Programming Research Group

| %)(University of Amsterdam
&S

A Family of Syntax Definition Formalisms

Eelco Visser

Report P9706 August 1997

&3
&S
&3

University of Amsterdam
Department of Computer Science

Programming Research Group

A family of syntax definition formalisms

Eelco Visser

Report P9706 August 1997

E. Visser

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7590
e-mail: visser@wins.uva.nl

An earlier version of this report appeared in M. G. J. van den Brand et al., ASF+SDF’95. A Workshop
on Generating Tools from Algebraic Specifications, Technical Report P9504, Programming Research Group,
University of Amsterdam. pp 89-126, May 1995.

Acknowledgements The author thanks Arie van Deursen, Jan Heering, Tobias Kuipers, Paul Klint, Mark
van den Brand, Merijn de Jonge and Alex Sellink for useful suggestions and comments on previous versions
of this report.

This research was supported by the Netherlands Computer Science Research Foundation (SION) with
financial support from the Netherlands Organisation for Scientific Research (NWO). Project 612-317-420:
Incremental parser generation and context-sensitive disambiguation: a multi-disciplinary perspective.

Universiteit van Amsterdam, 1997

Contents

Contents

1 A Family of Syntax Definition Formalisms

1.1 Introduction
1.2 An Overview of SDF2
1.3 Designo
1.4 Organization it i e

2 Context-Free Grammars

2.1 Symbols
2.2 Grammars e e e e e
2.3 Context-Free Grammars (Kernel)
24 BasicSymbols.
2.5 ParseTrees

3 Disambiguation and Abbreviation

3.1 Priorities L
3.2 Regular Expressions
3.3 Lexical and Context-Free Syntax
3.4 Restrictionso s

4 Renaming and Modularization

4.1 Renamings o vt v i i e e e e

4.2 Aliases

4.3 Modules
5 The Syntax Definition Formalism SDF2

51 SDF2

5.2 Comparison to SDF

5.3 Discussion and Concluding Remarks

A Auxiliary Modules for the Specification of SDF2
Al Literals e
A2 ATerms e

A3 Renamings
A4 SDF2 . . . e

B Bibliography

13
13
15
17
21
27

39
39
47
54
61

65
65
71
74

83
83
87
89

93
93
93
98
100

103

1

A Family of Syntax Definition
Formalisms

In the next chapters we present the design and specification of a family of
syntax definition formalisms. The kernel of this family of formalisms is formed
by context-free grammars. A number of orthogonal extensions to the kernel
is defined. Many of these extensions are defined in terms of the primitives of
the kernel by means of normalization functions. This provides a framework for
constructing new formalisms by adapting and extending previous ones.

Included in the family are the following extensions of context-free grammars:
uniform definition of lexical and context-free syntax, variables, disambiguation
by priorities, follow restrictions and reject productions, a rich set of regular ex-
pressions defined in terms of context-free productions, character classes, aliases,
parameterized modules with hidden imports and renamings. The accumulation
of these extensions is the syntax definition formalism SDF2.

This chapter provides an introduction to SDF2 and gives an overview of the
design and specification of the family of formalisms.

1.1 Introduction

New programming, specification and special purpose languages are being devel-
oped continuously. Syntax definition formalisms play a crucial role in the design
and implementation of new languages. Syntax definition formalisms also play a
role embedded in other languages: regular expressions in edit operations, macro
definitions for macro preprocessors, user definable infix or distfix operators in
programming languages, grammars as signatures in algebraic specification for-
malisms, and documents that contain a description of their own syntax.

The core of many syntax definition formalisms is formed by context-free gram-
mars, which are widely used in computer science since their introduction by
Chomsky (1956). A context-free grammar is a set of string rewrite rules of the
form a — A with « a string A; ... A, of zero or more symbols and A a symbol.
A string (a sequence of symbols) w is a member of the language described by a
grammar G if it can be rewritten to the start symbol S, i.e., if there is a sequence
w=a > a ... > a, =5 such that each step has the form a; — a;y1
with a; = 816205 and a;41 = $1Bfs and G contains a production 3, — B.

Despite, or maybe due to, the simplicity of this basic structure there has
never emerged a standard formalism for syntax definition. The Backus Naur

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

Form (BNF), originally developed by Backus (1959) and Naur et al. (1960) for
the definition of the syntax of Algol, is a commonly used notation for context-
free grammars, but it does not have the status of a standard and many variants
are in use. Several standard notations for syntax definition have been proposed
(e.g., Wirth, 1977, Williams, 1982). None of these has been convincing, instead
a number of similar or overlapping formalisms exist.

The reason for this divergence is that a practical syntax definition formal-
ism serves not only to define languages, i.e, sets of strings. Syntax definitions
are also interpreted as recognizers that decide whether a string belongs to a
language, as parsers that map strings to parse trees, as mappings from parse
trees to abstract syntax trees and as syntax directed editors. Plain context-free
grammars are not adequate for this purpose. To support the compact definition
of languages, formalisms can provide a variety of features as extensions to the
basic structure: character classes, regular expressions, disambiguation by asso-
ciativity and priority declarations, reuse by modularization, parameterization
of language definitions, interfacing between the formalism and its environment,
e.g., mapping to abstract syntax.

Various extensions of context-free grammars have been developed for attach-
ing semantics to grammars: Attribute grammars (Knuth, 1968) attach attribute
evaluation rules to productions. The computation of the semantics of a parse
tree consists in computing the values of all attributes. This computation is
orthogonal to parsing. Affix grammars (Koster, 1971) and extended affix gram-
mars (Watt, 1977) are similar to attribute grammars, but predicates on affix val-
ues can play a role in disambiguation during parsing. Definite clause grammars
(Pereira and Warren, 1980) are based on the Horn clauses of logic programming.
Parsing is performed by the SLD resolution evaluation mechanism. Semantic
values are represented by means of terms and passed around using unification
and logic variables. Other approaches including algebraic specification use a
separate formalism to define the semantics.

Traditionally, compiler construction is the main application area for syntax
definition formalisms. The most well-known is the pair LEX/vAcc. The for-
malism LEX (Lesk and Schmidt, 1986) is used to define the lexical syntax of a
language using regular expressions. According to the regular expressions a string
is analyzed and divided into tokens. In case more than one regular expression
can be matched, a number of disambiguation rules such as prefer longest match
and prefer regular expressions appearing earlier in the file. The ‘compiler com-
piler’ yacc (Johnson, 1975) is used for the definition of the context-free syntax
of a language. An LALR(1) parser generator translates grammars to C pro-
grams if the grammar is LALR(1). Some conflicts in the parse table caused by
ambiguous expression grammars can be solved by means of binary and unary
precedences based on the ideas of Aho et al. (1975). Furthermore, the order of
productions in the grammar is used to solve conflicts. Trees for a string can be
constructed by calling C functions from the grammar productions.

Recent formalisms are generally based on the same deterministic parsing tech-
niques, but extend the expressivity and declarativeness of syntax definition by
providing mechanisms for building trees and coupling to other phases of com-
pilation. Some examples are: The Cocktail compiler generator (Grosch, 1990)
provides a BNF-like formalism with an LALR parser generator. The Eli system
(Gray et al., 1992) is a collection of tools for developing all aspects of compilers.
The syntax definition formalism is based on context-free grammars. Attribute

Introduction [/ 1.1

rules are added to define semantics computations. The tree transformation lan-
guage TXL (Cordy and Carmichael, 1993) is a programming language for source
to source transformations by means of transformation rules on parse trees. The
syntax definition formalism of TXL is based on context-free grammars extended
with some regular operators. Lexical syntax is defined by means of predefined
lexical notions and by means of regular expressions over character classes. PC-
cTs (Parr and Quong, 1994) is a formalism based on top-down LL(1) parsing.
The problems of unbounded lookahead are dealt with by means of backtracking
and syntactic predicates that can be used to try out a variant before deciding
which production to predict.

An application domain derived from compiler construction is the area of pro-
gramming environments. A programming environment is a collection of tools for
interactively developing and testing programs in some programming language.
These tools are usually centered around an interactive syntax directed editor. A
syntax editor has knowledge of the language of the programs being edited and
provides support for checking the syntax of programs and for presenting and
manipulating the structure of programs. In order to rapidly process changes to
a program, incremental parsing and incremental compilation are used. Syntax
definition formalisms developed for derivation of programming environments
include the grammar formalism of the Synthesizer Generator (Reps and Teitel-
baum, 1989), PSG (Bahlke and Snelting, 1986), METAL (Kahn et al., 1983) and
SDF (Heering et al., 1989). The ASF+SDF Meta-Environment (Klint, 1993)
is a programming environment for developing and generating programming en-
vironments from algebraic specifications. To speed up the development cycle
for syntax definitions, incremental parser generation is used to only regenerate
those parts of the parser that have been affected by a change.

Syntax definition in algebraic specification takes the form of grammars as
algebraic signatures. The motivation here is to provide flexible notation for
functions and constructors in abstract data type specifications and less the de-
scription of real programming languages. Therefore, the requirements on lexical
syntax are not so strong. The correspondence of context-free grammars and
many-sorted signatures was first described by Rus (see Hatcher and Rus, 1976).
Goguen et al. (1977) showed that this correspondence could be used to define
the semantics of programming languages. The correspondence was exploited in
a number of algebraic specification formalisms to provide flexible, user-definable
notation for functions and constructors. The first formalism to incorporate this
was OBJ (Futatsugi et al., 1985). Others are Cigale (Voisin, 1986), ASF+SDF
(Heering et al., 1989, Bergstra et al., 1989a), the Meta Notation, used in action
semantics (Mosses, 1992), and Elan (Vittek, 1994).

The combination of features that a formalism provides is, necessarily, rather
arbitrary and strongly influenced by the expected application of definitions and
the environment in which generated tools have to operate. Although it is not
desirable to include all conceivable features in a formalism—some features can
not be combined with others and too many features results in an unmanage-
able formalism—the similarities between different formalisms can be exploited
by reusing parts of the design and implementation of old formalisms. However,
formalisms are conventionally designed in a monolithic way, containing an in-
tertwined mix of features, resulting in a formalism with a lack of orthogonality
and uniformity that is difficult to implement, extend and use for other applica-
tions than the originally intended ones. Syntax definition formalisms form no

3

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

exception to this rule.

Here we set out to design syntax definition formalisms in a modular way,
as a family of formalisms each extending a small kernel with some feature for
syntax definition. This approach should result in more orthogonal and uni-
form formalisms and should make it easier to (a) construct formalisms that use
some subset of a set of known features, (b) adapt formalisms for use in other
application areas, (c) implement tools for such formalisms and (d) design new
formalisms that combine new features with existing ones.

As a first step to accomplish this goal we design a concrete formalism with
a set of features that is useful in many application areas, but in particular in
the application of grammars as signatures for algebraic specifications of pro-
gramming languages. The result is the syntax definition formalism SDF2 that
is a generalization of SDF. It incorporates several concepts and techniques in-
troduced by Heering et al. (1989) in a more orthogonal and uniform way and
adds several new features.

We use the algebraic specification formalism ASF+SDF to formally specify
the family of syntax definition formalisms. For an introduction to ASF+SDF
see Van Deursen et al. (1996).

In this chapter we outline the main features of SDF2 and examine the struc-
ture and design principles of the specification.

1.2 An Overview of SDF2

SDF?2 is a syntax definition formalism based on context-free grammars, extended
with character classes, sorts, literals, priorities, regular expressions, renamings,
aliases and modules and combines the definition of lexical and context-free syn-
tax into one formalism. The syntax definition in Figure 1.1 on page 7, taken
from Visser (1997c), presents (the syntax of) a small untyped, first-order func-
tional programming language, the data type environments and the evaluation
function that interprets such functional programs using an instantiation of the
environments data type. A program in this language might contain the follow-
ing definition of a function map that applies a function F to all elements of a
list L:

function map(F, L) is
if(is-nil(L), nil(),
cons(call(F, head(L)), map(F, tail(L))))

We sketch the main features of SDF2 and use the syntax definition in Figure 1.1
as running example.
1.2.1 Context-free Productions

The basis of the formalism is formed by context-free productions. These are
rules of the form o — A, where « is a list of symbols A4; ... A, (n > 0) and A a
symbol. A production declares that a string of category A can be constructed
by concatenating strings of the categories A;. For instance, the production

Fun "(" Terms ")" -> Term
defines that a term can be constructed by means of a function symbol followed

by a list of terms separated by commas between parentheses. Conventionally,

4

An Overview of SDF2 [1.2

context-free productions are written as A — a or as A ::= a. In SDF2 pro-
ductions are written the other way around to make the similarity to function
declarations more apparent. This is useful because SDF2 definitions are used
as signatures in algebraic specifications such that productions correspond to al-
gebraic operators. For example, in a conventional signature one would declare
the evaluation function that computes the value of a term with respect to a
program and some environment by means of the function declaration

eval : Program # Term # Env -> Term
The production
eval "[[" Program "]]" "(" Term ")" "_" Env -> Term

not only defines a function with the same input types, but also the syntax for
its applications, i.e., the program argument should be enclosed in double square
brackets and the term argument should be enclosed in parentheses.

1.2.2 Character Clasess

Syntax definitions describe languages consisting of strings of characters, where
the set of all characters can be encoded by a finite set of consecutive natural
numbers. Character Classes are compact descriptions of sets of characters and
are typically used in the definition of lexical categories such as layout, identifiers
and numbers. The example contains the following character classes: the char-
acters space, tab and newline [\ \t\n], all characters except newline ~[\n],
all uppercase letters [A-Z], all lowercase letters [a-z], all letters and digits and
the hyphen character [a-zA-Z0-9\-].

1.2.3 Literals

Literals are strings of characters between double quotes that stand for ex-
actly that string of characters. These are used to represent keywords—such
as "function" and "program"—and operators and other literal symbols—such
as "[", "|->", "|>" and "*". The definition of the function eval does not
use quotes for the function name. This is an exception to the general rule:
identifiers starting with a lowercase letter can also be used as literals.

1.2.4 Sorts

The basic nonterminal symbols used in productions are sorts, which are written
as identifiers starting with a capital letter. Sorts should be declared in a sorts
section. The example defines the sorts Var, Fun, Term, etc.

1.2.5 Regular Expressions

More complex nonterminal symbols can be formed by means of reqular expres-
stons that provide abbreviations for tupling (_), iteration _* and _+, optional
constructs _7, and alternatives _|_. For example, [a-zA-Z0-9\-1* denotes a
list of zero or more characters from the set of letters, digits and hyphens,
{Term ","}* declares a list of terms separated by commas and the expres-
sion (Key '"|->" Value)* denotes lists of zero or more tuples consisting of a
key, the symbol "|->" and a value.

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

1.2.6 Aliases

Since such regular expressions can become quite tedious to type, it can be useful
to introduce a shorter name for such symbols. This can be done by introducing
a symbol alias. For example the declaration

aliases
{Term ","}* -> Terms

introduces Terms as an alias for the regular expression {Term ","}*.

1.2.7 Priorities

Some productions that have a sensible type are syntactically ambiguous. For
instance, the two productions for destructive and consistent environment update

Env "|>" Env -> Env
Env "*" Env -> Env

are ambiguous with respect to themselves and to each other, e.g., the environ-
ment expression Env |> Env * Env can be constructed as (Env |> Env) * Env
or as Env |> (Env * Env). Associativity and priority declarations are a way
to resolve most ambiguities of this type. In the example, the ambiguity in the
expressions above is resolved by means of the priority declaration

Env "|>" Env -> Env > Env "x" Env -> Env

that declares " |>" to have higher priority than "*", which entails the (Env [>
Env) * Env interpretation. The left attribute of a production declares that
the operator is left-associative.

1.2.8 Lexical and Context-free Syntax

The phrases making up a string over a language are usually divided into lexical
tokens—the words of a sentence—and context-free phrases. The distinction
between tokens and phrases is that the tokens making up a phrase can be
separated by layout (whitespace and comments) while the characters comprising
a token cannot. In definitions this distinction is indicated by means of lezical
and context-free productions. For example, the lexical definition

[a-z] [a-zA-Z0-9\-1* -> Fun

indicates that function symbols consist of a number of adjacent characters start-
ing with a lowercase letter, followed by zero or more letters, digits or hyphens.
While the tokens in the term succ (zero()) can be separated by spaces, the
characters in the token succ cannot. The layout that can occur between tokens
should also be specified. The symbol LAYOUT is reserved for this purpose. In
the example, layout is declared as

[\ \t\n] -> LAYOUT
"%%" “[\nl* -> LAYOUT

meaning that spaces, tabs and newlines (also called whitespace) are layout and
that any suffix of a line starting with two percent signs is comment.

6

An Overview of SDF2 [1.2

module Functional-Programs
exports
sorts Var Fun Term FunDef Program
aliases
{Term ","}* -> Terms
{var ","}* -> Vars
lexical syntax
[\ \t\n] -> LAYOUT
"%kt~ [\nl* -> LAYOUT
[A-Z][a-zA-Z0-9\-]1* -> Var
[a-z] [a-zA-Z0-9\-]1* -> Fun
context-free syntax
Var -> Term
Fun "(" Terms ")" -> Term

"function" Fun " (" Vars ")" "is" Term -> FunDef
"program" FunDefx* -> Program

module Environments
exports
sorts Key Value Env
context-free syntax
"[" (Key "|->" Value)* "]" -> Env

Env "(" Key ")" -> Value

Env "[>" Env -> Env {left}
Env "x" Env -> Env {left}
"(" Env ")" -> Env {bracket}

context-free priorities
Env "[>" Env -> Env > Env "*" Env -> Env

module Function-Eval
imports Functional-Programs
Environments [Key => Var Value => Term]

exports
context-free syntax
eval "[[" Program "]]" "(" Terms ")" "_" Env -> Terms

Figure 1.1: SDF2 definition of the syntaz of a small functional programming
language and its main evaluation function.

1.2.9 Modules

Grammars can be divided in a number of modules such that parts of a grammar
can be reused in various language definitions. Modules consist of a list of exports
and hiddens sections. An import of a module M into a module N denotes the
inclusion of the exported grammar of M into N. Thus the import of module
Terms in module Functions means that the syntax of terms is included in the
syntax of programs. To prevent name clashes or to instantiate generic modules,

7

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

renamings of symbols and productions can be applied to imported modules.
For example, the module Function-Eval specifying the evaluation function,
imports the generic module defining environments by means of

imports Environments [Key => Var Value => Term]

renaming the sort Key to Var and the sort Value to Term, thus instantiating it
for use with the terms of the functional programming language.

Modules can also be parameterized with a list of parameter symbols that can
be instantiated on import. For instance, module Environments might also have
been declared as

module Environments[Key Value]
declaring Key and Value as parameters. The import
imports Environments[Var Term]

would then perform the instantiation.

A complete syntax definition consists of a list of modules and a designated
top module. The language defined by such a definition is the one defined by the
grammar associated to the top module. Of course, in a programming environ-
ment for SDF2 this list does not have to reside in a single file. More likely, each
module will be defined in one file with the module name as the file name.

1.3 Design

The next chapters give a formal algebraic specification of the syntax and se-
mantics of SDF2. The semantics of a syntax definition is characterized by the
well-formed trees it generates. A tree is associated with a sentence—its yield.
The language associated to a definition is the set of sentences that are yields of
trees generated by the definition. A parser is a function that given a sentence,
produces the tree (or set of trees) that have that sentence as yield. We do not
describe parsing as part of the specification of SDF2, but specify the output
required of a parser and allow any implementation that does so. Parsing for
SDF2 grammars is described in Visser (1997e).

1.3.1 Modularization

The formalism SDF2 is not designed monolithically, but modularized, as a family
of formalisms. The kernel of this family is formed by context-free grammars. All
features are defined as independent extensions of the kernel. The combination
of the features forms SDF2. This setup makes it easier to construct a variant
of the formalism by adding, removing or modifying features. Figure 1.2 depicts
the structure of the family by means of (an abstraction of) the import graph of
the specification.

Furthermore, the specification of SDF2 covers several aspects. The syntaz of
the formalism consists of the definition of the form of all its constructs. Projec-
tion functions on these constructs are defined in order to extract information
from them. Normalization functions transform a syntax definition in order to
simplify it. The specification of parse trees consists of several parts. A generic
format for the representation of structured data called ATerms (Van den Brand

8

Design / 1.3

Character
Classes

= Sorts R

= Literals |—

= Priority

Symbols

= Basic |—

Kernel |— =/ SDF2

—= Regular —

Grammar

=/ Modular |

L= Alias R

=/ Labels |—

L= Restrictions|—

Figure 1.2: Import graph for the definition of SDF2.

et al., 1997) is used to represent parse trees. In order to use this format for
a specific purpose, constructor names have to be defined. To represent gram-
mar information in parse trees, several constructs of the formalism have to be
encoded as ATerms. Given this framework, the well-formedness of a tree with
respect to a grammar can be defined. Furthermore, the yield of trees and the
equality of trees are defined.

For each feature a number of modules are defined that each define an aspect
of the formalism for that feature. The result is the matrix of modules listed in
Table 1.1. The rows of the matrix contain the modules for one feature. The
columns of the matrix contain all modules for one aspect. Each module in the
matrix has a name consisting of the name of the feature and the name of the
aspect separated by -Sdf-. For instance module Kernel-Sdf-Syntax specifies the
syntax of the constructs in the kernel. So for each feature X we have mod-
ules X-Sdf-Syntax, X-Sdf-Projection, X-Sdf-Normalization, X-Sdf-Renamings,
X-Sdf-Constructors, X-Sdf-ATerms, X-Sdf-Trees and X-Sdf-Equality. With the

9

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

s 5 £ 3 &
i & § 5 5 E o 3
= = 5 a &
g 2 5 § § & g 5
193] a =z fast O <7 = =
Symbols 2.1 2.5.3
Grammar 2.2 2.3.3 A21 A22
Kernel 2.3.1 232 233 413 252 254 255 258
Sorts 24.1 241 241 A3 A21 A22
CccC 2.4.2 242 A3 A21 A22 256
Literals 2.4.3 243 A3 A21 A22
Priority 3.1.1 312 313 A3 A22 314
Regular 3.2.1 3.22 A3 A21 A22
Basic 3.3.1 332 A3 A21 A22 3.3.3
Restrictions | 3.4.1 3.4.2 343 A3
Renaming 411 4.1.2 4.1.3 4.1.4
Alias 4.2.1 422 423 423
Modular 431 432 433 434
Label
Sdf2 51.1 A4 512 A4 A4 A4 A4 A4

Table 1.1: Modules of the family of syntax definition formalisms. The last row
contains the collecting modules for SDF2. There are no collection modules for
the rows. The numbers refer to the sections presenting the modules.

exception that if some feature does not change some aspect, the module is omit-

ted.

1.3.2 Normalization

An important role in the design of SDF2 is played by the normalization function.
In general, a normalization function defines a transformation on an expression
that yields an expression in the same language, which uses less features. The
normalized expression has the same meaning as the original one. Thus, a nor-
malization is a mapping from the language onto (a subset of) the same language.
Ideally, a normalization function should be idempotent, i.e., yield the same re-
sult when applied twice. An implementation for such a language only has to
consider the simplified expressions, while users have a more expressive language
at their disposal.

The requirement that normalization produces an expression in the language
itself entails that all constructs used for encodings should also be present in the
original language, i.e., the language should be closed under normalization. For
example, one of the normalizations in this definition renames a symbol A into
(A-LEX) if it occurs in the lexical syntax. Therefore, the constructor (_~LEX)
introduced for the purpose of normalization also becomes a construct of the
language before normalization.

A consideration in the definition of a normalization is whether two different
expressions that are equivalent with respect to the semantics have the same

10

Organization [1.4

normal form. This can be useful when expressions have to be compared. This is
for example the case in the normalization of character classes. In Visser (1997b)
a normalization of character classes to a unique normal forms is defined such that
two character classes that represent the same set of characters are normalized to
the same character class expression. In general, however, the normalizations in
this paper will not have this property. For instance, all permutations of a list of
productions are equivalent. Although such lists could be ordered by imposing
an ordering on productions, this is not done here, since comparisons of lists
of productions are not needed. In such cases definitions can not use syntactic
equality to determine equivalence.

Using this approach SDF2 is an expressive formalism that depends on a small
set of features, i.e., we have:

SDF2 context-free grammars
priorities
character-classes
reject productions

follow restrictions

+ 4+ A+

Features that are provided in the formalism, but that are eliminated, i.e., ex-
pressed using the features above are: literals, regular expressions, lexical and
context-free syntax, variables, modules, renamings, and aliases. Furthermore,
character classes, priority declarations and grammar composition are simplified
considerably.

The normalization of SDF2 is defined as a pipeline of normalizations, as is
illustrated in Figure 1.3. This modularization of the definition of normalization
makes it easy to define an extension and express it in existing features using a
new normalization function. The overall normalization is extended by adding
the new function to the normalization pipeline.

1.4 Organization

The next chapters discuss the specification of the family of syntax definition for-
malisms that is the basis of SDF2. Chapter 2 defines context-free grammars, the
basic symbols sorts, character classes and literals and defines the well-formed
parse trees characterized by a grammar. Chapter 3 defines disambiguation by
means of priorities, regular expressions, lexical and context-free syntax and re-
strictions for lexical disambiguation. Chapter 4 introduces renamings, aliases
and modules. Chapter 5 these extensions are combined in the formalism SDF2.
The formalism is compared to SDF and a discussion of possible improvements
and extensions is given. Appendix A gives some auxiliary modules for the spec-

ification of SDF2.

11

1 / A FAMILY OF SYNTAX DEFINITION FORMALISMS

Modular: extract complete
grammar for selected module

Basic: merge lexical and
context-free syntax

]

]

Alias: expand aliases

Regular: define regular
expressions by means of
extra productions

=5

priority declarations

Literals: define literals in
terms of character classes

VAVAVAVAVAY

=

Kernel: merge productions

topsor

o+

03]

|
=
—
e

SDF2: define topsorts

CC: order character classes
Grammars: order grammar

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| . oy .
, Priorities: normalize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I sections

AN WANANANANANA

v

SDF2,¢

Figure 1.3: The normalization of SDF2 definitions consists of a series of inde-
pendent transformations. The last step is not performed by a transformation
function, but by rewrite rules acting on the constructors themselves.

12

2

Context-Free Grammars

In this chapter a context-free grammar formalism is defined. First an abstract
framework of symbols and grammars is introduced. In this framework a gram-
mar is interpreted by means of several predicates and functions that characterize
the trees and strings of symbols generated by a grammar. A well-formedness
predicate on parse trees characterizes the trees over a grammar. From the parse
trees over a grammar the strings of the language defined by the grammar are
derived. Parse trees are represented in the annotated term format ATerms. An
instance of this framework is set up with as kernel context-free productions.
We introduce three kinds of basic symbols to be used in productions: sorts,
character classes and literals.

2.1 Symbols

Syntax definitions define languages, i.e., sets of strings of symbols. A string of
symbols is a list of zero or more symbols. The sort Symbol is declared without
actually specifying any constructors for it. This entails that the sort is empty
at this point, but can be extended later on with constructors. We do not make
a distinction between terminal and nonterminal symbols. Whether a symbol is
a terminal or nonterminal symbol is determined by the interpretation and is not
fixed syntactically. A symbol that plays the role of a terminal in one view can be
a nonterminal in another view. An example is a literal that can be considered
as a terminal token or as a nonterminal that is defined in terms of characters.

module Symbols
imports Layout
exports
sorts Symbol Symbols
context-free syntax
“(” Symbol “)” — Symbol {bracket}
Symbolx — Symbols
variables
[ABC][0-9']* — Symbol
[aB~][0-9']* — Symbolx
[aB~]“+7[0-9']% — Symbol+

13

2 / CONTEXT-FREE GRAMMARS

2.1.1 Projection

The function + concatenates strings and |_| gives the length of a string. The
predicate € decides list membership.

module Symbols-Projection
imports Symbols?! Booleans Integers
exports
context-free syntax
Symbols “H” Symbols — Symbols {assoc}

“I” Symbols “|” — Int
Symbol “€” Symbols — Bool
equations

Concatenation, length and membership of symbol lists.

[1] atf=ap

(2] | |=0

3] |Aa|=]al+1

4] Ae=1

5] AcAda=T

[6] AeBa=A€a when A#B

The concatenation function on sorts such as Symbols is needed because the
concatenation of the built-in associative lists (e.g., Symbolx) of ASF+SDF is
not inherited through the injection Symbolx — Symbol. The injection is needed
because list sorts cannot be output sorts of functions in ASF+SDF.

2.1.2 Sets

From lists of symbols we construct sets of symbols by means of the operation
{_}. Although this constructor does not remove double elements from the list, it
signifies that the number of occurrences in the list does not matter. Operations
on sets are union (U), difference (/) and membership (€). The union v; U vy
adds only those elements of v to v that do not already occur in vy. If a set
is constructed by means of union from singleton sets, the resulting set does not
contain double elements. Although this is not strictly necessary it is useful when
later on something has to be done once for each symbol in some set.

module Symbol-Sets
imports Symbols-Projection®!! Booleans
exports
sorts SymbolSet
context-free syntax
“{” Symbols “}” — SymbolSet
SymbolSet “U” SymbolSet — SymbolSet {right}
SymbolSet “/” SymbolSet — SymbolSet {left}
“(” SymbolSet “)” — SymbolSet {bracket}
Symbol “€” SymbolSet ~ — Bool

14

Grammars [2.2

priorities
SymbolSet “/”SymbolSet — SymbolSet >
SymbolSet “U”SymbolSet — SymbolSet

variables
“v”[0-9']* — SymbolSet

equations
Membership
(1] Ac{al=Aca
Union
2] {}Uv=w
(3] vU{}=v
(4] {atpTYuv={at}U{BT} UL
(5] {A}Uv=v when Acv=T
[6] {A} U {a} ={Aa} otherwise
Difference
7 0/v=40
8 o/} =v
[9] {at BT}y Jv={at} /vU{BT} /v
(10] {A} Jv={} when Acv=T
(11] {A} /v ={A} otherwise

2.2 Grammars

A syntax definition consists of a grammar. The only generic operations on
grammars that we define at this point are an associative composition operation
that is used to combine grammars and the constant @) representing the empty
grammar.

module Grammar-Syntax
imports Layout
exports
sorts Grammar
context-free syntax

“pr — Grammar

Grammar Grammar — Grammar {assoc}

“(” Grammar “)” — Grammar {bracket}
variables

“G”[0-9']* — Grammar

2.2.1 Interpretation

A grammar defines a set of strings of symbols, a language. We specify the
language derived by a grammar indirectly, via the trees it generates. Parse trees
will be represented by means of ATerms, a term format for the representation

15

2 / CONTEXT-FREE GRAMMARS

and exchange of structured data (Van den Brand et al., 1997). The format will
be introduced in §2.5.1. In fact we will not just define parse trees, but parse
forests. A parse forest is a compact encoding of a collection of parse trees in
which contexts are shared. A parse forest is used to represent all parse trees for
an ambiguous sentence.

The interpretation of a grammar is now given by two predicates and a func-
tion. The predicate G - T characterizes the terms T that are well-formed parse
forests over grammar G. The function yield[G](T) maps a parse tree T' to a
string of symbols. The predicate T' € T" determines membership of a tree T in
a forest T". The set of trees generated by a grammar is denoted by T[g].

Given these functions we can derive the notion of the language generated by
a grammar and the notion of a parser for a grammar. The language generated
by a grammar corresponds to the set of yields of the parse trees it generates. In
other words, a string of symbols a is an element of the language defined by a
grammar G, if there exists a well-formed tree T over the grammar with « as its
yield. A parser II[G](«) is a function that maps a string « in L[G] to a parse
forest T containing all well-formed trees such that their yield is «. The module
below summarizes these definitions. The equations define the set of parse trees
TIG], the language L[G] and the parser II[G](.) in terms of well-formedness,
yield and parse forest membership.

module Grammar-Interpretation
imports Grammar-Syntax?-? Symbols?! Booleans ATerms?®! Symbols-Sets

ATerm-Sets
exports
context-free syntax
Grammar “F”’ ATerm — Bool
ATerm “€” ATerm — Bool
yield “[” Grammar “]” “(” ATerm “)” — Symbols
“ cc[[n Grammar cc]]n — ATermList
“E” cn[[n Grammar cn]]n - SymbolsSet
“IT” “” Grammar “]” “(” Symbols “)” — ATerm
equations
GHFT=T
[1] T Mol — T
TeTG] =T
. G T=T, yield[6(T) = «
ael[G] =T
3 G T=T, yield[6(T) = «
TeNGl(e) = T

Note that these equations are non-constructive, i.e., do not provide decision
procedures, but are merely a specification of the required behaviour. (Module
Symbols-Sets defines sets of strings of symbols in a similar way as sets of symbols
are defined in module Symbol-sets.)

16

Context-Free Grammars (Kernel) / 2.3

2.2.2 Overview

In the rest of this chapter we will provide the specifications of well-formedness,
yield and forest membership for a context-free grammar formalism. In §2.3
we define the syntax and normalization of context-free productions. In §2.4
we define basic symbols to be used in grammars: sorts, character classes and
literals. In §2.5 we define the well-formed parse trees generated by a context-
free grammar. In the next chapters this formalism is extended with a number
of features.

An implementation of a parser is not specified, but can be chosen such as
to comply with this specification. One possible implementation is discussed in

Visser (1997e).

2.3 Context-Free Grammars (Kernel)

2.3.1 Syntax

The kernel of SDF2 is formed by context-free grammars. A context-free pro-
duction is a structure a — A, where « is a list of symbols and A a symbol. A
context-free grammar is formed by a list of productions preceded by the keyword
syntax.

Conventionally, since their introduction by Chomsky (1956), context-free pro-
ductions are written as A — « to emphasize the generative view of grammars.
A grammar generates a string from a symbol, by repeatedly replacing some
symbol in a string by the symbols on the right-hand side of a production. There
exist many variants of this ‘standard’ notation, e.g., A ::= « in BNF (Backus,
1959) and A : aq|...|an; in YAcc (Johnson, 1975).

The unconventional & — A notation for productions introduced by Heering

et al. (1989) emphasizes the functional view of productions when used in the
context of algebraic specification. A production coincides with the declaration of
the name and type of a function. This notation is a unification of the definition
of context-free productions with the declaration of mixfix functions in algebraic
specification formalisms. For example, the declaration of the infix addition
operator on natural numbers that is declared as Nat ::= Nat "+" Nat in BNF,
is declared as op _ + _ : nat nat -> nat . in OBJ (Futatsugi et al., 1985)
and as @ + @ : (nat nat) nat in Elan (Vittek, 1994). In SDF this becomes
Nat "+" Nat -> Nat.
All these notations are equivalent in expressive power and could be used instead
of the current one. We could effortlessly define a version of SDF that uses the
A ::= «a notation of BNF and define its meaning by translation to the notation
used here. Note, however, that this does not mean that other aspects of these
formalisms have the same expressive power nor that the parsing techniques
coupled to these formalisms all have the same power.

Optionally, productions can have a list of attributes. An attribute is an anno-
tation of a production that gives some extra syntactic or semantic information
about the production. An example of an attribute that will be introduced in
§3.1 is 1left that indicates left associativity of the production. Productions can
have any number of attributes. The kernel does not provide any attributes, but
to be able to introduce attributes later on without having to introduce an extra
constructor for productions, the attribution of a production is defined here.

17

2 / CONTEXT-FREE GRAMMARS

module Kernel-Sdf-Syntax
imports Symbols?! Grammar-Syntax?2
exports
sorts Attribute Attributes Production Productions
context-free syntax
“07 {Attribute “ }x “}” — Attributes
— Attributes
Symbols “—” Symbol Attributes — Production

Production* — Productions
“syntax” Productions — Grammar
variables

“attr’[0-9']x — Attribute
“attr”“x7[0-9']x — {Attribute “,” }x
“abtr? C47 [0_9’]* - {AttribUte “;” }+

“$710-9'* — Attributes
[p][0-9']* — Production
[p]“x”[0-9']* — Productionx

[p]“+7[0-9"]* — Production+

2.3.2 Projection

We define concatenation functions for lists of productions and lists of attributes.
The concatenation function for attributes removes duplicates. A production
with an empty list of attributes is equal to a production without attributes.
The projection function ‘P’ gives the productions of a grammar, the function
‘P’ gives the non-production parts of a grammar (to be defined later), and the
function ‘P 4’ gives all productions defining a symbol A. The function ‘symbols’
gives the set of all symbols in a grammar. The function ‘reachable’ gives all
productions reachable from some set of symbols, i.e., used in the definition of
those symbols.

module Kernel-Sdf-Projection
imports Kernel-Sdf-Syntax?-3! Symbol-Sets?-1-2

exports
context-free syntax

Productions “+” Productions — Productions {right}
Attributes “H” Attributes — Attributes {right}
Production “€” Productions — Bool
Productions “C” Productions — Bool
Production “2” Production — Bool
“P”(Grammar) — Productions
“P” “(” Grammar “)” — Grammar
“P” “” Symbol “(” Productions)” — Productions
symbols(Productions) — SymbolSet
symbols(Grammar) — SymbolSet

reachable(SymbolSet, SymbolSet, Productions) — Productions
reachable(SymbolSet, Grammar) — Grammar
equations

18

Context-Free Grammars (Kernel) / 2.3

Concatenation of lists of productions, membership and subset of a list of pro-
ductions.

1] pi +H p3 = Pl p3

2] pEPIpPs=T

3] pEp* =1 otherwise
4] Cp*=T

(5] ppi Cps=p€p; Ap; Cp;

Concatenation of attribute lists. Attributes ocurring in both lists are added
only once.

$
$

[6] {attr]t, attr;t} + {attr*} = {attr]"} + {attrS } + {attr*}
[7] {attr} + {attr}, attr, attry} = {attr], attr, attry}

8] {attr} H {attr*} = {attr, attr*} otherwise

[9] $+ =

[10

[11

$
{}
The last equation states that an empty list of attributes {} is equal to no

attributes.
Two productions are similar if they are the same up to their attributes

[12] a3 A% 2a— A% =
[13] py & p, =L otherwise

Function ‘P’ gives all productions of a grammar and function ‘P’ gives all non-
syntax parts of a grammar. The function P 4 gives all productions defining the

symbol A.

[14] P(syntax p*)

[15] P(G1 G2) = (1) H P(G2)

[16] P(G) = otherwise

[17] P(syntax p *) = 9

[18] P(G1 G2) =P(G1) P(G2)

(19] P(G) =G otherwise

[20] A() =

[21] PA(Oé—>A$p*): = AS$ +H P4(p*)
(22] P4(pp*) =P4(p*) otherwise

The function ‘symbols’ gives the set of symbols of a list of productions or a
grammar.

[23] symbols() = {}

[24] symbols(a = A $ p*) = {a} U {A} U symbols(p*)
[25] symbols(syntax p*) = symbols(p*)

[26] symbols(G; G») = ymbols(gl) U symbols(G-)
[27] symbols(G) = {} otherwise

The function ‘reachable’ gives the subgrammar with those productions reachable
from some set of symbols v. It is defined by applying the auxiliary ‘reachable’

19

2 / CONTEXT-FREE GRAMMARS

function to the productions of the grammar. Observe how the resulting grammar
is a composition of the reachable productions and the non-production parts of
a grammar. The auxiliary function selects for each symbol in the original set
the productions for that symbol from the original grammar. This is applied
recursively to the symbols used in the left-hand sides of those productions.
The first set argument of the auxiliary function represents the symbols already
handled. The second set contains the symbols for which the productions still
have to be looked up.

[28] reachable(v, G) = syntax reachable({}, v, P(G)) P(G)
[29] reachable(v, {}, p*) =

! A€wv =1, Palpi) = p5, symbols(ps) / vi = vs
reachable(vy, {A a}, pf) = p5 + reachable(vy U {A}, va U {a}, p})

[31] reachable(vy, {A a}, p*) = reachable(vy, {a}, p*)
otherwise

2.3.3 Normalization

Grammar Normalization Composition of grammars is commutative and the
empty grammar is a unit for grammar composition. Since commutativity can-
not be expressed by means of a terminating rewrite system, the following module
normalizes grammar compositions as a right associative list, where the gram-
mars are ordered or merged as specified by the operation <. If Gy OGs yields a
pair (Gs, G,4) this means that the composition G; G» should be replaced by G3G,.
The definition of & can either merge the two grammars into one, yielding the
pair (Gsz,0), or exchange the grammars yielding (G2,G;). The termination of
this normalization depends on the property of ¢ that a swap cannot be undone.
The definition of <& should be extended for each new grammar constructor. For
example, the merging of the productions of two adjacent syntax sections is ex-
pressed in the next module. The ordering could also be defined directly on
the grammar composition operator, but that would entail that two equations
would have to be written for each pair of constructors that have to be merged
or swapped, corresponding to the last two equations below.

module Grammar-Normalization
imports Grammar-Syntax?-2
exports
sorts Grammar-Grammar
context-free syntax

Grammar “0” Grammar — Grammar-Grammar
“<” Grammar “” Grammar “>” — Grammar-Grammar
equations

The empty grammar) is a unit for composition and composition is associative.

(1] 0G=g
(2] Gh=g
(3] G1(G2G3) =61 G233

20

Basic Symbols [2.4

Subgrammars can be swapped as specified by the function <.

[4] Gi1G>=G{ G, when G, O Gy =(G],G,)
[5] G1 G263 =0, gzl gé when G, ¢ G3 = <g217 g3{>

Conteat-free Grammar Normalization The normalization function k[_] for the
kernel, merges productions with the same arguments and result symbols. If
such productions have different attributes, these are joined. This normalization
entails that two occurrences of the same production are identified and do there-
fore not cause an ambiguity. Consequently, other normalization functions can
generate a production more than once, without changing the meaning of the
grammar. This strategy will be relevant later on when we introduce modular-
ization of grammars. The identification of productions means that a production
that is declared in two or more different modules is identified when these mod-
ules are imported in the same module.

module Kernel-Sdf-Normalization
imports Kernel-Sdf-Projection?-3-? Grammar-Normalization®
exports
context-free syntax
“k” “[” Grammar “]” — Grammar
merge(Productions) — Productions
equations
An empty list of productions is equivalent to an empty grammar and multiple
syntax sections are merged into one.

3.3

[1] syntax = ()
[2] syntax p; © syntax pi = (syntax p} p3, 0)

The normalization function ‘k’ merges productions with the same arguments
and result, using the auxiliary function ‘merge’.

3] k[G] = syntax merge(P(G)) P(G)

] plza—>A$1, p2:a—>A$2, $1-H-$2:$3, p3:a—>A$3
merge(p] py p3 p» p3) = merge(pi ps p3 p3)

[5] merge(p*) = p*

otherwise

2.4 Basic Symbols

The kernel formalism presented in the previous section is a complete definition
of context-free grammars, except for the notation of symbols. In this section we
present three extensions of the kernel that provide notation for basic symbols
needed in syntax definition. Sorts represent the non-terminals of grammars, the
categories or domains that the grammar introduces. Character classes are used
to represent the terminals of grammars, the characters from which strings are

21

2 / CONTEXT-FREE GRAMMARS

built. Literals are convenient abbreviations for fixed strings of characters. With
these extensions we will have a complete notation for context-free grammars.
The extensions in later sections will provide features to make this formalism
more expressive.

2.4.1 Sorts

Syntaz Sorts are the symbols that represent the basic domains or categories
of a syntax definition. A sort identifier is a word starting with an uppercase
letter followed by zero or more letters or digits. Hyphens can be used between
the first and last character. Sorts used in the productions of a grammar should
be declared in a separate sorts section that consists of the keyword ‘sort” and a
list of symbols.

module Sorts-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3-1
exports
sorts Sort
lexical syntax
[A-Z] — Sort
[A-Z][A-Za-z0-9\—|x[A-Za-z0-9] — Sort
context-free syntax

Sort — Symbol
“sorts” Symbols — Grammar
variables

“S7[0-9"1% — Sort

Normalization Ordering of sorts and syntax sections (sorts are placed before
syntax sections) and merging of sorts sections.

module Sorts-Sdf-Normalization

imports Sorts-Sdf-Syntax?*! Kernel-Sdf-Normalization?-3-3
equations

[1] sorts = ()

[2] sorts a < sorts 3 = (sorts a 3, 0)

[3] syntax p* < sorts a = (sorts «, syntax p*)

Projection The projection function ‘S’ gives the list of sorts of a grammar.

module Sorts-Sdf-Projection
imports Kernel-Sdf-Projection®32? Sorts-Sdf-Syntax? 4!
exports
context-free syntax
“S” (Grammar) — Symbols
equations
The declared sorts of a grammar.

(1] S(sorts a) = «
[2] S(G1 G2) = S(G1) H S(G2)
(3] S(G) = otherwise

22

Basic Symbols [2.4

2.4.2 Character Classes

A character class is an expression such as, for example, [a-z\’] that denotes a
set of characters, in this case the set of all lower case letters and a prime. For
example, the following definition defines identifiers as lists of characters starting
with a lowercase letter followed by zero or more lowercase letters or digits.

sorts Id

syntax
[a-z] -> Id
Id [a-z0-9] -> Id

The meaning of character classes could be defined in terms of productions and
characters, effectively eliminating them from the formalism. For instance, the
character class [a-z] is completely defined by 26 productions of the form:

[a]l] -> [a-z] [b] -> [a-z] [z] -> [a-z]

However, this would cause an enormous increase in the number of productions.
Therefore, the interpretation of character classes is not defined by translating
character classes out of the language. This means that interpretation functions
should be extended to character classes.

We do not give the complete specification of character classes and character
class arithmethic. A full specification of character classes can be found in Visser
(1997b). The normalization defined there ensures that two classes that contain
the same elements have the same normal form.

Characters A character is a constant of the form \d; ...d,, where the d; are
decimal digits, denoting the d; ... d,-th member of some finite, linearly ordered
universe of characters. Since specifying characters by their index in some encod-
ing scheme is difficult, we provide easier syntax for specification of characters.
Alphanumeric characters (letters and digits) can be specified as themselves.
Other visible characters in the ASCII set can be specified by escaping them us-
ing a backslash, e.g., \ (for left parenthesis, \- for a hyphen and \ (a backslash
followed by a space) for space. The characters \t and \n represent tabs and
newlines. Finally, there are two special characters, \EOF and \TOP. \EOF is the
character used to indicate represent the end of a file. \TOP is used to represent
the largest character in the character universe.

module Character-Syntax
imports Layout
exports
sorts Character NumChar ShortChar
lexical syntax
[\][0-9]+ — NumChar
[a-zA-Z0-9] — ShortChar
[\]~[\000-\037A-Za-mo-su-z0-9] — ShortChar
context-free syntax
NumChar — Character
ShortChar — Character
“\TOP” — Character
“\EOF” — Character
variables

23

2 / CONTEXT-FREE GRAMMARS

“c”[0-9']x — Character

Character Classes A set of characters—a character class—is represented by a
list of characters and character ranges between square brackets [and]. A list
is constructed by an injection of characters into lists and by a right associative
binary concatenation operator on lists. Operations on character classes are
difference (/), intersection (A), union (V) and complement with respect to the
complete character set, i.e., the characters in the range \0-\T0OP, (~).

module Character-Class-Syntax
imports Character-Syntax24-2
exports
sorts CharRange CharRanges OptCharRanges CharClass
context-free syntax
Character — CharRange
Character “—” Character — CharRange

CharRange — CharRanges

CharRanges CharRanges — CharRanges {right}

“(” CharRanges “)” — CharRanges {bracket}
— OptCharRanges

CharRanges — OptCharRanges

“[” OptCharRanges “|” — CharClass

“~” CharClass — CharClass

CharClass “/” CharClass — CharClass {left }

CharClass “A” CharClass — CharClass {left }

CharClass “Vv” CharClass — CharClass {left}

“(” CharClass “)” — CharClass {bracket}

priorities

“~”CharClass — CharClass > CharClass “/” CharClass — CharClass
> CharClass “A” CharClass — CharClass >
CharClass “v”CharClass — CharClass

variables
“er”[0-9'* — CharRange
“er” “x”[0-9']%* — OptCharRanges
“cr”“47[0-9']* — CharRanges
“ec”[0-9']x — CharClass

Syntaxr The kernel formalism is extended by adding character classes as sym-

bols.
module CC-Sdf-Syntax

imports Character-Class-Syntax?4-? Kernel-Sdf-Syntax?-3-1
exports

context-free syntax
CharClass — Symbol

Normalization Character classes can be normalized to a unique normal form
by ordering the ranges such that all characters are translated to their numeric
equivalent and such that smaller characters are before larger characters and by
fusing adjacent or overlapping ranges. For example, the class [A-Z0-9\%] has

24

Basic Symbols [2.4

normal form [\37\48-\57\65-\90], because \37 is the numerical representa-
tion of \%, \48-\57 of 0-9, \65-\90 of A-Z and these do not overlap and are or-
dered. This normalization is specified in module Character-Class-Normalization
that can be found in Visser (1997b).

module CC-Sdf-Normalization
imports CC-Sdf-Syntax?*? Character-Class-Normalization
Kernel-Sdf-Normalization?-3-3

2.4.3 Literals

Literals are abbreviations for fixed lists of characters. For example, the following
production uses literals to define the keywords of a conditional statement.

"if" Exp "then" Stat "else" Stat -> Stat

The meaning of literals is expressed by means of a production that specifies the
sequence of characters that makes up the literal. For instance, the meaning of
the literals above is expressed by the productions

[\105] [\102] -> "if"
[\116] [\1041 [\101] [\110] -> "then"
[\101] [\108] [\115] [\101] -> "else"

Literals that are identifiers starting with a lowercase letter can be specified
without the double quotes.

Another useful abbreviation in this category is the definition of the syntax of
prefix functions in the form

add(Nat, Nat) -> Nat
as an abbreviation of

lladdll " (ll Nat " s " Nat l|) " _> Nat

Syntaz Literals consist of a list of characters between double quotes. For the
complete syntax of literals see §A.1. Literals that start with a lowercase let-
ter can be written without quotes, hence the name ‘unquoted literals’. Prefix
functions can be declared by means of a special form of productions, where the
double quotes for the parentheses and commas can be omitted.

module Literals-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3! Literals4:!
exports
sorts UQLiteral
lexical syntax
[a-zZ] — UQLiteral
[a-z|[A-Za-z0-9\—]*[A-Za-2z0-9] — UQLiteral
context-free syntax
UQLiteral — Literal
Literal — Symbol
Literal “(” {Symbol “”}x «)” “—” Symbol Attributes — Production

25

2 / CONTEXT-FREE GRAMMARS

Normalization The normalization function ‘I’ generates a defining production
for each literal that is used as a symbol in one of the productions of the grammar.

module Literals-Sdf-Normalization
imports Literals-Sdf-Syntax?4-3 CC-Sdf-Normalization®4-?

exports
context-free syntax
“” Grammar “]” — Grammar
literals(SymbolSet) — Productions
chars(Literal) — Symbols
symbols({Symbol “”}x) — Symbols
variables

“c”[0-9"]x — CHAR
“e”“47[0-9'1%x — CHAR+
“c”“x”"[0-9']x — CHARx
“r” — Literal
“4?10-9']% — {Symbol “” }x
“y” “47[0-9']%* — {Symbol “”}+
equations
Unquoted literals are translated to quoted literals.

(1] udliteral(c¢™) = literal(""" ¢+ """)

The function 1[_] generates a production for each literal symbol in the grammar.
The production generated for a literal L has the form @« — L, where a is a list of
singleton character classes representing the characters of L. This list is produced
by the function ‘chars’.

[2] 1[G] = G syntax literals(symbols(G))

3] literals({L}) = chars(L) — L

4] literals({.A}) = otherwise

5] literals({}) =

[6] literals({at 37}) = literals({a T}) + literals({31})

The function ‘chars’ scans the characters in the literal string, translating them
to short characters. These are then normalized to numeric character codes
by character normalization. The third equation tries if the first character of
the string is a short-character by normalizing it and then testing whether it
has reduced to a numeric character. This works for letters and digits. If this
fails, the fourth equation translates the character to an escaped short-character,
which succeeds for all other characters. Characters that are already escaped are
handled by the second equation.

(7] chars("") =

[shortchar("\" ¢)] = cc
g chars(literal(""" "\" ¢ ¢* """)) = cc + chars(literal(""" ¢* """))
o [shortchar(c)] = cc, cc = [numchar(c™)]

chars(literal(""" ¢ ¢* """)) = cc + chars(literal(""" ¢* """))

26

Parse Trees | 2.5

[shortchar("\" ¢)] = cc,
a = chars(literal (""" ¢* ""M))

- otherwise
chars(literal(""" ¢ ¢* """)) = ccH «

[10]

Prefix function productions are translated to normal productions by enclosing
the parentheses and commas in double quotes.

[11] L(v) - A$=L"(" + symbols(y) H ")" > A $
[12] symbols() =

[13] symbols(A4) = A

[14] symbols(y;", v,7) = symbols(y;") + "," + symbols(v;")

2.5 Parse Trees

Now we can define the interpretation of grammars, that is, the well-formed
trees characterized by a grammar and the yield of those trees. The general
idea is that a context-free production p = A; ... A, — Ay constructs trees of
type Ap labeled with the production p and with a list of direct descendants
of type A; ... A,. Such trees are represented by means of terms. The con-
structor ‘appl’ builds an application of a production p to a list of trees, i.e., if
T, ...T, are trees of type A; ... A, then appl(p,[T1,...,T,]) is a tree of type
Ap. Parse forests are constructed by representing choice nodes or ambiguity
nodes by means of the constructor ‘amb’. If T ...T,, are all trees of the same
type A, then amb([T4, ... ,T,]) is an ambiguity node of type A.

To formally define this notion of trees we introduce the notion of terms. We
first present the generic term format that is used to encode parse trees and the
encoding of symbols and grammars in that format. With those tools in place,
we define the well-formedness rules in §2.5.5.

2.5.1 Term Format

Van den Brand et al. (1997) introduce the generic, annotated term format
ATerms for the representation and exchange of structured data. The format is
designed such that all kinds of data can be represented in a single, fixed format,
with the purpose of exchanging such data between tools and providing generic
operations on these data. The definition of the format comes with an extensive
library of (higher-order) functions. We will use the ATerm format to represent
parse trees.

The syntax of ATerms is defined in module ATerms below. Terms are con-
structed by means of four constructors, i.e., an ATerm is one of the following:

— A constant (ACon), which is either an integer constant or a real number
constant.

— A list of terms (ATermList), which is either empty [], or a list of one or

more terms separated by commas between square brackets [Ty, ... ,T,].
The sort ATerms represents lists of one or more terms separated by com-
mas.

— A function symbol (AFun).

27

2 / CONTEXT-FREE GRAMMARS

— An application of a function symbol to a list of one or more terms separated
by commas.

Furthermore, each of these constructors can be annotated by a list of one or
more terms between { and } (Ann). Literals are strings of characters between
double quotes. Integer constants are lists of digits and real constants are floating
point numbers with an optional exponent. For the syntax of literals, integers
and reals see Van den Brand et al. (1997).

module ATerms

imports Literals*! IntCon RealCon

exports
sorts ATerms ATermList ACon AFun ATerm Ann
context-free syntax

ATerm — ATerms
ATerm “” ATerms — ATerms
“7 P — ATermList
“[” ATerms “]” — ATermList
IntCon — ACon
RealCon — ACon
Literal — AFun
ACon — ATerm
ATermlList — ATerm
AFun — ATerm
AFun “(” ATerms “)” — ATerm
“{” ATerms “}” — Ann
ACon Ann — ATerm
ATermList Ann — ATerm
AFun Ann — ATerm
AFun “(” ATerms “)” Ann — ATerm
variables

“Ts”[0-9']x — ATerms
“TI”[0-9"* — ATermList
“ACon”[0-9']* — ACon
“AFun”[0-9']x — AFun
“T”10-9')% — ATerm
“Ann”[0-9']* — Ann

2.5.2 Constructors for Parse Trees

Function symbols can be literals—strings of characters between double quotes—
or identifiers. Specification of the identifiers is not included in the ATerm for-
mat. For each application of ATerms, an appropriate set of AFuns should be
declared, with the requirement that they are restricted to names of the form
[a-z] [a-zA-Z0-9\-]*. For the representation of grammars, symbols, produc-
tions and trees we define the following function symbols.

module Kernel-Sdf-Tree-Constructors
imports Grammar-Tree-Constructors4-2-!
exports
context-free syntax
“prod” — AFun

28

Parse Trees | 2.5

“no-attrs” — AFun
“attrs” — AFun
“atr” — AFun
“syntax” — AFun

“appl” — AFun
“amb” — AFun

The function symbols ‘appl’ and ‘amb’ will be used to represent parse trees.
The others will be used in the encoding of grammar structures. Each extension
of the kernel that adds new constructors for symbols or grammars should also
add the corresponding ATerm function symbols. These are included in §A.2.

2.5.3 ATerm Encoding

Now we can encode symbols, grammars and productions as terms. For each
sort S a function aterm(S) — ATerm is defined that encodes S-expressions
as ATerms. The encoding is injective. For each sort & a decoding function
s(ATerm) — S is defined such that s(aterm(s)) = s. Figure 2.1 illustrates the
encoding of symbols and productions as ATerms.

The following module defines the encoding of lists of symbols. The encoding
of constructors for symbols is defined in a module for each extension of the
kernel; see §A.2.

module Symbols-ATerms

imports Symbols-Projection®!! ATerm-Lists

exports

context-free syntax

aterm(Symbol) — ATerm
atermlist(Symbols) — ATermList
symbol(ATerm) — Symbol
symbols(ATermList) — Symbols

equations

Encoding lists of symbols.

[1] atermlist(A) = [aterm(.A)]
[2] atermlist(a) =[] when a =
3] atermlist(at 37) = atermlist(at) + atermlist(8 1)

Decoding lists of symbols.

0 symbols([) =
5] symbols([T]) = symbol(T)
[6] symbols([T, Ts]) = symbol(T) + symbols([Ts])

where we have the requirement that

[7] symbol(aterm(A)) = A

The last equation requires of each future definition that it should be such that
the decoding of an encoded symbol gives the original symbol.

29

2 / CONTEXT-FREE GRAMMARS

Jaterm

atermlist

Production)””

Figure 2.1: Encoding symbols, productions and parse trees in a fixed term
format. Grammar domains such as Symbol and Production are mapped (the
dotted arrows) onto subsets of the set of ATerms. Parse Trees are another subset
of ATerms formed by the constructor ‘appl’ from a production and a list of trees,
or by the constructor ‘amb’ from a list of trees.

30

Parse Trees | 2.5

2.5.4 Encoding Productions

The following module defines the encoding of productions. As an example,
consider the production

Exp "+" Exp -> Exp {left}
which is encoded as

prod([sort ("Exp"),lit ("+"),sort("Exp")],
sort ("Exp") ,attrs([atr("left")]))

A production is represented by the function symbol ‘prod’ and the attributes
of the production are represented by ‘attrs’. Note that this makes use of the
encoding of sort and literal symbols that is defined in §A.2.

module Kernel-Sdf-ATerms
imports Kernel-Sdf-Projection®3-? Kernel-Sdf-Tree-Constructors?
Symbols-ATerms?%-3 Grammar-ATerms*-?-? ATerm-Lists

5.2

exports
context-free syntax
aterm(Production) — ATerm
aterm(Attributes) — ATerm
atermlist({ Attribute “”}x) — ATermList
aterm(Attribute) — ATerm
atermlist(Productions) — ATermUList
production(ATerm) — Production
attributes(ATerm) — Attributes
attribute(ATerm) — Attribute
productions(ATermList) — Productions
equations

Encoding productions and attributes.

[1] aterm(a — A §) = prod(atermlist(«), aterm(.A), aterm($))
[2] aterm() = no-attrs

3] aterm({attr*}) = attrs(atermlist(attr*))

[4] atermlist(attr*) =[] when {attr*} = {}

5] atermlist(attr) = [aterm(attr)]

[6] atermlist(attr,", attr,”) = atermlist(attr;”) + atermlist(attr;")

Decoding productions and attributes.

[7] production(prod(TI, T, T')) = symbols(Tl) — symbol(T) attributes(T")
8] attributes(no-attrs) =

[9] attributes(attrs(7)) = attributes(T1)

[10] attributes([]) = {}

[11] attributes([T]) = {attribute(T)}

[12] attributes([T, Ts]) = {attribute(T)} -+ attributes([Ts])

where we have the requirement that

[13] attribute(aterm(attr)) = attr

31

2 / CONTEXT-FREE GRAMMARS

Encoding grammars and lists of productions.

[14] aterm(syntax p*) = syntax(atermlist(p*))

[15] atermlist(p) = [aterm(p)]

[16] atermlist(p*) =[] when p* =

[17] atermlist(p;” p,") = atermlist(p;") + atermlist(p,")

Decoding of grammars and lists of productions.

[18] grammar(syntax(Tl)) = syntax productions(T1)

[19] productions([]) =

[20] productions([T]) = production(T)

[21] productions([T, Ts]) = production(T) + productions([Ts])

2.5.5 Well-formed Parse Trees

Now we have prepared all equipment for the characterization of the terms that
represent the well-formed parse trees over a grammar. The predicate G - T
determines whether a tree T is well-formed with respect to grammar G. This is
defined in terms of = T' : T', which checks whether T is a tree of type T”. Since
a tree contains all type information explicitly in the form of productions, this
can be checked without reference to the grammar. The well-formedness with
respect to the grammar is then defined by checking that all productions in a
tree are actually productions of the grammar.

The main constructor for trees is the function ‘appl’ that creates an application
of a context-free production to a list of trees such that the types of the argument
trees correspond to the symbols in the left-hand side of the production. As an
example, consider the grammar

sorts E

syntax
[a-z] > E
[\+:| _> ll+ll

E "+" E -> E {left}

The following ATerm is a well-formed parse tree over this grammar for the
sentence a+b.

appl(prod([sort ("E"),lit("+"),sort ("E")],
sort ("E"), attrs([atr("left")])),
[appl(prod([char-class([range(97,122)]1)],
sort("E") ,no-attrs),
[971),
appl(prod([char-class([43])],
1it("+") ,no-attrs),
[431),
appl(prod([char-class([range(97,122)]1)],
sort("E") ,no-attrs),

[981)1)

32

Parse Trees | 2.5

Observe that the main appl has the aterm encoding of the production E "+" E
-> E {left} as first argument and as second argument a list of three trees with
types that correspond to the arguments of that production. The numbers at
the leafs of the trees denote the ASCII values of the characters, i.e., 97 denotes
a, 43 denotes + and 98 denotes b.

Context-free grammars can be ambiguous, i.e., generate more than one tree for
a single sentence. The constructor ‘amb’ is introduced to represent parse forests,
i.e., compact representations of sets of parse trees. A term amb([Ty,...,T,])
represents the set of parse trees containing the terms T4, ... , T}, (which can again
contain ‘amb’ nodes). For example, the string E "*" E "+" Eis ambiguous with
respect to the grammar

sorts E

syntax
E l|+l| E _> E
E ll*ll E -> E

and therefore has the following parse forest that represents the two possible
parses, left-associative (E "x" E) "+" E and right associativeE "*" (E "+" E).

amb ([appl(prod([sort ("E"),1it ("+"),sort("E")],
sort ("E") ,no-attrs),
[appl(prod([sort ("E"),1it("*"),sort("E")],
sort ("E") ,no-attrs),
[sort("E"),
it ("x"),
sort("E")1),
it ("+"),
sort("E")]),
appl(prod([sort("E"),lit("*"),sort("E")],
sort ("E") ,no-attrs),
[sort("E"),
it ("x"),
appl (prod([sort ("E"),lit("+"),sort ("E")],
sort ("E") ,no-attrs),
[sort("E"),
it ("+"),
sort ("EM)1D1D)

Note that in order to reduce the size of the term, the subtrees for E and "x*"
and "+" are symbols. The tree represents the parse tree for a sentential form.

The yield of a tree is the concatenation of the characters at the leafs of the
tree. For instance, the yield of the first tree above is [97] [43] [98], i.e., the
list of characters a+b.

module Kernel-Sdf-Trees
imports Kernel-Sdf-ATerms?5-4 Kernel-Sdf-Projection?-3-2

exports
context-free syntax
Grammar “F” ATerm — Bool
“” ATerm “” ATerm — Bool

yield “[” Grammar “]” “(” ATerm “)” — Symbols

33

2 / CONTEXT-FREE GRAMMARS

args(ATerm) — ATermList

type(ATerm) — ATerm

prods(ATerm) — Productions
variables

“Prod”[0-9']x — ATerm

“Res”[0-9']x — ATerm

“Attrs”[0-9']x — ATerm

“Args”[0-9']«+ — ATermlList
equations
A term T is a well-formed parse tree over grammar G, if it is a well-formed tree
and if all its productions are productions of G.

F T:type(T) A prods(T) CP(G) =T
GFrT =T

(1]
Otherwise, the tree is not well-formed.

[2] GF T=_1 otherwise

The function ‘prods’ gives the productions of a term, i.e., the list of all produc-
tions used in its applications.

production(Prod) + prods(Args)
prods(Args)
prods([

]
prods([7] rods(T)
prods([T, Ts]) rods(T) + prods([Ts])

prods(T) = otherwise

prods(appl(Prod, Args
prods(amb(Args

)
)

)
)
)
)

Il
o °

JCORE =T NC)

For the definition of G F T we need several auxiliary functions on terms. The
function ‘args’ gives the arguments of a production. The ‘type’ of a production
is its result type. The ‘type’ of an application is the result type of its production.

9] args(prod(Tl, Res, Attrs)) = Tl

[10] args(appl(Prod, Args)) = Args

[11] type(prod(Tl, Res, Attrs)) = Res

[12] type(appl(Prod, Args)) = type(Prod)

3] type(amb([T4)) = type(fist([TH)

An application is a well-formed term of type T if the type of its production is
T and if its arguments are well-formed terms with types that correspond to the
argument types of the production of the application.

type(Prod) = T, + Args: args(Prod) =
F appl(Prod, Args) : T = T

[14]

A list of trees or symbols is well-formed if each element is well-formed.

[15] FI:[]=T
[16] T[T =k T: T
[17] FIT, Ts]: [T', Ts'| =+ T: T' AN+ [Ts] : [Ts']

Parse Trees | 2.5

An ambiguous node is well-formed if all possibilities have the same type.

[18] Famb([T]): T' =+ T: T’
[19] Famb([T, Ts]) : T' =+ T: T' A+ amb([Ts]) : T'

A symbol term T is a well-formed tree of type T'. This is used to represent trees

for sentential forms.

symbol(T) = symbol(T")
FT:T =T

[20]

The yield of a term is the concatenation of all its leaf symbols.

[21] yield[G](appl(Prod, TI)) = yield[G](TY)

[22] yield[G](amb(T1)) = yield[G](first(T1))

23] yield[g]([]) =

4] yield[G)([1]) = yield[G)(7)

23] yield[G)([T, Ts)) = yield[G)(T) -+ yield[G)((T5)
[26] yield[G](T) = symbol(T) otherwise

2.5.6 Trees with Characters and Literals

In the previous section we defined character classes and literals as symbols in
grammars. Since the meaning of literals is defined in terms of character classes
by means of context-free productions, the definition of well-formedness of parse
trees does not need to be extended for literals. However, for character classes
we have to extend the definition such that a character is a tree with as type
any character class that contains it, i.e., a parse tree is a well-formed tree of a
character class type if it is a character (represented by a natural number) that
is an element of the character class. For example, the term

appl (prod([sort("Id"),char-class([range(97,122)1)],
sort("Id") ,no-attrs),
[appl(prod([char-class([range(97,122)]1)],
sort("Id") ,no-attrs),
o7,
981)

is a well-formed parse tree for the identifier ab. The definition of well-formedness
and yield is extended as follows:

module CC-Sdf-Trees
imports CC-Sdf-ATerms*-?2 Kernel-Sdf-Trees?>->

. Character-Class-Normalization
equations

A character is represented by an integer. The characteristic functions for trees
are extended for this new tree constructor. The type of a character is the
character code itself. The yield of a character is a character class containing the
single character. A character does not contain any productions.

[1] type(n) = n

35

2 / CONTEXT-FREE GRAMMARS
[2] yield[G](n) = [character(n)]
3] prods(n) =

A character code n is a well-formed tree of type T if T represents a character
class that contains the character corresponding to n.

symbol(T) = cc, character(n) € cc=T
Fn:T =T

[4]

2.5.7 Cyclic Parse Forests

Some grammars generate infinitely many parse trees for a single string. For
instance, the grammar

syntax
->S

[a]l -> S

SS->8

generates infinitely many trees for the string a. The collection of parse trees
for strings over such grammars can be finitely represented by means of a cyclic
parse forest (Billot and Lang, 1989, Rekers, 1992). However, in the term format
defined here we have no provisions for cyclic forests. The parser for SDF2 in
Visser (1997e) does generate a cyclic parse forest.

In ASF+SDF cyclic structures cannot be expressed in a natural way. This can
be simulated by explicitly representing the pointer structure by means of a table
of references and tags to represent these references. But this would complicate
the entire specification. Since the application of SDF2 will be mainly to non-
cyclic grammars we have not gone into the trouble of defining cyclic forests in

ASF+SDF.

2.5.8 Equality of Trees

We define an equality predicate = on parse trees. At this point this comes down
to syntactic equality. Later on we will extend the predicate such that trees that
are not syntactically equal can be equal. This will be useful to abstract from
certain details in parse trees. For instance, in §3.3 we will introduce parse trees
containing layout. This is useful for applications that are aware of layout. But
most applications will want to abstract from the specific layout in a tree and
consider two trees equal up to layout. Another application is the equality of
trees with associative operators such as list concatenation. The definition of
the equality predicate below is intended to specify the details of such equality
considerations. Furthermore, we define membership of a tree in a parse forest.

module Kernel-Sdf-Equality
imports Kernel-Sdf-Trees?-3-%
exports
context-free syntax
ATerm “=” ATerm — Bool
ATerm “€” ATerm — Bool

36

Parse Trees | 2.5

equations
Equality of applications. If the productions are the same two applications are
equal if the argument lists are.

Args = Args' =T
appl(Prod, Args) = appl(Prod, Args') = T

[1]

Argument lists are equal if the elements are pairwise equal.

[2] [=[]=T
[3] M =[T"=T=T1
[4] [T, Ts| = [T', Ts'|= T =T A[Ts] =[Ts']

An ambiguity node is equal to a tree if it all its possibilities are contained in
the tree and vice versa.

amb([Ts]) € TA T € amb([Ts]) =T
amb([Ts]) =T = T

amb([Ts]) € TA T € amb([Ts]) =T
T=amb([Ts]) = T

[5]

[6]
If none of the cases above apply the terms are not equal.
[7] Ty = T, = 1L otherwise

A tree is member of a parse forest (tree containing ambiguities) if it is contained
in one of the possibilities of an ambiguity.

3 T1 E T2 = T
8] Ty €amb([T]) = T
o Ty € T,V T; € amb([Ts]) =T

Ty € amb([T2, Ts]) = T

An ambiguity is contained in a forest if all its possibilities are contained in the
forest.

" TWET,=T
1] Ty € To Aamb([Ts]) € To =T

amb([Ty, Ts]) € T = T

An application is contained in an application, if the arguments of the first are
contained in the arguments of the second.

Args, € Argsy, =T

12 -

[12] appl(Prod, Args,) € appl(Prod, Args,) = T
Lists

[13] [1ell=T

37

2 / CONTEXT-FREE GRAMMARS

[14] [TETN=TET
[15] [T, Ts| € [T', Ts'| = T € T" A [Ts] € [Ts']

If none of the cases above apply membership does not hold

[16] Ty € Ty = 1 otherwise

38

3

Disambiguation and Abbreviation

In this chapter we present features for disambiguation of ambiguous grammars
and abbreviation of common patterns. Priorities are used to disambiguate am-
biguous expression syntax, providing support for compact abstract syntax. Pri-
orities are defined by means of an extension of the well-formedness predicate
on parse trees. Regular expressions abbreviate common patterns of produc-
tions such as lists, optional constructs, alternatives, etc. Regular expressions
are defined by generating the defining productions for each expression in the
grammar. Lexical and context-free syntax sections separate the definition of
tokens and phrases. These are integrated into a single context-free grammar by
normalization such that no interference between the two levels is created. Fur-
thermore, the definition of the placement of layout between tokens is handled
by this normalization. Follow restrictions and reject productions are provided
to express lexical disambiguation rules such as ‘prefer longest match’ and ‘prefer
literals’.

3.1 Priorities

Context-free grammars can be ambiguous. There are many methods for the dis-
ambiguation of context-free grammars. Most programming language oriented
formalisms provide some kind of precedence based method. Here we adopt the
method of disambiguation by associativity and priority as used in SDF. New
with respect to the design of priorities in Heering et al. (1989) is (a) disam-
biguation of lexical syntax by lexical priorities, (b) a more uniform notation
for priority declarations, and (c) derivation of productions from priority decla-
rations, which provides a more compact notation by avoiding multiple decla-
rations of productions. A feature not present in SDF2 is the abbreviation of
productions in priority declarations by the list of literals of the left-hand side.
(For example, "*" > "+" as an abbreviation of E "¥" E -=> E > E "+" E ->
E.) The reason for this omission is the unclear semantics in combination with
modularization. Also < priority-chains are not included in SDF2 because these
can also be expressed using > chains.

We first define syntax, projection functions and normalization of priority dec-
larations. In §3.1.4 we describe an extension of the well-formedness predicate
on parse trees that characterizes parse trees without priority conflicts.

Example 1.1 The following grammar defines priority and associativity rela-
tions over the syntax of expressions with unary negation and binary operators

39

3 / DISAMBIGUATION AND ABBREVIATION

for exponentiation, multiplication, addition and subtraction. Note that, unlike
in SDF, the syntax for arithmetic operators can be defined inside the priorities
section.

syntax
"("m E ")" -> E {bracket}
priorities
n_n E -> E
> E"""E ->E {right}
> E "x" E -> E {left}

> {left:
E "+" E -> E {assoc}
E "-" E -> E {left}}

This grammar declares that unary — has higher priority than ~, which has
higher priority than binary =, which has higher priority than + and binary —.
The latter two are mutually left associative as declared by the group associa-
tivity. The bracket production declares that parentheses can also be used to
disambiguate expressions. With this grammar the expression E--E*E+E-E"E
should be interpreted as ((E-((-E)*E))+E)-(E"E). O

3.1.1 Syntax

The priorities section of a grammar defines the priority relation > on productions
and the associativity relations ‘left’, ‘right’, ‘assoc’, and ‘non-assoc’. A priority
declaration is either a > chain or an associativity declaration. The objects of
these declarations are single productions or groups of productions. A group
can have an X-associativity, which declares the productions in the group to be
mutually X-associative.

The ‘bracket’ attribute declares a production of the form I A r — A {bracket},
with 1" (‘r’) denoting the syntax for the left- (right-) bracket, to be the identity
function on A. Such productions can be used to explicitly disambiguate some
text or to indicate a different disambiguation than the one given by priority
rules.

module Priority-Sdf-Syntax

imports Kernel-Sdf-Syntax?-3-1

exports
sorts Associativity Group Priority Priorities
context-free syntax

“left” — Associativity
“right” — Associativity
“non-assoc” — Associativity
“assoc” — Associativity
“bracket” — Attribute
Associativity — Attribute
Production — Group

“{” Productions “}” — Group

“” Associativity “” Productions “}” — Group
{Group “>”"}+ — Priority
Group Associativity Group — Priority
{Priority “”}x — Priorities

40

Priorities / 3.1

“priorities” Priorities — Grammar
variables

“g”[0-9']% — Group

“gg«”[0-9'1%x — {Group “>"}x

“gg+7[0-9'1%* — {Group “>"}+

“pr”’[0-9']x — Priority

“pr” “x”[0-9']x — {Priority “,”}x
“pr” “_+_77 [0_9/]* _> {Priority “ 77}+
“as”[0-9']* — Associativity

3.1.2 Projection

The projection function ‘Pr’ yields the list of all priority declarations of a gram-
mar. The projection function ‘Pr’ yields the grammar without its priority dec-
larations.

module Priority-Sdf-Projection
imports Priority-Sdf-Syntax®!-! Kernel-Sdf-Projection?:
exports
context-free syntax
Priorities “+H” Priorities — Priorities {assoc}

3.2

“Pr” (Grammar)
“Pr” (Grammar)
Priority “€” Priorities

— Priorities
— Grammar
— Bool

equations
Concatenation of priority declarations.

1] pri + pry = pri, pry

The priorities and non-priorities of a grammar.

[2] Pr(priorities pr*) = pr*

[3] Pf(gl 2) = Pr(G1) + Pr(G)
[4] Pr(G) = otherwise

5] Pr(priorities pr*) = ()

(6] Pr(g1 Ga2) = 1"(1) Pr(G2)

[7] Pr(G) = otherwise

Membership of a priority declaration. A pair is member of a declaration if the
declaration contains a pair with similar productions. Recall from §2.3.2 that two
productions are similar if they are the same except for their attributes, which
may be different.

pLEps=T, pZp, =T

(8]
P1> Py € pri, p3> Py, pry = T

9] PLEDPSADPZEPL VP ZEPs APy Eps =T
Py aSpy € pri, p3 aspy, pry = T

[10] pre€pr* = 1

otherwise

41

3 / DISAMBIGUATION AND ABBREVIATION

3.1.3 Normalization

The complex syntax for priority declarations can be expressed by means of only
binary declarations for the > relation and the associativity relations as follows:
(1) Priority chains of the form p; > ... > p, are normalized to lists of simple
priorities of the form p; > p; 1. This relation is closed transitively. (2) Associa-
tivity declarations in attributes and group associativities are expressed as binary
associativity declarations of the form p; as ps. (3) The productions that are
mentioned in priorities sections are added to the syntax section of the grammar.

Example 1.2 The normalization of the grammar in Example 1.1 on page 39
is:

syntax
"nn"E > E
E """ E -> E {right}
E "x" E -> E {left}
E "+" E -> E {assoc}
E "-" E -> E {left}

priorities
"n_M E > E > E """ E -> E {right},
E"""E ->E {right} right E"""E ->E {I‘ight},
E"""E ->E {I‘ight} > E "x" E -> E {1eft},
E "x" E -> E {left} > E "+" E -> E {assoc},
E "x" E -> E {left} > E "-"E ->E {left},
E "x" E -> E {left} left E "x" E -> E {left},
E "+" E -> E {assoc} left E "-" E -> E {left},
E "+" E -> E {assoc} assoc E "+" E -> E {assoc},
E "-"E -> E {left} 1left E "-" E -> E {left}

Observe that all productions mentioned in the priorities declaration are also
declared as productions in the ‘syntax’ part. Furthermore, the > chain is made
into a binary relation, which is transitively closed. All associativity attributes
are expressed by means of binary declarations. O

module Priority-Sdf-Normalization
imports Priority-Sdf-Syntax®'-! Booleans Kernel-Sdf-Normalization®

Priority-Sdf-Projection3-!-2
exports

context-free syntax
“p[” Grammar “]” — Grammar
“assoc” “[” Grammar “]” — Priorities
“assoc” “[” Productions “]” — Priorities
“syntax” “[” Priorities “]” — Grammar

3.3

“norm” “[” Priorities “]” — Priorities
“trans” “[” Priorities “]” — Priorities
equations

The normalization function p[.] extracts syntax information from priorities
and priority information from syntax, normalizes the priorities declarations and
takes the transitive closure.

Pr(G) = pri, norm[pri] = prj, Pr(G) syntax[pr;] = ¢

i p[G] = G’ priorities trans[prj + assoc[G']]

42

Priorities / 3.1

The function norm[.] normalizes a priority declaration to a list of pairs of the
form p > p' or p as p’ by eliminating >-chains and {_} groups.

(2] norm[p> p'] = p> p'
(3] norm[p asp']l = pasp', p’ asp

Each of the priority declarations in the list is normalized.

[4] norm[] =
5] norm[p] =
[6] norm[pr;", pryt] = norm[pr;] + norm[pr;']

A > chain is broken into binary > declarations. The transitive closure defined
below ensures that p; > ps if p1 > p2 > p3 was specified.

[7] norm[gg;"> gg;"> gg;] = norm[gg;" > 995", 995> 995°]

Groups and priority. A group is an abbreviation for a pointwise extension of
the declared relation to the members of the group.

8 norm[{p}] =

]
9] norm[{}> ¢] =
10 norm[g> {}] =

[

[

(10]

[11] norm[{p;" p, }> g] = norm[{p;"}> g, {p;"}>]
[12] norm[g> {p;" p; }] = normg> {p;"}, 9> {p;"}]
[13] norm[{p}> g] = norm[p> ¢]

[14] norm[¢g> {p}] = norm[g> p]

[15] norm[{as: p*}> g] = norm[{as: p*}, {p*}> 4]
[16] normf[g> {as: p*}] = norm[{as: p*}, ¢> {p*}]

Groups and associativity.

~

] norm[{} as g] = norm[g]

] norm[{p p*} as g] = norm[p as g, {p*} as g]
9} norm[g as {}] = norm[g]

]

]

[*d

20 norm[g as {p p*}] = norm[g as p, g as {p~}]
21 norm[{as; : p*} as2 g] = norm[{as; : p*}, {p*} as2 4]
22 norm[g asy {as; : p*}] = norm[{as; : p*}, g as2 {p*}]

Associativity groups are abbreviations. The members of an associativity group
are mutually associative with respect to the declared relation. If the group
contains a single production, it is taken to define the associativity for that
production. Otherwise, the associativities are defined only between the members
of the group and are not defined reflexively. This makes it possible, for instance,
to have a production that is left-associative with respect to itself, but right-
associative with respect to a group of other productions.

[23] norm[{as: p}]=pasp
[24] norm[{as: p, py}] = p; as p,
[25] norm[{as: p, p, pT}] = norm[p, as p,, {as: p; p*}, {as: p, pT}]

The function trans[_] takes the transitive closure of the > relation.

Pri, Pi> P2, Pry = pre, pri=pri, po> ps, pri, ;> py € pri# T
trans[pr*] = trans[p;> ps, pr*]

[26]

43

3 / DISAMBIGUATION AND ABBREVIATION

[27] trans[pry, pr, pr3, pr, pri] = trans[pri, pr, pr3, pr3]
[28] trans[pr*] = pr*
otherwise

The function assoc[_] derives associativity declarations from the productions of
a grammar. Productions that have an attribute declaring them as left, right,
or non-associative produce a declaration of that associativity in the priorities
declaration.

[29] assoc[G] = assoc[P(G)]

[30] assoc[] =

[31] assoc[p;" py] = assoc[p;"] + assoc[ps]

[32] assoc[p] =p asp when p=a — A {attr], as, attrs}
[33] assoc[p] = otherwise

The function ‘syntax’ derives from a priorities declaration the list of all produc-
tions referred to in that declaration.

[34] syntax[] =0

[35] syntax[pr;", pry"] = syntax[pr;"] syntax[prs"]
[36] syntax[p, > p,] = syntax p; p,

[37] syntax[p; as py] = syntax p; py

Merging and ordering of grammars.

[38] priorities = §)
[39] priorities prf < priorities pr = (priorities pri, prs, 0)
[40] priorities pr* & syntax p* = (syntax p*, priorities pr*)

3.1.4 Parse Trees with Priority Conflicts

We extend the notion of well-formedness of parse trees to well-formedness over a
grammar with priorities. A tree is well-formed if it is a well-formed context-free
tree and if, moreover, it does not contain priority conflicts.

module Priority-Sdf-Trees

imports Kernel-Sdf-Trees?-3® Priority-Sdf-Projection®-1:2
exports
context-free syntax

Grammar “h,4,” ATerm — Bool
conf “[” Priorities “]” “(” ATerm “)” — Bool
rootconf “[” Priorities “]” “(” Production “,” ATermList “)” — Bool
left “[” Priorities “]” “(” Production “” ATerm “)” — Bool
middle “[” Priorities “]” “(” Production “,” ATermList “)” — Bool
right “[” Priorities “]” “(” Production “” ATerm “)” — Bool

equations

We introduce an extension of the notion of well-formedness. A tree is well-
formed with respect to the priorities in a grammar, if it is well-formed with

44

Priorities / 3.1

respect to the grammar and does not contain a priority conflict.

GFT=T, cont[Pr(G)|(T) = L
g '_prio T=T

[1]

An application has a conflict if it has a root conflict or if any of its descendants
has a conflict.

rootconf[pr*](production(Prod), Args) V conf[pr*](Args) = Bool
conf[pr*](appl(Prod, Args)) = Bool

For the other constructors, a tree has a conflict if any descendant has.

[3] conf[pr*](amb([7])) = cont[pr=](T)

[4] conf[pr*](amb([T, Ts])) = conf[pr*](T) V conf[pr*](amb([Ts]))
[5] conf[pr=]([]) = L

o conlpr]([1]) = contfpr*](T)

[7] conf[pr*]|([T, Ts]) = conf[pr*](T) V conf[pr*]([Ts])

An application with no descendants does not have a conflict.
8] rootconf[pr*](p, []) = L

An application with more than one descendant has a root conflict if it has a left
conflict, a middle conflict or a right conflict.

0] rootcont[pr*](p, [T, Ts]) = left[pr*](p, T) v middle[pr*](p, [T5)

An injection, i.e., an application with only one child has a root conflict if its
production has higher priority than its child’s production.

production(Prod) = p,, p;> py € pr* = Bool

10
[10] rootconf[pr*](p,, [appl(Prod, Args)]) = Bool

A tree has a left conflict if the productions of root and left-most child are mu-
tually right-associative or non-associative, or if the root production has higher
priority than the child production.

production(Prod) = p,,
p; right p, € pr* V p; non-assoc p, € pr* V p;> p, € pr* = Bool

11
) lett[pr*](p,, appl(Prod, Args)) = Bool

If the left-most child is an ambiguitity node, the tree has a conflict if there is a
left conflict with any of the possibilities of the ambiguity.

(2] left[pr=](py, amb([1])) = left[pr=](p,, T)
[13]left[pr*](p,, amb([T, Ts])) = left[pr*](p,, T) V left][pr*](p,, amb([Ts]))

A tree has a middle conflict if the root production has higher priority than any
of the middle child productions.

A production(Prod) = p,, p;> py € pr* V middle[pr*](p,, [Ts]) = Bool
) middle[pr*](p,, [appl(Prod, Args), Ts]) = Bool

45

3 / DISAMBIGUATION AND ABBREVIATION

[15] middle[pr*](p, [T]) = right[pr*](p, T)

[16] middle[pr*](p;, [amb([T]), Ts]) = middle[pr=](p,, [T, Ts])

middle[pr*](p,, [T, Ts]) V middle[pr*](p,, [amb([Ts]), Ts]) = Bool
middle[pr*](p,, [amb([T, Ts]), Ts]) = Bool

[17]

A tree has a right conflict if the productions of root and right-most child are
mutually left-associative, non-associative or associative (a synonym for left), or
if the root production has higher priority than the child production.

production(Prod) = p,,

py left p, € pr* Vv p, assoc p, € pr*
V p, non-assoc p, € pr* V p, > p, € pr
right[pr*](p,, appl(Prod, Args)) = Bool

+ = Bool
(18]

The case of an ambiguity as right-most child.
[19] right[pr*](p,, amb([T])) = right[pr=](p\, T)

vight [pr*[(p,, 7) V right[pr*](p,, amb([Ts))) = Bool

[20] right[pr*](p,, amb([T, Ts])) = Bool

3.1.5 Discussion

Here we have described the requirements on parse trees that a parser should
produce, i.e., not containing priority conflicts. There are various ways to imple-
ment this requirement. One possible scheme that is further discussed in Klint
and Visser (1994) is to interpret the priority rules as a filter on parse forests
that prunes the subtrees with conflicts. This scheme is used in the parser in
the current ASF+SDF Meta-Environment (Heering et al., 1989, Klint, 1993).
An advantage of this approach is that disambiguation is decoupled from parsing
and that other disambiguation filters could be added. The drawback of the ap-
proach is that the parse forest can become very large, which hampers efficiency.
Therefore, applying the priority rules as early as possible in the parsing process
will increase efficiency. A parser-generation time interpretation of priorities is
described in Visser (1995). There the priorities are completely expressed in
the parse tables produced by the parser generator. An implementation of this
method is discussed in Visser (1997e).

Other Disambiguation Methods Disambiguation by priority conflicts is sim-
ilar to the methods using precedences of Earley (1975) and Aho et al. (1975).
The latter also describe a method for interpreting these rules in the parser
generation process, which is less general than the one in Visser (1995). Disam-
biguation by priorities as defined in this section is based on the definition of
priorities in Heering et al. (1989). In that definition a second interpretation of
priorities is defined. Parse trees are interpreted as a multi-set of productions and
the priorities are interpreted as an ordering of such multi-sets. This ordering is

46

Regular Expressions | 3.2

used to make a further selection of trees if the filtering by priority conflicts does
not solve all ambiguities.

Subtree exclusion is a disambiguation method introduced by Thorup (1994)
that works by specifying a finite set of partial parse trees that are forbidden as
subtrees of parse trees yielded by the parser. This method allows a more fine
tuned disambiguation than is achievable by the priority scheme. Examples are
disambiguation of generic operators and internal arguments. Some problems
can not be solved appropriately. The if-then-else ambiguity is solved in the
same way as with priorities, which is not correct. In Klint and Visser (1994)
these and several other disambiguation methods are studied in the framework
of filters on parse forests.

Brackets Unparsing is complicated in the presence of priorities. When a
parse tree is created by a semantics processor, a rewriter for instance, it might
create a well-formed tree that does not satisfy the ki, predicate, i.e., contains a
priority conflict. Such trees are semantically meaningful, but problematic when
their yield is considered. Naively translating an abstract syntax tree to a string
as described before might lead to a string that, when parsed, does not represent
the same tree because it would contain conflicts. To force equivalence of tree
and string, brackets should be introduced. In Van den Brand and Visser (1996)
the rules for priority conflicts are used to place brackets when unparsing an
abstract syntax tree.

3.2 Regular Expressions

Certain patterns of context-free productions occur again and again. Examples of
such patterns are lists, lists with separators, optional constructs and alternative.
For example, a list of one or more identifiers can be specified by the grammar

syntax
Id -> Id-List
Id-List Id-List -> Id-List {left}

Here a list is defined in terms of two constructors, one for singleton lists and
one for concatenation of lists.

Many formalisms provide shortcuts for such patterns by extending the lan-
guage of context-free grammars with some collection of regular operators on
symbols. For instance, BNF provides an alternative at the level of productions,
i.e., a production has the form A := Ag|...|A,, where the symbol ‘| has the
meaning of or. Extended BNF (EBNF) is the canonical extension of BNF with
regular operators. In one formulation, Wirth (1977) adds the operators {.A}
for iteration and [A] for optionality. Variations on this notation appear in Lee
(1972) and Williams (1982). SDF provides iteration Ax and A+ and {A L}®
iteration for abbreviation of lists of A4s separated by a literal L.

In this section we give an extension of context-free productions by a set of
regular operators on symbols. In all the approaches mentioned above regular
operators are given a special treatment. New in our formulation is the treatment
of regular operators as first class citizens. They are nothing but constructors of
new symbols that spare the specifier the burden of having to invent new names.
As a consequence, a regular expression can occur at all positions where a normal
symbol can occur, in particular in the right-hand side of a production.

47

3 / DISAMBIGUATION AND ABBREVIATION

This approach is motivated by the following considerations: (1) It enables us
to express the meaning of regular expressions by means of a normalization of
the grammar that adds defining productions for each expression. (2) Our gram-
mars function as signatures for algebraic specifications, where each production
represents a function. If regular symbols can not be the result of functions,
as is the case in SDF, we still have to define an auxiliary symbol to define a
function that yields such a result. For example, suppose that we want to define
a function add that adds an integer to each integer in a list of integers. In the
syntax below we can write this as

add(Int, Int*) -> Intx*

whereas in SDF we should introduce an auxiliary sort IntList to represent the
result sort of this function.

3.2.1 Syntax
We consider the following operators:
— Empty: The symbol () represents the empty string

— Concatenation: The symbol (A; ... A,) with n > 2 denotes the concate-
nation a; ...a, of expressions a; of type A;.

— Alternative: The symbol A;|...|A,, with n > 2, denotes an expression a
of one of the types A;.

— Optional: The symbol A? is an optional 4

— Iteration: The symbol A% (A+) denotes alist a; ...a, withn >0 (n > 1)
of expressions a; of type A.

— Iteration with separator: The symbol {A B}x ({A B}+) denotes a list
aiby ...by_1a, with n > 0 (n > 1) of expressions a; of type A separated
by expressions b; of type B. Observe that, unlike in SDF, in SDF2 there is
no limitation of the symbols that can be used as separators. For example,
{Stat [\;]11[\nl}* denotes lists of statements separated by semicolons
or newlines.

— Constrained iteration: The symbol {A}n+ with n > 2 denotes a list
aj ...a, of n or more expressions a; of type A. Similarly for {A B}n+
with separator B.

— Set expressions: The symbol Set[A] represents the syntax of set expres-
sions of the form {ay,...,a,} with the a; expressions of type A

— Product: The symbol Ay # ... #A,, with n > 2, denotes tuples (aq, ... ,a,)
of expressions a; of type A;.

— Functions: The symbol (A; ... A, = B), with n > 0, denotes function
expressions f that can be used in expressions f(a; ...a,) of type B with
the a; expressions of type A;.

— Permutation: The symbol < A; ... A, > denotes expressions of the form
aj ...a, such that for each A; exactly one of the a; has type A;.

48

Regular Expressions | 3.2

The syntax of these operators is defined in the following module. Observe that
the empty symbol () and sequences (A; ... A,) are not defined using a single
production “(” Symbol x “)” — Symbol because parentheses around a single
symbol are already used as brackets; see §2.1.

module Regular-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3-! IntCon

exports
context-free syntax
“«rr — Symbol
“(” Symbol Symbol+ “)” — Symbol
Symbol “?” — Symbol
Symbol “+4” — Symbol
Symbol “x” — Symbol
“{” Symbol Symbol “}” “+” — Symbol
“{” Symbol Symbol “}” “x” — Symbol
“{” Symbol “}” NatCon “+” — Symbol
“{” Symbol Symbol “}” NatCon “4+” — Symbol
“Set” “[” Symbol “]” — Symbol
Symbol “#” Symbol — Symbol {right}
“(” Symbols “=" Symbol “)” — Symbol
Symbol “|” Symbol — Symbol {right}
“g” Symbols “3>” — Symbol
priorities

{Symbol “?” — Symbol, Symbol “x” — Symbol, Symbol “+” — Symbol,
Symbol NatCon “4+” — Symbol} > Symbol “#”Symbol — Symbol >
Symbol “|”Symbol — Symbol

3.2.2 Normalization

We define a normalization function r[_] that for each regular expression that is
used in the grammar introduces one or more productions that define its meaning.
In this interpretation regular expressions form a shorthand for defining extra
symbols and productions.

Example 2.1 The following production defines a single production describing
the structure of a block in a While program consisting of an optional declaration
followed by a list of statements.

syntax
"begin" (Decl ";")? {Stat ";"}+ "end" -> Stat

The normalization of this grammar is:

syntax
"begin" (Decl ";")? {Stat ";"}+ "end" -> Stat
-> (Decl ";")7

(Decl ";") -> (Decl ";M)7
Decl ";" -> (Decl u;u)
Stat -> {Stat u;u}+
{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {left}

49

3 / DISAMBIGUATION AND ABBREVIATION

{Stat ll;ll}+ ll;ll {Stat ll;ll}* _> {Stat ll;ll}+

{Stat ";"}x ";" {Stat ";"}+ -> {Stat ";"}+

{Stat ";"}x ";" {Stat ";"}x -> {Stat ";"}* {left}

-> {Stat u;u}*

{Stat n;n}+ -> {Stat u;u}*
priorities
{left :

{Stat ";"}+ ";" {Stat ";"}+ -> {Stat ";"}+ {left}

{Stat ";"}+ ";" {Stat ";"}x* -> {Stat ";"}+

{Stat ll;ll}* ll;ll {Stat ll;ll}+ _> {Stat ll;ll}+

{Stat ";"}x ";" {Stat ";"}x -> {Stat ";"}* {left}
P>

{Stat ";"}+ -> {Stat ";"}*

We see that the meaning of the operators is expressed by means of extra pro-
ductions. Observe how regular expressions are used as target symbols of pro-
ductions. m|

module Regular-Sdf-Normalization
imports Regular-Sdf-Syntax®2! Priority-Sdf-Syntax3-1-!

Literals-Sdf-Syntax? 43 Kernel-Sdf-Normalization?-3-3
exports

context-free syntax

“r[” Grammar “]” — Grammar

“r[” Symbols “]” — Grammar

alt(Symbol, Symbol) — Grammar

tup(Symbol) — Symbols

perm(Symbols) — Productions

perm3(Symbols, Symbols) — Productions
equations

The function r[_] adds defining productions for each regular expresssion occur-
ring in one of the productions of the grammar. Existing productions are not
affected.

[1] r[G] = G r[a] when {a} = symbols(G)

Recall that the function ‘symbols’, defined in §2.3.2, gives the set of all symbols
in a grammar. The function r[] generates a grammar for each of the regular
expressions in the list of symbols.

2] =10
[3] rlat 7] =r[a*]r[87]

Concatenation The regular expression (a) is a symbol that abbreviates the
concatenation of the symbols a.

[4] r[()] = syntax — ()

p=Aat = (Aat)
r[(Aa™)] = syntax pr[A a™]

[5]

Note that r[A a™] recursively produces the productions for regular expressions
in the list of symbols A a™.

50

Regular Expressions | 3.2

Alternative The alternative A|B denotes either A or B. We could thus define
r[A|B] to yield the productions A — A|B and B — A|B. However, if one of
the alternatives is again an alternative, an unnecessary chain A — A|B and
A|B — A|BIC is created. We would rather have A — A|B|C. Therefore, we
define

(6] [A | B] = alt(A | B, A| B)

where the function ‘alt’” unpacks the alternative until a symbol is reached that
is not an alternative.

[7] alt(Bl | 82, A) = alt(Bl, A) alt(Bz, A)
8] alt(B, A) = syntax B - A r[B] otherwise

Optional The optional construct A? is either empty or A.

Py = - "4?7
py = A= A?
r[A?] = syntax p; p, r[A]

[9]

Iteration The iteration operator A+ denotes lists of one or more A’s, i.e.,
either A or A Aor A A Aor.... The iteration Ax denotes a list of zero or
more A’s, i.e., € (empty) or Aor 4 Aor A A Aor ... There are several ways to
define such lists with productions. It is not sufficient to define a list by means
of the productions

— Ax A— A+
A+ — Ax A+ A= A+

The symbols Ax and A+ can be the right-hand side of any production, i.e., lists
can be the result of arbitrary functions. Therefore, an A% expression can also
contain function calls and variables. For instance, if a grammar contains the
production

yield(Tree) -> Symbolx

then yield(T1) yield(T2) should also be an expression of type Symbol* (with
T1 and T2 expression of type Tree). We have the following rules for the com-
position of list expressions.

0. A single A is an A+.

1. An A+ followed by an A+ is an A+.
2. An A+ followed by an Ax is an A+.
3. An Ax followed by an A+ is an A+.
4. An Ax followed by an Ax is an Ax.
5. An Ax can be empty.

6. An A+ is an Ax.

o1

3 / DISAMBIGUATION AND ABBREVIATION

Productions expressing these rules are generated by the following equation.
The priorities section declares the concatenation operators to be mutually left-
associative. The priority prevents that the empty production and the injection
are used vacuously.

Py = A— A+,

2 A+ A+ — A+ {left},
Dy A+ Ax = A+,

py = Ax A+ = A4,

py = Ax Ax — Ax {left},
ps = — Ax,

pg = A+ — Ax

r[Ax] = syntax py py p; P3 P4 P5 Ps
priorities {left : p; py p3 P, }> {p5 s} r[A]

[11] r[A+] = r[Ax]

Tteration with Separator The iteration with separator operators {A B}+
and {A B}x denote iteration of A’s separated by B’s. Their meaning is defined
analogously to A+ and Ax.

po = A= {AB}+,

p, = {AB}+ B{AB}+ — {A B}+ {left},
py = {AB} B {AB}x — {AB}+,

ps = {AB}x B{AB}+ — {AB}+,

Dy {A B}x B {A B}x — {A B}x {left},
Ps — {A B}*)

ps = {AB}+ — {AB}x

r[{A B}«] = syntax py py py Ps P4 Ps P
priorities {left : p; p, p3 p,4}> pg r[A B]

[13] r[{AB}+] = r[{AB}+]

Constrained Iteration The iteration operator {A}n+ denotes the iteration
of at least n As. First of all we define that zero or more As corresponds to *
iteration and that one or more As corresponds to + iteration. For integers n > 2
we define {A}n+ in terms of {A}(n — 1)+, and eventually A+, by productions
of the form A {A}(n — 1)+ — {A}n+.

(14] {A} 0+ = Ax
[15] {A} 1+ = A+

[10]

[12]

n>2=T,n—1=n",p=A{A}n" + > {A}n+
r[{A} n+] = syntax pr[{A} n' +]
Constrained iteration is defined similarly for lists with separators.

[17] {AB} 0+ ={AB}«
[18] {AB}1+={AB}+

[16]

n>2=T,n—1=mn', p=AB{AB}n'+ > {AB} n+

[19] - r[{A B} n+] = syntax pr[{A B} n' +]

52

Regular Expressions | 3.2

Tuples For the definition of functions that return a tuple of values, new
sorts have to be invented. To give sensible types to tuples the notation A#B
is introduced. A symbol A;# ... #.A, denotes a tuple of A; ... A, expressions.
A tuple is written as (T4, ... ,T,), where the T; are expresions of type A;.

||<||_H_tup(A#B)_H_u>n = a, p= a_>A#B

[20] r[A # B] = syntax p r[a]

The auxiliary function tup[_] derives the syntax of the body of the tuple by
separating the symbols by commas.

[21] tup(A # B) = tup(A) + "," + tup(B)
[22] tup(A) = A otherwise

Sets The conventional notation for sets is a list of items between { and }.
The operator Set[.A] generates this notation such that if T} ... T,, are expressions
of type A, then {T},...,T,} is an expression of type Set[A].

a = "{"{A","}x"}" p = a— Set[A]
r[Set[A]] = r[«] syntax p

[23]

Functions Sometimes it is convenient to pass functions around as data. The
operator (o = B) can be used to give a type to functions. It denotes the sort of
functions from a to B. The operator generates syntax for the prefix application
of a function to an argument.

p = (a:>B) u(ua u)u _>B

[24] r[(a = B)] = syntax p r[a B]

Permutation The permutation symbol < a > denotes any concatenation
of the symbols in a, i.e., 8 =< a > if §# is a permutation of a.

[25] r[<« a >] = syntax perm(a) r[a]

The function ‘perm’ generates the productions for all permutations of a set of
symbols. In case the permutation consists of two elements it generates the two
productions directly. In case of more elements the function ‘perm3’ is used to
generate permutations.

[26] perm() = = K >

[27] perm(A) = A > < A >

[28] perm(AB) =AB3+ < AB>» BA-<AB>
[29] perm(a) = perm3(,) when |a|>2 = T

For each symbol in the list a production is generated with that symbol first and
a permutation of the other symbols following it.

[30] perm3(a,) =

p=AKLaf>—><aASB>

131] perm3(a, A B) = p H perm3(a A, 8) H perm(a 3)

53

3 / DISAMBIGUATION AND ABBREVIATION

It should be observed that this is not a very efficient way to implement permu-
tation constructs. It should be adequate for permutations of 2 or 3 elements,
though. What is needed in addition to the generation of these productions,
is the normalization of the parse trees over these productions to a form that
lists the elements in a fixed order such that semantic functions do not also
have to deal with all permutations. Cameron (1993) describes an extension of
LL(1) parsing for permutation operators. An alternative approach suggested by
Cameron (1993) is the introduction of an intermediate symbol representing the
union of the symbols in the permutation and a check after parsing that each
symbol in the permutation is represented exactly once.

Discussion We could have handled several of these regular expressions by
translating them to other regular expressions. For instance, optionality can
be expressed by means of empty and alternative via the equation A? = ()|A. In
the specification above we have chosen not follow this route. Except for a few
cases involving constrained iteration.

3.2.3 Equality of Parse Trees with Lists

Since all new constructs are expressed by means of existing constructs—all reg-
ular expressions are expressed by means of generated context-free productions—
there is no need to extend the definition of well-formedness of parse trees.

We do extend the definition of the equality of trees. This definition makes lists
equal modulo associativity of the concatenation operators. It is the basis for
matching modulo associativity. We give the equations that should be considered
in matching, where a variable a™ (a*) ranges over all constructs of type A+ (Ax)
and €4 denotes the tree constructed with — Ax. Empty sublists are units for
concatenation and can be removed.

+ +

T = €A =a

eqat =at

a

* *

* *
€aa” =a a*€qs=a
Injections from A+ into Ax can be removed or lifted over concatenations.

[af = Ax] [af — A¥] = [(a] af) — Ax]
al [af = Ax] = at af
[af = Ax] af = af aF
Right-associative concatenations are equal to left-associative ones. Each of these
expressions involves different concatenation operators.

af (a3 ag) = (af af) ag aj (a5 ag) = (a] a3) a5
ai (a3 ag) = (a] a3) a3 aj (a a3) = (a a3) a;
af (a3 ag) = (af a3) ag af (a3 a3) = (ay a3) aj
af (a3 a3) = (af af) aj aj (a3 a3) = (af a3) a3

3.3 Lexical and Context-Free Syntax

The syntax of a programming language is usually divided into two levels: lexi-
cal syntax and context-free syntax. Lexical syntax is the syntax of the tokens,

54

Lexical and Context-Free Syntax [3.3

the words of the language, e.g., identifiers, numbers and keywords. Context-free
syntax is the syntax of the sentences of a language, e.g., expressions, statements,
type declarations and function definitions. The division affects both language
definition and implementation. Conventionally lexical analysis is restricted to
grammars that can be recognized by finite automata, whereas context-free anal-
ysis is implemented with push-down automata. Indeed, it is sometimes not clear
whether the division is motivated by the implementation or by an inherent con-
cept of lexical syntax.

In many formalisms the separation is even physical; lexical and context-free
syntax are defined with completely different formalisms that are written in sep-
arate files. For instance, yaAcc and METAL use LEX to define lexical syntax.
This means lexical definitions in the form of a number of regular expressions
are defined in a separate file. Context-free and lexical definitions share a dec-
laration of token symbols that constitutes the interface between the lexical and
context-free level. The syntax definition formalism of PCCTS uses a lexical syn-
tax similar to LEX, but provides a mechanism to include token definitions in the
same file as the context-free syntax definition. In SDF lexical and context-free
syntax are integrated in one formalism, but still uses different semantics for
both. All these approaches have in common that the distinction between lexical
and context-free syntax is identified with the distinction between regular and
context-free grammars.

In SDF2 the inherent distinction between the two categories is that context-
free symbols can be separated by layout, while lexical symbols cannot. Beyond
that difference there is none. The exact same features should be available for
the definition of lexical and context-free syntax.

New in this approach is that we provide a uniform notation for the defini-
tion of lexical and context-free syntax by means of context-free productions.
Grammars for lexical and context-free syntax are normalized to the context-
free grammars of the kernel. The distinction between lexical and context-free
syntax is completely expressed in the resulting productions.

By treating lexical and context-free syntax identically, every extension that is
defined for one is also applicable to the other. For instance, in §3.1 we defined
priorities for disambiguation. In Heering et al. (1989) these are only defined
for context-free syntax. As result of our approach we can also provide lexical
disambiguation through priorities. Similarly the regular operators introduced
in §3.2 can be used in the definition of both lexical and context-free syntax.

In addition to lexical syntax we also define variables. Variable schemes are
used in the specification of the semantics of a language. We also introduce the
notion of lexical variables that range over constructs introduced in lexical syntax
grammars.

The extension in this section is called Basic Sdf because it covers the basic
idea of the original SDF: integration of lexical and context-free syntax in one
formalism.

Example 3.1 The following definition introduces a simple expression language
with variables and addition.

sorts Id Exp
lexical syntax
[\ \t\n] -> LAYOUT

55

3 / DISAMBIGUATION AND ABBREVIATION

[a-z]+ -> Id
context-free syntax

Id -> Exp

Exp "+" Exp -> Exp {left}
variables

[i] ->1Id

[xyz] -> Exp

The lexical syntax section defines the syntax of layout as spaces, tabs and new-
lines and identifiers as lists of one or more lowercase letters. The division in
lexical and context-free syntax entails that whitespace can occur between ex-
pressions, but not between the letters of an identifier.

To illustrate the power of the integration of lexical and context-free syntax
we can extend the layout convention above by introducing C-like comments
consisting of a string of comment words between /* and */, as follows:

sorts ComWord Comment
lexical syntax
I\ At\n\ [\/*]+ -> ComWord
context-free syntax
"/*" ComWord* "x/" -> Comment
Comment -> LAYOUT

Because the definition of comments is part of the context-free syntax, comment
words can be separated by layout, including layout. This means that we have
specified nested comments, which is useful when commenting out pieces of code
already containing comment.

We can extend the defition of comments further to include syntactically cor-
rect expressions between bars as comment words.

context-free syntax
"|" Exp "|" -> ComWord

For instance, the text

a + b /*x an expression |x + y| denotes
the addition of |x| and |yl */ + ¢

is a syntactically correct expression over the grammar above denoting the ex-
pression a+b+c with some comment after b. In the conventional setting of a sep-
arate scanner and parser this would require a call to the parser from the scanner.
One application of syntactically correct program fragments in comments is in
typesetting programs for documentation. The typesetting algorithms applied
to the real program text can also be applied in typesetting the expressions in
comments and crossreferences to program variables can be extended to variables
occurring comments. m|

3.3.1 Syntax

The grammar constructors ‘lexical syntax’ and ‘context-free syntax’ introduce
the syntax of lexical constructs and context-free constructs, respectively. The
grammar constructors ‘variables’ and ‘lexical variables’ introduce the syntax of

56

Lexical and Context-Free Syntax [3.3

variables over context-free symbols and variables over lexical symbols, respec-
tively. The symbol constructors (_-LEX), (_.—CF) and (_-VAR) are used to indicate
lexical symbols, context-free symbols and variable symbols, respectively. The
special symbol LAYOUT is used to define layout.

module Basic-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3-!
exports
context-free syntax

“lexical” “syntax” Productions — Grammar
” “syntax” Productions — Grammar
— Grammar
— Grammar

“context-free
“variables” Productions
“lexical” “variables” Productions

“<” Symbol “~CF” “>” — Symbol
“<” Symbol “~-LEX” “>” — Symbol
“<” Symbol “-VAR” “>” — Symbol
“LAYOUT” — Symbol

3.3.2 Normalization

The normalization function defined below expresses the meaning of lexical and
context-free syntax by merging them into a single grammar. To avoid interfer-
ence between the two levels, the symbols in the lexical syntax are renamed into
(.-LEX) symbols and the symbols in the context-free syntax are renamed into
(.=CF) symbols. These ideas are illustrated in the following example.

Example 3.2 The grammar in Example 3.1 is mapped to the following gram-
mar in which lexical and context-free syntax have been merged.

sorts Id Exp ComWord Comment

syntax
<[a-z]+-LEX> -> <I4d-LEX>
<Id-LEX> -> <Id-CF>
<Id-CF> -> <Exp-CF>
<Exp-CF> <LAYOUT?-CF> "+"
<LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}

[i] ->
<<Id-CF>-VAR> ->
[xyz] ->
<<Exp-CF>-VAR> ->
<~ [\ \t\n\|\047*]+-LEX> ->

<ComWord-LEX>

"|" <LAYOUT?-CF> <Exp-CF>
<LAYOUT?-CF> "|"

"/x" <LAYOUT?-CF> <ComWord*-CF>
<LAYQUT?-CF> "x/"

[\ \t\n]

<LAYOUT-LEX>

<Comment-CF>

<LAYOUT-CF> <LAYOUT-CF>

<<Id-CF>-VAR>

<Id-CF>
<<Exp-CF>-VAR>
<Exp-CF>
<ComWord-LEX>

<ComWord-CF>

<ComWord-CF>

<Comment-CF>
<LAYOUT-LEX>
<LAYOUT-CF>
<LAYOUT-CF>

<LAYQUT-CF> {left}

3 / DISAMBIGUATION AND ABBREVIATION

-> <LAYOUT?-CF>
<LAYOUT-CF> -> <LAYOUT?-CF>

The symbols in lexical productions are renamed into (_-LEX) symbols. The
symbols in context-free productions are renamed into (_-CF) symbols. The
connection between lexical and context-free syntax is made by an injection from
each (A-LEX) symbol into the corresponding (.A-CF) symbol. |

The following module makes these ideas formal by introducing the normal-
ization function b[_].

module Basic-Sdf-Normalization
imports Basic-Sdf-Syntax®3! Regular-Sdf-Syntax®2"! Priority-Sdf-Syntax3-1-!

Kernel-Sdf-Normalization2-3-3
exports
context-free syntax

“b[” Grammar “]” — Grammar
“baux[’ Grammar “]” — Grammar
“<” Symbols “~LEXs” “>” — Symbols
“<” Production “-LEX” “>” — Production
“<” Productions “-~LEXs” “>7 — Productions
“<” Grammar “-LEX” “>7 — Grammar
“<” Symbols “~CFg” “>” — Symbols
“<” Production “-CF” “>” — Production
“<” Productions “-CFs” “>” — Productions
“<” Grammar “-CF” “>7 — Grammar
“<” Productions “-~VARs” “>” — Productions
“<” Productions “~LEXVARs” “>” — Productions

equations

The normalization function b[_] integrates lexical and context-free syntax. It
applies the auxiliary function baux to each subgrammar of a grammar to trans-
form lexical and context-free sections into normal production sections by re-
naming symbols and separating context-free symbols by (LAYOUT?-CF), which
entails that two tokens can optionally be separated by (LAYOUT?-CF). Context-
free layout is a list of lexical layout. Concatenation of layout is defined by the
production added by the function b[].

p = (LAYOUT-CF) (LAYOUT-CF) — (LAYOUT-CF) {left}
b[G] = syntax p baux[9]

[1]

The default rule declares that unless otherwise stated baux does not affect a
grammar. Below we deal with the exceptions.

(2] baux[0] =0
(3] baux[G1 Ga] = baux[FG1] baux[G=]
(4] baux[G] =G otherwise

Lexical Syntar Lexical syntax grammars are translated to normal syntax gram-
mars by encoding the symbols of the grammar to (A-LEX) symbols. Further-
more, for each symbol appearing in a lexical syntax section an injection from

o8

Lexical and Context-Free Syntax [3.3

the lexical into the context-free symbol is added.

5] baux[lexical syntax p*] = (syntax p*-LEX)
[6] (a-LEXs) = when a =

(7] (A-LEXs) = (A-LEX)

[8] (at BT-LEXs) = (a t-LEXs) H (3T -LEXs)

[9] (o = A $-LEX) = (a-LEXs) — (A-LEX) $

[10] (¢ -+ A $-LEXs) = (@« - A $-L EX) (A-LEXs) — (A-CF)
[11] (p*-LEXs) = when p*

[12] (pi” py -LEXs) = (p,"-LEXs) + (p," -LEXs)

[13] (syntax p*-LEX) = syntax (p*-LEXs)

[14] (G, Go-LEX) = (g1 LEX) (G»-LEX)

[15] (P-LEX) =

Context-free Syntax Context-free syntax is treated similarly to lexical syntax.
All symbols in the production are mapped to (A-CF) symbols. The impor-
tant difference is that each adjacent pair of symbols in the left-hand side of a
production is separated by the symbol (LAYOUT?-CF).

[16] baux[context-free syntax p*] = (syntax p*-CF)
[17] (a-CFs) = when o=

(18] (A-CFs) = (A-CF)

[19] (at BT-CFs) = (a T-CFs) + (LAYOUT?-CF) H (8 -CFs)
[20] (a = A $-CF) = (a—CFs) — (A-CF) $

[21] (p=CFs) = (p-CF)

[22] (p*-CFs) = when p* =

[23] (P ps -CFs) = (p,"-CFs) + (p, ~CFs)

[24] (syntax p*-CF) = syntax (p*-CFs)

[25] (G1 G2-CF) = (G,-CF) (G2-CF)

[26] (p-CFy =0

Variables Variables and lexical variables grammars introduce tokens that have
the status of variables. The symbol constructor (A-VAR) is used to denote
variables over the symbol A. The left-hand sides of variable productions are
interpreted as lexical syntax. The lexical value produced by such a left-hand
side is given the type of a variable over the symbol in the right-hand side of
the production. For each production in a variables grammar, two productions
are generated. The first interprets the left-hand side of the production as a
lexical pattern, i.e., the symbols on the left-hand side are lexical symbols and
no layout between symbols can occur. The right-hand side is ({(A-CF)-VAR)
indicating that the pattern is a variable over the context-free symbols A. The
second production injects (A-CF) variables into {A-CF) such that a variable can
occur whereever an (A-CF) can occur.

[27] baux[variables p*] = syntax (p*-VARs)
[28] (-VARs) =
[29] (p;" ps -VARs) = (p;"-VARs) + (p, -VARs)

59

3 / DISAMBIGUATION AND ABBREVIATION

[30] (a = A $-VARs) = (a-LEXs) — ((A-CF)-VAR) $
((A-CF)-VAR) — (A-CF)

Lexical variables are treated similarly, but their result sort is the corresponding
lexical sort.

[31] baux[lexical variables p*] = syntax (p*-LEXVARs)

32] (-LEXVARs) =

[33] (p;t p; -LEXVARs) = (p;"-LEXVARs) +H (p, -LEXVARs)
34] (a = A $-LEXVARs) = (a-LEXs) — ((A-LEX)-VAR) $

((A-LEX)-VAR) — (A-LEX)

Ordering Grammars The following equations specify the ordering of grammars,
where the following order is obtained: lexical syntax, context-free syntax, lexical
variables, and variables. We only show two of the equations, the other cases are
similar.

35] G1 = context-free syntax pj, G = context-free syntax p;

G; © Go = (context-free syntax p} p3, ()

36] G1 = context-free syntax py, G2 = lexical syntax p5

G1 ¢ G2 = (lexical syntax p}, context-free syntax p})

3.3.3 Parse Trees

Since we have expressed the meaning of lexical syntax and context-free syntax
in terms of normal syntax productions, we do not have to extend the definition
of parse trees, except for the encoding of symbols and grammars in the ATerm
format. See §A.2 for the encoding and decoding of the newly introduced con-
structs. This entails that trees for lexical and context-free syntax have the same
form. In particular, the structure assigned to lexical tokens by the grammar is
retained in parse trees for tokens.

We will refine the equality predicate on trees such that layout is ignored. In
considering whether two trees are equivalent it is likely that we do not want
to consider layout. For this purpose it is not required to first translate a parse
tree to an abstract syntax tree. It suffices to define two arbitrary layout trees
as equivalent, as is done in the following extension of the equality predicate on
trees.

module Basic-Sdf-Equality
imports Kernel-Sdf-Equality?-®>® Basic-Sdf-ATerms*-2-2

Regular-Sdf-ATerms2-2
equations

symbol(type(T;)) = (LAYOUT-CF), symbol(type(T)) = (LAYOUT-CF)
T'h=T, =T

symbol(type(Ty)) = (LAYOUT?-CF), symbol(type(T>)) = (LAYOUT?-CF)
T1 = TZ =T

60

Restrictions / 3.4

3.3.4 Discussion

Lexical Layout In some languages, such as FORTRAN, tokens can contain some
kind of layout. In Heering et al. (1989) the symbol IGNORE is introduced for this
purpose. This can be dealt with by separating the symbols in a lexical produc-
tion by a lexical layout symbol just as this is done with context-free productions.
This is not done in the current version because for most languages this is not
necessary, but it is straightforward to add this feature to the normalization
above.

Implementation A conventional implementation of parsers for lexical and con-
text-free syntax is based on a separate scanner and parser. Such an implementa-
tion can be achieved for grammars as introduced here by separating productions
for (_~LEX) and (_-VAR) symbols from productions for (_-CF) symbols and gen-
erating a scanner based on finite automata for the first set of productions and
by generating a parser for the second set of productions based on push-down
automata. Scanner and parser communicate through some shared buffer-like
data-structure. A requirement for this approach is that the lexical productions
form a regular grammar. This can be enforced by specifying static constraints
on lexical productions.

The parser generator for SDF2 described in Visser (1997¢) does not depend
on a separate scanner. Instead ‘lexical analysis’, i.e., parsing according to the
productions for (_.~LEX) symbols, is incorporated in the parser. To cope with
ambiguities and lookahead, generalized LR, parsing is used. A similar approach
is described by Salomon and Cormack (1989, 1995) under the name scannerless
parsing using conventional LR techniques.

3.4 Restrictions

When a distinction is made between lexical and context-free syntax, lexical
ambiguities have to be solved before tokens can be sent to the parser. This is
usually done by applying rules such as ‘prefer longest match’, ‘prefer keywords’
and ‘prefer variables’.

By removing this distinction, as we did in the previous section, lexical am-
biguities can be dealt with in the same way as context-free ambiguities. For
example, in §3.1 we defined disambiguation by priorities, which applies both
to lexical and context-free syntax. Furthermore, many lexical ambiguities are
solved by considering the context in which tokens occur. For instance, the well-
known problem of distinguishing an occurrence of the subrange 1..10 from two
consecutive occurrences of the real numbers 1. and .10 in Pascal is solved au-
tomatically, because ranges and reals do not occur in the same context in the
grammar.

However, not all lexical ambiguities can be solved by context or by means of
priorities. Some lexical ambiguities need to be solved by rules such as ‘prefer
longest match’ and ‘prefer literals’.

In this section we introduce two extensions of context-free grammars that are
aimed at lexical disambiguation: follow restrictions and reject productions. A
follow restriction A-/-cc declares that the symbol A can not be followed by any
character in the character class cc. A reject production a — A {reject} declares
that any tree of type A should be rejected if there exists a tree with the same

61

3 / DISAMBIGUATION AND ABBREVIATION

yield that has this reject production as root production. These constructs suffice
for expressing most lexical disambiguation rules.

Example 4.1 The definition of a simple expression language with nested com-
ments in Example 3.1 contains two lexical ambiguities. First, the definition
of lists of comment-words ComWord* is ambiguous. The string abc can be one
comment word (a list of characters from the class “[\ \t\n\[\/]1), but it can
also be considered as a list of two comment-words ab and c or as a and bc or
as a and b and c. We want to express that the longest possible comment-word
should be selected. Second, the definition of identifiers and variables for identi-
fiers and expressions overlap, i.e., x can be either an identifier or an expression
of sort Exp. Here we want to express the rule ‘prefer variables’ that selects a
variable over a lexical. These ambiguities are solved by the following rules:

lexical restrictions
ComWord -/- ~[\ \t\n\I[\/]

syntax
<<Id-CF>-VAR> -> <Id-CF> {reject}
<<Exp-CF>-VAR> -> <Id-CF> {reject}

The first rule states that a comment-word should not be followed by any of the
characters in “[\ \t\n\[\/]. This solves the problem because it rules out all
parses, except the one in which abc is one word. The last two rules state that
variables should be preferred over identifiers. O

3.4.1 Syntax

A follow restriction has the form A-cc. Follow restrictions are declared in a
grammar starting with the keyword ‘restrictions’ followed by a list of restric-
tions. A reject production is a normal production attributed with the attribute
‘reject’.
module Restrictions-Sdf-Syntax
imports CC-Sdf-Syntax>+2
exports

sorts Restriction Restrictions

context-free syntax
Symbols “/” CharClass — Restriction

Restrictionx — Restrictions

“restrictions” Restrictions — Grammar

“reject” — Attribute
variables

“restr”[0-9']% — Restriction
“restr=”[0-9']%x — Restrictionx
“restr+”[0-9']* — Restriction+

3.4.2 Projection

The function ‘R’ gives the restrictions of a grammar. The function 74 looks up
the restrictions for some symbol.

module Restrictions-Sdf-Projection

62

Restrictions / 3.4

imports Restrictions-Sdf-Syntax>4-1
exports
context-free syntax
Restrictions “H” Restrictions — Restrictions {right}

“R”(Grammar) — Restrictions
7 “” Symbol “(” Restrictions “)” — CharClass
equations

Concatenation of restrictions.
[1] restr] -+ restry = restr] restr;

The restrictions of a grammar.

2] R(restrictions restr*) = restr*
3] R(G1 G2) = R(G1) + R(G2)
(4] R(G) = otherwise

The restrictions for a symbol.

[5] 40 =1

[6] wA(- cc restr*) 7 g (restr)

[7] A(A o /- cc restr*) = cc V 7 4(a - cc restr*)

8] 7 A(B a - cc restr*) = w g(a - cc restr™) otherwise

3.4.3 Normalization

No special normalization is needed for restrictions except the normal ordering
and merging of grammars.

module Restrictions-Sdf-Normalization

imports Restrictions-Sdf-Syntax3-4-! CC-Sdf-Normalization?
equations

Merging and ordering of grammars.

4.2

[1] restrictions restr < restrictions restry = (restrictions restr} restrs, ())
2] restrictions restr* < syntax p* = (syntax p*, restrictions restr*)

3.4.4 Discussion

The disambiguation rules presented above are derived from similar rules intro-
duced by Salomon and Cormack (1989). The adjacency restriction of Salomon
and Cormack (1989) is more general. It has the form A-/B and declares that
symbols A and B should not be adjacent. Since this may require arbitrary long
lookahead, we have chosen for the simpler follow restrictions, which can be im-
plemented by restricting the lookahead of productions. The implementation of
reject productions in SGLR parsing described in Visser (1997¢) is more general
than the implementation based on noncanonical SLR(1) parsing of Salomon and

Cormack (1989).

63

3 / DISAMBIGUATION AND ABBREVIATION

We have not presented the interpretation of follow restrictions and reject
productions as disambiguation devices. Follow restrictions can be interpreted
as an extension of the well-formedness predicate on parse trees. If a follow
restriction applies to a symbol, for any tree with that symbol as type, the
character immediately next to the right-most character of its yield should not
be contained in the restriction. For a discussion of the semantics of reject
productions see Visser (1997e).

In the current situation lexical disambiguation rules have to be invented by the
user. In SDF lexical disambiguation is completely taken care of in the scanner
by means of a number of heuristics. These heuristics do cause problems in a
number of cases. Therefore, it is attractive to have complete control over lexical
disambiguation as is provided by restrictions and reject productions introduced
here. However, it would be desirable if for most cases the necessary restrictions
could be derived automatically from the grammar. Although some schemes have
been considered, it is not yet clear how the derivation rules should be defined.

64

4

Renaming and Modularization

In this chapter we introduce a module mechanism for reusing parts of syntax
definitions. In order to adapt imported modules to specific applications and
to avoid name clashes, a renaming mechanism is provided that can be used to
rename symbols and productions. The renaming mechanism is also used in the
definition of symbol aliases that can be used to define abbreviated names for
large regular expressions. Renamings are also used to define symbol parameter-
ization of modules.

4.1 Renamings

In the previous sections we have presented a number of features that enable more
concise definition of syntax than plain context-free grammars. The grammars
that can be defined are long monolithic lists of productions. To promote reuse
of grammars we will introduce in §4.3 a module layer on top of grammars, such
that parts of a language definition can be reused in various other definitions.
To make the opportunities for reuse even greater we introduce here a renaming
operator on grammars. Renamings enable the adaptation of a generic grammar
to specific needs by renaming sorts and productions. A renaming is either
a symbol renaming A = B that renames A to B or a production renaming
p1 = po that renames p; to ps. For example, the renaming

[Key => Var Value => Term Table => Subst
lookup(Table, Key) -> Value
=> Subst "[" Var "]" -> Term]

specifies the renaming of symbols Key and Value to Var and Term, respec-
tively, and the renaming of the production lookup(Table, Key) -> Value to
Subst "[" Var "]1" -> Term.

Once we have defined renamings on grammars we can apply them in several
situations: renaming of imported modules, symbol parameters of modules and
symbol aliases. These will be the subject of the next sections.

4.1.1 Syntax

A renaming is a list of symbol renamings of the form A4 = B and production
renamings of the form p; = ps.

65

4 / RENAMING AND MODULARIZATION

module Renaming-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3-1
exports
sorts Renaming Renamings
context-free syntax
“[” Renamingx “| — Renamings
Symbol “=" Symbol — Renaming
Production “=” Production — Renaming
variables
“p"[0-9']x — Renamings
“p” “x”[0-9']* — Renamingx
“p” “47[0-9']%* — Renaming+

2

The only requirement on production renamings is that if « - A = g - B
is a renaming, then a and B should be similar, i.e., the non-terminal parts
should correspond. This entails that production renamings can only be used to
rename literals between the arguments—the ‘syntax’—and not the order of the
arguments.

4.1.2 Projection

We define two projection functions for looking up the value of a symbol or a
production in a list of renamings.

module Renaming-Sdf-Projection

imports Renaming-Sdf-Syntax?-!-!
exports
context-free syntax
Renamings “+” Renamings — Renamings {right}
“g” “” Symbol “(” Renamings “)” — Symbol
“r” “” Production “(” Renamings “)” — Production
“(” Symbols “=” Symbols)” — Renamings
equations

Concatenation of renamings.

[1] [pi] + [p3] = [pT P5]

Looking up the renaming of a symbol in a list of renamings.

[2] TA(A= Bp*]) =B

3] WA([.A = Bp*]) =74([p*]) otherwise
[4] mallp=p" p*]) = 7wallp*])

[5] () =A

Looking up the renaming of a production in a list of renamings.

[6] () =p

[7] m([p=p' p*]) =p'

8] To sAgla—=A =3B p*)=—->B$

[9] mp([p" = p" p*]) = mp([p*]) otherwise
[10] mp([A = B p*]) = m,([p*])

66

Renamings /[4.1

Abbreviation of a renaming of a list of symbols into another list of symbols.

[11] (=)=
[12] (a=)=]]
(13] (=58)=1]
[14] (Aa=Bp)=[A= B+ (a=p)

This will be used for the instantiation of a list of formal parameters with a list
of actual parameters.

4.1.3 Normalization

Now we can define the application of a renaming to a grammar. For each sort S
we define an application function (S) Renamings — S that applies a renaming
to constructs of sort S. We start by defining the renaming of symbols and
productions. The rest is mainly a distribution of the renamings function over
the constructs building a grammar.

module Kernel-Sdf-Renaming
imports Renaming-Sdf-Projection*!? Kernel-Sdf-Projection?:
exports
context-free syntax
“(” Symbol “)” Renamings — Symbol
“[” Symbol “]” Renamings — Symbol
“(” Symbols “)%” Renamings — Symbols
“(” Production “)” Renamings — Production
“(” Productions “)¥” Renamings — Productions
“(” Grammar “)” Renamings — Grammar
equations
Renaming a symbol. If the symbol is defined in the renaming it is replaced by

3.2

its value in the renaming. Otherwise, the renaming is applied recursively to the
subsymbols of the symbol, which is done by the function [_]p.

[1] (A) p=B when 74(p) =8B, A#B
p:

(2] (A) [A] p otherwise

Renaming a production works similarly. If the production is defined in the
renaming it is replaced by its value. Otherwise, its symbols are renamed.

(3] (p) p=p' when m,(p)=p', p'#p
[4] (a=>A8)p=(a)xp—(A) p$ otherwise

For all other grammar constructs, renaming is a homomorphism that applies
the renamings to symbols and productions contained in the structure.
Renaming lists of symbols.

[5] (a)xp= when a=
[6] (@F BT)k p=(at)xp+ (BT)xp
7] (A)xp=(A)p

Renaming lists of productions.
8] (p)xp=(p)p

67

4 / RENAMING AND MODULARIZATION

[9] (pi)x p= when pj =
[10] (pi" P)xp=(p/")xp+ ())xp

Renaming grammars.

[11] @) p=0
[12] (G1 G2) p=1(G1) P (G2) p
[13] (syntax p*) p = syntax (p*)* p

The application of a renaming to a renaming denotes the composition of the
renamings.

module Renaming-Sdf-Renaming
imports Kernel-Sdf-Renaming?!-3
exports

context-free syntax

“(” Renamings “)” Renamings — Renamings

equations
A renaming p2 applied to a renaming p; (p1)p2 denotes the composition of the
renamings, i.e., (z)(p1)p2 = ((z)p1)p2. This can be expressed by means of a
single renaming by renaming the targets of p; with ps and adding p» at the end
of the list of renamings.

[1] (Mp=pr
[2] (A=Bp*) p=[A
(3] (lp=p"p)p=Ip

For each of the extensions of the kernel we have to extend the renaming functions
to the new constructors. See §A.3 for the specification of these extensions.

4.1.4 Renaming Trees

If well-formed trees exist over a grammar that is renamed, the trees have to be
renamed as well, if they have to be reused in the same context as the renamed
grammar. For example, if equations over a grammar are defined, the equations
must be renamed as well. Therefore, we extend the definition of renaming to
parse trees.

module Renaming-Sdf-Trees
imports Kernel-Sdf-Trees?-5-> CC-Sdf-Trees?-¢ Basic-Sdf-Trees
Regular-Sdf-Trees Kernel-Sdf-Renaming*1-

Literals-Sdf-Normalization?4-3
exports
context-free syntax

“(” ATerm “)” Renamings — ATerm
rnargs(ATermList, ATermList) — ATermList
mktree(Literal) — ATerm
chartrees(Symbols) — ATermList

equations

Renaming an application. If the production is defined in the renaming, rename

68

Renamings /[4.1

the arguments and then rename the literals in the argument terms according to
the new production.

aterm((production(Prod)) p) = Prod’, Prod' # Prod,
(Args) p = Args', rnargs(args(Prod'), Args') = Args"
(appl(Prod, Args)) p = appl(Prod’, Args")

[1]

If the production is not defined in the renaming, then only rename the argu-
ments.

[2] (appl(Prod, Args)) p = appl(Prod, (Args) p) otherwise

Renaming is a homomorphism over the other tree constructors.

(3] (n)p=n

8 (amb(Args)) p = amb((Args) p)

g (T) p=[] when TI=]

[6] ([T]) p=[(T) p]

[(T, 7)) p = [(T) p, T5') when [75] = ([T5) p
Renaming the arguments.

8] rnargs([], []) =[]

Insert literals of the new pattern.

symbol(first([Ts1])) = L
rnargs([Ts1], Tly) = mktree(L) : rnargs(rest([Ts1]), Tl)

[9]

Skip literals of the old tree.

symbol(type(first([Ts:]))) = L
rnargs(Tl , [Ts2]) = rnargs(Th, rest([Tss]))

[10]

Copy layout from old tree to new tree if layout is requested in new pattern.
symbol(first([Ts1])) = (LAYOUT?-CF),
symbol(type(first([Ts2]))) = (LAYOUT?-CF)
rnargs([Ts1], [Ts2]) = first([Ts2]) : rnargs(rest([Ts1]), rest([Tsz]))

[11]

Insert empty layout in the new tree.

symbol(first([Ts1])) = (LAYOUT?-CF),
symbol(type(first([Tk]))) # (LAYOUT?-CF)
rnargs([Ts:], Tl) = appl(aterm(— (LAYOUT?-CF)), [])
: rnargs(rest([Ts1]), Tl)

[12]

Skip layout of the old tree.

symbol(first(Tl;)) # (LAYOUT?-CF),
symbol(type(first([Ts2]))) = (LAYOUT?-CF)

[13] rnargs(Tl , [Ts2]) = rnargs(Th, rest([Tss]))

69

4 / RENAMING AND MODULARIZATION

In the other cases there is no layout or literal in either list. This means that
it concerns an argument tree that should be copied from the old tree to the
renamed tree.

[14] rnargs([Ts1], [Ts2]) = ﬁrlslt([Tsz]) : rnargs(rest([T's1]), rest([Tsz]))
otherwise

The function ‘mktree’ constructs a tree for a literal L, by constructing the
production according to the definition in §2.4.3 and by generating the list of
character codes.

chars(L) = a, aterm(a — L) = Prod
mktree(L) = appl(Prod, chartrees())

[15]

From a list of singleton character classes generate a term list of integers repre-
senting the character codes.

[16] chartrees() =[]
[17] chartrees([c] a) = int(c) : chartrees(a)

4.1.5 Discussion

It would be desirable that renaming preserves well-formedness, i.e., if a tree
T is well-formed under some grammer G, it should also be well-formed when
renamed with some renaming p. That is, we want that

GET = (G)pk(T)p

In fact we would like that renaming preserves the structure defined by a gram-
mar, i.e., renaming the trees generated by a grammar gives the same trees as
those generated by the renamed grammar:

(T19Dr = TUG)rl

Unfortunately, this is not the case for all renamings. If the argument sorts of
a production are renamed using a production renaming, but the sorts are not
renamed independently, the arguments of an application with that production
have the wrong type after renaming. For instance, the renaming

[E "+" E -=> E => Set "&" Set -> Set]

will change the notation of addition on the sort E into a binary operator & on
the sort Set. Other constructs for sort E will still have type E after renaming,
including the arguments of the & operator, which will hence not be well-formed.
It is sufficient to require that in such cases the corresponding symbol renamings
are present as well, i.e., the renaming

[E => Set E "+" E -> E => Set "&" Set -> Set]

does preserve well-formedness.
Also the interaction between regular expressions and renamings spoils the
preservation property. For instance, consider the renaming

70

Aliases [4.2

[{Int ll’ll}* => {Int ll;ll}*]

that is intended to rename lists of integers separated by commas into lists sep-
arated by semicolons. This will rename all symbols {Int ","}*, but it will not
rename the concatenation operators for this sort. The renaming

[{Int u’u}* => {Int u;u}*
{Int n,n}* won {Int n,n}* -> {Int n,n}*

=> {Int ";"}* ";" {Int ";"}*x -> {Int ";"}*
{Int ","}+ "," {Int ","}* -> {Int ","}+
=> {Int ";"}+ ";" {Int ";"}* -> {Int ";"}+
{Int l|,l|}* l|,l| {Int l|,l|}+ -> {Int l|,l|}+
=> {Int n;n}* e {Int n;n}+ -> {Int n;n}+
{Int l|,l|}+ l|,l| {Int l|,l|}+ -> {Int l|,l|}+
> {Int ";"}+ ";" {Int ";"}+ -> {Int ";"}+

is a well-formedness preserving renaming that does have the intended effect.

In all these cases correct renamings can be given that will preserve well-
formedness and achieve the intended renaming, but these examples show that
care has to be taken when writing down renamings. Ideally we would like to
restrict the renamings such that the preservation property holds. It might also
be possible to complete a renaming to guarantee well-formedness preservation
as in the examples above. This is a matter for further study.

4.2 Aliases

The regular expressions introduced in §3.2 provide a way to concisely declare a
number of productions without actually having to write them down. A problem
with these regular expressions is that they can become rather large. This is
a property that might make their use unattractive. Therefore, we introduce
symbol aliases. An alias declaration introduces a short name for a complicated
regular expression. All occurences of the alias are replaced by their meaning.
For example, the declarations

aliases
{Term ","}* -> Terms
{var ","}x -> Vars

Set[(Var "|->" Term)] -> Subst

introduce Terms and Vars as aliases for lists of Term and Var, respectively, and
Subst as an alias for sets of pairs of variables and terms. This entails that all
operations generated for list constructs also apply to Terms and Vars and all
operations generated for sets apply to Subst.

Aliases are defined using the renamings of the previous section. An alias
A — B induces a grammar renaming [B = A], which is applied to the entire
grammar. Why then introduce this extra feature if we already have renamings?
Renamings apply to a fixed grammar. Only the grammar to which the renaming
is applied, including all imported grammars, is affected. An alias is a renaming
of a symbol that also affects all modules that import the alias.

71

4 / RENAMING AND MODULARIZATION

4.2.1 Syntax

An alias grammar consists of a list of aliases of the form A — B that define the
symbol B to be an alias of symbol A.

module Alias-Sdf-Syntax
imports Kernel-Sdf-Syntax?-3-1
exports
sorts Alias Aliases
context-free syntax

“aliases” Aliases — Grammar

Symbol “—” Symbol — Alias

Aliasx — Aliases
variables

“al”’[0-9']%* — Alias
“alk”[0-9']% — Aliasx
“al+7[0-9']x — Alias+

4.2.2 Projection

Concatenation of alias lists. Projection of the aliases and non-alias parts of a
grammar.

module Alias-Sdf-Projection
imports Alias-Sdf-Syntax*?2-1
exports
context-free syntax
Aliases “H” Aliases — Aliases {right}

“Al” (Grammar) — Aliases
“Al” (Grammar) — Grammar
equations

The function ‘Al’ gives all alias declarations of a grammar, ‘Al’ the grammar
without alias declarations.

[1] all + al5 = alf al}

[2] Al(aliases al*) = al”

(3] Al(g1 Ga) = Al(G1) + Al(G2)
[4] Al(G) = otherwise

5] Al(aliases al*) = 0

(6] Al(g1 G2) = Al(G1) AL(G>)

[7] Al(G) =G otherwise

4.2.3 Normalization

Aliases are defined by renaming all alias symbols to their defined meaning. The
function a[_] produces a renaming from the alias declarations in the grammar
and applies it to the non-alias parts of the grammar. The alias declarations
are then attached to the renamed grammar. This is done in order to keep the
following modular property:

a[[g1 gz]] = a[[a[[gl]] a[[QZ]]]]

72

Aliases [4.2

This entails that aliases can be replaced before flattening a module, after which
the aliases are still part of the grammar and keep their forward renaming prop-
erty.

module Alias-Sdf-Normalization

imports Alias-Sdf-Projection®?-2 Kernel-Sdf-Normalization?:
Kernel-Sdf-Renaming**-3

3.3

exports
context-free syntax
“a” Grammar “]” — Grammar

rn(Aliases) — Renamings
symbols(Aliases) — SymbolSet
equations

Replace all alias symbols by their definition by applying a renaming derived
from the alias declarations to the non-alias parts of the grammar.

[1] a[G] = aliases al™ (AI(G)) rn(al™) when Al(G) = al™
(2] a[G] =G otherwise

Build a renaming from a list of aliases. The target B of the alias declaration
A — B is renamed to the source A.

[3] rn() =]
[4] rn(A — B al*) = [B = A] + rn(al")

The symbols occurring in an alias declaration.

5] symbols(aliases al*) = symbols(al™)
[6] symbols(al*) = {} when al* =
[7] symbols(A — B al*) = {A B} U symbols(al™)

Merging and ordering of grammars.

8] aliases = ()
[9] aliases al] © aliases al; = (aliases al] al5, 0)
[10] syntax p* < aliases al® = (aliases al*, syntax p*)

Aliases themselves can also be subject to renamings.

module Alias-Sdf-Renaming
imports Kernel-Sdf-Renaming*!3 Alias-Sdf-Projection*?:
exports
context-free syntax
“(” Aliases “)a” Renamings — Aliases
equations

2

Renaming of aliases.

[1] (aliases al™) p = aliases (al™)a p

[2] (al*)ap= when al* =

(3] (A= Blap=(A)p—(B)p

4 (alt ot Yo p = (al)a p + (alf)a p

73

4 / RENAMING AND MODULARIZATION

4.3 Modules

In this section we introduce a module framework for grammars to support man-
agement and reuse of parts of the grammar of a language. A modular definition
consists of a list of named modules. Modules can be reused in other modules
by means of imports. The body of a module is a list of exported and hidden
grammars. Export and hiding provide a means to control what is visible from a
module and what is local to that module. Hidden syntax is useful when the syn-
tax definition formalism is coupled to a semantics formalism for the specification
of the semantics of languages. Hidden syntax then plays the role of auxiliary
functions. Since imports are abbreviations for grammars, an import can be
hidden or exported. Modules can be parameterized by a list of symbols. An
import can instantiate these parameters, although this is not required. Parame-
terization is an abbreviation for a renaming. When a module M|[a] is imported
as M|[Q], the formal parameters [a] are renamed into the actual parameters [f3].
An import can also be subject to a renaming of symbols and productions.

Example 3.1 (Aliases and Renaming) The following module defines the syn-
tax of tables. A table is defined as an alias for a set of mappings from keys to
values. The value assigned to a key can be looked up in a table using the access
function lookup.

module Tables
exports
sorts Key Value Table
aliases
Set[(Key "|[->" Value)] -> Table
context-free syntax
lookup(Table, Key) -> Value

Below we transform tables into mappings from variables to terms, thus obtaining
a representation for substitutions. This is achieved by renaming the sorts in
module Tables such that variables become the keys and terms the values in
tables.

module Substitutions
imports Terms
Tables[Key => Var Value => Term Table => Subst
lookup(Table, Key) -> Value
=> Subst "[" Var "]" -> Term]

exports

context-free syntax

Subst " (" Term ")" -> Term

The additional function applies a substitution to all variables in a term. O

Example 3.2 (Map) Using renaming a kind of polymorphic higher-order func-
tions can be expressed. The following module defines a function that maps a
function over the elements of a list. The function is defined for a given A and B
that can be instantiated as needed.

module Map[A B]

74

Modules | 4.3

exports
sorts A B
context-free syntax
(A => B) ol u(u Ax n)u -> Bx

The disadvantage of this kind of polymorphism is that for each instance of a
polymorphic function, an explicit module import has to be done. O

Example 3.3 (Parameterized Modules) The following module defines the
syntax of a list of conditional equations preceded by the keyword ‘equations’.
This is the syntax of the equations part of an ASF+SDF module, which is
parameterized by the syntax of some language. For each sort, productions
defining the syntax of equations over that sort are defined. Note the use of the
constrained iteration operator to define the bar (Implies) between conditions
and conclusion as at least 3 equal signs.

module Equations
exports
sorts Tag Tagld CondEquation Equation Implies
Condition Equations
lexical syntax

{\=1}3+ -> Implies
[a-z0-9A-Z\-]+ -> Tagld

aliases
{Condition ","}+ -> Conditions

context-free syntax
"equations" CondEquation* -> Equations
Tag (Conditions Implies)? Equation -> CondEquation
Tag Equation "when" Conditions -> CondEquation
ll[ll TagId’? u]u -> Tag

Next we define generic syntax for sorts Equation and Condition as follows:

module X-Equations[X]
exports
sorts X Equation Condition
context-free syntax

X "=" X -> Equation
X "=" X -> Condition
X "t=" X -> Condition

To define the syntax of the equations part of a module M, the ASF+SDF Meta-
Environment generates a module M -Equations that defines the syntax of these
equations (Klint, 1993). This module imports the language independent syntax
of equations and defines equations for the sorts declared in the module. With
the parameterized module X-Equations we can express this by a module that
contains an import for each declared sort. For instance, for Boolean-Equations
we get the following module:

module Booleans-Equations

imports Booleans
Equations
X-Equations [Bool]

75

4 / RENAMING AND MODULARIZATION

Observe that the sorts Condition and Equation are declared in two different
modules. This is not problematic when these modules meet, because duplicate
definitions are merged. O

4.3.1 Syntax

A modular syntax definition consists of a series of named module declarations.
A module declaration consists of a list of sections, which are either exports
or hiddens. A module name consists of a module identifier and an optional
list of parameters. Module identifiers can contain slashes to enable the use of
directory names in module names, e.g., sdf/kernel/Syntax. A module can
import any number of other modules. An import consists of a module name
with optionally a renaming applied to it. An import of a module M denotes
the grammar declared in module M. An import can be contained in one of the
exports or hiddens sections. In the latter case all syntax imported through that
module is hidden and thus not exported from the module. Imports can also
occur at the start of a module, outside any exports or hiddens section. In this
case the imports are exported.

module Modular-Sdf-Syntax
imports Kernel-Sdf-Syntax?3-! Renaming-Sdf-Syntax?®-!-!
exports
sorts Moduleld ModuleName Import Imports Section Sections Module

Definition ImpSection
lexical syntax

[A-Za-z0-9_\—]+ — ModuleWord
“/”ModuleWord — ModuleDir
ModuleWord ModuleDir+ — Moduleld
ModuleDir+ — Moduleld

context-free syntax
Modulesx — Definition
“module” ModuleName ImpSection* Sections — Module

76

“exports” Grammar
“hiddens” Grammar
Sectionx

Moduleld

Moduleld “[” Symbols “]”
id(ModuleName)
“imports” Imports
ImpSection

Importx

ModuleName
ModuleName Renamings
(((7’ Import (()7’

variables

“Mid”[0-9']% — Moduleld
“M”[0-9']* — ModuleName
“s”[0-9"* — Section

“” “x”[0-9"]% — Sectionx
“s”“47[0-9']x — Section+
“m”[0-9']%x — Module

— Section

— Section

— Sections

— ModuleName
— ModuleName
— Attribute

— ImpSection
— Grammar

— Imports

— Import

— Import

— Import {bracket}

Modules | 4.3

“mx"[0-9'1% — Modulex
“m+7[0-9']%* — Module+
“d”[0-9"* — Definition
“710-9']* — Import

“7 “x”[0-9']x — Importx
“7“47[0-9']% — Import+
“is”[0-9"]* — ImpSection
“is%7[0-9']% — ImpSectionx*

4.3.2 Projection

Projection functions: mps(d) yields the body of the module named M. ‘Exp’
yields the exported part of a module and ‘Hid’ yields the hidden part of a
module.

module Modular-Sdf-Projection

imports Modular-Sdf-Syntax*3! Booleans Kernel-Sdf-Projection?-3:
Modular-Sdf-Renaming?-3-4

2

exports
context-free syntax

Import “€” Imports — Bool
Sections “H” Sections — Sections {assoc}
Imports “+” Imports — Imports {assoc}
“r” “2 ModuleName “(” Definition “)” — Sections
“Exp” (Sections) — Grammar
“Hid” (Sections) — Grammar

equations

Membership of a list of imports.

1] i€ifiip =T
[2] i€i*=_1 otherwise

Concatenation of section and imports lists.

3] 81t 83 = 81 8,
[4] T =070

Lookup of a module by its name in a list of modules. If a module name matches
the module name searched for, its list of sections is yielded. If a parameterized
module is imported without specifying any actual parameters, the parameters
are left uninstantiated. If a list of actual paramters is given, these are used to
rename the formal parameters into the actual parameters. The function (- = _)
constructs a renaming from the formal parameters to the actual parameters of
a parameterized module. If no modules are found the empty list of sections is

yielded.

5] my(module M s* m*) = s* +H wp(m*)

[6] 7 andg(module Mid[a] s* m*) = s* + mppa(m™)

[7] 7 gl (module Midla] s* m*) = (s*) (a = B) H 7 pgq5(m”)
8] 7 p(module M’ s* m*) = wp(m*) otherwise

[9] mu() =

7

4 / RENAMING AND MODULARIZATION

Exported grammars from a list of sections.

[10] Exp() =0
[11] Exp(s;” s,") = Exp(s;") Exp(s,’)
[12] Exp(exports G) =G
[13] Exp(hiddens G) = 0

Hidden grammars from a list of sections.

[14] Hid() =0
[15] Hid(s;" s;7) = Hid(s;") Hid(s,")
[16] Hid(exports G) = 0
[17] Hid(hiddens G) = G

4.3.3 Normalization

We define the semantics of the modular constructs introduced above by means
of a normalization function that yields the flattening of a module in a modular
syntax definition by replacing each import by the body of the module it refers to.

Hidden productions are renamed by attaching the name of the hiding module.
Since all productions occurring in a hiddens do not occur in another hiddens
section (they should have been exported) it can never occur that two such
renamed productions are imported into the same module. A consequence of
production merging in this case is that an exported function becomes hidden if
it is also in the hiddens part of the module.

We define the function m[d](M) that yields the grammar corresponding to
module M in the definition d.

module Modular-Sdf-Normalization
imports Modular-Sdf-Projection*-3-2 Modular-Sdf-Renaming?-3-4

Kernel-Sdf-Normalization?3® Grammar-Projection
exports

context-free syntax
“m[” Definition “]” “(” ModuleName “)” — Grammar

hide(ModuleName, Grammar) — Grammar
hide(ModuleName, Productions) — Productions
hiddens
sorts IG
context-free syntax
“<” ITmports “” Grammar “>” — IG

imp “[” Definition “]” “(” Imports “,” Import “)” — IG
ims “[” Definition “]” “(” Imports “,” Imports “)” — IG
gra “[” Definition “]” “(” Imports “,” Grammar “)” — IG
equations
Normalization of order of grammars.

[1] imports = ()
[2] imports i} © imports i5 = (imports i} i3, 0)
3] G < imports i * = (imports i ¥, G) otherwise

78

Modules | 4.3

Normalization of module sections. Exports and hiddens sections can be merged.

[4] module M is* is s* = module M is™ exports is s*
[5] si exports Gy exports Gy s3 = s7 exports G1 Gy S5
[6] s7 hiddens Gy hiddens G2 s5 = si hiddens G; Ga s
[7] sy hiddens G; exports Go s5 = s7 exports G, hiddens Gy s;

The semantics of a module named M in a definition d is expressed by m[d](M)
and is the composition of the exported and hidden grammars of module M with
all imports replaced by the exported grammars of the modules they refer to.

my(d) = s*, gra[d](, Hid(s*)) = (if, G1), gra[d](i], Exp(s*)) = (i3, §»)
m[d)(M) = G hide(M, G1)

The function ‘hide’ marks all productions in the hiddens part of a module with
the module name by attaching the attribute id(M) to it.

(8]

9] hide(M, 0) =

[10] hide(M, Gy G2) = hlde(M G1) hide(M, G»)
[11] hide(M, syntax p*) = syntax hide(M, p*)

[12] hide(M, G) =G otherwise

[13] hide(M,a - A$) =a = A$ H {id(M)}

[14] hlde()=

[15] hide(M, p;" p,5) = hide(M, p;") + hide(M, p;")

The function ‘gra’ expands all the imports in a grammar. It returns a structure
(i*,G), which denotes a flattened grammar with the list of imports i* that were
expanded to flatten the grammar. This list is passed on to the rest of the
flattening process in order to prevent multiple imports of the same module.
This is important in particular in the presence of cyclic imports.

gra[d](if, G1) = (i3, G1), gra[d](i3, G2) = (i3, G,)

1o graldI(i7, 1 92) = (i3, 91 93)
[17] gra[d] (i, imports i5) = ims[d](i], i3)
[18] grald](i*, G) = (", G)

otherwise

The function ‘ims’ yields the flattened grammars for a list of imports.
i ims[d)(i*,) = Gi*, 0)
imp[d](if, i) = (i5, 1), ims[d](i5, i3) = (i}, G2)
ims[d](i7, ii3) = (i}, G1 G2)
The function ‘imp’ yields the flattened grammar associated with the exported
grammar of an import. The first list of imports denotes the imports that are

already expanded. If a module was already imported it is not imported again.
This is a protection against cyclic imports.

[20]

G =if M € i then 0 else Exp(7(d)) fi
imp[d](i*, M) = gra[d](i" M, G)

[21]

79

4 / RENAMING AND MODULARIZATION

G=if Mp €i” then () else (Exp(mps(d))) p fi
imp[d](i*, M p) = gra[d](i* M p, G)

As we will see in the next section, the renaming p that is applied to the exported

[22]

part of the imported module M in the last equation above is also applied to the
imports of that module and hence is applied recursively to all modules imported
via M.

4.3.4 Renaming

We extend the definition of renaming to renaming of module sections and im-
ports. This includes the renaming of imports, and hence the renaming of re-
namings applied to imported modules.

module Modular-Sdf-Renaming
imports Renaming-Sdf-Renaming*!® Modular-Sdf-Syntax?*-3-1

Modular-Sdf-Projection®3-2
exports

context-free syntax
“(” Sections “)” Renamings — Sections
“(” Imports “)” Renamings — Imports
equations
Renaming sections.

[1] (s*) p= when s* =
[2] (exports G) p = exports (G) p
3] (hlddens g) p = hiddens (G) p
[4] (517 55) p=(s7) p + (s2) p

Renaming a list of imports implies applying the renaming to all imported mod-
ules, i.e., attaching the renaming to each module name in the list of imports.

[5] (imports i*) p = imports (i*) p

o (M) p=Mp

[7] (i*) p= when i* =

8] (i i) p =i i,” when iy = (i") p, " = (i) »

If the imported module has already a renaming attached to it, the new renaming
is applied to the first, yielding the composition of the two renamings.

[9] (M py) py = M (py) po

4.3.5 Discussion

The modularization presented here is an extension with symbol parameters,
import renamings and hidden imports of the modularization of ASF+SDF as
implemented in the ASF+SDF Meta-Environment (Klint, 1993). The definition
here is a pure ‘textual’ inclusion semantics of modularization. Hendriks (1991)
describes both a textual normalization semantics and an incremental semantics

80

Modules | 4.3

for modular constructs without renamings and hidden imports. The incremen-
tal implementation of modularization in the Meta-Environment becomes com-
plicated in the presence of renamings, since items are created on the fly and
can no longer be associated with a module. We have not addressed the issue of
incremental parser generation and modular parser generation in a setting with
renamings.

We deviate from the original design of ASF in that we do not incorporate
the ‘origin rule’ that forbids identification of names that originate from differ-
ent modules (Bergstra et al., 1989b). This style forbids to have two modules
with partly overlapping signatures, e.g., both introducing the same sort or func-
tion, that are imported in the same module, even if the overlap is intentional.
The definition here is completeley liberal in this respect. Productions that are
imported via different routes are identified if they are the same.

In §4.1 we saw that renamings are not guaranteed to preserve well-formedness
of trees. A further study of modular properties of grammars in the line of module
algebra (Bergstra et al., 1990) should give more insight into properties of good
modularization. Some topics for study are: properties of trees and languages
under renaming, ambiguity caused by union, interaction of regular expressions
and renamings, modular properties of reject productions.

81

D

The Syntax Definition Formalism

SDE?2

This chapter presents the assembly of the syntax definition formalism SDF2 from
the features designed in previous chapters. This is mainly a matter of defining
collecting modules that import the modules defined earlier. However, some
features interfere. In some cases the normalization functions have to be extended
to cover constructs introduced for other features. In other cases features have
to be extended such that the orthogonality of another feature is maintained.
The chapter concludes with a comparison of SDF2 to SDF and a discussion of
anomalies and possible improvements to the formalism.

5.1 SDF2

Now we put the pieces together and define the syntax definition formalism SDF2,
which is a generalization of SDF (Heering et al., 1989). It covers all features
available in SDF and adds several new ones. Furthermore, up to some small
adaptations, SDF is textually (although not structurally) a subset of SDF2.
This means that existing SDF definitions can be used almost literally as SDF2
definitions. The differences can be translated automatically by means of a mi-
gration tool.

The combination of features described earlier is achieved basically by combin-
ing them by means of imports into collecting modules. For each aspect of the
definition, such as syntax, projection and normalization, a collecting module is
defined. Here we show the collecting modules for the syntax and normaliza-
tion of SDF2. The other modules can be found in Appendix A.4. Although
we have tried to define features orthogonally, some interference between them
is unavoidable. For instance, when we extend the syntax of symbols, normal-
ization functions that deal with symbols are affected and have to be extended
accordingly.

5.1.1 Syntax

The syntax of SDF2 is simply the collection of the syntax of all features in-
troduced sofar. The syntax is extended with lexical and context-free priorities
and restrictions, which arise as a result of the combination of Basic-Sdf with
Priority-Sdf and Restriction-Sdf. The constructor ‘definition’ collects a list of
modules into a single SDF definition.

The symbols (Start) and (START) serve to define grammars with a single

83

5 / THE SYNTAX DEFINITION FORMALISM SDF2

start symbol. In the normalization below productions will be added such that
(START) is the union of all sorts of the grammar. The symbol (Start) is used
to describe files that consist of a string over the language of (START) followed
by the end of file character.

In the Label extension a symbol can be labeled with a literal using the syntax
L : A. This extension is not further defined here. The priorities section is
extended to deal with this extra symbol constructor.

module Sdf2-Syntax

imports Kernel-Sdf-Syntax?3-! Basic-Sdf-Syntax?3-1 Modular-Sdf-Syntax*3-1
Regular-Sdf-Syntax3-2! Priority-Sdf-Syntax®!1 CC-Sdf-Syntax?-+?2
Sorts-Sdf-Syntax?+! Literals-Sdf-Syntax?4-3 Label-Sdf-Syntax
Restrictions-Sdf-Syntax®%-! Alias-Sdf-Syntax?-2-!

exports

sorts SDF

context-free syntax
“(START)” — Symbol
“(Start)” — Symbol
“lexical” “priorities” Priorities — Grammar
“context-free” “priorities” Priorities — Grammar
“lexical” “restrictions” Restrictions — Grammar
“context-free” “restrictions” Restrictions — Grammar
“definition” Definition — SDF

priorities
Symbol “|”Symbol — Symbol > Literal “:”Symbol — Symbol

5.1.2 Normalization

We define the normalization function that normalizes a syntax definition by
applying the normalization functions of the individual features. Here we have
to deal with interaction between the normalization functions for the separate
features and the constructs added to the formalism in other features.

module Sdf2-Normalization

imports Sdf2-Syntax®!'! Sdf2-Projection?* Sdf2-Renaming-*
Basic-Sdf-Normalization®-32 Modular-Sdf-Normalization*-3-3
Priority-Sdf-Normalization®1-® Regular-Sdf-Normalization®2-2
Literals-Sdf-Normalization®#-3 CC-Sdf-Normalization?-4?2
Sorts-Sdf-Normalization?*! Sorts-Sdf-Projection®4-!

Restrictions-Sdf-Normalization34-3 Alias-Sdf-Normalization*
exports

context-free syntax
normalize “[” SDF “]” “(” ModuleName “” Symbol “)” — Grammar

2.3

topsorts “[” Grammar “]” “(” Symbol “)” — Grammar
topsorts(Symbol, Symbols) — Productions
equations

The normalization of an SDF2 definition is defined by the following equation.
The function ‘normalize’ is parameterized with a module name denoting the
top module to be normalized and a sort denoting the topsort of the definition.
The definition is normalized by first expanding module M by means of function

‘m’. Then the normalization functions ‘b’ (Basic), ‘a’ (Alias), ‘v’ (Regular), ‘p’

84

SDF2 / 5.1

(Priorities), ‘I’ (Literals) and ‘k’ (Kernel) are applied to the resulting grammar.
The function ‘topsorts’, defined below, is used to add special productions for
the top sorts of the definition and to remove productions not reachable from
those top sorts.

k[l[p[rftopsorts[a[b[m[d] (M)III (AT = 9
normalize[definition d](M, A) = reachable({(Start)}, G)

[1]

The function ‘topsorts’ adds a special production for the symbol (Start), which
declares that a text over the grammar is a string of sort A followed by the
character representing the end of file. For each declared sort in the definition a
production is added that defines that a text can be a string of that sort which
starts and ends with layout.

G' = syntax A [\EOF] — (Start) -+ topsorts(A, S(G))

2] topsorts[G](A) = G' G

[3] topsorts(A, at 37) = topsorts(A, at) H topsorts(A,)

[4] topsorts(A,) =

5] topsorts(A, B) = (LAYOUT?-CF) (B-CF) (LAYOUT?-CF) — A

5.1.3 Interaction

Several of the normalization functions are underdefined, i.e., the full SDF2 for-
malism contains more constructors than the extension for which they have been
defined. Therefore, we must extend these functions accordingly.

exports
context-free syntax
“<” Priorities “~LEXp” “>” — Priorities
“<” Priorities “~CFp” “>” — Priorities
“<” Restrictions “~LEX” “>” — Restrictions
“<” Restrictions “~CF” “>” — Restrictions
hiddens
variables
“L” — Literal
equations
The normalization function for regular expressions must be extended to the
symbol constructors added in other extensions. The first equations express that
sorts, character classes, literals and the symbols LAYOUT, (START) and (Start)
do not generate any productions.

[6] r[S] =0 [7] r[LAYOUT] = 0
8] rfec] = 0 [9] r[(START)] = 0
[10] r[L] =0 [11] r[(Start)] = 0

The following equations define that the productions generated for some symbol
A should be transformed into productions for lexical (context-free) productions
if a lexical (context-free) version of the symbol occurs. This entails that first
the productions for A are generated by the recursive call and that these are
transformed by the (_-LEX) ({_-CF)) function.

[12] r[(A-LEX)] = (r[.A]-LEX)

85

5 / THE SYNTAX DEFINITION FORMALISM SDF2

[13] r[(A-CF)] = (r[.A]-CF)
[14] r[(A-VAR)] = r[A]

This is an example of the context-sensitivity of the generation of productions
from symbols. The meaning of (Id x -CF) is different from that of (Id * -LEX).

Basic Literals and character classes do not need the (_.~LEX) or (_-CF) con-
structor, because they are lexical by definition

cc

L

[15] (ec-LEX) = cc [16] (ec-CF) = ecc [17] (cc-VAR)
18] (L-LEX) = L [19] (L-CF) = L [20] (L-VAR)

Basic + Priorities Equations for the normalization of lexical and context-
free priorities that were added at the level of SDF2.

G1 = context-free priorities pr*, G, = context-free syntax p*

21
[21] G1 © G2 = (context-free syntax p*, context-free priorities pr*)
22] G, = context-free priorities pr*, G, = lexical syntax p*

G1 O G2 = (lexical syntax p*, context-free priorities pr*)
23] G1 = context-free priorities prj, G2 = context-free priorities pr;

G1 © Gy = (context-free priorities prf, prs, 0)

Context-free priorities are priority declarations for context-free productions and
are abbreviations of normal priorities in the same way that context-free syntax
is an abbreviation for a certain style of normal syntax. The productions in the
priorities sections are thus treated with the same (_-CF) functions as context-free
productions.

[24] baux[context-free priorities pr*] = (priorities pr*-CF)

[25] (priorities pr*-CF) = priorities (norm[[pr*]]—CFp)
[26] (pr*-CFp) = when pr* =

[27) (pri", pra"=CEp) = (pri” -CFP> + (pr, ~CFp)
[28] (1> p,=CFp) = (p,~CF)> (p,~CF)

[29] (p, as p,~CFp) = (p1 CF) as (p,~CF)

Similarly for lexical priorities.

[30] baux [lexical priorities pr*] = (priorities pr*-LEX)

[31] (priorities pr*-LEX) = priorities (norm[pr*]-LEXp)
[32] (pr -LEXp) = when pr* =

[33] (pri", pry -LEXp) = (pr;" ~LEXp) + (pr; -LEXp)
[34] (p1> p,~LEXp) = (p, ~LEX)> (p,-LEX)

35] (py 45 pa-LEXp) = (p, -LEX) as (p,-LEX)

Basic + Restrictions

[36] baux[lexical restrictions restr*] = restrictions (restr*-LEX)
[37] (restr*-LEX) = when restr* =
[38] (restr;" restr;”-LEX) = (restr;”-LEX) + (restr;" ~LEX)

Comparison to SDF [5.2

[39] (o« - cc-LEX) = (a-LEXs) /- cc
[40] baux[context-free restrictions restr*] = restrictions (restr*-CF)
41 (restr -CF) = when restr* =

]

2] (restr;" restr;”-CF) = (restr;" ~CF) -+ (restr; —CF)
]
]

43 (+ cc-CF) = + cc

44 (A a -/ cc-CF) = (A-CF) B /- c¢ when (& + cc-CF) = /- cc
Labels

[45] r[L : A] = [A]

[46] (L : A-LEX) = L : (A-LEX)

[47] (L: A-CF) = L : (A-CF)

[48] (L: A-VAR) = L: (A-VAR)

Hiding Productions

[49] hide(M, context-free syntax p*) = context-free syntax hide(M, p*)

[50] hide(M, lexical syntax p*) = lexical syntax hide(M, p*)

[51] hide(M, variables p*) = variables hide(M, p*)

[52] hide(M, lexical variables p*) = lexical variables hide(M, p*)
Aliases

53] G = aliases al*, G = sorts a

G1 © G2 = (sorts a, aliases al™)

5.2 Comparison to SDF

SDF2 was developed as a generalization of SDF (Heering et al., 1989). We
briefly list the differences between the two formalisms.

5.2.1 Semantics

SDF defines the semantics of a syntax definition by means of mappings to other
formalisms. The lexical syntax is mapped to a regular grammar. The context-
free syntax is mapped to a context-free grammar. From the entire definition a
first-order many-sorted algebraic signature is derived. A parse tree for a string
according to the grammar is translated to a term or abstract syntax tree over
the signature. In SDF2 parse trees are defined by means of a well-formedness
predicate on ATerms based directly on (the normal form of) a syntax definition.
The strings of the language defined by a grammar are obtained via the function
yield. No external formalism is used to define trees. In this way the notions of
grammar and signature that were related via mappings in SDF are completely
integrated in SDF2.

87

5 / THE SYNTAX DEFINITION FORMALISM SDF2

5.2.2 Lexical and Context-free Syntax

SDF integrates lexical syntax and context-free syntax in one formalism. How-
ever, this integration is only at the level of the formalism; on the level of the
implementation these are separated. The lexical syntax is mapped to a regular
grammar (hence the specification of the lexical syntax should also be regular).
The context-free syntax is translated to a context-free grammar. In SDF2 the
integration of lexical and context-free syntax is completed. All other features
are orthogonal with respect to lexical and context-free syntax. For instance,
character classes and regular expressions can be used in exactly the same way
in lexical productions and context-free productions.

5.2.3 Lexical Disambiguation

SDF has several built-in lexical disambiguation rules that are applied to the
token stream before tokens are passed to the parser. SDF2 has no built-in lex-
ical disambiguation rules, but provides reject productions to express the prefer
literals rule and follow restrictions to express longest match disambiguation.

5.2.4 Character Classes

In SDF the syntax of character classes is defined lexically. In SDF2 character
classes are defined by means of context-free constructors. This makes the def-
inition of normalization of character classes much easier. The differences with
character classes in SDF are: numeric characters have a decimal interpretation
instead of an octal interpretation, there is no syntactic limit to the range of
numeric characters, all characters except letters and digits have to be escaped
using a slash. In SDF2 character classes have a numeric interpretation, that
is, each character class is normalized to an ordered and non-overlapping list of
numeric characters and ranges of characters.

5.2.5 Lists

SDF only provides list sorts that can be used in the left-hand sides of produc-
tions. Furthermore, lists are not orthogonally defined. In the lexical syntax
no iteration with separator is provided. In SDF only sorts can be used on the
right-hand side of a production. This means that list sorts cannot be the result
of functions. In order to define a function with a list as result, a new sort has to
be introduced into which the list sort is injected. Furthermore, to concatenate
the lists that result from a function a concatenation function should be defined.

SDF2 provides an expressive set of regular expressions that are treated as
first-class citizens. Regular expressions can be used where ever any another
symbol can be used. In general, all symbols that can be used in the left-hand
side of a production can also be used as output symbols.

5.2.6 Priorities

The priorities declarations of SDF2 are the same as in SDF with the following
exceptions: No abbreviations of productions in priorities are supported because
of the problematic semantics in a setting with modules. No <-chains are pro-
vided. The implementation does not provide the multi-set filter interpretation

88

Discussion and Concluding Remarks [5.3

of priorities.

5.2.7 Reuse

SDF does not provide renamings, module parameterization, hidden imports,
and aliases.

5.3 Discussion and Concluding Remarks

We have presented the modular design of a family of syntax definition for-
malisms. The result is a uniform formalism for syntax definition designed for
extensibility. A guiding principle in the design is the orthogonality of the fea-
tures with respect to one another. As as consequence it is easy to replace a
feature by a variant or to add a new feature without affecting the design and
implementation of all other features.

5.3.1 Parser Generation

The direct motivation for this work was the specification of a parser generator for
SDF. Many of the techniques presented in this paper were originally developed
for the translation of SDF to intermediate languages like context-free and regular
grammars as prescribed by the SDF reference manual (Heering et al., 1989).
Gradually it became clear that the difficulty of this project was due to the
monolithic design of SDF. The features presented in this paper are combined
in the formalism SDF2 that is intended to replace SDF. The specification of a
parser generator for SDF2 was easier due to the uniform abstract syntax and
elimination of cases by normalization. The tables generated by the generator
are interpreted by the generic scannerless generalized-LR parser described in

Visser (1997e).

5.3.2 Disambiguation

Priorities are interpreted as a well-formedness requirement on parse forests,
which could be operationalized as a filter on parse forests as prescribed by
Heering et al. (1989). This approach can be extended to other disambiguation
methods as described in Klint and Visser (1994).

We have provided some features for disambiguation of ambiguous context-free
grammars. There remain a large number of ambiguities that can not be solved
with these mechanisms. Some more advanced disambiguation methods are de-
scribed in Klint and Visser (1994). Here we list some ideas for improvements of
the current scheme.

The priority relation > on productions does not allow a distinction between
the arguments of the productions to which it applies. In several cases it would
be useful to restrict the relation to certain arguments. For instance, the priority
declaration

TT->T > "let" V "="T "in" T -> T

does correctly forbid the usage of a let expression as the first argument of an
application. However it also forbids the usage of 1let as the last argument of an
application, for which there is no reason. An extension of the notation could be

89

5 / THE SYNTAX DEFINITION FORMALISM SDF2

TT->T {1}> "let" V "="T "in" T -> T

to declare the desired disambiguation. There would be no implementation prob-
lems with such an extension.

A case for non-standard disambiguation is in ambiguous equations. In §4.3
we gave as an example the specification of the syntax of conditional equations.
It can occur that equations are ambiguous due to injections. If a symbol A
is injected in B, then an equation over two A expressions can be interpreted
both as A and B equations. A possible interpretation of such an ambiguity is
to take both possibilities. This is done in the definition of multi-level algebraic
specifications in Visser (1996), where ambiguous equations can occur due to
overloading of functions.

In the implementation of SDF in the ASF4+SDF Meta-Environment an un-
documented disambiguation method is used. As a simplification of the multi-set
ordering, trees with fewer injections are preferred over trees with more injec-
tions. Such a method is needed to disambiguate conditions of equations. This
method has not been implemented as part of the SDF2 tools, but can be added
as a post-parse filter without problems.

We have defined follow restrictions and reject productions to express lexical
disambiguation rules. We omitted the definition of these methods as an exten-
sion of the well-formedness predicate on parse trees. See Visser (1997¢) for a
discussion of the semantics of these methods and for a discussion of automatic
lexical disambiguation.

5.3.3 Renaming

Modules associate a name with a grammar. Grammars can be combined by
module imports. Export and hiding provide control over visibility of grammars.
New with respect to the modularization of SDF are renamings and hidden im-
ports. In the current definition of renaming productions, only the literal skele-
ton of the production can be changed, but the order of the arguments stays
the same. Sometimes it is desirable to change the syntax of a production and
also make a permutation of the arguments. A notation for such permutations
should be devised by means of some kind of indexing. The problem with such a
notation is that the current definition reuses the syntax of productions literally
in the definition of renamings. Changing the syntax of productions will thus be
applicable everywhere. The label facility (see below) could be used for this pur-
pose. Unfortunately, renamings are not guaranteed to preserve well-formedness
of parse trees. Further study is needed to find a set of sufficient requirements
on renamings that do guarantee well-formedness.

5.3.4 Labels

A feature that has not discussed are labels. Labels are intended to be used
as ‘field names’ of a record. For instance, consider the following production
defining the syntax of assignments in an imperative language:

var : Var ":=" value : Exp -> Stat {cons(assign)}

The two arguments are labeled with var and value, respectively. From this
information we can derive the following syntax for projection functions based
on the field names:

90

Discussion and Concluding Remarks [5.3

Stat "." var -> Var
Stat "." value -> Exp

This should be accompanied by the the defining equations for these functions.

5.3.5 Derived Syntax

Regular expressions are considered as name constructors that are used to make
new names out of existing ones. A normalization function adds canonical pro-
ductions defining the regular operators. For instance, A7 denotes an optional
A and is defined by the productions A — A? and — A?. However, there is no
restriction on the use of these name constructors. Other defining productions
can be added by the user. In the context of algebraic specification this means
for instance that users can specify functions that have lists (Ax*) as result.

Regular expressions are an example of derived syntax: Given some symbol
or even production in the grammar, other productions are derived. Many other
applications of derived syntax could be useful.

Sometimes it is useful to explicitly indicate empty constructs and injections.
This could be accommodated by generating syntax for explicitly matching injec-
tion functions and e-functions, i.e., if A => B is a production then also "injA-B"
(A) -> B Similarly for €, if -> A a production, then also "emptyA" -> A.
These constructors should of course match with their origins. This can be done
by translating these functions internally to the real injection or € function. See
Dinesh (1995) for some interesting remarks on injections in ASF+SDF.

A structure editor provides facilities to manipulate sentential forms. This
requires the specification of the syntax of symbol placeholders. For each symbol
A that is not a literal add a production "<A>" -> A.

Another case of this kind is the generation of explicit type casts S ":" "S"
-> 8 {cast} (like bracket attribute) to constrain the type of an overloaded
entity. This would be similar to the no-operator attribute in SDF.

It would be even better to make syntax derivation user-definable by providing
schemas such as discussed above.

5.3.6 Polymorphic Syntax

The definition of regular expressions by introducing new productions is an in-
stance of second order quantification. The generalization of this approach to
two-level grammars in Visser (1997d) provides the syntactic counterpart of the
two-level specifications in Meinke (1992) and the multi-level specifications in
Visser (1996). Generic productions are written as production schemata. The
syntax of symbol constructors is described by means of a second level grammar.

5.3.7 Dynamic Syntax

Another open problem is the formal description of languages with an extensible
syntax. Programs in such languages can contain grammars that define part
of the syntax of the program itself. An example of extensible syntax is the
syntax of equations in ASF+SDF. Several other instances exist, e.g., Cardelli
et al. (1994), and Vittek (1994) (Elan). All these approaches treat the meta-
language and object language differently. A formal approach to this problem

91

5 / THE SYNTAX DEFINITION FORMALISM SDF2

would specify the syntax of the base language and the grammars it can specify
and the lifting of these grammars to meta-level grammars.

5.3.8 Design Methodology

We have presented a large specification. We approached this using a rigorous
modularization of the specification in a matrix of modules. For each feature
the syntax and tools are described in separate modules. In this way it becomes
feasible to flexibly include and exclude parts of a language definition. Some
parts of the specification such as the ATerm encoding are not very interesting.
It would be better if those parts could be generated using a simple rule.

The main technique we have applied is that of definition of features by nor-
malization, i.e., transformation to a subset of the language. The great advantage
of normalization is that many features can be provided to enhance the expres-
siveness of the language while defining the semantics of the formalism on a
small set of kernel features in which the other features are expressed. Normal-
ization has also its disadvantages. The semantics of various features is defined
indirectly, which makes reasoning about them more troublesome. Furthermore,
parse trees over a grammar use the normalized productions, which can look
rather different than their origins. It would be desirable to use normalization
equations rather than functions in order to be able to reason about equivalence
of syntax definitions. The problem with such an approach is the lack of control
over normalization. A solution could be the use of strategies such as described
in Luttik and Visser (1997).

The modularization of the formalism and hence the modularization of the
normalization in separate normalization functions for each feature made the
specification of normalization feasible. A normalization function that would in
one pass over the grammar normalize it would be a very complex. However,
the modularization also hides the interaction between features. When defining
a normalization function for an extension of the kernel, only those constructs
introduced are normalized. The combination of features prompts the extension
of the normalization function to new constructs. Often this is can be achieved
by innocent distribution equations, but in some cases the interaction between
features is more problematic. In particular, the interaction of renamings with
other features needs more study.

Language design is a software engineering process. A language definition gets
better developed if it is actually used in a prototype implementation. The parts
of the specification of SDF2 that are used in the parser generator, i.e., the
normalization, were developed on demand. Especially the fragment of SDF2
that corresponds to SDF was developed first, because most syntax definitions
fed to the parser generator were converted SDF definitions. Other parts of the
specification, such as well-formedness or equality that are not directly used in
tools were developed later. But these parts are important because they define
the correctness criteria for implementations. The well-formedness checker can
be used to validate the output of a parser for a grammar. The equality checker
can be used to validate a matching algorithm for terms.

The design approach we have used for SDF2 has led to an infrastructure for
further study of syntax definition and experimentation with new features. It
is indeed very easy to extend the specification in order to construct subsets or
supersets of the formalism, or to replace a feature by a variant.

92

A

Auxiliary Modules for the
Specification of SDF?2

In this appendix we include several auxiliary modules used in the specification

of SDF2.

A.1 Literals

module Literals
imports Layout
exports
sorts Literal
lexical syntax
“\”~0O — EscChar
“\”[01][0-7][0-7] — EscChar
~[\000-\040”\] — L-Char

[L\t\n] — L-Char

EscChar — L-Char

“\””L-Charx“\”” — Literal
variables

“L”[0-9']% — Literal

A.2 ATerms
A.2.1 Constructors

module Grammar-Tree-Constructors
imports ATerms2-5-!
exports
context-free syntax
“empty-grammar” — AFun
“conc-grammars” — AFun

module CC-Sdf-Tree-Constructors
imports Kernel-Sdf-Tree-Constructors
exports
context-free syntax
“char-class” — AFun

2.5.2

93

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

“range” — AFun

module Sorts-Sdf-Tree-Constructors
imports Kernel-Sdf-Tree-Constructors®:
exports
context-free syntax
“sort” — AFun

5.2

module Literals-Sdf-Tree-Constructors
imports Kernel-Sdf-Tree-Constructors?-5-2
exports
context-free syntax
“lit” — AFun

module Regular-Sdf-Tree-Constructors

imports ATerms? 5!
exports
context-free syntax

“empty” — AFun
“seq” — AFun
“opt” — AFun
“iter” — AFun
“iter-star” — AFun
“iter-sep” — AFun
“iter-star-sep” — AFun
“iter-n” — AFun
“iter-sep-n” — AFun
“set” — AFun
“pair” — AFun
“func” — AFun
“alt” — AFun
“perm” — AFun

module Basic-Sdf-Tree-Constructors

imports Kernel-Sdf-Tree-Constructors?-5-2

exports

context-free syntax

“lexical-syntax” — AFun
“context-free-syntax” — AFun
“variables” — AFun
“lexical-variables” — AFun
“cf? — AFun
“lex” — AFun
“varsym” — AFun
“layout” — AFun

A.2.2 Encoding and Decoding

module Grammar-ATerms
imports Grammar-Tree-Constructors?-?! Grammar-Syntax?2
exports

context-free syntax

94

ATerms | A2

aterm(Grammar) — ATerm
grammar(ATerm) — Grammar
equations
Encoding of grammars.

[1] aterm()) = empty-grammar
[2] aterm(G; G») = conc-grammars(aterm(G;), aterm(G»))

Decoding of grammars.

3] grammar(empty-grammar) = ()
[4] grammar(conc-grammars(Ty, To)) = grammar(T;) grammar(T>)

module CC-Sdf-ATerms
imports Kernel-Sdf-ATerms?--4 CC-Sdf-Syntax?-4-2

CC-Sdf-Tree-Constructors?-21 Character-Arithmetic
exports

context-free syntax
atermlist(OptCharRanges) — ATermUList

aterm(Character) — NatCon

ranges(ATermList) — CharRanges

range(ATerm) — CharRange

character(ATerm) — Character
equations

Encoding character classes.

[1] aterm([er*]) = char- class(atermhst(cr)

[2] atermlist(cr*) =[] when cr* =

3] atermlist(cr;" ery’) = atermlist(cr;") + atermlist(cr;)
[4] atermlist(cr) = [aterm(c)] when cr=c

5] atermlist(c; — c2) = [range(aterm(cy), aterm(cs))]

[6] aterm(c) = int(c)

Decoding character classes.

[7] symbol(char-class([])) =[]

8] symbol(char-class([Ts])) = [ranges([Ts])]

9 ranges((T)) = range(T)

[10] ranges([T, Ts]) = range(T) ranges([Ts])

[11] range(n) = character(n)

[12] range(range(n;, nz)) = character(n;) — character(ny)
[13] character(n) = char(n)

[14] symbol(n) = [char(n)]

module Sorts-Sdf-ATerms
imports Kernel-Sdf-ATerms?®* Sorts-Sdf-Tree-Constructors?-2

Sorts-Sdf-Syntax?-4-!
equations

Encoding and decoding sorts.

[1] aterm(sort(c ™)) = sort(literal(""" ¢t "))

95

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

[2] symbol(sort(literal(""" ¢ """))) = sort(c™)

module Literals-Sdf-ATerms
imports Kernel-Sdf-ATerms?%* Literals-Sdf-Tree-Constructors4:2-!

Literals-Sdf-Syntax?2-4-3
equations

Encoding and decoding literals.

[1] aterm(L) = lit(L)
[2] symbol(lit(L)) =

module Priority-Sdf-ATerms

imports Kernel-Sdf-ATerms?®** Priority-Sdf-Syntax3-1-1
equations

Encoding attributes.

[1] aterm(left) = atr("left")

[2] aterm(right) = atr("right")

3] aterm(bracket) = atr("bracket")
[4] aterm(assoc) = atr("assoc")

5] aterm(non-assoc) = atr("non-assoc")

Decoding attributes.

[6] attribute(atr("left")) = lef

[7] attribute(atr("right")) = rig

8] attribute(atr("bracket")) = br acket
[9] attribute(atr("assoc")) = assoc

[10] attribute(atr("non-assoc")) = non-assoc

module Regular-Sdf-ATerms
imports Regular-Sdf-Tree-Constructors?>! Kernel-Sdf-ATerms?54

Regular-Sdf-Syntax3-2-1
equations

Encoding regular expressions.

[1] atel"m(()) = empty

[2] aterm((A a ™)) = seq(atermlist(A a ™))

3] aterm(?) = opt(aterm(.A))

[4] aterm(A+) = iter(aterm(.A))

5] aterm(Ax) = iter-star(aterm(.A))

(6] aterm({A B}+) = iter-sep(aterm(A), aterm(B))

(7] aterm({A B}x) = iter-star-sep(aterm(A), aterm(B))
8] aterm({A} n +) = iter-n(aterm(.A), con(n))

[9] aterm({A B} n +) = iter-sep-n(aterm(.A), aterm(B), con(n))
[10] aterm(Set[A]) = set(aterm(A))

[11] aterm(A # B) = pair(aterm(.A), aterm(B))

96

ATerms | A2

[12] aterm((a = B)) = func(atermlist(a), aterm(B))
[13] aterm(A | B) = alt(aterm(.A), aterm(B))
[14] aterm (< a >) = perm(atermlist(c))

Decoding regular expressions.

[15] symbol(empty) = ()

[16] symbol(seq(Tl)) = (A a™) when symbols(Tl) = Aa™
[17] symbol(opt(Ty)) = symbol(T})?

[18] symbol(iter(T;)) = symbol(T7)+

[19] symbol(iter-star(T})) = symbol(T})x*

[20] symbol(iter-sep(Ty, T>)) = {symbol(T}) symbol(Ts)}+
[21] symbol(iter-star-sep(Ty, Tz)) = {symbol(T}) symbol(o)}
[22] symbol(iter-n(Ty, n)) = {symbol(T1)} n

[23] symbol(iter-sep-n(Ty, T2, n)) = {symbol(T}) symbol(T5)} n

[24] symbol(set(T;)) = Set[symbol(T})]

[25] symbol(pair(Ty, T2)) = symbol(T}) # symbol(T5)
[26] symbol(func(Tly, T2)) = (symbols(Tl) = symbol(T>))
[27] symbol(alt(Ty, T»)) = symbol(Ty) | symbol(Ts)

[28] symbol(perm(Tl)) = < symbols(Tl) >

module Basic-Sdf-ATerms
imports Basic-Sdf-Tree-Constructors® 2! Basic-Sdf-Syntax®

. Kernel-Sdf-ATerms?*4
equations

Encoding grammars.

3.1

[1] aterm(lexical syntax p*) = lexical-syntax(atermlist(p*))

[2] aterm(context-free syntax p*) = context-free-syntax(atermlist(p*))
3] aterm(variables p*) = variables(atermlist(p*))

[4] aterm(lexical variables p*) = lexical-variables(atermlist(p*))

Encoding symbols.

aterm({A-LEX)) = lex(aterm(.A))
aterm(({A- CF); cf(aterm(.A))
) =

aterm({.A-VAR)) = varsym (aterm(.A))
aterm(LAYOUT) = layout

R =N

Decoding grammars.

[9] grammar(lexical-syntax(7)) = lexical syntax productions(T7)
[10]grammar(context-free-syntax(Tl)) = context-free syntax productions(T1)
[11] grammar(variables(Tl)) = variables productions(T1)

[(Th) =

12] grammar(lexical-variables(T1)) = lexical variables productions(Tl)

Decoding symbols.

[13] symbol(lex(T)) = (symbol(T)-LEX)
[14] symbol(cf(T)) = (symbol(T)-CF)
[15] symbol(varsym(T)) = (symbol(T)-VAR)
[16] symbol(layout) = LAYOUT

97

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

A.3 Renamings

module CC-Sdf-Renaming

imports Kernel-Sdf-Renaming*!-> CC-Sdf-Syntax>-*-2
equations

Renaming character classes.

il [ed] p = cc

module Literals-Sdf-Renaming
imports Kernel-Sdf-Renaming?!-3 Literals-Sdf-Syntax?-4-3
hiddens
variables
“L” — Literal
equations
Renaming literals.

1] [L]p=L

module Sorts-Sdf-Renaming

imports Sorts-Sdf-Syntax?4! Kernel-Sdf-Renaming?*!-3
equations

Renaming sorts.

1) S]p=s
[2] (sorts a) p = sorts (a) p

module Priority-Sdf-Renaming
imports Priority-Sdf-Projection®'-? Basic-Sdf-Renaming®-3
exports
context-free syntax
“(” Priorities “)” Renamings — Priorities
“” Group “)¢” Renamings — Group
equations
Renaming symbols and productions in priority declarations.

[1] (priorities pr*) p = priorities (pr*) p
Lists of priorities.

(2] (pr*) p= when pr* =
3] (pri", prsh) p = (pri") p + (pr") p

Associativity and priority declarations.

[4] (91 as 9,) p= (g1)a p as (g,)a p

[5] (91> 92) p= (91)a p> (95)c P

[6] (91> 92> 997) p= (91)a p> 93> 99" when g;> gg'" = (9> g9™) p

98

Renamings / A.3

Groups.

[7] (9)a p=p' when g=p, p'=(p)p
[8] {r*})a p={(p*)* p}

[9] ({as:p*})a p={as: (p*)* p}

module Regular-Sdf-Renaming

imports Kernel-Sdf-Renaming?!-3 Regular-Sdf-Syntax3-2-1
equations

Renaming symbols in regular expressions.

[1] (Ole=10)

[2] [(Aa®)]p=(BB") when (Aa™)xp=Bpg"
3] [A?] p = (A) p?

[4] [A+] p = (A) p+

[5] [Ax] p = (A) px

[6] {AB}+] p={(A) p (B) p}+
[7] [{A B}+] p={(A) p (B) p}*

8] {A} n+] p={(A) p} n+

[9] {A B} n+]p={(A)p (B) p} n+
[10] [Set[A]] p = Set[(A) p]

[11] [A# Blp=(A) p# (B)p
[12] [(@= B)] p=((a)xp=(B)p)
[13] [A|Blp=(A) p|(B)p

module Basic-Sdf-Renaming
imports Basic-Sdf-Normalization®3-2 Kernel-Sdf-Renaming*1-3
exports
context-free syntax
“<” Renamings “~LEX” “>” — Renamings
“<” Renamings “-CF” “>” — Renamings
equations
Renaming grammars.

*

[1] (context-free syntax p*) p = context-free syntax (p*)* p
2] (lexical syntax p*) p = lexical syntax (p*)x p

3] (variables p*) p = variables (p*)* p

[4] (lexical variables p*) p = lexical variables (p*)* p
Renaming symbols.

g {A-LEX)] p = ((A) p-LEX)

[6] [(A-CF)] p = ((A) p~CF)

7 (A-VARY] p = ((4) p-VAR)

8] [LAYOUT] p = LAYOUT

Applying (_-LEX) to a renaming.
[9] (I-LEX) =]

99

A / AUXILIARY MODULES FOR THE SPECIFICATION OF SDF2

[10] ([A = B]-LEX) = [(A-LEX) = (B-LEX)]
[11] ([py = p,]-LEX) = [(p, -LEX) = (p,~LEX)]
[12] ([o" Py 1-LEX) = ([p,"]-LEX) + ([p,]-LEX)

Applying (_-CF) to a renaming.

[13] (-cF) =1

[14] ([A = B]-CF) = [(A-CF) = (B-CF)]

[15] ([p1 = p»]-CF) = [{p,-CF) = (p,~CF)]
[16] (Ipit P 1-CF) = ([p;"]-CF) + ([p;"]-CF)

module Restrictions-Sdf-Renaming
imports Restrictions-Sdf-Syntax3-4-! Kernel-Sdf-Renaming?-!-3
exports
context-free syntax
“(” Restrictions “)” Renamings — Restrictions
equations
Renaming restrictions.

[1] (restrictions restr*) p = restrictions (restr*) p

[2] (restr*) p= when restr* =
3] (a + ce restry) p = (a)% p + cc restrs when restrs = (restr}) p
A.4 SDF2

module Sdf2-Projection

imports Kernel-Sdf-Projection®3? Sorts-Sdf-Projection?
Priority-Sdf-Projection3!-? Renaming-Sdf-Projection*!:
Modular-Sdf-Projection®3-2 Alias-Sdf-Projection*-2-2
Restrictions-Sdf-Projection3-4-2

4.1
2

module Sdf2-Renaming

imports Sdf2-Syntax®!'! Kernel-Sdf-Renaming?!'-3 Priority-Sdf-Renaming”-3
Regular-Sdf-Renaming”® Literals-Sdf-Renaming-3
CC-Sdf-Renaming”® Basic-Sdf-Renaming”-® Sorts-Sdf-Renaming”-?
Restrictions-Sdf-Renaming?® Modular-Sdf-Renaming?*-3-4
Alias-Sdf-Renaming*2-3

equations

[1] (context-free priorities pr*) p = context-free priorities (pr*) p
[2] (lexical priorities pr*) p = lexical priorities (pr*) p

3] [(Start)] p = (Start)

[4] [(START)] p = (START)

100

SDF2 |/ A4

module Sdf2-Tree-Constructors

imports Kernel-Sdf-Tree-Constructors?®-2 Basic-Sdf-Tree-Constructors
Modular-Sdf-Tree-Constructors Regular-Sdf-Tree-Constructors?-2-!
Priority-Sdf-Tree-Constructors CC-Sdf-Tree-Constructors? 2!
Sorts-Sdf-Tree-Constructors® 2! Literals-Sdf-Tree-Constructors?-2

A.2.1

module Sdf2-ATerms

imports Sdf2-Tree-Constructors®* Sdf2-Syntax®'-! Kernel-Sdf-ATerms?>4
Basic-Sdf-ATerms*-22 Modular-Sdf-ATerms Regular-Sdf-ATerms*-2-2
Priority-Sdf-ATerms*2-> CC-Sdf-ATerms*2-? Sorts-Sdf-ATerms* -2
Literals-Sdf-ATerms”2-? Restrictions-Sdf-ATerms

equations
[1] aterm((START)) = sort("<START>")
[2] aterm((Start)) = sort("<Start>")

module Sdf2-Trees
imports Sdf2-ATerms?* Sdf2-Syntax®!! Kernel-Sdf-Trees?->
Priority-Sdf-Trees31-* CC-Sdf-Trees?®® Renaming-Sdf-Trees*:!+4

module Sdf2-Equality
imports Kernel-Sdf-Equality?®-® Regular-Sdf-Equality Basic-Sdf-Equality®-3-3

101

B
Bibliography

Technical reports from the Programming Research Group of the University of
Amsterdam can be obtained from http://www.wins.uva.nl/research/prog/
reports/reports.html. Technical reports from CWI can be found at http:
//www.cwi.nl/cwi/publications/reports/reports.html.

Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975). Deterministic parsing of
ambiguous grammars. Communications of the ACM, 18(8), 441-452.

Backus, J. W. (1959). The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. In Proceedings
of the International Conference on Information Processing, pages 125-132,

Paris. UNESCO.

Bahlke, R. and Snelting, G. (1986). The PSG system: from formal language
definitions to interactive programming environments. ACM Transactions on
Programming Languages and Systems, 8(4), 547-576.

Bergstra, J. A., Heering, J., and Klint, P., editors (1989a). Algebraic Speci-
fication. ACM Press Frontier Series. The ACM Press in co-operation with
Addison-Wesley.

Bergstra, J. A., Heering, J., and Klint, P. (1989b). The algebraic specification
formalism ASF. In J. A. Bergstra, J. Heering, and P. Klint, editors, Algebraic
Specification, ACM Press Frontier Series, pages 1-66. The ACM Press in
co-operation with Addison-Wesley. Chapter 1.

Bergstra, J. A., Heering, J., and Klint, P. (1990). Module algebra. Journal of
the ACM, 37(2), 335-372.

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous pars-
ing. In Proceedings of the Twenty-Seventh Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics.

Van den Brand, M. G. J. and Visser, E. (1996). Generation of formatters
for context-free languages. ACM Transactions on Software Engineering and
Methodology, 5(1), 1-41.

Van den Brand, M. G. J., Klint, P., Olivier, P., and Visser, E. (1997). ATerms:
Representing structured data for exchange between heterogeneous tools. Tech-
nical report, Programming Research Group, University of Amsterdam.

103

B / BIBLIOGRAPHY

Cameron, R. D. (1993). Extending context-free grammars with permutation
phrases. ACM Letters on Programming Languages and Systems, 2(1-4), 85—
94.

Cardelli, L., Matthes, F., and Abadi, M. (1994). Extensible syntax with lexical
scoping. SRC Research Report 121, Digital Systems Research Center, Palo
Alto, California.

Chomsky, N. (1956). Three models for the description of language. IRE Trans-
actions on Information Theory, 2, 113-124.

Cordy, J. R. and Carmichael, I. H. (1993). The TXL Programming Language.
Syntaz and Informal Semantics. Version 7. Software Technology Laboratory,
Department of Computer and Information Science, Queen’s University at
Kingston, Kinston, Canada, 7 edition.

Van Deursen, A., Heering, J., and Klint, P., editors (1996). Language Proto-
typing. An Algebraic Specification Approach, volume 5 of AMAST Series in
Computing. World Scientific, Singapore.

Dinesh, T. B. (1995). Injection misdemeanors. In M. G. J. v. d. Brand et al., ed-
itors, ASF+SDF’95. A Workshop on Generating Tools from Algebraic Spec-
ifications, pages 255-270. Technical Report P9504, Programming Research
Group, University of Amsterdam.

Earley, J. (1975). Ambiguity and precedence in syntax description. Acta Infor-
matica, 4(1), 183-192.

Futatsugi, K., Goguen, J., Jouannaud, J.-P., and Meseguer, J. (1985). Principles
of OBJ2. In B. Reid, editor, Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 52—66. ACM.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. (1977). Initial
algebra semantics and continuous algebras. Journal of the ACM, 24(1), 68—
95.

Gray, R. W., Heuring, V. P., Levi, S. P., Sloane, A. M., and Waite, W. M. (1992).
Eli: A complete, flexible compiler construction system. Communications of

the ACM, 35, 121-131.

Grosch, J. (1990). Lalr - a generator for efficient parsers. Software-Practice &
Ezperience, 20, 1115-1135.

Hatcher, W. S. and Rus, T. (1976). Context-free algebras. Journal of Cyber-
netics, 6, 65-76.

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF — reference manual. SIGPLAN Notices, 24(11),
43-75.

Hendriks, P. R. H. (1991). Implementation of Modular Algebraic Specifications.
Ph.D. thesis, University of Amsterdam.

Johnson, S. C. (1975). YACC—yet another compiler-compiler. Technical Report
CS-32, AT & T Bell Laboratories, Murray Hill, N.J.

104

BIBLIOGRAPHY / B

Kahn, G., Lang, B., Mélese, B., and Morcos, E. (1983). METAL: A formalism
to specify formalisms. Science of Computer Programming, 3, 151-188.

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2),
176-201.

Klint, P. and Visser, E. (1994). Using filters for the disambiguation of context-
free grammars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS
Workshop on Parsing Theory, pages 1-20, Milano, Italy. Tech. Rep. 126—-1994,
Dipartimento di Scienze dell’Informazione, Universita di Milano.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical Systems
Theory, 2(2), 127-145. Correction in: Mathematical Systems Theory 5(1),
pp- 95-96, Springer-Verlag, 1971.

Koster, C. H. A. (1971). Affix grammars. In J. E. L. Peck, editor, Algol-68
Implementation. North-Holland, Amsterdam.

Lee, J. A. N. (1972). The formal definition of the BASIC language. Computer
Journal, 15(1), 37-41.

Lesk, M. E. and Schmidt, E. (1986). LEX — A lexical analyzer generator.
Bell Laboratories. UNIX Programmer’s Supplementary Documents, Volume

1 (PS1).

Luttik, B. and Visser, E. (1997). Specification of rewriting strategies. In A. Sell-
ink, editor, Second International Conference on the Theory and Practice of
Algebraic Specification (ASF+SDF’97), Amsterdam, The Netherlands. Pro-
gramming Research Group, University of Amsterdam.

Meinke, K. (1992). Equational specification of abstract types and combina-
tors. In E. Boerger, G. Jaeger, H. K. Buening, and M. M. Richter, editors,
Computer Science Logic - CSL’91, volume 626 of Lecture Notes in Computer
Science, pages 257-271, Berlin. Springer-Verlag.

Mosses, P. D. (1992). Action Semantics. Cambridge University Press.

Naur, P. et al. (1960). Report on the algorithmic language ALGOL 60. Com-
munications of the ACM, 3(5), 299-314.

Parr, T. J. and Quong, R. W. (1994). Adding semantic and syntactic predicates
to LL(k): pred-LL(k). In P. A. Fritzson, editor, Compiler Construction,
5th International Conference, CC’94, volume 786 of LNCS, pages 263-277,
Edinburgh, U.K. Springer-Verlag.

Pereira, F. C. N. and Warren, D. H. D. (1980). Definite Clause Grammars for
language analysis—a survey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence, 13, 231-278.

Rekers, J. (1992). Parser Generation for Interactive Environments. Ph.D. the-
sis, University of Amsterdam. ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z.

Reps, T. and Teitelbaum, T. (1989). The Synthesizer Generator: a System for
Constructing Language-Based Editors. Springer-Verlag.

105

B / BIBLIOGRAPHY

Salomon, D. J. and Cormack, G. V. (1989). Scannerless NSLR(1) parsing of
programming languages. SIGPLAN Notices, 24(7), 170-178.

Salomon, D. J. and Cormack, G. V. (1995). The disambiguation and scanner-
less parsing of complete character-level grammars for programming languages.
Technical Report 95/06, Department of Computer Science, University of Man-
itoba, Winnipeg, Canada.

Thorup, M. (1994). Controlled grammatic ambiguity. ACM Transactions on
Programming Languages and Systems, 16(3), 1024-1050.

Visser, E. (1995). A case study in optimizing parsing schemata by disambigua-
tion filters. In S. Fischer and M. Trautwein, editors, Proceedings Accolade95,
pages 153-167, Amsterdam. The Dutch Graduate School in Logic.

Visser, E. (1996). Multi-level specifications. In A. van Deursen, J. Heering, and
P. Klint, editors, Language Prototyping. An Algebraic Specification Approach,
volume 5 of AMAST Series in Computing, pages 105-196. World Scientific,
Singapore.

Visser, E. (1997a). A case study in optimizing parsing schemata by disam-
biguation filters. In A. Nijholt, editor, International Workshop on Parsing
Technology IWPT’97, Boston, USA. (To appear).

Visser, E. (1997b). Character classes. Technical Report P9708, Programming
Research Group, University of Amsterdam.

Visser, E. (1997¢). Executable specification of programming languages. (Draft).

Visser, E. (1997d). Polymorphic syntax definition. Theoretical Computer Sci-
ence. (To appear).

Visser, E. (1997¢). Scannerless generalized-LR parsing. Technical Report P9707,
Programming Research Group, University of Amsterdam.

Vittek, M. (1994). ELAN: Un cadre logique pour le prototypage de language de
programmation avec contraintes. Ph.D. thesis, Université Henri Poincaré —
Nancy I, Nancy, France.

Voisin, F. (1986). CIGALE: a tool for interactive grammar construction and
expression parsing. Science of Computer Programming, 7, 61-86.

Watt, D. A. (1977). The parsing problem for affix grammars. Acta Informatica,
8(1), 1-20.

Williams, M. H. (1982). A flexible notation for syntactic definitions. ACM
Transactions on Programming Languages and Systems, 4(1), 113-119.

Wirth, N. (1977). What can we do about the unnecessary diversity of notation
for syntactic definitions. Communications of the ACM, 20(11), 822-823.

106

Technical Reports of the Programming Research Group

Note: These reports can be obtained using the technical reports overview on
our WWW site (URL http://www.wins.uva.nl/research/prog/reports/)
or using anonymous ftp to ftp.wins.uva.nl, directory
pub/programming-research/reports/.

[P9711]

[P9710]
[P9709]

[P9708]
[P9707]
[P9706]
[P9705]
[P9704]
[P9703]

[P9702]

[P9701]
[P9618]

[P9617]

[P9616]
[P9615]

[P9614]

[P9613]
[P9612]

[P9611]

L. Moonen. A Generic Architecture for Data Flow Analysis to Support
Reverse Engineering.

B. Luttik and E. Visser. Specification of Rewriting Strategies.

J.A. Bergstra and M.P.A. Sellink. An Arithmetical Module for Ratio-

nals and Reals.

E. Visser. Character Classes.

E. Visser. Scannerless generalized-LR parsing.

E. Visser. A family of syntax definition formalisms.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation
of Components for Software Renovation Factories from Context-free
Grammars.

P.A. Olivier. Debugging Distributed Applications Using a Coordination
Architecture.

H.P. Korver and M.P.A. Sellink. A Formal Aziomatization for Alpha-

bet Reasoning with Parametrized Processes.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Reengineering
COBOL Software Implies Specification of the Underlying Dialects.

E. Visser. Polymorphic Syntax Definition.

M.G.J. van den Brand, P. Klint, and C. verhoef. Re-engineering needs
Generic Programming Language Technology.

P.I. Manuel. ANSI Cobol III in SDF + an ASF Definition of a Y2K
Tool.

P.H. Rodenburg. A Complete System of Four-valued Logic.

S.P. Luttik and P.H. Rodenburg. Transformations of Reduction Sys-
tems.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core Technologies

for System Renovation.
L. Moonen. Data Flow Analysis for Reverse Engineering.

J.A. Hillebrand. Transforming an ASF+SDF Specification into a Tool-
Bus Application.

M.P.A. Sellink. On the conservativity of Leibniz Equality.

107

[P9610]

[P9609]
[P9608]

[P9607]

[P9606]

[P9605]

[P9602b]

[P9604]
[P9603]

[P9602]
[P9601]
[P9512]

[P9511]

[P9510]

[P9509]

[P9508]

[P9507]

[P9506]

[P9505]

108

T.B. Dinesh and S.M. Uskiidarli. Specifying input and output of visual
languages.

T.B. Dinesh and S.M. Uskiidarl. The VAS formalism in VASE.

J.A. Hillebrand. A small language for the specification of Grid Proto-
cols.

J.J. Brunekreef. A transformation tool for pure Prolog programs: the
algebraic specification.

E. Visser. Solving type equations in multi-level specifications (prelim-
inary version).

P.R. D’Argenio and C. Verhoef. A general conservative extension the-
orem in process algebras with inequalities.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives
(revised version of P9602).

E. Visser. Multi-level specifications.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering
and system renovation: an annotated bibliography.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives.
P.A. Olivier. Embedded system simulation: testdriving the ToolBus.

J.J. Brunekreef. TransLog, an interactive tool for transformation of
logic programs.

J.A. Bergstra, J.A. Hillebrand, and A. Ponse. Grid protocols based on

synchronous communication: specification and correctness.

P.H. Rodenburg. Termination and confluence in infinitary term
rewriting.

J.A. Bergstra and Gh. Stefanescu. Network algebra with demonic re-
lation operators.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra
for synchronous and asynchronous dataflow.

E. Visser. A case study in optimizing parsing schemata by disambigua-
tion filters.

M.G.J. van den Brand and E. Visser. Generation of formatters for
context-free languages.

J.M.T. Romijn. Automatic analysis of term rewriting systems: proving
properties of term rewriting systems derived from ASF+SDF specifica-
tions.

