]. This ambiguity can be solved,choosing either the �rst or the second tree, by declaring one of the priority rulesN ! N +N > R! R + R or R! R + R > N ! N +N , respectively. Note thatwith the second priority rule, the production N ! N + N is only used as a parsetree in a context where no R is allowed. Therefore, the �rst priority rule is assumedin further examples. 2The multiset order is too strong for this kind of disambiguation. To solve theambiguity there is no need to compare the complete trees, as the multiset orderdoes; comparing the patterns [R ! [N ! N +N]] and [R ! [R ! N] + [R ! N]]is su�cient. The goto graph corresponding to the Earley parser for the examplegrammar (Figure 4) shows that the string n+ causes a conict after completing the

12
N !�N +NR!�R+RN !�nR!�rR!�N n N !n�r R!r�R R!R �+R + R!R+ �RR!�R+RR!�rR!�NN !�N +NN !�n R R!R+R�R!R �+R

N N !N �+NR!N� + N !N + �NN !�N +NN !�n N N !N +N�N !N �+N
R!N�N !N �+NN+

rnn ++
Figure 4: Goto graph for the grammar of example 7.4production [N ! n]. The parser can either shift with + or complete with the chainrule of R ! N . However, only after having seen what follows the + a decision canbe made. In the following adaptation of the Earley parsing schema the cause of theseearly decision problems is solved by not predicting and completing chain production,but instead storing them in items.7.5 Definition. (Earley modulo chain rules) The set VC contains all chain symbols[B ! C], where B and C are nonterminals in CFG G and B = C or B !G B1 !G� � � !G Bm !G C, (m � 0). Symbols [A ! A] and A are identi�ed. A productionwith chain symbols [B ! C] in in its right-hand side is identi�able (member ofgrammar, priority relation) with a production where the chain symbols are replacedwith their heads B. The (I) and (S) rules are as usual.I = f[A! � � �; i; j] j A! �� 2 G ^ (j��j 6= 1 _ �� = a 2 VT) ^ 0 � i � jg[A! � �B�; h; i][C ! �; i; i] [B ! C] 2 VC (P)[A! � �B�; h; i]; [C ! �; i; j][A! �[B ! C] � �; h; j] j�j > 0 (C1)[A! � �B; h; i]; [C ! �; i; j];:[A0 ! �0�; h; j][A! �[B ! C]�; h; j] (A0 ! �0 > A! �B) (C2)The negative premise :[A ! ��; i; j] in combination with the condition A0 !�0 > A ! �B is used in rule (C2) to express that: an item [A ! �[B ! C]�; h; j]

13
R!�R+RR!�rN !�N +NN !�n n N !n�r R!r�

N !N �+NR! [R! N]�+RN + N !N + �NR! [R! N] + �RN !�N +NR!�R+RN !�nR!�r N N !N +N�R! [R! N]+[R! N] � *N !N �+NR! [R! N] �+R
R![R! N] +R�R!R �+R

R!R �+RR R!R+ �RR!�R+RN !�N +NN !�nR!�r+ R!R+R�R!R �+RR
R+R!R+ [R! N]�R! [R! N] �+RN !N �+NN+

rn
nr

+
+

Figure 5: Goto graph for grammar of example 7.4 corresponding to parsingschema 7.5. The item marked with a � is present if the negative premise of rule(C2) is absent.can be derived from [A! ��B; h; i] and [C ! �; i; j] only if no item [A0 ! �0�; h; j]can be derived such that A0 ! �0 has higher priority than A! �B.With the introduction of negative premises we leave the domain of parsing schemataas de�ned in [Sik93] and this deserves a more thorough investigation than is possiblein the scope of this paper. However, two points about this feature can be observed:(1) As used here the notion has a straightforward implementation in an LR-likecompilation scheme: �rst construct the complete set of items and then choose themaximal items from it. (2) The priority relation > on productions is irreexive byde�nition, which entails that rule (C2) has no instantiation of the form I1; I2;:I3 ` I3that would make the schema inconsistent.7.6 Example. Figure 5 shows the goto graph for the grammar of example 7.4according to parsing schema 7.5. The shift/reduce conict between the items [N !N � +N] and [R! N�] is changed into a reduce/reduce conict between the items[N ! N + N�] and [R ! [R ! N] + [R ! N]�]. If the negative premise of rule(C2) is taken into account the item marked with a � can not be derived, and is notpresent in the goto-graph; conict solved. 2The method does not help for grammars where the ambiguity is not causedby chain rules, for instance consider the grammar (example from [Kam92]) E !E E;E ! E � E;E ! �E that can be disambiguated by taking E ! E E > E !�E > E ! E � E.The methods can be combined into a parsing schema that handles both priorityconicts and the partial implementation of multiset �lters by adding the subset

14exclusion conditions to the (P), and (Ci) rules of parsing schema 7.5. As a bonusthis combined parsing schema handles priority conicts modulo chain rules.8 ConclusionsIn this paper two disambiguation methods speci�ed as a �lter on sets of parse treeswere considered. These �lters were used to optimize parsers for context-free gram-mars by adapting their underlying parsing schema.The �rst optimization uses priority conicts to prevent ambiguities. The result-ing Earley parsers modulo priority conicts are guaranteed not to produce trees withpriority conicts, even for grammars with overlapping operators, layout in produc-tions or other problems that need unbounded lookahead. In combination with a GLRinterpreter of the parse tables this gives an e�cient disambiguation method for lan-guages on the border of determinism. A subset of the ambiguities solved by multiset�lters is solved by our second optimization. Together these optimizations can beused in the generation of e�cient parsers for a large class of ambiguous context-freegrammars.Parsing schemata provide a high-level description of parsing algorithms that issuitable for the derivation of new algorithms. The introduction of negative itemswas needed to express the optimization for the multiset �lter and needs more re-search. This �rst experiment in implemenation of disambiguation methods fromformal speci�cations encourages research into a fuller optimization of multiset �ltersand application of this approach to other disambiguation methods.Acknowledgements I thank Mark van den Brand and an anonymous referee fortheir comments on this paper and Fien McColl for pointing out some stylistic de�-ciencies. Support for this research has been received from the Dutch Organization forScienti�c Research (NWO) under grant 612-317-420: Incremental parser generationand context-dependent disambiguation, a multi-disciplinary perspective.Author's Address Eelco Visser, Programming Research Group, University ofAmsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands,email: visser@fwi.uva.nl, http://adam.fwi.uva.nl/�visser/References[AJU75] A. V. Aho, S. C. Johnson, and J. D. Ullman. Deterministic parsingof ambiguous grammars. Communications of the ACM, 18(8):441{452,1975.[DeR71] F. L. DeRemer. Simple LR(k) grammars. Communications of the ACM,14:453{460, 1971.[Ear70] J. Earley. An e�cient context-free parsing algorithm. Communicationsof the ACM, 13(2):94{102, 1970.

15[Ear75] J. Earley. Ambiguity and precedence in syntax description. Acta Infor-matica, 4(1):183{192, 1975.[HHKR92] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax def-inition formalism SDF | Reference Manual, 1992. Version 6 December1992. Earlier version in SIGPLAN Notices, 24(11):43-75, 1989. Availableas ftp://ftp.cwi.nl /pub/gipe/reports/ SDFManual.ps.Z.[JL82] J.-P. Jouannaud and P. Lescanne. On multiset orderings. InformationProcessing Letters, 15(2):57{63, 1982.[Kam92] Jasper Kamperman. A try at improving the second disambiguation phasein SDF. technical note, January 8 1992.[Knu65] Donald E. Knuth. On the translation of languages from left to right.Information and Control, 8:607{639, 1965.[KV94] Paul Klint and Eelco Visser. Using �lters for the disambiguationof context-free grammars. In G. Pighizzini and P. San Pietro, edi-tors, Proc. ASMICS Workshop on Parsing Theory, pages 1{20, Mi-lano, Italy, October 1994. Tech. Rep. 126{1994, Dipartimento di Scienzedell'Informazione, Universit�a di Milano. Also as TR P9426, Program-ming Research Group, University of Amsterdam, ftp://ftp.fwi.uva.nl/pub/programming-research/ reports/1994/ P9426.ps.Z.[Lam93] Leslie Lamport. How to write a proof. Technical Report 94, DEC SystemsResearch Center, Palo Alto, California, February 14 1993.[Rek92] J. Rekers. Parser Generation for Interactive Environments. PhDthesis, University of Amsterdam, 1992. Available by ftp fromftp.cwi.nl:/pub/gipe as Rek92.ps.Z.[Sik93] Klaas Sikkel. Parsing Schemata. PhD thesis, Universiteit Twente, En-schede, December 1993.[Sik94] Klaas Sikkel. How to compare the structure of parsing algorithms. InG. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop onParsing Theory, pages 21{39, Milano, Italy, October 1994. Tech. Rep.126{1994, Dipartimento di Scienze dell'Informazione, Universit�a di Mi-lano.[Tho94a] Mikkel Thorup. Controlled grammatic ambiguity. ACM Transactions onProgramming Languages and Systems, 16(3):1024{1050, May 1994.[Tho94b] Mikkel Thorup. Disambiguating grammars by exclusion of sub-parsetrees. Technical Report 94/11, Dept. of Computer Science, University ofCopenhagen, Denmark, 1994.[Tom85] Masura Tomita. E�cient Parsing for Natural Languages. A Fast Algo-rithm for Practical Systems. Kluwer Academic Publishers, 1985.[Vis95] Eelco Visser. A case study in optimizing parsing schemata by disam-biguation �lters. In Proceedings of Accolade95, Amsterdam, 1995. TheDutch Graduate School in Logic.

16A ProofsThis appendix contains the proofs for theorems 4.4 and 5.7. The proofs are writtenin the style of [Lam93]. Since the proofs of Lemma's A.1 and A.2 are included in theproofs of Lemma's A.4 and A.5, respectively, these proofs are only shown as proofoutlines. The proofs of the latter are shown in detail.A.1. Lemma. (soundness of parsing schema 4.2) For all context-free grammars G,w = a1 : : : an 2 V �T , A 2 VN , �; � 2 V �, i � j 2 N , t� 2 T G� such that A! �� 2 Gwe have thatw `4:2G [A! � � �; i; j]) [A! t�]) ^ yield([A! t��]) = ai+1 : : : aj�^ 9tS[�] 2 T GS : yield(tS[A]) = a1 : : : aiA�Proof sketch: By induction on derivations. We have to prove for the last stepin the derivation that it satis�es the condition above, assuming that this has beenproven for all previous steps in the derivation. The last item derived is derived byone of the rules of the parsing schema. Therefore, it su�ces to check the conditionfor the rules of the schema.h1i1. Case: [S ! �; 0; 0]) [S !](I)h1i2. Case: 1. [A! � �B�; h; i]) [A! t�][B ! �; i; i]) [B !] (P)2. yield(tA = [A! t�B�]) = ah+1 : : : aiB�3. yield(tS[A]) = a1 : : : ahA�h1i3. Case: 1. [A! � � ai+1�; h; i]) [A! t�]; [ai+1; i; i+ 1]) ai+1[A! �ai+1 � �; h; i+ 1]) [A! t�ai+1] (S)2. yield(tA = [A! t�ai+1�]) = ah+1 : : : aiai+1�3. yield(tS[A]) = a1 : : : ahA�h1i4. Case: 1. [A! � �B�; h; i]) [A! t�]; [B ! �; i; j]) tB[A! �B � �; h; j]) [A! t�tB] (C)2. yield(tA = [A! t�B�]) = ah+1 : : : aiB�3. yield(tS[A]) = a1 : : : ahA�4. yield(tB) = ai+1 : : : aj5. yield(t0S[B]) = a1 : : : aiB�0h1i5. Q.E.D.A.2. Lemma. (completeness of parsing schema 4.2) For all context-free grammarsG, w = a1 : : : an 2 V �T , A 2 VN , �; � 2 V �, i � j 2 N , t� 2 T G� such thatA! �� 2 G we have thatw `4:2G [A! � � �; i; j]) [A! t�](^ yield([A! t��]) = ai+1 : : : aj�^ 9tS[�] 2 T GS : yield(tS[A]) = a1 : : : aiA�Proof sketch: By simultaneous induction on � and tS. We have to check allcombinations of � and tS and construct the corresponding derivation.h1i1. Case: 1. yield([B !]) = 2. yield(tS[B]) = a1 : : : aiB�

173. tS[�] � �h1i2. Case: 1. yield([B !]) = 2. yield(tS[B]) = a1 : : : aiB�3. tS[�] � t0S[[A! t� � �]] for some A, � and �h1i3. Case: 1. yield([A! t�aj+1�]) = ai+1 : : : ajaj+1�2. yield(tS[A]) = a1 : : : aiA�h1i4. Case: 1. yield([A! t�[B ! t]�]) = ah+1 : : : aj�2. yield(tS[A]) = a1 : : : ahA�h1i5. Q.E.D.A.3. Theorem. For all context-free grammars G and w = a1 : : : an 2 V �T we havethat ft 2 T GS j w `4:2G [S ! �; 0; n]) tg = �(G)(w)h1i1. a1 : : : an ` [S ! �; 0; n]) [S ! t] () yield([S ! t]) = a1 : : : anProof: by Lemma's A.1 and A.2. 2h1i2. t 2 �(G)(a1 : : : an) () t 2 TS ^ yield(t) = a1 : : : anProof: by de�nition of � (Def. 2.3). 2h1i3. Q.E.D.Proof: by h1i1 and h1i2. 2A.4. Lemma. (soundness of parsing schema 5.6) For all context-free grammars G,w = a1 : : : an 2 V �T , A 2 VN , �; � 2 V �, i � j 2 N , t� 2 T G� such that A! �� 2 G,and set Q of parse tree patterns of the form [A! �[B !]�] we have thatw `5:6G;Q [A! � � �; i; j]) [A! t�]) ^ yield(tA = [A! t��]) = ai+1 : : : aj�^ 9tS[�] 2 T GS : yield(tS[A]) = a1 : : : aiA�^ :tS[tA] / QProof sketch: By induction on derivations. We have to prove for the last stepin the derivation that it satis�es the condition above, assuming that this has beenproven for all previous steps in the derivation. The last item derived is derived byone of the rules of the parsing schema. Therefore, it su�ces to check the conditionfor the rules of the schema.h1i1. Case: [S ! �; 0; 0]) [S !](I)h2i1. yield([S !]) = Proof: by de�nition of yield. 2h2i2. 9tS[�] 2 T GS : yield(tS[S]) = a1 : : : a0S�Proof: take tS[�] = �. 2h2i3. :[S !] / QProof: [S !] is not of the form [A! �[B !]�]. 2h2i4. Q.E.D.Proof: by h2i1, h2i2 and h2i3. 2h1i2. Case: 1. [A! � �B�; h; i]) [A! t�][B ! �; i; i]) [B !] (P)2. yield(tA = [A! t�B�]) = ah+1 : : : aiB�3. yield(tS[A]) = a1 : : : ahA�

18 4. :tS[tA] / Qh2i1. yield([B !]) = Proof: by de�nition of yield. 2h2i2. 9t0S[�] 2 TS : yield(t0S[A]) = a1 : : : aiA�Proof: take t0S[�] = tS[A! t� � �] thenyield(tS[A! t�B�]) = a1 : : : ahyield([A! t�B�])� [by h1i2:3]= a1 : : : aiB�� [by h1i2:2] 2h2i3. :tS[[A! t�[B !]�]] / QProof: by h1i2:4 and the restriction on rule (P). 2h2i4. Q.E.D.Proof: by h2i1, h2i2 and h2i3. 2h1i3. Case: 1. [A! � � ai+1�; h; i]) [A! t�]; [ai+1; i; i+ 1]) ai+1[A! �ai+1 � �; h; i+ 1]) [A! t�ai+1] (S)2. yield(tA = [A! t�ai+1�]) = ah+1 : : : aiai+1�3. yield(tS[A]) = a1 : : : ahA�4. :tS[tA] / Qh2i1. Q.E.D.Proof: by h1i3:2,3,4. 2h1i4. Case: 1. [A! � �B�; h; i]) [A! t�]; [B ! �; i; j]) tB[A! �B � �; h; j]) [A! t�tB] (C)2. yield(tA = [A! t�B�]) = ah+1 : : : aiB�3. yield(tS[A]) = a1 : : : ahA�4. yield(tB) = ai+1 : : : aj5. yield(t0S[B]) = a1 : : : aiB�06. :tS[tA] / Q7. :t0S[tB] / Qh2i1. yield([A! t�tB�]) = ah+1 : : : aj�Proof: yield([A! t�tB�]) = yield(t�)yield(tB)� [by def. yield]= ah+1 : : : aiai+1 : : : aj� [by h1i4:2,4] 2h2i2. :tS[[A! t�tB�]] / QProof: by h1i4:6,7 and the condition on rule (C). 2h2i3. Q.E.D.Proof: by h2i1 and h1i4:3. 2h1i5. Q.E.D.Proof: by cases h1i1, h1i2, h1i3, h1i4 and induction on derivations. 2A.5. Lemma. (completeness of parsing schema 5.6) For all context-free grammarsG, w = a1 : : : an 2 V �T , A 2 VN , �; � 2 V �, i � j 2 N , t� 2 T G� such thatA! �� 2 G we have thatw `5:6G [A! � � �; i; j]) [A! t�](^ yield(tA = [A! t��]) = ai+1 : : : aj�^ 9tS[�] 2 T GS : yield(tS[A]) = a1 : : : aiA�^ :tS[tA] / QProof sketch: By simultaneous induction on � and tS. We have to check allcombinations of � and tS and construct the corresponding derivation.

19h1i1. Case: 1. yield([B !]) = 2. yield(tS[B]) = a1 : : : aiB�3. tS[�] � �h2i1. B � SProof: by h1i1:3. 2h2i2. i = j = 0Proof: i = j because ai+1 : : : aj = = yield([B !]) by h1i1:1 andi = 0 because a1 : : : aiS� = S = yield(tS[S]). 2h2i3. w ` [S ! �; 0; 0]) [S !]Proof: by rule (I). 2h2i4. Q.E.D.Proof: by h2i1, h2i2 and h1i1. 2h1i2. Case: 1. yield([B !]) = 2. yield(tS[B]) = a1 : : : aiB�3. tS[�] � t0S[[A! t� � �]] for some A, � and �4. :tS[[B !]] / Qh2i1. There is some 1 � h � i such that1. yield([A! t�B�]) = ah+1 : : : aiB�2. yield(t0S[A]) = a1 : : : ahA�0h3i1. yield(t0S[[A! t�B�]]) = a1 : : : aiB�Proof: by h1i2:2,3. 2h3i2. a1 : : : aiB� = a1 : : : ahyield([A! t�B�])�0Proof: by h3i1 and the de�nition of yield. 2h3i3. Q.E.D.Proof: by h3i2 2h2i2. 1. :t0S [[A! t�B�]] / Q2. [A! �[B !]�] 62 QProof: by h1i2:4 and the de�nition of /. 2h2i3. w ` [A! � �B�; h; i]) [A! t�]Proof: by h2i1.1,2, h2i2.1 and h0i. 2h2i4. Q.E.D.Proof: w ` [B ! �; i; i]) [B !] by h2i3, h2i2.2 and rule (P). 2h1i3. Case: 1. yield([A! t�aj+1�]) = ai+1 : : : ajaj+1�2. yield(tS[A]) = a1 : : : aiA�3. :tS[aj+1] / Qh2i1. w ` [A! � � aj+1�; i; j]) [A! t�]Proof: by h1i3:1,2 and h0i. 2h2i2. w ` [aj+1; j; j + 1]) aj+1Proof: by rule (H) 2h2i3. Q.E.D.Proof: w ` [A! �aj+1 � �; i; j + 1]) [A! t�] by h2i1, h2i2 and rule(S). 2h1i4. Case: 1. yield(tA = [A! t�[B ! t]�]) = ah+1 : : : aj�2. yield(tS[A]) = a1 : : : ahA�

20 3. :tS[tA] / Qh2i1. There is some h+ 1 � i � j such that1. yield([A! t�B�]) = ah+1 : : : aiB�2. yield([B ! t]) = ai+1 : : : ajProof:yield([A! t�[B ! t]�]) = yield(t�)yield([B ! t])� [by def. yield]= ah+1 : : : aiai+1 : : : aj� [by h1i4:1] 2h2i2. yield(tS[[A! t�B�]]) = a1 : : : aiB��Proof:yield(tS[[A! t�B�]]) = a1 : : : ahyield([A! t�B�])� [by h1i4:2]= a1 : : : ahah+1 : : : aiB�� [by h2i1.1] 2h2i3. 1. :(t00S [[A! t�B�]] = tS[[A! t�B�]]) / Q2. :(t0S [B] = tS[[A! t�B�]]) / Q3. [A! �[B !]�] 62 QProof: by h1i4:1,3 and the de�nition of /. 2h2i4. w ` [A! � �B�; h; i]) [A! t�]Proof: by h2i1.1, h1i4:2, h2i3.1 and h0i. 2h2i5. w ` [B ! �; i; j]) [B ! t]Proof: by h2i1.2, h2i2, h2i3.2 and h0i 2h2i6. Q.E.D.Proof: w ` [A ! �B � �; h; i]) [A ! t�t�] by h2i4, h2i5, h2i3.3 andrule (C). 2h1i5. Q.E.D.Proof: by h1i1, h1i2, h1i3 and h1i4 and mutual induction on � and tS. (Thecases cover all combinations of � and tS. Each case uses the induction hypoth-esis with a smaller � or tS.) 2A.6. Theorem. (correctness of parsing schema 5.6) For all context-free grammarsG and w = a1 : : : an 2 V �T and set Q of parse tree patterns of the form [A! �[B !]�] we have thatft 2 T GS j w `5:6G;Q [S ! �; 0; n]) tg = FQ(�(G)(w))h1i1. a1 : : : an ` [S ! �; 0; n]) [S ! t] i� yield([S ! t]) = a1 : : : an and:[S ! t] / QProof: by Lemma's A.4 and A.5. 2h1i2. t 2 FQ(�(G)(a1 : : : an)) i� t 2 TS ^ yield(t) = a1 : : : an ^ :[S ! t] / QProof: by de�nition of � and FQ (Defs. 2.3 and 5.4). 2h1i3. Q.E.D.Proof: by h1i1 and h1i2. 2

21B SLR(1) ParsingThe LR(0) goto graphs in �gures 2 and 3 from section 6 contain shift/reduce conictsthat are easy to prevent with the SLR(1) (Simple LR(1)) extension of LR(0) parsingdue to [DeR71]. The SLR algorithm is based on the observation that a reduction isonly useful if the next symbol in the string can follow the symbol that is recognizedby the reduction, i.e. the left hand-side of the production that is reduced. This isexpressed in the following adaptation of the LR(0) parsing schema of de�nition 6.1.The function First(�;) yields the set of symbols that can start a sentence derivedfrom a string of symbols � followed by a symbol from the set 	. The expressionFollow(B;) denotes the set of symbols that can follow symbol B in a sentencethat is followed by a symbol from the set 	. The reduce rule now only applies ifa production has been recognized and the next symbol in the string can follow theleft-hand side of the production.B.1Definition. (SLR(1) parsing) This schema adapts the reduce rule of schema 6.1.First(�;) = 	First(a�;) = fagFirst(A�;) = SA!�2G First(��;)Follow(B;) = fa j A! �B� 2 G ^ a 2 First(�;Follow(A;))g[�[A!��B�]; h; i]; [�[B!�B1:::Bm]0 ; i; i];: : : ; [�[B!B1:::Bm�]m ; i; im]; [a; im; im + 1][goto(B;�); h; im] a 2 Follow(B; f$g) 2The SLR(1) schema can be adapted in the same way as the LR(0) schema toaccount for priority conicts (or Q subtree exclusion). However, the de�nition ofFollow above is too weak for this extended schema. For instance, in the grammar ofexample 5.3 � is in the Follow set of E. However, � can not follow an E if it is aE ! E +E, i.e., if a reduction is done with E ! E +E, no action for � is possible.The following parsing schema optimizes the SLR(1) parsing schema by de�ning theFollow set for a production instead of for a symbol and adapting the reduce ruleaccordingly. Figure 6 shows the SLR(1) table for the grammar of example 5.3.B.2 Definition. (SLR(1) parsing modulo Q) This schema de�nes SLR(1) pars-ing modulo Q using the de�nition of the closure and goto functions from parsingschema 6.2 and the de�nition of First from B.1.Follow(B ! ;) = fa j A! �B� 2 G^ a 2 First(�;Follow(A! �B�;))^ [A! �[B !]�] 62 Qg[�[A!��B�]; h; i]; [�[B!�B1:::Bm]0 ; i; i];: : : ; [�[B!B1:::Bm�]m ; i; im]; [a; im; im + 1][goto(B ! B1 : : : Bm;�); h; im] a 2 Follow(B ! B1 : : : Bm; f$g)2

22

state a � + $ 1 2 3 40 s 1 3 3 4 21 r 1 r 1 r 13 s 8 s 5 acc4 s 5 acc5 s 1 7 77 s 8 r 3 r 38 s 1 99 r 2 r 2 r 2
(1) E ! a(2) E ! E � E(3) E ! E + E(4) S ! E $(2) > (3)(2) L (2)(3) L (3)Figure 6: SLR(1) table for the grammar of example 5.3. s n denotes shift to staten, r n denotes reduce with production n, acc denotes accept. The right part of thetable contains the goto entries for the productions. This parse table corresponds tothe goto graph of �gure 3.

