Programming Research Group

\] %]] University of Amsterdam
&S

~ =
I S S S N

- ()

Scannerless Generalized-LR Parsing

Eelco Visser

Report P9707 August 1997

&3
&3
&3

University of Amsterdam
Department of Computer Science

Programming Research Group

Scannerless generalized-1Ir parsing

Eelco Visser

Report P9707 August 1997

E. Visser

Programming Research Group
Department of Computer Science
University of Amsterdam

Kruislaan 403
NL-1098 S] Amsterdam
The Netherlands

tel. +31 20 525 7590
e-mail: visser@wins.uva.nl

Acknowledgments The author thanks Arie van Deursen, Jan van Eijck, Annius Groenink and Paul Klint,
for useful suggestions and comments on previous versions of this paper.

This research was supported by the Netherlands Computer Science Research Foundation (SION) with
financial support from the Netherlands Organisation for Scientific Research (NWQ). Project 612-317-420:
Incremental parser generation and context-sensitive disambiguation: a multi-disciplinary perspective.

Universiteit van Amsterdam, 1997

Contents

1

9

Introduction

1.1 Scannerless Generalized-LR Parsing
1.2 Architecture
1.3 Contributions e
1.4 Overview

Scannerless Parsing
2.1 Advantages
2.2 Problems & Solutions oo oo

Grammar Normalization

3.1 Normal Form

3.2 Normalization

3.3 Semantics

Disambiguation

4.1 Disambiguation by Priorities

4.2 Lexical Disambiguation
4.2.1 Longest Match
4.2.2 Prefer Literals
4.2.3 Automatic Lexical Disambiguation

Parser Generation

5.1 Shift-Reduce Parsing 0oL
5.2 First e
5.3 Follow
54 GotoTable
5.5 Action Table
56 Remarks
Automatic Lexical Disambiguation

6.1 Prefer Literals. 0L
6.2 Longest Match 00 .
Reject Productions

7.1 Semantics
7.2 Expressive Power oo Lo

Generalized-LR Parsing

81 ParseForest
8.2 Graph Structured Stack L0 0oL
8.3 Reject Reductions o
84 The Algorithm
85 Remarks
Implementation

10 Related Work

11 Conclusions

O B N

N S

11
12
12
15

15
15
17
17
19
19

20
20
20
21
22
23
24

24
24
25

26
26
27

30
31
31
34
36
39

40

41

42

Scannerless Generalized-LR Parsing

Eelco Visser

Current deterministic parsing techniques have a number of problems. These
include the limitations of parser generators for deterministic languages and the
complex interface between scanner and parser. Scannerless parsing is a pars-
ing technique in which lexical and context-free syntax are integrated into one
grammar and are all handled by a single context-free analysis phase. This ap-
proach has a number of advantages including discarding of the scanner and
lexical disambiguation by means of the context in which a lexical token occurs.
Scannerless parsing generates a number of interesting problems as well. Inte-
grated grammars do not fit the requirements of the conventional deterministic
parsing techniques. A plain context-free grammar formalism leads to unwieldy
grammars, if all lexical information is included. Lexical disambiguation needs
to be reformulated for use in context-free parsing.

The scannerless generalized-LR parsing approach presented in this paper
solves these problems. Grammar normalization is used to support an expressive
grammar formalism without complicating the underlying machinery. Follow re-
strictions are used to express longest match lexical disambiguation. Reject pro-
ductions are used to express the prefer keywords rule for lexical disambiguation.
The SLR(1) parser generation algorithm is adapted to implement disambigua-
tion by general priority and associativity declarations and to interpret follow
restrictions. Generalized-LR parsing is used to provide dynamic lookahead and
to support parsing of arbitrary context-free grammars including ambiguous ones.
An adaptation of the GLR algorithm supports the interpretation of grammars
with reject productions.

1 Introduction

Parsing is one of the areas of computer science where program generation is a
routine technique that is successfully applied to generate parsers for program-
ming languages given their formal definition by means of a context-free gram-
mar. At least, in theory. In practice, most parser generators accept only a lim-
ited subset of the context-free grammars such as LL(1) or LALR(1) grammars.
Since most natural grammars for languages do not respect these limitations,
the language designer or compiler writer has to bend over backwards to fit the
grammar into the restrictions posed by the grammar formalism by rewriting
grammar rules, introducing ad-hoc solutions for parse table conflicts or resort-
ing to side effects in the parser. Even if one succeeds in producing a grammar
that respects the restrictions, a small extension or modification of the language

might jeopardize the careful balance of tricks, which makes maintenance of tools
for the language troublesome.

Another source of problems in generated parsers is the division between the
lexical analysis phase and the context-free analysis phase and the corresponding
division of the grammar into a regular grammar defining the lexical syntax and
a context-free grammar defining the context-free syntax. A scanner divides the
character string into tokens according to the lexical syntax. A parser structures
the token string into a tree according to the context-free syntax.

At the interface between scanner and parser the lexical tokens are passed
from the scanner to the parser. In the most straightforward scenario the scan-
ner produces a stream of tokens without intervention from the parser. This
entails that no knowledge of the parsing context is available in the scanner and
thus no lexical analysis decisions can rely on such information. Tt is difficult
to unambiguously define the lexical syntax of a language by means of only reg-
ular grammars. Therefore, lexical analysis and the interface with context-free
analysis are usually extended. First lexical disambiguation heuristics such as
‘prefer longest match’ and ‘prefer keyword’ are applied to reduce the number of
readings. If there remain ambiguities after application of these rules the scanner
might produce multiple streams of tokens representing all possible partitionings
of the string into tokens according to the regular grammar. The parser should
then be able to cope with this non-linear input. It is also possible to supply feed-
back from the parser to the scanner to reduce the number of applicable grammar
rules. For instance, by specifying the lexical categories that are expected for
the next token.

In all such schemes lexical analysis becomes more complicated than the
simple finite automaton model that motivated the use of regular grammars.
Context-free parsing functionality starts to appear both inside the scanner and
at the interface between scanner and parser and often operational elements
corrupt the declarativity of the language definition. As a consequence, many
grammars are ambiguous if only the pure regular and context-free grammar are
considered as such and reasoning about the language being defined becomes

difficult.

1.1 Scannerless Generalized-LR Parsing

In this paper we describe an approach to syntax definition and parser gener-
ation that overcomes many of these problems. The approach is based on the
integration and improvement of scannerless parsing, generalized-LR parsing and
grammar normalization. Because of the integration of the former two, the ap-
proach is called scannerless generalized-LR parsing.

Scannerless Parsing Scannerless parsing is a parsing technique that does
not use a scanner to divide a string into lexical tokens. Instead lexical analysis is
integrated in the context-free analysis of the entire string. It comes up naturally
when considering grammars that completely describe the syntax of a language.
The term scannerless parsing was coined by Salomon and Cormack (1989, 1995).
They use ‘complete character level grammars’ describing the entire syntax of a
language down to the character level. Since conventional LR parser generation
yields tables with too many conflicts, they use an extension of SLR(1) parser
generation called non-canonical SLR(1). However, even this extension makes it
hard to define a grammar without conflicts.

Generalized-LR Parsing The conventional LR parsing techniques and espe-
cially scannerless LR parsing suffer from conflicts in the parse table. There are
two causes for conflicts in LR parse tables: ambiguities and lack of lookahead.
If a conflict is caused by an ambiguity, any of the possible actions will lead to a
successful parse. If it was caused by a lookahead problem, one of the actions will
lead to success and the others will fail. Which action will be successful cannot
be decided statically. Since ambiguity of a context-free grammar is undecidable
(Floyd, 1962), it is also undecidable whether a conflict is due to an ambiguity or
to a lack of lookahead. Because complete character level grammars frequently
need arbitrary length lookahead, methods to solve conflicts in the table will not
always succeed.

Generalized-LR parsing is an extension of LR parsing that interprets the
conflicts in the parse table by forking off a parser from the main parser for each
possible action in case of a conflict. If such a conflict turns out to lead to an
ambiguity the parser constructs a parse forest, a compact representation of all
possible parse trees for a sentence. But if the conflict was caused by lack of looka-
head, the forked parsers for the wrong track will fail. In this manner lookahead
is handled dynamically. Therefore, generalized-LR parsing is an ideal technique
to solve the lookahead problems of scannerless parsing. Generalized-LR parsing
was introduced by Tomita (1985) building on the theoretical framework of Lang
(1974). It was improved by Rekers (1992) to handle all context-free grammars.
In this paper we extend Rekers’ version of the algorithm with reject reductions,
a facility needed for lexical disambiguation.

Grammar Normalization An aspect of the division between lexical and con-
text-free syntax that affects the specification of syntax is the definition of layout,
i.e., the whitespace and comments that can occur at arbitrary places between
tokens. In the conventional setting layout is analyzed by the scanner and then
thrown away. The parser never sees the layout tokens. Therefore, layout can
also be ignored in the specification of context-free syntax. However, in a com-
plete character level grammar all aspects of the syntax are completely defined,
including the syntax and positions of layout. This can lead to rather unwieldy
grammars that declare the occurrence of layout as separator between all gram-
mar symbols in context-free productions.

Grammar normalization is a technique used to define an expressive gram-
mar formalism in terms of simple context-free grammars. An example of a
normalization procedure is the addition of layout symbols between the sym-
bols in context-free productions. Other examples are the definition of regular
expressions by means of productions and the flattening of modular grammars.
An important aspect of the scannerless generalized-LR approach is the use of
grammar normalization to keep grammars small and usable. The syntax defini-
tion formalism SDF2 used in the approach is a formalism for concise definition
of complete character level grammars. SDF2 is a generalization of the syntax
definition formalism SDF of Heering et al. (1989). The formalism and normal-
ization procedure is defined in Visser (1997c¢).

1.2 Architecture

The typical architecture of an application of SDF2 is depicted in Figure 1. A
program text! processor that transforms text into text is composed of (1) a
parser front-end that analyzes the input text and produces a structured repre-
sentation of the text in the form of a parse tree, (2) the actual processor that
performs a transformation from a parse tree to another one and (3) a pretty-
printer back-end that produces text corresponding to a transformed parse tree.
Processors can be, for instance, interpreters, compilers, data flow analyzers or
program transformation tools.

The input language of a processor is specified in the syntax definition formal-
ism SDF2. Given a language definition in SDF2 and a tree to tree processor, the
corresponding text to text processor is constructed using a grammar normalizer,
a parser generator, a parser and a pretty-printer generator.

Grammar Normalizer A language definition in SDF2 is normalized to a
plain context-free grammar extended with character classes, priority rules, fol-
low restrictions and reject productions. Normalization is briefly discussed in §3.
A full definition of SDF2 normalization can be found in Visser (1997c).

Parser Generator From a normalized syntax definition a parse table is gen-
erated using an extension of the standard SLR(1) algorithm with character
classes, priorities, follow restrictions, and reject productions. The parser gener-
ator accepts arbitrary context-free grammars. The techniques used in the parser
generator are discussed in §5.

Parser A parse table is interpreted by a generic, language independent
SGLR parser, which reads a text and produces a parse tree. At the heart of the
parser is an extension of the GLR algorithm of Rekers (1992) that reads char-
acters directly, without using a scanner. The extension of the GLR algorithm
with reject reductions is discussed in §8.

Pretty-Printer A pretty-printer is used to translate the output tree of the
processor to text. The pretty printer itself can also be generated from the
definition of the output language. This is described in Van den Brand and
Visser (1996) and is not further discussed here.

1.3 Contributions

The scannerless generalized-LR parsing approach presented in this paper is a
new powerful parsing method that supports concise specification of languages.
The technical contributions (the details of which will be discussed later on) of
the approach are:

e The normalization of grammars to eliminate features enhancing the ex-
pressivity of the formalism, in particular, the integration of lexical and
context-free syntax by means of normalization into a single grammar.

e The use of GLR parsing for scannerless parsing to deal with unbounded
lookahead.

IHere text denotes a linear representation of a program in some character code, e.g., ASCII
or UniCode.

L definition
in SDF2

Grammar
Normalizer

L definition
in SDF2.¢

Parser

Generator

L parse
table

Parser

L' definition
in SDF2

L parse

tree

L' parse
tree

L text

Pretty-printer

Generator

L' text

Figure 1: Architecture of an SDF2 application.

e Static disambiguation by means of priorities by interpreting priority dec-
larations in the parser generator. Priorities are completely expressed in

the parse table.

e The use of character classes in grammars to compact the parse table.

e The use of follow restrictions to define longest match disambiguation and

the interpretation of follow restrictions in the parse table.

e Prefer literals disambiguation by means of reject productions.
expressivity results about context-free grammars with reject productions.
Implementation of parsers for such grammars in an extension of the GLR

algorithm.

Several

1.4 Overview

In the next section we will argue in more detail that scannerless parsing has
a number of definite advantages over parsing with scanners, but that it has
not been introduced before because of the limitations of conventional parsing
techniques. In the rest of the paper we present several techniques that overcome
these limitations and result in a combined approach encompassing grammar
formalism and parsing techniques that does make scannerless parsing feasible.

2 Scannerless Parsing

The term scannerless parsing was coined by Salomon and Cormack (1989, 1995)
to indicate parsing without a separate lexical analysis phase using a scanner
based on a deterministic finite automaton. The parser directly reads the char-
acters of a text. This entails the integration of the definition of lexical and
context-free syntax in one grammar.

Consider the following SDF2 definition of a simple language of expressions
consisting of identifiers, additions and multiplications.

sorts Id Exp
lexical syntax

[a-z]+ -> 1Id

[\ \t\n] -> LAYOUT
context-free syntax

Id -> Exp

Exp "x" Exp -> Exp {left}

Exp "+" Exp -> Exp {left}
context-free priorities

Exp "*" Exp -> Exp >

Exp "+" Exp -> Exp

The first line declares the sorts (say the non-terminals) of the grammar. The
next three lines declare the lexical syntax of the language such that identifiers
are lists of one or more lowercase letters and layout consists of spaces, tabs and
newlines. The next four lines declare the context-free syntax of the language.
An expression is either an identifier or an addition or multiplication of two
expressions. Observe that the grammar is ambiguous and that in order to
disambiguate it, priority and associativity declarations have been added. The
last three lines declare that multiplication has higher priority than addition.
The left attribute declares addition and multiplication to be left-associative.

The conventional way to interpret such a grammar to parse a string is as
follows: (1) Divide the string into tokens according to the lexical syntax in
all possible ways. (2) Apply lexical disambiguation rules to select the desired
division. For instance, given the string ab,,, the rule ‘prefer longest match’
would prefer the division over [@[blg, i.e., the longest possible identifier is
selected. (3) Throw away layout tokens. (4) Parse the resulting token string
according to the context-free syntax. The result is a parse tree that contains as
leafs the tokens yielded by lexical analysis.

In scannerless parsing we have the following sequence: (1) Combine the
definition of lexical and context-free syntax into a single context-free grammar.
All tokens on the left-hand side of productions in the context-free syntax are

<START>

P N

<L?-CF> <Exp-CF> <L?-CF>

_——"'————:::>/ // \\ \\\\\ \\

<Exp-CF> <L?-CF> "+" <L?-CF> <Exp-CF> <L-CF>

I I I I I I

<Id-CF> <L-CF> + <L-CF> <Id-CF> <L-LEX>

I | /N \ I

<Id-LEX> <L-LEX> <L-CF> <L-CF> <Id-LEX> \32

I I I | \

<[a-z]+-LEX> \32 <L-LEX> <L-LEX> <[a-z]+-LEX>

N\ | I I

<[a-z]+-LEX> <[a-z]+-LEX> \32 \t c

a b

Figure 2: Parse tree for the string ab,_+_\tc,

explicitly separated by layout. All grammar symbols are renamed, such that
the symbols occurring in the lexical syntax have the form (_-LEX) and those in
the context-free syntax have the form (_-CF). This is done to keep the two levels
separated. For instance, the addition production is transformed into

<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>

The symbol (LAYOUT?-CF) represents the syntax of layout that can appear be-
tween tokens. In §3 this will be explained in more detail. The complete inte-
grated grammar corresponding to the definition above is presented in Figure 3
on page 14. (2) Parse the characters of the string according to the normal-
ized grammar. The result is a parse tree that contains as leafs the characters
of the string. The tokens are recognizable as subtrees. For example, consider
the parse tree in Figure 2. Observe that the symbols (L-LEX) and (L-CF) are
abbreviations for (LAYOUT-LEX) and (LAYOUT-CF) and denote layout nodes.

In a sense, nothing is new. In a conventional parser, if we would instruct the
scanner to make each character into a corresponding token, the parser that reads
these tokens would in effect be ‘scannerless’. The reason that we distinguish
scannerless parsing from parsing with a real scanner is that the former generates
some special problems that are avoided by using a scanner.

2.1 Advantages

Now that we have an understanding of what scannerless parsing is, we might
ask why it is any good. We will discuss the advantages one by one.

No Scanner The obvious advantage of scannerless parsing is that no imple-
mentation of a scanner and scanner generator is needed and that the complicated
interface between scanner and parser can be eliminated.

Integrated Uniform Grammar Formalism A language is completely defined
by means of one grammar. All grammar rules are explicit and formally specified.
Lexical syntax and context-free syntax are specified with the same formalism.
There is no longer a distinction between regular and context-free grammars.
This makes the formalism more uniform and orthogonal. All features available
for lexical syntax are available for context-free syntax and vice versa. This
simplifies use and implementation of the formalism.

Disambiguation by Context Because of the integration of lexical and context-
free syntax, lexical analysis is guided by context-free analysis. If a token does
not make sense at some position, it will not even be considered. For instance,
in the example above, the longest match rule does not have to be used to prefer
over because the latter situation two adjacent identifiers is never
syntactically correct.

The paradigmatic example of context-dependent lexical disambiguation is
the interplay between subrange types and floating point number constants in
Pascal. Subrange types have the form k..1, where k and 1 are constants. If
floating point number constants could have the form i. and .j with i and j
numbers, then i..j could be scanned either as [il=={j], i.e., the range from i to
j, or as 7 i.e., two adjacent floating point numbers. In scannerless parsing,
this ambiguity is solved automatically by context. A scanner that has no access

to the context and applies the longest match rule, would always choose the
second possibility (two adjacent numbers) and fail. Apparently for this reason
the syntax of Pascal only allows real numbers of the form i.j, where i and j
are non-empty lists of digits (Jensen and Wirth, 1975). Similar examples can
be found in many languages.

Another example where the parsing context is relevant for making lexical
decisions is the syntax of lists of statements that can be separated by semicolons
or newlines. Consider the grammar

lexical syntax
[\ \t\n] -> LAYOUT
context-free syntax
"begin" {Stat ";"|"\n"}* "end" -> Block

The lexical syntax defines newlines (\n) to be layout. The context-free syntax
defines blocks as lists of zero or more statements starting with the keyword
begin and ending with the keyword end. The list is declared by the construct
{A B}x, which declares a list of As separated by Bs, i.e., a list of the form
A B A ... B A. In this case the separator is either a semicolon or a newline.
This means that newlines are both layout and non-layout. If the disambiguation
rule ‘prefer non-layout’ is applied to the tokens of this language, all newlines—
even those not used as separator of statements will be wrongly characterized
as non-layout. A scannerless parser will recognize the newlines used as separator
simply by considering the parsing context.

Conservation of Lexical Structure Scanners do usually not maintain the
phrase structure of the tokens they produce. For example, the grammar

lexical syntax
[a-z]+ -> Id
ll/ll? {Id ||/||}+ -> Path

defines the lexical syntax of path expressions as occur, for instance, in the
naming conventions of tree-structured filesystems. This syntax has to be lexical
since no layout should occur between the identifiers and separators of a path. A
scanner would produce a string containing the characters of a path expression
without the structure assigned to it by the grammar, i.e., the distinction between
identifiers in the path is lost. This entails that the semantic processor must
reparse such tokens to deal with their internal structure.

Conservation of Layout Scanners throw away the layout between tokens
of a phrase. In this way the parser can ignore layout, which simplifies the
parsing problem. However, there are examples of operations on programs that
require the structure of the program, i.e., the parse tree, but also the layout in
the source. Examples are source to source translations, transformations on the
source text and program documentation tools. Although a conventional parser
could be instructed to add the layout to the parse tree via some detour, this
would usually require a non-standard extension of the method. If the layout
would be explicitly specified in the grammar we would get an approach that is
very similar to scannerless parsing.

Ezxpressive Lexical Syntar Context-free grammars provide a more expres-
sive grammar formalism for lexical syntax than regular grammars. This addi-
tional expressive power opens the way to concise definitions of nested comments
and syntactically correct expressions in comments. For example, consider the
following extension of the expression grammar above that defines C-like com-
ments as a list of comment words between /% and */.

sorts ComWord Comment
lexical syntax
“[\ \t\n\|\/]1+ -> ComWord
context-free syntax
"/*%" ComWord* "x/" -> Comment
Comment -> LAYQUT

A comment word is a non-empty list of characters that are not whitespace, | or
/. Since the definition of comments is part of the context-free syntax, comment
words can be separated by layout. These comments are made into layout by the
last line of the grammar, which is an injection of comment into layout. Because
layout can occur between any two adjacent tokens, comment can as well.

According to this definition, comments can be nested, because comment
words are separated by layout, which includes comments. For instance, the
string

h /* height */
/%

* w /x width */

* d /* depth */
*/

is a syntactically correct expression over the grammar above in which part of
an expression including comments is commented out. This is a tedious job if
nested comments are not supported by the language.

Moreover, the following extension of the grammar above defines that a com-
ment word can also be an expression between two |s.

context-free syntax
"|" Exp "|" -> ComWord

This entails that comments can contain quoted expressions that must be syn-
tactically correct. For instance, the following sentence contains the expression
X + y as part of a comment.

a + b /x an expression |x + y| denotes
the addition of |x| and |yl */
+ cC

This is useful for typesetting comments in literate programs and for generating
cross-references.

2.2 Problems & Solutions

Now one might ask why scannerless parsing was not introduced earlier, if it
has so many advantages. The answer is that there are several problems caused
by the integration of lexical and context-free syntax as well. In this paper we
discuss solutions to these problems that make scannerless parsing feasible.

Limitations of Parsing Techniques The main problem with scannerless pars-
ing are the limitations of the conventional deterministic parsing techniques.
Most complete character level grammars are not LR(1), LL(1), or even LR(k)
due to lookahead needed for lexical elements. When parsing with a scanner a
lookahead of 1 entails looking one token ahead. In scannerless parsing a looka-
head of 1 entails only considering the next character. Furthermore, when layout
is skipped by the scanner this need not be considered in the lookahead. The
solution used in the SDF2 implementation is to use the generalized-LR parsing
algorithm of Tomita (1985) and Rekers (1992) to get dynamic lookahead.

Grammar Size Another problem is the size of grammars. Complete char-
acter level grammars are large because all constructs have to be specified down
to the character level. Furthermore, the placement of layout between tokens
should be explicitly declared in productions. For maintenance and readability
of grammars this is problematic. To support the development of complete char-
acter level grammars an expressive formalism is needed that hides the details
of the interface between lexical and context-free syntax and of the placement
of layout. In §3 we discuss the approach of grammar normalization in order to
provide an expressive formalism with a minimal semantic basis. In §4 we discuss
the extension of context-free grammars with various disambiguation constructs
to keep grammars concise.

Lexical Disambiguation Although many lexical ambiguities are solved au-
tomatically through the integration of lexical and context-free syntax, there are
still cases where disambiguation of lexical constructs needs to be expressed.
Since lexical analysis is now based on context-free parsing, familiar lexical dis-
ambiguation rules such as ‘prefer longest match’ and ‘prefer keyword’ have to
be redefined and their implementation reconsidered. In §4 we discuss two dis-
ambiguation constructs for lexical disambiguation: follow restriction and reject
productions that suffice to express all common lexical disambiguation rules.

10

Interpretation of Disambiguation Rules There are a number of ways to
interpret disambiguation constructs. One possibility is to implement them as
a filter on parse forests as proposed in Klint and Visser (1994). However, for
disambiguation of lexical constructs and context-free expressions with priorities
this can lead to an exponential size of the parse forest before filtering, which
makes the method too inefficient. In §5 we discuss the techniques used in parser
generation to encode disambiguation rules in the parse tables such that decisions
are taken early. In §8 an extension of the GLR parsing algorithm with reject
reductions is presented.

Efficiency The first problem that comes to mind when considering scan-
nerless parsing is efficiency. Since scanning with a finite automaton has a lower
complexity than parsing with a stack, scannerless parsing, i.e., replacing the
finite automaton part by a stack machine, should be less efficient. The fol-
lowing considerations led us to attempt scannerless parsing, nonetheless: (1)
LR parsing is linear, in particular for regular grammars. Since lexical syntax
is traditionally formulated by means of regular grammars, we should expect
linear behaviour for the lexical part of scannerless parsers. (2) The complete
complexity of the scanner/parser setup should be considered including lexical
disambiguation. If lexical disambiguation rules cannot solve all ambiguities and
disambiguation has to be deferred to the parser, a kind of graph structured stack
has to be maintained to keep track of the possible segmentation of the string in
tokens. (Such a setup is used in the ASF+SDF Meta-Environment (Klint, 1993)
that forms the background for the development of SDF2.) It seems even more
efficient to maintain a single graph structured stack, instead of two. (3) If more
complex grammars for lexical syntax are used, we get into an area where scan-
nerless parsing and parsing with scanners can no longer be properly compared
because such syntax is not expressible in the scanner framework. Therefore, the
worst case complexity of context-free parsing should not be taken as a reference
point for considering the complexity of scannerless parsing.

Of course, these considerations should be verified by means of experiments.
However, experiments with scannerless parsing can only be performed after
solutions have been found for the other problems discussed above. It seems that
these problems are the cause for the late introduction of scannerless parsing
rather than bad efficiency of the method. In §9 we will discuss a few simple
experiments that have been performed with the scannerless parsing method
described in this paper and that seem to confirm our expectations.

3 Grammar Normalization

We need an expressive grammar formalism in which lexical syntax and context-
free syntax are integrated and that supports concise syntax definitions. SDF2
is such an expressive formalism. It provides regular expressions, lexical and
context-free syntax, character classes, literals, priorities, modules, renaming,
and aliases. The first version of the formalism was described in Visser (1995b).
The full definition is presented in Visser (1997¢). Because it is expensive to
extend tools to such an expressive formalism, all features that are expressible
in more primitive features are eliminated by means of a normalization function
on grammars.

11

3.1 Normal Form

The expressive power of the syntax definition formalism SDF2 can be charac-
terized by the equation

SDF2 = context-free grammars + character-classes + priorities
+ reject productions + follow restrictions

That is, any SDF2 definition is equivalent to a context-free grammar making
use of character classes, priorities, reject productions and follow restrictions. All
other features are expressed in terms of these features. The equivalence is such
that a definition is equivalent to a definition of the form

sorts s1...5s;
syntax pp ... pk
priorities pry, ..., pr;

restrictions rq ...7r,

where the s; are sort symbols, the p; are context-free productions of the form
a — A, the pr; priority declarations of the form p; R p;; with R a priority
relation, and the r; follow restrictions of the form o —~ cc with « a list of
symbols and cc a character class.

A production can have a number of attributes that may include the attribute
reject, which makes the production a reject production. A priority relation
is one of left, right, assoc, non-assoc or >. A symbol can be a character
class or some other symbol. Only character classes are interpreted during parser
generation. Other symbols constructed using symbol operators are simply in-
terpreted as a name. For instance, the symbol A+ used to indicate the iteration
of symbol A has no special meaning after normalization.

Given a grammar G the following projection functions are defined:

(

Syms(G) — symbols used in G
P(G) — productions of G
Pr(G) + priorities of G
R(G) — restrictions of G

3.2 Normalization

As an example of the normal form, consider the grammar in Figure 3. It com-
pletely describes the lexical and context-free syntax of expressions with identi-
fier, multiplication and addition—the same language described in the example
in §2. In fact, this grammar is derived from that grammar by application of a
normalization procedure. We briefly discuss the elements of this normalization
that is formally specified in Visser (1997¢). Refer to Figure 3 for examples of
the normalization rules.

Lexical and Context-free Syntar The most important aspect of the normal-
ization for this paper is the integration of lexical and context-free syntax. The
productions of lexical and context-free syntax are merged. In order to avoid
interference of lexical and context-free syntax the symbols in productions are
renamed. The symbols in the lexical syntax—except for character classes and

12

literals—are renamed using the symbol constructor (_~LEX). For instance, Id
becomes (Id-LEX) and [\97-\122]+ becomes <[\97-\122]+-LEX>. Similarly,
the symbols in the context-free syntax are renamed using (_-CF). Furthermore,
the symbols on the left-hand side of context-free productions are separated by
(LAYOUT?-CF), which entails that layout can occur at that position. In this
way two disjunct sets of symbols are created. The interface between lexical and
context-free syntax is now expressed by an injection {A-LEX) — (A-CF) for each

symbol A used both in the lexical and the context-free syntax.

Top Symbol A syntax definition defines a number of symbols. A text over
such a definition can be one produced by any of its symbols. For context-free
parsing we need a single start symbol from which all strings are generated. For
this purpose for each sort A a production

(LAYOUT?-CF) (A-CF) (LAYOUT?-CF) — (START)

is added to the grammar, defining the start symbol (START). The production
also defines that a string can start and end with layout. Furthermore, to express
the termination of a string the production

(START) [\EOF] — (Start)

defines that a string consists of a string generated by (START) followed by the
end of file character.

Character Classes Character classes are expressions of the form [cry .. . crp,]
where the cr; are either characters or character ranges of the form ¢—¢'. Charac-
ter classes are normalized to a unique normal form by translating the characters
to a numeric character code—the ASCII code—and by ordering and merging
the ranges such that they are in increasing order and do not overlap. This
normalization is formally specified and proven correct with respect to the set
interpretation of character classes in Visser (1997b).

Literals Literals are abbreviations for fixed lists of characters. Literals
are defined in terms of a production with the literal as result and singleton
character classes corresponding to the characters as arguments. For example,
the production

[\108] [\101] [\116] -> "let"

defines the literal "let" as the sequence of characters 1, e and t in ASCII.

Regular Fxpressions An extensive set of regular expressions including op-
tional, alternative, tupling, several kinds of iteration and permutation are ex-
pressed by means of defining productions. For instance, consider the definition
of <[\97-\122]+-LEX> in Figure 3, which defines a list of one or more lowercase
letters.

Priorities Priorities can be declared using chains of > declarations and
associativities of productions can be declared using groups and attributes. These
are all defined in terms of binary priority and associativity declarations.

13

sorts Id Exp

syntax

[\9-\10\32] -> <LAYOUT-LEX>

<LAYOUT-LEX> -> <LAYOUT-CF>

<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> {left}
-> <LAYOUT?-CF>

<LAYOUT-CF> -> <LAYOUT?-CF>

[\42] ->

[\43] o> ngn

[\97-\122] -> <[\97-\122]+-LEX>

<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>

{left}

<[\97-\122]+-LEX> -> <Id-LEX>

<Id-LEX> -> <Id-CF>

<Id-CF> -> <Exp-CF>

<Exp-CF> <LAYOUT?-CF> "#" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}

<LAYQUT?-CF> <Id-CF> <LAYOUT?-CF> -> <START>

<LAYOUT?-CF> <Exp-CF> <LAYOUT?-CF> —-> <START>

<START> [\EOF] -> <Start>
priorities

<[\97-\122] +-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>

left

<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122] +-LEX>,

<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> left

<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF>,

<Exp-CF> <LAYOUT?-CF> "#" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> >
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,
<Exp-CF> <LAYOUT?-CF> "#" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left
<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left
<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>

Figure 3: Expression grammar in normal form. The grammar contains no
restrictions or reject productions.

Modules An SDF2 definition can be divided over a number of modules.
Modules can import other modules. This is used to share common syntax defi-
nitions in several language definitions. Renamings of symbols and productions
can be used to adapt the definition in a module to some application. Fur-
thermore, symbol aliases can be used to abbreviate long regular expressions.
Modular syntax definitions are completely expanded by the normalization func-
tion.

14

3.3 Semantics

A syntax definition defines a language, i.e., a set of strings, and the structure
that is assigned to those strings. The strings of the language are important
to its users who write down programs. The structure of those strings is im-
portant for the definition of language processors such as compilers, interpreters
and typecheckers. The productions of an SDF2 definition describe both the
language and the structure assigned to strings in the language. The semantics
of a syntax definition is a set of parse trees from which a set of strings can be
derived. The mapping from trees to strings is achieved by taking the yield of
a tree. The reverse mapping from strings to trees is called parsing. At this
point, we formally define the semantics of context-free grammars without con-
sidering disambiguation rules such as priorities, reject productions and follow
restrictions.

A context-free grammar G generates a family of sets of parse trees T(G) =

(T(G)(X) | X € Syms(G)), which contains the minimal sets 7(G)(X) such that

cEcc
W (Char)
Al Ay 5 AEPG), h € T(G(A), .., tn € T(G)(An) (Prod)

[t1...tn = Al € T(G)(A)

In rule (Char) ¢ is a character and cc a character class. We will write ¢, for a
list #1 ...t, of trees where « is the list of symbols X5 ... X,, and t; € T(G)(X,)
for 1 <7 < n. Correspondingly we will denote the set of all lists of trees of type
a as T(G)(a). Using this notation [ty ...t, — A] can be written as [t, — A]
and the concatenation of two lists of trees ¢, and ¢s is written as t,tg and yields
a list of trees of type af.

The yield of a tree is the concatenation of its leafs. The language defined by
a grammar G is the family L(G) = (L(G)(X) | X € Syms(G)) of sets of strings
that are yields of trees over the grammar, i.e., L(G)(X) = yield(T(G)(X)). A
parser is a function II that maps a string of characters to a set of parse trees. A
parser II accepts a string w if [II(w)| > 0. A parser for a context-free grammar
G that accepts exactly the sentences in L(G) is defined by

I(G)(w) = {t € T(G)(X) | X € Syms(G), yield(t) = w}

A parser II is deterministic if |II(w)| < 1 for all strings w. A grammar is
ambiguous if there are strings with more than one parse tree, i.e, |II(G)(w)| > 1.

4 Disambiguation

Disambiguation methods are used to select the intendend tree from a set of pos-
sible parse trees for an ambiguous string. SDF2 provides three disambiguation
methods. Priority and associativity declarations are used to disambiguate con-
cise expression grammars. Follow restrictions and reject productions are used
to express lexical disambiguation. In this section we discuss these methods.

4.1 Disambiguation by Priorities

By using priority and associativity declarations, fewer grammar symbols have to
be introduced and a more compact abstract syntax can be achieved. Consider

15

the following grammar of expressions in a functional programming language
with binary function application and let binding.

sorts Var Term
lexical syntax
[a-z]+ -> Var
[\ \t\n]l -> LAYOUT
context-free syntax

Var -> Term

Term Term -> Term {left}

"let" Var "=" Term "in" Term -> Term

Term "=" Term -> Term {non-assoc}

"(" Term ")" -> Term {bracket}
context-free priorities

Term Term -> Term >

Term "=" Term -> Term >

"let" Var "=" Term "in" Term -> Term

An example term over this grammar is
let sum = foldr plus zero in sum lst

The grammar is disambiguated by means of priorities. The binary application
operator is declared as left-associative. This entails that = y z should be read as
(z y) z and not as = (y z). This is illustrated in Figure 4 that shows the right-
and left-associative parse trees for three adjacent terms. The priority declaration
defines applications to have higher priority than equalities. Consider the trees
in Figure 5. According to the priority declaration, the first tree has a priority
conflict and therefore only the second tree is a correct parse tree. The following
definition formally defines the notion of priority conflicts.

Definition 4.1 Given some grammar G with priority declarations Pr(G), the
set conflicts(G) of priority conflicts over grammar G is the smallest set of parse
tree patterns of the form [a[3 — B]y — A] such that:

aBy —- A>p — B € Pr(G)

[a[8 — Bly — A] € conflicts(G) (CFL)
v # ¢, B — B (right U non-assoc) By — A € Pr(G) (CF2)
[[8 = B]y — A] € conflicts(G)
a # €, f — B (left Uassoc U non-assoc) aB — A € Pr(G) (CF3)

[a[8 — B] — A] € conflicts(G)

A parse tree over a grammar G has a priority conflict if one of its nodes matches
a pattern [a[8 — B]y — A] € conflicts(G). O

Using the notion of priority conflicts we can define a filter on sets of parse
trees that selects the trees without a conflict. For example, according to rule
(CF3) and because of the declaration of application as a left-associative opera-
tor, the pattern

[(T-CF) (L?-CF) [(T-CF) (L?-CF) (T-CF) — (T-CF)] — (T-CF)]

16

<Term-CF> <Term-CF>

PN RN

<Term-CF> <L?-CF> <Term-CF> <Term-CF> <L?-CF> <Term-CF>

RN RN

<Term-CF> <L?-CF> <Term-CF> <Term-CF> <L?-CF> <Term-CF>

Figure 4: Left- and right-associative parse trees for binary term application.

<Term-CF> <Term-CF>
<Term-CF> <L?-CF> <Term-CF> <Term-CF> <L?-CF> "=" <L?-CF> <Term-CF>
<Term-CF> <L?-CF> "=" <L?-CF> <Term-CF> <Term-CF> <L?-CF> <Term-CF>

Figure 5: Two parse trees for application and equality.

describes a tree with a conflict. (Term and LAYOUT are abbreviated to T and L,
respectively.) Therefore, the second tree in Figure 4 has a conflict and the first
one is selected by the disambiguation method. According to rule (CF1) and
because application has higher priority than equality, the pattern

[[(T-CF) (L?-CF) "=" (L?-CF) (T-CF) — (T-CF)] (L?-CF) (T-CF) — (T-CF)]

is a member of the conflicts generated by the functional language grammar.
This means that the first tree in Figure 5 has a priority conflict. The second
tree has no conflict.

4.2 Lexical Disambiguation

If we consider the example of functional expressions again we see that it contains
two occurrences of lexical ambiguities.

4.2.1 Longest Match In the first place there is a longest match problem
caused by the syntax-less binary application operator. Two adjacent letters
could be the concatenation of two letters forming a variable, or it could be the
application of two single letter variables. Figure 6 shows two parse trees for the
string fa. In the first tree the concatenation of letter lists is used to make them
into a single variable. In the second tree each letter is interpreted as a variable
on its own. We want to solve this ambiguity by means of the longest match
rule that prefers the longest possible lexical token. In this case the string fa
as a single variable. We define the longest match notion formally by comparing
the lengths of tokens. For this definition we first need the notion of the token
stream associated to a parse tree.

Definition 4.2 (Token Stream) The token stream associated with a parse
tree is the list of subtrees that have as root either an injection (A-LEX) — (A-CF)
or a literal defining production. The length |¢] of a token # is the number of
characters in its yield. O

17

According to this definition the token streams for the trees in Figure 6 are
the single token

[[[[f — <[a-z]+-LEX>][a — <[a-z]+-LEX>] — <[a-z]+-LEX>]
— <Var-LEX>] — <Var-CF>|

and the tokens

[[[f = <[a-z]+-LEX>] — <Var-LEX>] — <Var-LEX>]
[[[a = <[a-z]+-LEX>] — <Var-LEX>] — <Var-LEX>]

The idea of longest match disambiguation is to compare two token streams from
left to right. While the tokens have the same length the streams are similar.
The first token that differs in length solves the ambiguity by taking the tree
associated with the longer token. In the example above, the first token stream
is larger because its first token has length 2 while the first token of the second
stream has length 1.

<Term-CF> <Term-CF>
| P N
<Var-CF> <Term-CFE> <L?-CF> <Term-CE>
| | |
<Var-LEX> <Var-CF> <Var-CF>
| | |
<l[a-z]+-LEX> <Var-LEX> <Var-LEX>
| |
<[a-z]+-LEX> <l[a-z]+-LEX> <[a-z]+-LEX> <[a-z]+-LEX>
| | | |
£ a £ a

Figure 6: Two parse trees for fa over the functional expression grammar.
Formally we have the following definition of longest match disambiguation:

Definition 4.3 (Longest Match) Given the token streams t;...t, associ-
ated with the tree t and s; ... s,, associated with tree s, tree t is larger in the
longest match ordering >, than s (t >, s), if there is some 1 < ¢ < min(n,m)
such that |t;| = |s;| for 1 < j < and |t;]| > [s4]. O

This definition can be used as a method to filter parse forests by selecting
the largest trees according to the longest match ordering. However, because
a longest match ambiguity causes an exponential explosion of the parse forest
this is not feasible. We need a method that can be applied during parsing,
if possible as a filter on parse tables. A naive solution for the longest match
problem in the example above is to require non-empty layout as a separator
between the two terms of an application. In the example this would indeed solve

18

the problem because the second tree would be forbidden. However, this solution
is immediately refuted by considering the expression f (a), where brackets are
used around the argument.

A method that works in all cases we have encountered so far is that of follow
restrictions. A follow restriction of the form A; ... A, -/ cc declares that the
symbols A; should not be followed by any of the characters in the character
class ce. In the example above the restriction

lexical restrictions
Var -/- [a-z]

forbids a variable to be followed by a letter. This entails that the second tree
in Figure 6 violates the follow restrictions and the desired first tree is selected.

4.2.2 Prefer Literals The second problem in the functional expression gram-
mar is the overlap between the literals "let" and "in" and variables. This is
particularly problematic in combination with the = operator on terms. A let
binding let x = t1 in t2 can be interpreted also as an equality (let x) =
(t1 in t2), where let and in are now read as variables. We clearly want to
declare let and in as reserved words of the language that should not be used
as variables. This lexical disambiguation rule is called ‘prefer literals’ and can
be defined formally as follows.

Definition 4.4 (Prefer Literals) A tree violates the prefer literals rule if it
contains a subtree with function (A-LEX) — (A-CF) and the yield of that tree
is also used as literal in the grammar. O

This rule can be expressed by means of reject productions. A reject produc-
tion is a production a — A attributed with the attribute reject. It declares
that a string is not of type A if it can also be derived from «. For example to
disambiguate the grammar above we add the following productions.

lexical syntax
"let" -> Var {reject}
"in" -> Var {reject}

This creates an ambiguity: let can be a variable in two ways, via the lexical
definition or via the production above. Because this is a reject production both
derivations are forbidden, i.e., 1et can only occur in the context of a 1let binding.
We also need the restrictions

lexical restrictions
"let" "in" _/_ [a—z]

to prevent letter to be interpreted as the literal 1let and the variable ter. We
will further discuss some properties of reject productions in §7.

4.2.8 Automatic Lexical Disambiguation We have defined two extensions of
context-free grammars that enable us to express lexical disambiguation rules on
grammars for integrated lexical and context-free syntax. However, it is desirable
to derive the rules for lexical disambiguation automatically from the grammar.
In §6 we will discuss this issue, after we have discussed parser generation.

19

5 Parser Generation

We have discussed a grammar formalism with disambiguation methods for con-
cise definition of lexical and context-free syntax of languages. Now we turn our
attention to deriving parsers from such syntax definitions. In this section we
present the rules for the generation of parse tables for a shift-reduce parser. The
rules constitute a modification of the well known SLR(1) algorithm. We first
discuss shift-reduce parsing.

5.1 Shift-Reduce Parsing

A shift-reduce parser is a transition system that manipulates its state consisting
of a stack and an input stream by repeatedly shifting a symbol from the input to
the stack or reducing a number of elements on top of the stack to a single element
until it enters an accepting state. The transitions between parse configurations
are determined by the functions ‘actions’ and ‘goto’ as defined by the following
transition rules:

actions(sm, a;) O shift(smi1)

(Shi)
(sot151 - tmSm @i ...an) = (Sot181 - - tmSmAiSmt1 ® Qig1 - .. Ayp)
actions(sm, 4k, @;) O reduce(p, k),
s = gOtO(S"Hp)a t= tree(p7 [tm+17 Ty tm+k]) (Red)
(Sot] P tm,Sm,tm+]Sm+] PN tm+ksm,+k ® ;... (I,n)
= (sot1 ... tmSmts ®a;...ay)
actions(sy, \EOF) 3 accept (Acc)

(sot181 ® \EOF) = accept(t)

Here a configuration (spt181...tmsm ® a;...ay) consists of a stack on the left
side of the e and a list of input characters on the right side of the o. The stack is
filled alternatingly with states s and trees t. Parsing starts in the configuration
Co = (sgeaj...a,), where sg is the initial state of the parser. Parsing succeeds
if there is some sequence of steps Cp = Cy = ... = accept(t) that ends in the
accepting configuration accept(t).

There are various ways to define the actions and goto functions that drive
a shift-reduce parser. The SLR(1) algorithm of DeRemer (1971) and Anderson
et al. (1973) is a simplification of the LR(k) parsing algorithm of Knuth (1965).
It works by first constructing an LR(0) parse table. This involves no lookahead
sets in the parse items. The lookahead of reductions is constrained to the follow
set of the nonterminal defined by the production being reduced.

In the rest of this section we describe a modification of the SLR(1) algo-
rithm that incorporates priorities and follow restrictions. This modification is
based on the derivation in Visser (1997a), where starting with a schema for Ear-
ley’s parsing algorithm, a parsing schema is derived such that the parser does
not build trees with priority conflicts. Other changes are the use of character
classes, the use of productions instead of symbols in follow and goto and the
interpretation of follow restrictions to restrict the lookahead set of reductions.

5.2 First

The first set for a symbol contains those symbols with which a phrase for the
symbol can start. Given some grammar G, define for each list of symbols a and

20

each character class cc the first characters in a followed by cc is the smallest
character class first(a, cc) such that:

first(e, cc) = cc (Fil)
first(cc' o, cc) = e’ (Fi2)
a— AeP(G) (Fi3)

first(AB, cc) D first(ap, cc)

The definition of the first set can be extended to the set of symbols that starts
a sentence derived from a list of symbols.

a— AeP(G)
firsts(AB, @) D {A} Ufirst(af, @)

(Fid)

5.3 Follow

In the conventional SLR(1) algorithm the follow set is computed for each non-
terminal of the grammar. It maps a nonterminal to the set of terminals that
can follow that nonterminal in a sentence, i.e.,

aApB —* (Start)
follow(A) D first(3, 0)

This can be computed as the closure of

BAy — B € P(G)
follow(A) D first(+y, follow(B))

(Fol)

that adds the characters in the first set of v to the follow set of A if « follows
A in some production. The follow of B is added in case v can also produce the
empty string.

This notion can be refined to the follow-set of productions. The rule

BAy — B € P(G)

Fo2
follow(a — A) D first(y, follow(8Ay — B)) (Fo2)

defines the follow-set of production o — A as those characters that can follow
A in some context. In case of plain context-free grammars, rule (Fo2) has the
same effect as rule (Fol). But if we consider priorities, the rule is extended to

BAy — B € P(G),[Bla — A]ly — B] ¢ conflicts(G)
follow(a — A) D first(y, follow(8Ay — B))

(Fo3)

Here the follow-set of a production is restricted to those contexts where it can
actually be used without causing a priority conflict. For instance, in the expres-
sion grammar of §2, the follow-set of the addition production does not contain
the character * because addition can not occur as a direct descendant of multi-
plication.

Finally, if the grammar also defines follow restriction rules A -~ cc, the
follow-set of a production for A can be further restricted as

BAy — B € P(G),[Bla = A]ly — B] & conflicts(G), A -4~ cc € R(G)

Fo4
follow(a — A) D first(v, follow(8Ay — B)) \ cc (Fod)

21

The production can be followed by the difference of the first set of the right
context and the character class cc.

To see the effect of the last rule consider the follow-set of the production
[a-z]+ -> Var in the functional expression grammar of the previous section.
Because of the application production and the injection of variables into terms,
the follow-set of [a-z]+ -> Var is [\EOF\t\n\ \(\)\=a-z]. The lexical re-
striction Var -/- [a-z] removes the character class [a-z] from this follow-set,
resulting in [\EOF\t\n\ \(\)\=]. This entails that a variable cannot directly
be followed by a letter.

5.4 Goto Table

The states of an LR parser are formed by item-sets. An item is an object of the
form [a e f — A], i.e., a context-free production with a e somewhere in between
the symbols on the left-hand side. Such an item indicates that a sentential form
of type a has already been recognized.

The initial state of the parser for grammar G is the item-set init(G) defined

init(G) = closure([e(START) [\EOF] — (Start)])

This state expresses that a sentence can be recognized by recognizing a string
of sort (START) followed by the special end of file character that indicates the
end of strings.

The closure of a set of items adds all initial items to an item set for which
the result symbol is predicted by one of the items in the set.

7 C closure(Z) (Cl0)
[e Bf — A] € closure(Z), v = B € P(G)
[¢y — B] € closure(7)

(Cl1)

In the presence of priorities the closure is restricted to those items that do not
cause a priority conflict.

[@ e BB — A] € closure(Z), v = B € P(G),
[a[y = B]B — A] ¢ conflicts(G)

[ey = B] € closure(Z)

(C12)

For example, the item [E4+ E — E] is not added to the closure as a result of the
item [E + o E — E] if this production is left-associative, because [E + [E+ E —
E] — E] is a conflict pattern

The parsing of a string starts with the parser in the initial state. Upon
recognition of a symbol, either by reading a character or by completing a pro-
duction, the parser can enter other states as prescribed by the transitions of the
goto graph. The goto function maps an item-set to another item-set, given the
symbol that has been recognized. The function ‘goto’ is defined by

goto(X,Z) = closure(shift(X,Z))

i.e., create a new item-set by shifting the e over the symbol X and produce the
closure of the resulting item-set. In normal LR(0) parsing a shift with a symbol

22

B creates an item-set containing all items of the previous set that have the e
before a B symbol.
[xe BB — Al €T
[aB e 3 — A] € shift(B,Z)

(Sh1)

We refine the definition of shift to shifting with characters and shifting with
productions. Shifting an item-set with a character or character-class is defined
by the rule

[dece B— Al €T, cc Ced
[a cc' @ B — A] € shift(ce, T)

(Sh2)

The character-class cc induces a shift of each item that predicts a character-class
cc’ that is a superset of cc.

Shifting with nonterminals is refined to shifting with complete productions.
A shift is only successful if the production do not cause a priority conflict as a
direct descendant at the position of the predicted symbol.

[x e BB — A]l € Z, [a]y — B|B8 — A] ¢ conflicts(G)
[aB e 8 — A] € shift(y - B,Z)

(Sh3)

For example, the production £ + E — FE cannot be used to shift the item
[E+eFE — E] if this production is left-associative, because [E+ [E+ E — E] —
E] is a conflict. This restriction of the closure and goto functions guarantees
that we can never enter a state where we have built a parse tree with a priority
conflict.

5.5 Action Table

The action table declares the actions to be taken in each state. Given an item-
set, the function ‘actions’ maps a character to the set of actions that the parser
can take. If the set of actions is empty the parser has reached an erroneous
state. If the set contains more than one action there is more than one way to
proceed.

[xeccB = Al€T, ¢ €cc

actions(Z, ¢) 3 shift(goto([c],Z)) (Shi)

[ve — A] € Z, ¢ € follow(a — A)

actions(Z, ¢) 3 reduce(a — A, |al) (Red)
[(START) o [\EQF] — A] € T e

actions(Z, \EOF) 3 accept

Note that shift(Z) denotes the shift action to state Z, whereas shift(X,7) is
the application of the shift function defined above.

The following proposition states that the actions and goto functions defined
above constitute a correct shift-reduce parser.

Proposition 5.1 (Correctness) Given the actions and goto functions for a
grammar G, we have that (init(G) e w) =* accept(t) iff t € II(G)(w) and t con-
tains no priority conflicts according to Pr(G) and violates no follow restrictions

in R(G).

23

5.6 Remarks

The transition rules for shift-reduce parsing are non-deterministic. If more than
one action is possible in some configuration more than one transition is possible.
If the actions function is deterministic, at most one transition path is possible
for a string. Traditional parsing techniques only accept grammars that have a
deterministic action function. In §8 we will discuss an efficient implementation
for non-deterministic actions functions.

The rules for parser generation above ignore reject productions, i.e., they are
treated just like other productions. In §7 we will discuss how reject productions
can be interpreted by means of a filter on parse forests. In §8 we will discuss how
reject productions can be interpreted during parsing by means of an adaptation
of the GLR algorithm. For this purpose, an item-set 7 is marked as rejectable
if it can be reached using a reject production, i.e., 7 is rejectable, if there is an
7' such that goto(a — A,7') =7 and a — A is a reject production.

6 Automatic Lexical Disambiguation

In §4 we discussed the specification of lexical disambiguation by means of follow
restrictions and reject productions. Although this is an effective way to express
lexical disambiguation, it is rather tedious to write down the rules. Therefore,
it would be desirable to derive lexical disambiguation rules automatically from
the other grammar rules such that the grammar is disambiguated according to
the longest match and prefer literals criteria. Here we discuss some possibilities.
The perfect rules for longest match disambiguation have not been found yet. It
is a question whether this is possible at all, since it is undecidable whether a
context-free grammar is ambiguous.

6.1 Prefer Literals

The prefer literals disambiguation rule can be expressed by generating reject
productions according to the following rule:

"c1...cn" € L({A-LEX))
c...cp" — (A-LEX) {reject} € P(G)

i.e., if the literal is a lexical phrase of sort (A-LEX) there is an overlap the
reject rule is added to the grammar. This implements the reserved keywords
rule. The only (implementation) problem is that a parser is needed to recog-
nize the literals as lexicals. This can be solved by first generating a parser for
the grammar without reject rules and using that parser to determine overlap
between literals in the grammar and lexical categories. Reject rules can then be
added to the grammar accordingly and a new parser can be generated for the
extended grammar.

State Fxplosion A problem with reject productions to exclude keywords as
lexicals is that it can add many items to item-sets. For instance, if a language
contains 200 keywords that match with the identifiers of the language, each item-
set containing an item [a o (Id-LEX)S — A] would be expanded with 200 items
[e"ci...c," — (Id-LEX) {reject}] and 200 items [o[ci]...[cn] = "c1...cn"]

24

along with many extra transitions. To prevent this expansion, we define the
rejection of literals in an indirect way, as follows:

"ep...en" € L({A-LEX))
() (A-LIT) — (A-LEX) {reject} € P(G)
"ep...cp" = (A-LIT) € P(G)

where the symbol () denotes the empty phrase, i.e., there is a production — ().
The sort (A-LIT) is used to collect all literals to be rejected from (A-LEX). The
production () (A-LIT) — (A-CF) {reject} defines the rejection for all literals
at once. The effect of the empty symbol () in the second production is that only
the item [o() (A-LIT) — (A-LEX)] is added when (A-LEX) is predicted. This
will cause a reduction with the production — () to an item-set where (A-LIT)
is predicted. This item-set is only computed once and is reused for all other
item-sets that predict (A-LEX). It is the initial state of a finite automaton for
the matching of literals.

As an example, consider how the prefer literals rule for our functional lan-
guage example is expressed using this modified rule:

syntax
() <Var-LIT> -> <Var-LEX> {reject}
"let" -> <Var-LIT>
"in" -> <Var-LIT>

Local Exclusion An alternative for the expression of the prefer literals rule
is the rule

{[#(A-LEX) — (A-CF)], [o[c1]...[cn] = "¢1...¢cn"]} C closure(Z)

[e"ci...cp" — (A-CF) {reject}] € closure(Z)

that locally forbids predicted literals as lexicals by extending the parser gen-
erator. This does not implement the reserved keywords rule in the sense of
forbidding the use of a keyword as a lexical in all positions. Only when a lexical
and a literal can appear in the same place, the literal is preferred. Therefore, it
might still lead to ambiguities.

6.2 Longest Match

It is less straightforward to find a general rule to express ‘longest match’ using
follow restrictions. An attempt is the rule

(B-LEX) € follows({A-LEX) — (A-CF))
(A-LEX) -/ first((B-LEX)) N last((A-LEX)) € R(G)

This restricts the follow set of (A-LEX) by excluding the elements of the first
set of (B-LEX) that can also be used at the end of (A-LEX) for those (B-LEX)s
that can follow the injection (A-LEX) — (A-CF). Here follow, is the extension
of the follow function to produce all symbols that can follow a production.

(FR)

This rule is adequate in many cases. Consider for instance the functional
expression grammar. The follow restriction for Var in §4.2.2 is derived exactly
using this rule. However, the rule is not general enough. One counter example is
the following grammar of expressions with single character variables and implicit
multiplication operator. This describes mathematical expressions such as zy
that denotes the multiplication of z and y.

25

lexical syntax

[a-z] -> Var

[\ \t\n] -> LAYOUT
context-free syntax

Var -> Exp

Exp Exp -> Exp {left}

Rule (FR) would forbid xy as an expression forcing the use of whitespace, i.e.,
x y. Although this example shows that rule (FR) is unsound if considered as
an analytic rule, one could also consider it as a normative rule forcing a clearer
style of language definition.

Rule (FR) generates follow restrictions for lexicals. We also need restrictions
for literals overlapping with lexicals. For instance, the restrictions

lexical restrictions
"let" "in" _/_ [a—z]

forbids the interpretation of letter as the literal 1let and the variable ter. The
following rule adds restrictions to prevent this overlap.

(A-LEX) € follow("c; ...cn"),
c € first((A-LEX)), "¢p ...c,c" € L((B-LEX))

3

"er ..o] € R(G)

If the literal L = "¢ ...¢," followed by some character ¢ from the first set of
a lexical (A-LEX) that is a member of the follow set of L can form a lexical
(B-LEX), there is a longer match than the literal L. Therefore, ¢ is restricted
from the follow set of the literal.

This rule is stronger than the longest match filter we formulated before.

It can forbid sentences that have a single unambiguous interpretation. For
instance, consider the string let x = 1 int. Here int is forced to be read as
a variable and not as the juxtaposition of the literal in and the variable t.

It is clear that these rules are not the final word about fully automatic lexical
disambiguation. Further research is needed to decide what is sufficient.

7 Reject Productions

In §4 we introduced reject productions to express ‘prefer literals’ lexical dis-
ambiguation. The parser generator discussed in §5 treats reject productions as
normal productions. This will cause ambiguous parses for those cases where
a normal production and a reject production overlap. In this section we first
define the semantics of context-free grammars with reject productions, then we
investigate several properties of such grammars including an interpretation of
rejects to solve such ambiguities. [The author thanks Jan van Eijck and Annius
Groenink for the email discussion that led to the results in this section.

7.1 Semantics

The semantics of reject productions is obtained by refining the inductive defi-
nition of parse trees from §4. The inductive rule (Prod) is restricted to exclude

26

the construction of parse trees that have a yield that could be obtained via a
reject production.

A context-free grammar G with reject productions generates a family of sets
of parse trees T.(G) = (7.(G)(X) | X € Syms(G)), which contains the minimal
sets 7.(G)(X) such that

cEcc
€ THG)(e0)
Ay A, > AeP(9), t1 € Te(G)(A1), ..., tn € TH(G)(AL),
-38 — A {reject} € P(G),t5 € T.(G)(B) : yield(tg) = yield(t; .. .t,)
[t1...tn = A] € T.(G)(A)

(CharR)

(ProdR)

The second condition of (ProdR) excludes from 7,(G)(A) those trees for which
an A tree with the same yield could be built using a reject production at its
root. This second condition is the only difference with the definition of T(G),
ie., we have 7.(G) C T(G). Note that only trees in 7,(G)(83) are excluded.
That is, if there are nested reject productions such that some tree in 7(G)(3)
is rejected and thus not part of 7.(G)(3), then it is not used to exclude trees
using — A {reject}.

Unfortunately, this definition is inconsistent for grammars with a cycle con-
taining a reject production. For instance, consider the grammar

syntax
[a] -> A
A -> B

B -> A {reject}

and consider whether the string a is a member of the language of this grammar:
if [a = A] € T:(A4), then [[a = A] — B] € 7T,(B) and hence [a — A] ¢ T.(A).
Conversely, if [a — A] € T:(A4), then [[a - A] — B] ¢ T.(B) and hence
[a = A] € T.(A). For this reason, we restrict the class of grammars that we
want to consider to grammars that do not contain a cycle (disregarding the
rejects) for which one of the transitions is via a reject production.

7.2 Expressive Power

In the rest of this section we explore some of the properties of reject productions.

a™b"c" First of all context-free grammars with reject productions can be
used to describe some non-context-free languages. Consider for example, the
language a™b™c™ with n > 0, which is a standard example of a non-context-free
language. The following grammar, due to Van Eijck (1997), defines this language
using reject productions. The first four productions define the language a*b*c*.
The next four productions define the sorts D and E denoting, respectively, a™b™
and b"¢™. The last four productions exclude from sort S all strings for which
one of the pairs 2™y™ have unequal numbers of zs and ys.

Ax Bx Cx —> S ->D D B+ Cx -> S {reject}
"a" -> A ADB ->D A+ D C* -> S {reject}
"b" -> B -> E Ax B+ E -> S {reject}
"c! -> C BEC->E Ax E C+ -> S {reject}

27

Difference Given a context-free grammar defining sorts A and B we can
define the difference of the languages of these sorts by adding the following
productions.

A -> AminB
B -> AminB {reject}

The first adds all A trees to AminB, the second excludes from this all A trees that
match with a B tree.

Intersection Extending this result, we can express the intersection between
sorts A and B by adding two new sorts AminB and AandB and by adding the
following productions:

A -> AminB A -> AandB
B -> AminB {reject} AminB -> AandB {reject}

This defines AminB as the difference A—B, and AandB as the difference A— (A —B),
i.e., the intersection of A and B.

We can generalize the results above. Given two context-free languages, we
can express the difference and intersection of those languages using context-free
grammars with reject productions. Take the union of the context-free grammars
for the two languages, after renaming symbols to prevent interference. Then add
productions for the sorts to be intersected as explained above.

Weak Complement 1If we are only interested in the strings that can be
generated from a grammar (and not in their structure), the complement of a
the language generated by sort A is defined by extending a grammar with the
following rules:

“[1* -> NotA
A -> NotA {reject}

The first production defines the complement of A as a string of arbitrary char-
acters. The complement ~[] of the empty character class is the character class
with all characters. The second production excludes from this language all
strings in the language of A. Using this complement we can of course also ex-
press the weak intersection of two sorts.

Decidable We have seen that context-free grammars with reject productions
are very expressive. It is now appropriate to ask whether it is even decidable
whether a string is in the language of such a grammar. The following theorem
states that this is indeed the case. The proof uses the notion of a parse forest
that will be discussed in the next section. For the proof of the theorem we need
the following proposition about generalized-LR parsers.

Proposition 7.1 Let G be a context-free grammar. If t1,t2 € T(G)(A) and
yield(t;) = yield(t2) = w, then a GLR parse of w will result in an ambiguity

node with t1 and ty as possibilities.

Theorem 7.2 The parsing problem for context-free grammars with reject pro-
ductions (without rejects in cycles) is decidable.

28

<Var-LEX> <Var-LEX>

"let" <l[a-z]+-LEX>

/1\ N

e t <[a-z]+-LEX> <[a-z]+-LEX>

A\ |

<[a-z]+-LEX> <[a-z]+-LEX> t

1 e

Figure 7: Ambiguity node caused by overlap between syntax for <Var-LEX> and
reject production "let" -> <Var-LEX>

Proof. Given a context-free grammar G with reject productions (without
rejects in cycles), construct a generalized-LR parser for G ignoring the reject
annotations. The result is a parser for a possibly ambiguous context-free gram-
mar. Now, given a string, parse it with this parser. If parsing fails, the string
is also not in the language of the grammar with reject productions. Otherwise,
the result of parsing is a parse forest. Since cycles do not contain rejects, these
can be removed from the forest.

Now, if a tree t = [t ...t, — A] should be rejected according to the second
condition of rule (ProdR), there is a reject production S — A and trees t3 such
that yield(tg) = yield(¢; ...¢,). But then, yield([tg — A]) = yield([t;...t, —
A]) and hence, according to the proposition above, the parse forest contains an
ambiguity node on top of ¢ also containing [tg — A] as possibility.

Reject productions are now interpreted by traversing the forest, in a bottom-
up manner, marking tree nodes according to the following rules: (1) Leafs are
not marked. (2) A reduction node is marked if any of its direct descendants is
marked. (3) An ambiguity node is marked if either all its direct descendants are
marked, or if it contains an unmarked tree with as root label a reject production.
Since the parse forest is finite, this procedure terminates.

If the root of the parse forest is marked after this procedure, the string is
not accepted by the grammar, otherwise it is accepted and the forest without
marked nodes represents all parse trees for the string. O

The tree in Figure 7 illustrates the proof. The overlap between the literal
"let" and the syntax for variables causes an ambiguity. The ambiguity node
is marked because "let" -> <Var-LEX> is a reject production. Therefore, the
interpretation of let as a variable is dismissed.

This shows that we can construct a complete implementation of parsers
for grammars with reject productions. In the next section we will discuss how
reject productions can be interpreted during parsing to influence parse decisions
to prevent trees with rejected subtrees from being built at all.

29

FEzpressive Power From the above we can conclude that context-free gram-
mars with reject productions are stronger than pure context-free grammars, but
have a decidable parsing problem. This gives a lower bound and upper bound
for the expressive power of the formalism, but it is an open question what class
of languages is described by context-free grammars with reject productions.

Regular Rejects We introduced reject productions in order to express the
prefer literals rule. This means that only a regular language is excluded from a
context-free one. This gives us the guarantee that the resulting language is still
context-free. We could exploit this property and restrict the formalism to such
regular reject productions and implement these by means of a grammar trans-
formation. However, such a grammar transformation would probably yield large
grammars. Furthermore, our implementation gives a general way to express the
prefer literals rule and it allows the expression of other interesting grammars
that have not been in the reach of declarative specification. This feature can
give rise to as yet unforeseen applications.

8 Generalized-LR Parsing

In §5 we have defined the generation of shift-reduce parsers from context-free
grammars with priority declarations and follow restrictions. If the actions func-
tion derived from a grammar is deterministic then the shift-reduce parser is also
deterministic and can be implemented in a standard way.

However, since we do not restrict the class of grammars, it is not guaranteed
that the actions function is deterministic. This can have two causes: (1) The
lookahead needed for the grammar is more than provided by the parser gener-
ator. (2) The grammar is ambiguous. In the case of scannerless parsing we will
frequently see grammars for which unbounded lookahead is needed. This entails
that no variant of the LR parser generation algorithms will produce a determin-
istic actions function. Therefore, we need a non-deterministic implementation
of the shift-reduce parsing algorithm. When a configuration is reached where
more than one action is possible, all possibilities should be tried. In case of
unbounded lookahead only one of the possible transitions leads to an accepting
configuration. In case of an ambiguous string, multiple accepting configurations
will be reached giving all possible parse trees for the string.

The advantage of such a non-deterministic approach is, first of all, the un-
bounded lookahead that it provides. Furthermore, a parser producing all parse
trees for an ambiguous string can be used as a front-end for a disambiguation
filter that selects the correct tree according to some disambiguation method.
Finally, it is undecidable whether a grammar is ambiguous or has lookahead
problems. Having a parser that yields all possible parses can help in detect-
ing the ambiguities and resolve them in a much easier way than by inspecting
conflicts in a parse table.

A naive way to implement such a non-deterministic parsing algorithm is
to copy the entire configuration at each point where two or more actions are
possible and to continue parsing with each those configurations. This will not
be very efficient because of the memory requirements and because it will not
reuse parses for substrings that are the same in two forked off configurations.
Generalized-LR parsing is an efficient implementation of non-deterministic shift-
reduce parsing. A GLR parser deals with conflicts in the parse table by splitting

30

the parser into as many parsers as there are conflicts. If the conflict was due to
a lack of lookahead, some of the parsers will not succeed in parsing the sentence
and will die. If several parsers succeed in parsing, the grammar was ambiguous.
In that case parse trees for all possible parses are built.

Generalized-LR parsing was developed for natural language processing by
Tomita (1985). It is a specialization of the more general framework of Lang
(1974) (later also described in Billot and Lang (1989)) for creating generalized
parsers. The algorithm was improved by Rekers (1992) and applied to parsing of
programming languages. The feasibility of GLR parsing for parsing of program-
ming languages has been shown by the experience with GLR in the ASF+SDF
Meta-Environment (Klint, 1993). More experience with GLR parsing of pro-
gramming languages using an adaptation of Reker’s algorithm is reported by
Wagner and Graham (1997).

Besides the non-determinism in the parse table, we also need to interpret the
reject productions in the grammar. In the previous section we showed how reject
productions can be interpreted as a disambiguation filter after parsing. But we
would rather interpret them earlier. In this section we explain GLR parsing and
present an adaptation of the algorithm to interpret reject productions during
parsing.

8.1 DParse Forest

A generalized parser deals with ambiguous grammars by producing all possible
parse trees for an ambiguous string. In GLR parsing the possible parse trees
are represented by means of a parse forest. This is a compact representation of
a set, of parse trees. A parse tree is constructed using application and ambiguity
nodes. An application node represents the application of a production to a list
of subtrees. An ambiguity node represents a set of possible parse trees for a
(sub)string. By packing all trees for a substring into an ambiguity node, these
parses can be shared in all trees for strings containing the substring.

For example, consider the following grammar of simple expressions with
ambiguous addition and multiplication operator.

sorts Exp
syntax
[a-Z] -> Exp
Exp "+" Exp -> Exp
Exp "x" Exp -> Exp
Exp -> <START>

To keep the example small, layout is not allowed between the tokens. The
parse forest for the ambiguous string a+b*c is shown in Figure 8. The ellipse
represents an ambiguity node. Observe that various subtrees are shared in the
forest.

8.2 Graph Structured Stack

A GLR parser deals with conflicts in the parse table by maintaining a number of
stacks in parallel. Each time a parse stack leads to n conflicting actions, n new
stacks are created that continue the parse with those actions. These stacks are
not copies of the old stack. The new top nodes have pointers to the old stack. If

31

<START>

Figure 8: Parse forest with sharing for ambiguous string a+b*c.

in a later stage two stacks get into the same state, the stacks are merged again.
In this manner a graph structured stack is built in which parses for ambiguous
substrings are shared.

A graph structured stack node consists of a state number and a list of links.
Each link contains a reference to a node in the parse forest and a reference to
the previous stack.

As an example of the working of a GLR parser, consider the sequence of stack
configurations during parsing the string a+b*c in Figure 9. This is the parse that
created the parse forest in Figure 8. The figure shows the stacks during each
cycle of the parsing algorithm. After shifting a character, all possible reductions
are performed and then the next character is shifted. The trees pointed to by
the stack links are abbreviated by their yield using square brackets to show the
structure. The symbol after the colon denotes the main type of the tree at the
link. We consider the configurations one by one.

(a) The initial stack with state 0 is created. The character a is shifted.

(+) The character a reduces to an expression using the production [a-z] ->
Exp. The symbol + is shifted.

(b) The character + reduces to the literal "+". The character b is shifted.

(*) The character b reduces to an expression. The sequence [a+b] reduces to
an expression, resulting in a link from state 1 to state 0. From states 1
and 12 a shift can be performed with the next character *. Because both
shifts lead to a stack with state 9, a single stack is created that has links
to the two stacks.

(c) The character * reduces to the literal "*". The character c is shifted.

(\EOF) The character c reduces to an expression. Now there are two possible
reductions from the stack with state 13. First reduce [b*c] and then
reduce [a+[b*c]], or reduce [[a+b]*c]. Both reductions result in the
creation of a stack with state 1 with a link to the initial stack. These

32

[[a+b]*c]|[a+[b*c]] : Exp
[
[[atbl*c]|[a+[b*c]] : <START>

Figure 9: Parse configurations for the parse of string a+bx*c.

stacks are shared and an ambiguity node is created that represents the
two possible parse trees. At this point the entire string has been read and
the next symbol is \EOF. Therefore, the expression is reduced to (START)
and the string is accepted. The stack with state 2 is the accepting stack
and the tree pointed to by its link is the parse tree for the entire string.

33

: <L?-CF>
o

1 19 | |28

: <[a-z]+-LEX>

: <[a-z]+-LEX>

[le] t

: <[a-z]+-LEX>

: <[a-z]+-LEX>

[let] : <Var-LEX>

[[le]t] :

<[a-z]+-LEX>

[let]|[[lelt] : <Var-CF>

<Term—-CF>

[let]ll[[lelt] :

Figure 10: Parse of let x... when reject is ignored.

8.3 Reject Reductions

In §4 disambiguation with reject productions was introduced in order to express
the prefer literals rule. In §7 we outlined a procedure for interpreting reject
productions after parsing by pruning the parse forest. We would rather interpret
reject productions during parsing to prevent trees containing reject productions
from being built.

To understand how this can be achieved, recall the parse forest in Figure 7
that shows the ambiguity that is created when parsing the substring let in
the functional expression grammar defined in §4.1. It can be interpreted us-
ing the lexical productions for variables or using the reject production "let"
-> <Var-LEX> {reject}. Pruning this forest causes the ambiguity node to
be eliminated from the parse forest, thereby rejecting the reading of let as a
variable.

The parse configurations for this parse in Figure 10 show how this ambiguity
is created. In the first three configurations the letters 1, e and t are read.

34

: <[a-z]+-LEX>

]
]

[le] :

<[a-z]+-LEX>

[let]

R
e 12 \32
L

[let] : <Var-LEX>

<[a-z]+-LEX>

[[le]lt] :

\32

: <L-LEX>
: <L?-CF> let] : "let"
H:[— - H

: <L-CF>

:X 18

Figure 11: Parse of let x... with reject production that forbids let as a
variable.

The fourth configuration is the interesting one. There are three parses for the
substring let: as a variable constructed with <[a-z]+-LEX>, as the literal "let"
of the reject production "let" -> <Var-LEX>, and as the literal "let" as part
of the let construct. The reduction of the literal results in a stack with state 12.
The reduction of the lexical and the reject rule lead to a merged stack with
state 10 from where another reduction first leads to a stack with state 9 and
then leads to a term and a stack with state 14. From the states 9, 12 and 14
parsing continues with a shift of the space character |, (32) to state 6.

The idea for the implementation of the reject rule is to forbid further actions
with a state that has been reached using a reject reduction. The link that is
created when reducing with a reject production is marked as rejected. If all
links of a stack are marked as rejected all shifts and reductions from that state
are forbidden.

In the last configuration of Figure 10 this would entail that the link from the
stack with state 10 to the stack with state 4 is rejected. Therefore, the reduction
to state 14 and the shift to state 6 would be forbidden. This is exactly what
happens in the parse shown in Figure 11. The dotted link is rejected and no
actions are performed from its stack. The parse of 1let as variable is preempted.
In the next configuration parsing continues only with the stack with state 12,
corresponding to a parse of let as a literal.

35

8.4 The Algorithm

Below the complete SGLR algorithm is presented. The differences with the
GLR algorithm of Rekers (1992) are the use of productions in the goto function
and the handling of reject reductions. Furthermore, the parser does not make
use of a scanner, but reads characters from a file or string. This could of course
be a stream of token codes and does not make a difference to the algorithm. As
we discussed in the §5 character classes are handled in the parse table and are
thus transparent to the parser.

Algorithm 8.1 (SGLR) Given the parse table table for some grammar, parse
the string of characters in file. If the string is a sentence in the language de-
scribed by the grammar, return the parse forest for the string, and an error
message otherwise.

Parse The function parse reads the characters from a file and returns a parse
tree if the text is syntactically correct, an error message otherwise. The list of
active stacks is initialized to contain a single stack with the initial state of the
parse table as its state. For each character in the input, the parser handles all
actions for each active stack. The shifts for each stack are stored and performed
by the shifter after all possible reductions have been performed. When all char-
acters have been read or when no more stacks are alive, parsing terminates. If
parsing succeeded, the accepting stack has a direct link to the initial state. This
link has a reference to the parse forest with all possible parse trees for the entire
string. If parsing failed an error term is returned.

PARSE(table, file)

global accepting-stack := ()

global active-stacks := {new stack with state init(table)}

do
global current-token := get-next-char(file)
PARSE-CHARACTER()
SHIFTER()

while current-token # \EOF A active-stacks # ()

if accepting-stack contains a link to the initial stack with tree ¢t then
return t

else
return parse-error

Parse Character The list of active stacks is moved to the list of stacks of the
actor that performs the actions for a stack unless the stack is rejected. The list
of stacks for the actor is extended when reductions are performed. If actions
for newly added stacks are performed before all links to it have been created, a
stack that becomes rejected might escape. Therefore, new stacks are added to
for-actor-delayed if they are rejectable and are only considered when all stacks
on for-actor are exhausted. Then stacks are taken from the delayed list in order
of priority. The operation ‘pop’ removes the stack with the highest priority from
a list of stacks.

PARSE-CHARACTER()

36

global for-actor := active-stacks
global for-actor-delayed := ()
global for-shifter := ()
while for-actor #) A\ for-actor-delayed # 0 do
if for-actor = () then
for-actor := {pop(for-actor-delayed)}
for each stack st € for-actor do
if — all links of stack st rejected then
ACTOR(st)

Actor Handle the actions for stack st and the current token. A reduce action
is immediately handled. Shift actions are saved on for-shifter for handling if
after all reductions have been performed. An accept action results in saving
the current stack as the accepting stack. An error action is ignored because the
current stack can be a wrong attempt while other stacks are still alive. The
entire parse fails if all stacks lead to error actions. This will become apparent
after shifting because no more active stacks will be alive.

ACTOR(st)
for each action a € actions(s, current-token) do
case a of
shift(s) = for-shifter := {(st,s)} U for-shifter
reduce(a - A) = DO-REDUCTIONS(st, a — A)
accept = accepting-stack := st

Reductions Function do-reductions performs a reduction for stack st with pro-
duction a — A. For each path of length || following the links from st to some
stack sty the trees along the path are collected and the reducer is called to han-
dle the reduction.

DO-REDUCTIONS(st, o — A)
for each path from stack st to stack stg of length |a| do
kids := the trees of the links which form the path from st to stg
REDUCER(stq, goto(state(sto), a = A), a — A, kids)

Reducer Given a stack st, a state s, a production @ — A and a list of trees
kids, the reducer creates the application node for the production and the list
of direct descendants kids and creates a new stack with state s and a link to
stack st. However, because there might already exist as stack with state s, the
list of active stacks is searched. If there is no such stack a new stack is created
(else branch) and added to the list of active stacks and the list of stacks for the
actor. The new stack has state s and a link with a pointer to the newly created
tree. If a stack with state s already exists and there is a direct link nl from
sty to stg, an ambiguity has been found. The tree ¢ is added to the ambiguity
node of the link. If there is no direct link, a new link is created from st; to stg
with ¢ as parse tree. Because this new link entails that new reductions from
already inspected stacks might be possible, all active stacks are reconsidered.
In all cases, the link that is created or extended is marked as rejected if the
production is a reject production.

REDUCER(st, s, a — A, kids)

37

t := application of a — A to kids
if 3sty € active-stacks : state(st;) = s
if 3 a direct link nl from st; to sty then
add ¢ to the possibilities of the ambiguity node at tree(nl)
if « — A is a reject production then mark link nl as rejected
else
add a link nl from st; to sty with tree ¢
if @ = A is a reject production then mark link nl as rejected
for each sty € active-stacks
such that — all links of sts rejected
A sty & for-actor A sty & for-actor-delayed do
for each reduce(a — A) € actions(state(sts), current-token)
do
DO-LIMITED-REDUCTIONS(sts, a = A, nl)
else
st; := new stack with state s
add a link nl from st; to stg with tree ¢t
active-stacks :== {st;1} U active-stacks
if rejectable(state(st1)) then
for-actor-delayed := push(st;, for-actor-delayed)
else
for-actor := {st1} U for-actor-delayed
if @ = A is a reject production then mark link nl as rejected

Limited Reductions The function do-reductions is used to do all reductions for
some state and production that involve a path going trough link nl

DO-LIMITED-REDUCTIONS(st, « — A, 1)
for each path from stack st to stack stq of length |a| going through link [
do
kids := the trees of the links that form the path from st to sty
REDUCER(sty, goto(state(sty), « = A), a = A, kids)

Shifter After all possible reductions have been performed, for-shifter contains
a list of stacks that can do a shift. Only these stack make it into the next cycle
of the parse. The list of active stacks is reinitialized to the empty list. For each
stack stq in for-shifter a new stack is created with a link to stg with as tree the
current token. That is, if a stack with state s was already created only a link
from that stack to sty is created.

SHIFTER()
active-stacks = ()
t := current-token

for each (s, stg) € for-shifter do

if 3sty € active-stacks: state(st;) = s then
add a link from st; to sty with tree ¢

else
st; := new stack with state s
add a link from st; to sty with tree ¢
active-stacks := {st; } U active-stacks

end

38

A e —> AminB
A e -> AandB

\,,

e AandB -> <Start>
_ B
° A) > AandB] HB e —> AminB {reject} ‘2
O|e AminB -> AandB {reject}
o A -> AminB AminB
e B -> AminB {reject}\{AminB e —> AandB {reject}‘?:

andB
AandB e -> <Start> |4

Figure 12: Goto graph for grammar with nested reject productions.

8.5 Remarks

The algorithm above does not actually mark stacks as rejected, but the link
from a stack that is created with a reject production. Further action on a stack
is forbidden if all links from that stacks are rejected. This is done because, in
principle, there could be situations where two links are created from the same
stack that are not merged (as is the case when the links are to the same stack)
and only one is rejected. It is not clear whether such a situation can occur. But
there is no proof of the contrary either.

The ordering on states that is assumed in the priority pop operation used in
procedure PARSE-CHARACTER() is needed to ensure that nested reject pro-
ductions are treated properly. For example, consider again a grammar extended
with productions expressing the intersection of sorts A and B.

A -> AminB A -> AandB
B -> AminB {reject} AminB -> AandB {reject} AandB -> <Start>

This gives rise to the goto graph in Figure 12. States 3 and 4 are rejectable
because they can be reached with a reject production. When parsing a string
that is in A and in B, state 2 is reached using the reduction for B. The next
reduce action with the reject production B -> AminB {reject} leads a stack
with state 3, which is rejected. No further action is taken from that stack. The
reduction of A -> AandB leads to a stack with state 4 and then, correctly, to
acceptance of the string.

Now consider the case where a string is in A, but not in B. Then there is no
reduction to state 2 and hence state 3 is not rejected, but there is a reduction
to state 3 using A —> AminB and a reduction to state 4 using A -> AandB. Now
there are two rejectable stacks on the for-actor-delayed list. If the stack with
state 3 is released first a reduction with AminB -> AandB {reject} occurs and
the stack with state 4, which is still on for-actor-delayed, is rejected; and parsing
fails as it should. However, if state 4 is released first, parsing succeeds before
the stack with state 4 is rejected. It is clear that in this case state 3 has higher
priority than state 4.

It is not clear how the ordering on states should be determined in general. It
would seem that a state s; with productions that are reachable from the produc-
tions in a state s, has higher priority. This is only a guess, however, and should
be worked out more carefully. For single, i.e., non-nested reject productions the
ordering plays no role. Therefore, the implementation of exclusion by means of

39

reject productions, of which prefer literals is a special case, is not dependent on
finding an ordering on states.

9 Implementation

In the previous sections we have presented an approach to scannerless parsing.
These techniques are implemented as part of the SDF2 tools. The tools have
been used to construct parsers for a number of languages including SDF2 it-
self. Although no detailed data on the performance of the implementation are
available at the time of this writing, a couple of preliminary observations can
be made nonetheless.

Grammar Normalizer The syntax definition formalism SDF2 is completely
specified in ASF+SDF. Part of the definition is the grammar normalizer dis-
cussed in §3. This specification has been compiled to an executable term
rewriter, which has a reasonable performance. The literate specification of SDF2
and the normalization of syntax definitions is presented in Visser (1997¢). The
specification also defines the format of parse trees encoded in the ATerm format
of Van den Brand et al. (1997).

Parser Generator The parser generator described in §5 has been completely
specified in ASF+SDF. The compiled specification of the parser generator is
too inefficient. It is probably necessary to implement this component in an
imperative language that allows direct access instead of lookup in lists.

There are several factors that make parser generation more difficult com-
pared to normal SLR(1) parser generation for context-free grammars. There
are more item-sets because of the productions for the lexical syntax. Extra
productions are added because of the reject productions expressing the prefer
literals rule, this increases the number of items in item-sets. The goto table
contains a transition for each production instead of a transition for each non-
terminal. The last factor can be reduced by sharing transitions to the same
state.

Productions and item-sets are encoded by numbers. Character classes are
important for reducing the size of the parse table. A set of actions that is
shared by several characters is stored efficiently by means of a character class,
i.e., ‘actions’ is a mapping from item-sets and character classes to sets of actions.

Parser The SGLR parsing algoritm has been implemented in C. The im-
plementation makes use of the C implementation of ATerms (Van den Brand
et al., 1997) to represent stacks and trees.

The parser includes visualization tools for parse forests and graph structured
parse stacks that were used to produce the pictures in this paper. The forest
vizualization might be used as basis for an interactive disambiguation tool.

The C implementation of the SGLR parsing algorithm seems reasonably
efficient, although sharing of trees can be improved. Output of parse trees is
not optimal because sharing of subtrees is completely lost when writing out a
parse forest in a linear term format. This can solved by using a linear encoding
of graphs such as the graph exchange language GEL of Kamperman (1994).
Furthermore, a mark-scan garbage collector for stack and tree nodes is used.
This entails that all stack and tree nodes are visited on a collect, which is too
expensive, since a large amount of the heap will not change status. A reference
count garbage collector should make a difference.

40

Complexity of Lexical Analysis We have performed a few experiments to
get an idea of the complexity of lexical analysis with scannerless generalized-
LR parsers. The experiments were based on the simple expression grammar
in §2. The experiments that were performed were of the form: (a) Parsing a
single identifier of increasing length (up to 425KB). (b) Parsing an expression
consisting of ten additions with identifier arguments of increasing length (up
to 325KB). (¢) Parsing an expression consisting of an increasing number of
additions (up to 16K arguments with length 490KB).

For all these experiments we saw an almost linear behaviour for small files
deteriorating to square behaviour for the large files. However, when garbage
collection was turned off, this behaviour changed into linear for all experiments.
This confirms the observation about the inappropriateness of the garbage collec-
tion algorithm. It also confirms the idea that lexical analysis will behave linearly
for simple, i.e., regular lexical syntax. The prototype implementation should be
further optimized before its performance can meaningfully be compared to scan-
ner/parser combinations such as LEX/YACC. Nonetheless, these experiments
show the feasibility of the scannerless generlized-LR parsing approach.

10 Related Work

The syntax definition formalism SDF2 is formally specified in Visser (1997c¢).
The specification in ASF+SDF comprises the syntax of the formalism, the nor-
malization procedure and the parse tree format defined by a grammar.

The syntax definition formalism SDF of Heering et al. (1989) was the start-
ing point for the work discussed in this paper. The definition of SDF2 grew out
of the specification of SDF in ASF+SDF. A number of generalizations where
applied to make the formalism more orthogonal and uniform and a number
of improvements and new features were added based on the experience with
SDF in the ASF+SDF Meta-Environment (Klint, 1993). SDF introduced the
integration of lexical syntax and context-free syntax, but only at the formal-
ism level. In the implementation, an SDF definition is mapped to a regular
grammar defining the lexical syntax and a context-free grammar definining the
context-free syntax. The scanners produced for the lexical syntax yield a graph
structured stream of all possible tokenizations of the input filtered by a set
of lexical disambiguation rules. Although this is a fairly advanced setup, the
interface suffers from several of the problems that we discussed in §1 and §2.

The generalized-LR parsing algorithm was first developed by Tomita (1985)
for application in natural language processing. It was later improved by Rekers
(1992) and applied in the ASF+SDF Meta-Environment for parsing of program-
ming languages. The algorithm presented in §8 is based on Rekers’ version.
Wagner and Graham (1997) describe the use of GLR parsing in incremental
parsing of programming languages. Farley (1970) described the first generalized
parsing algorithm that is closely related to the LR algorithm of Knuth (1965).
A more recent approach to parsing with dynamic lookahead is the extension of
top-down parsing with syntactic predicates of Parr and Quong (1994).

Scannerless parsing was introduced by Salomon and Cormack (1989, 1995).
They define an extension of SLR(1) parsing in which the lack of lookahead
is repaired by extending item-sets if conflicts are found. This non-canonical
SLR(1) parser generation works only for a limited set of grammars, making

41

grammar development difficult. The follow restrictions presented in this paper
are a simplification of the adjacency restriction rule of the NSLR(1) approach in
which arbitrary grammar symbols can be forbidden to be adjacent. Our reject
productions are called exclusion rules by Salomon and Cormack (1989, 1995).
We have presented a complete implementation for follow restrictions and reject
productions, whereas the adjacency restrictions and exclusion rules are only
partially implemented in NSLR(1) parsing.

A similar approach using GLR parsing is tried in the area of natural language
processing. Tanaka et al. (1996) discuss the integration of morphological and
syntactic analysis of Japanese sentences in a single GLR parser. The morpholog-
ical rules describe how words can be formed from characters. Segmentation of
a string of characters into a string of words is guided by a connection matrix re-
stricting the categories that can be adjacent in a sentence. These rules do usually
not suffice to find an unambiguous segmentation. by integrating morphological
composition into the context-free grammar of the syntactic phase, such ‘contex-
tual’ ambiguities can be avoided. This creates the problem of disambiguating
the combined context-free grammar usingthe morphological connection matrix.
This is partly done as a filter on the generated LR table and partly dynamically
during parsing.

Disambiguation by means of priority and associativity declarations was in-
troduced simultaneously by Aho et al. (1975) and Earley (1975). The former
describe the solution of conflicts in LR parse tables by means of a restricted form
of priorities. Aasa (1991, 1992) describes the solution of LR table conflicts by
means of precedence declarations. Thorup (1992, 1994a, 1994b) describes the
solution of parse table conflicts by means of a collection of excluded subtrees.
The method is more expressive than the priorities of SDF, but only succeeds if
all conflicts are solved, which is not guaranteed.

In Klint and Visser (1994) logical disambiguation methods are formalized as
disambiguation filters on sets of parse trees. Based on this approach an efficient
implementation of disambiguation by priorities is derived in Visser (1995a) from
the disambiguation filter for priorities. This derivation forms the foundation for
the parser generator algorithm presented in this paper.

11 Conclusions

In this paper we have presented a new approach to parsing that has several ad-
vantages over conventional techniques. It overcomes the drawbacks of the tra-
ditional scanner/parser interface by abolishing the scanner completely (hence
the name scannerless parsing). The lexical and context-free syntax of a lan-
guage are described in a single integrated uniform grammar formalism. Lexical
ambiguities can frequently be solved by means of the parsing context. Lexical
structure and layout are preserved in the parse tree and thus accessible in se-
mantic tools. A more expressive formalism for lexical syntax is obtained, such
that for example nested comments can be expressed.

The approach encompasses an expressive syntax definition formalism. A
grammar normalizer to reduce the complexity of the formalism by simplifying
syntax definitions to context-free grammars with a few extensions. An SLR(1)
parser generator that deals with character-classes, follow restrictions and pri-
ority and associativity rules. A generalized-LR parser that can be used for

42

arbitrary context-free grammars with reject productions, at least if they are not
nested. In parsing unambiguous languages, the GLR parser is used to dynami-
cally handle lookahead problems by forking off parsers in parallel.

Reject productions turn out to be a very expressive device that brings us out
of the domain of context-free languages. It is as yet unclear how expressive this
formalism is exactly, but we have a lower bound—stronger than context-free
because it describes a”b"c"—and an upper bound because the parsing problem
is decidable.

Priorities are compiled into the parse table such that no parse trees with
priority conflicts can be produced by the parser. This reduces the size of the
parse forest (in case of ambiguous binary expressions the parse forest grows
exponentially) and decreases the number of paths in the graph structured stack.
The technique is more general than conventional techniques for this kind of
disambiguation and works even if there remain conflicts in the parse table due
to other causes. For instance, if the grammar requires more lookahead than the
parser generator provides.

An open issue is the fully automatic derivation of lexical disambiguation
rules from the grammar that would make the method still easier to use. Apart
from this minor point, scannerless generalized-LR parsing is a feasible parsing
method that makes syntax definition more expressive and solves a number of
problems with conventional parsing approaches.

Acknowledgments The author thanks Arie van Deursen, Jan van Eijck, An-
nius Groenink and Paul Klint, for useful suggestions and comments on previous
versions of this paper.

This research was supported by the Netherlands Computer Science Research
Foundation (SION) with financial support from the Netherlands Organisation
for Scientific Research (NWO). Project 612-317-420: Incremental parser gener-
ation and context-sensitive disambiguation: a multi-disciplinary perspective.

References

Aasa, A. (1991). Precedences in specifications and implementations of program-
ming languages. In J. Maluzynski and M. Wirsing, editors, Programming Lan-
guage Implementation and Logic Programming, volume 528 of Lecture Notes
in. Computer Science, pages 183—194. Springer-Verlag.

Aasa, A. (1992). User Defined Syntaz. Ph.D. thesis, Department of Computer
Sciences, Chalmers University of Technology and University of Goteborg, S-
412 96 Goteborg, Sweden.

Aho, A. V., Johnson, S. C.; and Ullman, J. D. (1975). Deterministic parsing of
ambiguous grammars. Communications of the ACM, 18(8), 441 452.

Anderson, T., Eve, J., and Horning, J. (1973). Efficient LR(1) parsers. Acta
Informatica, 2(1), 12 39.

Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous pars-
ing. In Proceedings of the Twenty-Seventh Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics.

43

Van den Brand, M. G. J. and Visser, E. (1996). Generation of formatters
for context-free languages. ACM Transactions on Software Engineering and

Methodology, 5(1), 1-41.

Van den Brand, M. G. J., Klint, P., Olivier, P., and Visser, E. (1997). ATerms:
Representing structured data for exchange between heterogeneous tools. Tech-
nical report, Programming Research Group, University of Amsterdam.

DeRemer, F. L. (1971). Simple LR(k) grammars. Communications of the ACM ,
14, 453 460.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications
of the ACM , 13(2), 94-102.

Earley, J. (1975). Ambiguity and precedence in syntax description. Acta Infor-
matica, 4(1), 183-192.

Van Eijck, J. (1997). Email, july 9.

Floyd, R. W. (1962). Syntactic analysis and operator precedence. Communica-
tions of the ACM, 5(10), 316-333.

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF reference manual. SIGPLAN Notices, 24(11)
43 75.

3

Jensen, K. and Wirth, N. (1975). PASCAL User Manual and Report, volume 18
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, second edition
edition.

Kamperman, J. F. T. (1994). GEL, a graph exchange language. Technical
Report CS-R9440, CWI, Amsterdam.

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2),
176 201.

Klint, P. and Visser, E. (1994). Using filters for the disambiguation of context-
free grammars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS
Workshop on Parsing Theory, pages 1-20, Milano, Italy. Tech. Rep. 126-1994,
Dipartimento di Scienze dell’Informazione, Universita di Milano.

Knuth, D. E. (1965). On the translation of languages from left to right. Infor-
mation and Control, 8, 607—639.

Lang, B. (1974). Deterministic techniques for efficient non-deterministic parsers.
In J. Loeckx, editor, Proceedings of the Second Colloguium on Automata, Lan-
guages and Programming, volume 14 of Lecture Notes in Computer Science,
pages 255 269. Springer-Verlag.

Parr, T. J. and Quong, R. W. (1994). Adding semantic and syntactic predicates
to LL(k): pred-LL(k). In P. A. Fritzson, editor, Compiler Construction,
5th International Conference, CC’94, volume 786 of LNCS, pages 263-277,
Edinburgh, U.K. Springer-Verlag.

44

Rekers, J. (1992). Parser Generation for Interactive Environments. Ph.D. the-
sis, University of Amsterdam. ftp://ftp.cwi.nl/pub/gipe/reports/Rek92.ps.Z.

Salomon, D. J. and Cormack, G. V. (1989). Scannerless NSLR(1) parsing of
programming languages. SIGPLAN Notices, 24(7), 170-178.

Salomon, D. J. and Cormack, G. V. (1995). The disambiguation and scanner-
less parsing of complete character-level grammars for programming languages.
Technical Report 95/06, Department of Computer Science, University of Man-
itoba, Winnipeg, Canada.

Tanaka, H., Tokunga, T., and Aizawa, M. (1996). Integration of morphological
and syntactical analysis based on GLR parsing. In H. C. Bunt and M. Tomita,
editors, Recent Advances in Parsing Technology, pages 325-342. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

Thorup, M. (1992). Ambiguity for incremental parsing and evaluation. Technical
Report PRG-TR-24-92, Program Research Group, Oxford University, Oxford,
U.K.

Thorup, M. (1994a). Controlled grammatic ambiguity. ACM Transactions on
Programming Languages and Systems, 16(3), 1024-1050.

Thorup, M. (1994b). Disambiguating grammars by exclusion of sub-parse trees.
Technical Report 94/11, Dept. of Computer Science, University of Copen-
hagen, Denmark.

Tomita, M. (1985). Efficient Parsing for Natural Languages. A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers.

Visser, E. (1995a). A case study in optimizing parsing schemata by disambigua-
tion filters. In S. Fischer and M. Trautwein, editors, Proceedings Accolade95,
pages 153 167, Amsterdam. The Dutch Graduate School in Logic.

Visser, E. (1995b). A family of syntax definition formalisms. In M. G. J.
van den Brand et al., editors, ASF+SDF’95. A Workshop on Generating
Tools from Algebraic Specifications, pages 89—126. Technical Report P9504,
Programming Research Group, University of Amsterdam.

Visser, E. (1997a). A case study in optimizing parsing schemata by disam-
biguation filters. In A. Nijholt, editor, International Workshop on Parsing
Technology IWPT’97, Boston, USA. (To appear).

Visser, E. (1997b). Character classes. Technical Report P9708, Programming
Research Group, University of Amsterdam.

Visser, E. (1997¢). A family of syntax definition formalisms. Technical Report
P9706, Programming Research Group, University of Amsterdam.

Wagner, T. A. and Graham, S. L. (1997). Incremental analysis for real program-
ming languages. SIGPLAN Notices, 32(5), 31-43. Proc. of the 1997 ACM
SIGPLAN Conferene on Programming Language Design and Implementation
(PLDI).

45

46

Technical Reports of the Programming Research Group

Note: These reports can be obtained using the technical reports overview on
our WWW site (URL http://www.wins.uva.nl/research/prog/reports/)
or using anonymous ftp to ftp.wins.uva.nl, directory
pub/programming-research/reports/.

[P9711]

[P9710]
[P9709]

[P9708]
[P9707]
[P9706]
[P9705]
[P9704]
[P9703]

[P9702]

[P9701]
[P9618]

[P9617]

[P9616]
[P9615]

[P9614]

[P9613]
[P9612]

[P9611]

L. Moonen. A Generic Architecture for Data Flow Analysis to Support
Reverse Engineering.

B. Luttik and E. Visser. Specification of Rewriting Strategies.

J.A. Bergstra and M.P.A. Sellink. An Arithmetical Module for Ratio-

nals and Reals.

E. Visser. Character Classes.

E. Visser. Scannerless generalized-LR parsing.

E. Visser. A family of syntax definition formalisms.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Generation
of Components for Software Renovation Factories from Contert-free
Grammars.

P.A. Olivier. Debugging Distributed Applications Using a Coordination
Architecture.

H.P. Korver and M.P.A. Sellink. A Formal Aziomatization for Alpha-
bet Reasoning with Parametrized Processes.

M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef. Reengineering
COBOL Software Implies Specification of the Underlying Dialects.

E. Visser. Polymorphic Syntaxz Definition.

M.G.J. van den Brand, P. Klint, and C. verhoef. Re-engineering needs
Generic Programming Language Technology.

P.I. Manuel. ANSI Cobol III in SDF + an ASF Definition of a Y2K
Tool.

P.H. Rodenburg. A Complete System of Four-valued Logic.

S.P. Luttik and P.H. Rodenburg. Transformations of Reduction Sys-

tems.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Core Technologies

for System Renovation.
L. Moonen. Data Flow Analysis for Reverse Engineering.

J.A. Hillebrand. Transforming an ASF+SDF Specification into a Tool-
Bus Application.

M.P.A. Sellink. On the conservativity of Leibniz Equality.

47

[P9610]

[P9609]
[P9608]

[P9607]

[P9606]

[P9605]

[P9602b]

[P9604]
[P9603]

[P9602]
[P9601]
[P9512]

[P9511]

[P9510]

[P9509]

[P9508]

[P9507]

[P9506]

[P9505]

T.B. Dinesh and S.M. Uskiidar. Specifying input and output of visual
languages.

T.B. Dinesh and S.M. Uskiidarh. The VAS formalism in VASE.

J.A. Hillebrand. A small language for the specification of Grid Proto-
cols.

J.J. Brunekreef. A transformation tool for pure Prolog programs: the
algebraic specification.

E. Visser. Solving type equations in multi-level specifications (prelim-
inary version).

P.R. D’Argenio and C. Verhoef. A general conservative extension the-
orem in process algebras with inequalities.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives
(revised version of P9602).

E. Visser. Multi-level specifications.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering
and system renovation: an annotated bibliography.

J.A. Bergstra and M.P.A. Sellink. Sequential data algebra primitives.
P.A. Olivier. Embedded system simulation: testdriving the ToolBus.

J.J. Brunekreef. TransLog, an interactive tool for transformation of
logic programs.

J.A. Bergstra, J.A. Hillebrand, and A. Ponse. Grid protocols based on

synchronous communication: specification and correctness.

P.H. Rodenburg. Termination and confluence in infinitary term
rewriting.

J.A. Bergstra and Gh. Stefanescu. Network algebra with demonic re-
lation operators.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra
for synchronous and asynchronous dataflow.

E. Visser. A case study in optimizing parsing schemata by disambigua-
tion filters.

M.G.J. van den Brand and E. Visser. Generation of formatters for
context-free languages.

J.M.T. Romijn. Automatic analysis of term rewriting systems: proving
properties of term rewriting systems derived from ASF+SDF specifica-
tions.

48

