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Scannerless Generalized-LR ParsingEelco VisserCurrent deterministic parsing techniques have a number of problems. Theseinclude the limitations of parser generators for deterministic languages and thecomplex interface between scanner and parser. Scannerless parsing is a pars-ing technique in which lexical and context-free syntax are integrated into onegrammar and are all handled by a single context-free analysis phase. This ap-proach has a number of advantages including discarding of the scanner andlexical disambiguation by means of the context in which a lexical token occurs.Scannerless parsing generates a number of interesting problems as well. Inte-grated grammars do not �t the requirements of the conventional deterministicparsing techniques. A plain context-free grammar formalism leads to unwieldygrammars, if all lexical information is included. Lexical disambiguation needsto be reformulated for use in context-free parsing.The scannerless generalized-LR parsing approach presented in this papersolves these problems. Grammar normalization is used to support an expressivegrammar formalism without complicating the underlying machinery. Follow re-strictions are used to express longest match lexical disambiguation. Reject pro-ductions are used to express the prefer keywords rule for lexical disambiguation.The SLR(1) parser generation algorithm is adapted to implement disambigua-tion by general priority and associativity declarations and to interpret followrestrictions. Generalized-LR parsing is used to provide dynamic lookahead andto support parsing of arbitrary context-free grammars including ambiguous ones.An adaptation of the GLR algorithm supports the interpretation of grammarswith reject productions.1 IntroductionParsing is one of the areas of computer science where program generation is aroutine technique that is successfully applied to generate parsers for program-ming languages given their formal de�nition by means of a context-free gram-mar. At least, in theory. In practice, most parser generators accept only a lim-ited subset of the context-free grammars such as LL(1) or LALR(1) grammars.Since most natural grammars for languages do not respect these limitations,the language designer or compiler writer has to bend over backwards to �t thegrammar into the restrictions posed by the grammar formalism by rewritinggrammar rules, introducing ad-hoc solutions for parse table conicts or resort-ing to side e�ects in the parser. Even if one succeeds in producing a grammarthat respects the restrictions, a small extension or modi�cation of the language1



might jeopardize the careful balance of tricks, which makes maintenance of toolsfor the language troublesome.Another source of problems in generated parsers is the division between thelexical analysis phase and the context-free analysis phase and the correspondingdivision of the grammar into a regular grammar de�ning the lexical syntax anda context-free grammar de�ning the context-free syntax. A scanner divides thecharacter string into tokens according to the lexical syntax. A parser structuresthe token string into a tree according to the context-free syntax.At the interface between scanner and parser the lexical tokens are passedfrom the scanner to the parser. In the most straightforward scenario the scan-ner produces a stream of tokens without intervention from the parser. Thisentails that no knowledge of the parsing context is available in the scanner andthus no lexical analysis decisions can rely on such information. It is di�cultto unambiguously de�ne the lexical syntax of a language by means of only reg-ular grammars. Therefore, lexical analysis and the interface with context-freeanalysis are usually extended. First lexical disambiguation heuristics such as`prefer longest match' and `prefer keyword' are applied to reduce the number ofreadings. If there remain ambiguities after application of these rules the scannermight produce multiple streams of tokens representing all possible partitioningsof the string into tokens according to the regular grammar. The parser shouldthen be able to cope with this non-linear input. It is also possible to supply feed-back from the parser to the scanner to reduce the number of applicable grammarrules. For instance, by specifying the lexical categories that are expected forthe next token.In all such schemes lexical analysis becomes more complicated than thesimple �nite automaton model that motivated the use of regular grammars.Context-free parsing functionality starts to appear both inside the scanner andat the interface between scanner and parser and often operational elementscorrupt the declarativity of the language de�nition. As a consequence, manygrammars are ambiguous if only the pure regular and context-free grammar areconsidered as such and reasoning about the language being de�ned becomesdi�cult.1.1 Scannerless Generalized-LR ParsingIn this paper we describe an approach to syntax de�nition and parser gener-ation that overcomes many of these problems. The approach is based on theintegration and improvement of scannerless parsing, generalized-LR parsing andgrammar normalization. Because of the integration of the former two, the ap-proach is called scannerless generalized-LR parsing.Scannerless Parsing Scannerless parsing is a parsing technique that doesnot use a scanner to divide a string into lexical tokens. Instead lexical analysis isintegrated in the context-free analysis of the entire string. It comes up naturallywhen considering grammars that completely describe the syntax of a language.The term scannerless parsing was coined by Salomon and Cormack (1989, 1995).They use `complete character level grammars' describing the entire syntax of alanguage down to the character level. Since conventional LR parser generationyields tables with too many conicts, they use an extension of SLR(1) parsergeneration called non-canonical SLR(1). However, even this extension makes ithard to de�ne a grammar without conicts.2



Generalized-LR Parsing The conventional LR parsing techniques and espe-cially scannerless LR parsing su�er from conicts in the parse table. There aretwo causes for conicts in LR parse tables: ambiguities and lack of lookahead.If a conict is caused by an ambiguity, any of the possible actions will lead to asuccessful parse. If it was caused by a lookahead problem, one of the actions willlead to success and the others will fail. Which action will be successful cannotbe decided statically. Since ambiguity of a context-free grammar is undecidable(Floyd, 1962), it is also undecidable whether a conict is due to an ambiguity orto a lack of lookahead. Because complete character level grammars frequentlyneed arbitrary length lookahead, methods to solve conicts in the table will notalways succeed.Generalized-LR parsing is an extension of LR parsing that interprets theconicts in the parse table by forking o� a parser from the main parser for eachpossible action in case of a conict. If such a conict turns out to lead to anambiguity the parser constructs a parse forest, a compact representation of allpossible parse trees for a sentence. But if the conict was caused by lack of looka-head, the forked parsers for the wrong track will fail. In this manner lookaheadis handled dynamically. Therefore, generalized-LR parsing is an ideal techniqueto solve the lookahead problems of scannerless parsing. Generalized-LR parsingwas introduced by Tomita (1985) building on the theoretical framework of Lang(1974). It was improved by Rekers (1992) to handle all context-free grammars.In this paper we extend Rekers' version of the algorithm with reject reductions,a facility needed for lexical disambiguation.Grammar Normalization An aspect of the division between lexical and con-text-free syntax that a�ects the speci�cation of syntax is the de�nition of layout,i.e., the whitespace and comments that can occur at arbitrary places betweentokens. In the conventional setting layout is analyzed by the scanner and thenthrown away. The parser never sees the layout tokens. Therefore, layout canalso be ignored in the speci�cation of context-free syntax. However, in a com-plete character level grammar all aspects of the syntax are completely de�ned,including the syntax and positions of layout. This can lead to rather unwieldygrammars that declare the occurrence of layout as separator between all gram-mar symbols in context-free productions.Grammar normalization is a technique used to de�ne an expressive gram-mar formalism in terms of simple context-free grammars. An example of anormalization procedure is the addition of layout symbols between the sym-bols in context-free productions. Other examples are the de�nition of regularexpressions by means of productions and the attening of modular grammars.An important aspect of the scannerless generalized-LR approach is the use ofgrammar normalization to keep grammars small and usable. The syntax de�ni-tion formalism SDF2 used in the approach is a formalism for concise de�nitionof complete character level grammars. SDF2 is a generalization of the syntaxde�nition formalism SDF of Heering et al. (1989). The formalism and normal-ization procedure is de�ned in Visser (1997c).
3



1.2 ArchitectureThe typical architecture of an application of SDF2 is depicted in Figure 1. Aprogram text1 processor that transforms text into text is composed of (1) aparser front-end that analyzes the input text and produces a structured repre-sentation of the text in the form of a parse tree, (2) the actual processor thatperforms a transformation from a parse tree to another one and (3) a pretty-printer back-end that produces text corresponding to a transformed parse tree.Processors can be, for instance, interpreters, compilers, data ow analyzers orprogram transformation tools.The input language of a processor is speci�ed in the syntax de�nition formal-ism SDF2. Given a language de�nition in SDF2 and a tree to tree processor, thecorresponding text to text processor is constructed using a grammar normalizer,a parser generator, a parser and a pretty-printer generator.Grammar Normalizer A language de�nition in SDF2 is normalized to aplain context-free grammar extended with character classes, priority rules, fol-low restrictions and reject productions. Normalization is briey discussed in x3.A full de�nition of SDF2 normalization can be found in Visser (1997c).Parser Generator From a normalized syntax de�nition a parse table is gen-erated using an extension of the standard SLR(1) algorithm with characterclasses, priorities, follow restrictions, and reject productions. The parser gener-ator accepts arbitrary context-free grammars. The techniques used in the parsergenerator are discussed in x5.Parser A parse table is interpreted by a generic, language independentSGLR parser, which reads a text and produces a parse tree. At the heart of theparser is an extension of the GLR algorithm of Rekers (1992) that reads char-acters directly, without using a scanner. The extension of the GLR algorithmwith reject reductions is discussed in x8.Pretty-Printer A pretty-printer is used to translate the output tree of theprocessor to text. The pretty printer itself can also be generated from thede�nition of the output language. This is described in Van den Brand andVisser (1996) and is not further discussed here.1.3 ContributionsThe scannerless generalized-LR parsing approach presented in this paper is anew powerful parsing method that supports concise speci�cation of languages.The technical contributions (the details of which will be discussed later on) ofthe approach are:� The normalization of grammars to eliminate features enhancing the ex-pressivity of the formalism, in particular, the integration of lexical andcontext-free syntax by means of normalization into a single grammar.� The use of GLR parsing for scannerless parsing to deal with unboundedlookahead.1Here text denotes a linear representation of a program in some character code, e.g., ASCIIor UniCode. 4
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Figure 1: Architecture of an SDF2 application.� Static disambiguation by means of priorities by interpreting priority dec-larations in the parser generator. Priorities are completely expressed inthe parse table.� The use of character classes in grammars to compact the parse table.� The use of follow restrictions to de�ne longest match disambiguation andthe interpretation of follow restrictions in the parse table.� Prefer literals disambiguation by means of reject productions. Severalexpressivity results about context-free grammars with reject productions.Implementation of parsers for such grammars in an extension of the GLRalgorithm. 5



1.4 OverviewIn the next section we will argue in more detail that scannerless parsing hasa number of de�nite advantages over parsing with scanners, but that it hasnot been introduced before because of the limitations of conventional parsingtechniques. In the rest of the paper we present several techniques that overcomethese limitations and result in a combined approach encompassing grammarformalism and parsing techniques that does make scannerless parsing feasible.2 Scannerless ParsingThe term scannerless parsing was coined by Salomon and Cormack (1989, 1995)to indicate parsing without a separate lexical analysis phase using a scannerbased on a deterministic �nite automaton. The parser directly reads the char-acters of a text. This entails the integration of the de�nition of lexical andcontext-free syntax in one grammar.Consider the following SDF2 de�nition of a simple language of expressionsconsisting of identi�ers, additions and multiplications.sorts Id Explexical syntax[a-z]+ -> Id[\ \t\n] -> LAYOUTcontext-free syntaxId -> ExpExp "*" Exp -> Exp {left}Exp "+" Exp -> Exp {left}context-free prioritiesExp "*" Exp -> Exp >Exp "+" Exp -> ExpThe �rst line declares the sorts (say the non-terminals) of the grammar. Thenext three lines declare the lexical syntax of the language such that identi�ersare lists of one or more lowercase letters and layout consists of spaces, tabs andnewlines. The next four lines declare the context-free syntax of the language.An expression is either an identi�er or an addition or multiplication of twoexpressions. Observe that the grammar is ambiguous and that in order todisambiguate it, priority and associativity declarations have been added. Thelast three lines declare that multiplication has higher priority than addition.The left attribute declares addition and multiplication to be left-associative.The conventional way to interpret such a grammar to parse a string is asfollows: (1) Divide the string into tokens according to the lexical syntax inall possible ways. (2) Apply lexical disambiguation rules to select the desireddivision. For instance, given the string ab , the rule `prefer longest match'would prefer the division ab  over a b  , i.e., the longest possible identi�er isselected. (3) Throw away layout tokens. (4) Parse the resulting token stringaccording to the context-free syntax. The result is a parse tree that contains asleafs the tokens yielded by lexical analysis.In scannerless parsing we have the following sequence: (1) Combine thede�nition of lexical and context-free syntax into a single context-free grammar.All tokens on the left-hand side of productions in the context-free syntax are6



<START>

<L?-CF> <Exp-CF> <L?-CF>

<Exp-CF> <L?-CF> "+" <L?-CF> <Exp-CF>

<Id-CF>

<Id-LEX>

<[a-z]+-LEX>

<[a-z]+-LEX> <[a-z]+-LEX>

a b

<L-CF>

<L-LEX>

\32

+ <L-CF>

<L-CF> <L-CF>

<L-LEX>

\32

<L-LEX>

\t

<Id-CF>

<Id-LEX>

<[a-z]+-LEX>

c

<L-CF>

<L-LEX>

\32

Figure 2: Parse tree for the string ab + \tc explicitly separated by layout. All grammar symbols are renamed, such thatthe symbols occurring in the lexical syntax have the form h -LEXi and those inthe context-free syntax have the form h -CFi. This is done to keep the two levelsseparated. For instance, the addition production is transformed into<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>The symbol hLAYOUT?-CFi represents the syntax of layout that can appear be-tween tokens. In x3 this will be explained in more detail. The complete inte-grated grammar corresponding to the de�nition above is presented in Figure 3on page 14. (2) Parse the characters of the string according to the normal-ized grammar. The result is a parse tree that contains as leafs the charactersof the string. The tokens are recognizable as subtrees. For example, considerthe parse tree in Figure 2. Observe that the symbols hL-LEXi and hL-CFi areabbreviations for hLAYOUT-LEXi and hLAYOUT-CFi and denote layout nodes.In a sense, nothing is new. In a conventional parser, if we would instruct thescanner to make each character into a corresponding token, the parser that readsthese tokens would in e�ect be `scannerless'. The reason that we distinguishscannerless parsing from parsing with a real scanner is that the former generatessome special problems that are avoided by using a scanner.2.1 AdvantagesNow that we have an understanding of what scannerless parsing is, we mightask why it is any good. We will discuss the advantages one by one.No Scanner The obvious advantage of scannerless parsing is that no imple-mentation of a scanner and scanner generator is needed and that the complicatedinterface between scanner and parser can be eliminated.7



Integrated Uniform Grammar Formalism A language is completely de�nedby means of one grammar. All grammar rules are explicit and formally speci�ed.Lexical syntax and context-free syntax are speci�ed with the same formalism.There is no longer a distinction between regular and context-free grammars.This makes the formalism more uniform and orthogonal. All features availablefor lexical syntax are available for context-free syntax and vice versa. Thissimpli�es use and implementation of the formalism.Disambiguation by Context Because of the integration of lexical and context-free syntax, lexical analysis is guided by context-free analysis. If a token doesnot make sense at some position, it will not even be considered. For instance,in the example above, the longest match rule does not have to be used to preferab  over a b  because the latter situation|two adjacent identi�ers|is neversyntactically correct.The paradigmatic example of context-dependent lexical disambiguation isthe interplay between subrange types and oating point number constants inPascal. Subrange types have the form k..l, where k and l are constants. Ifoating point number constants could have the form i. and .j with i and jnumbers, then i..j could be scanned either as i .. j , i.e., the range from i toj, or as i. .j , i.e., two adjacent oating point numbers. In scannerless parsing,this ambiguity is solved automatically by context. A scanner that has no accessto the context and applies the longest match rule, would always choose thesecond possibility (two adjacent numbers) and fail. Apparently for this reasonthe syntax of Pascal only allows real numbers of the form i.j, where i and jare non-empty lists of digits (Jensen and Wirth, 1975). Similar examples canbe found in many languages.Another example where the parsing context is relevant for making lexicaldecisions is the syntax of lists of statements that can be separated by semicolonsor newlines. Consider the grammarlexical syntax[\ \t\n] -> LAYOUTcontext-free syntax"begin" {Stat ";"|"\n"}* "end" -> BlockThe lexical syntax de�nes newlines (\n) to be layout. The context-free syntaxde�nes blocks as lists of zero or more statements starting with the keywordbegin and ending with the keyword end. The list is declared by the constructfA Bg�, which declares a list of As separated by Bs, i.e., a list of the formA B A : : : B A. In this case the separator is either a semicolon or a newline.This means that newlines are both layout and non-layout. If the disambiguationrule `prefer non-layout' is applied to the tokens of this language, all newlines|even those not used as separator of statements|will be wrongly characterizedas non-layout. A scannerless parser will recognize the newlines used as separatorsimply by considering the parsing context.Conservation of Lexical Structure Scanners do usually not maintain thephrase structure of the tokens they produce. For example, the grammarlexical syntax[a-z]+ -> Id"/"? {Id "/"}+ -> Path 8



de�nes the lexical syntax of path expressions as occur, for instance, in thenaming conventions of tree-structured �lesystems. This syntax has to be lexicalsince no layout should occur between the identi�ers and separators of a path. Ascanner would produce a string containing the characters of a path expressionwithout the structure assigned to it by the grammar, i.e., the distinction betweenidenti�ers in the path is lost. This entails that the semantic processor mustreparse such tokens to deal with their internal structure.Conservation of Layout Scanners throw away the layout between tokensof a phrase. In this way the parser can ignore layout, which simpli�es theparsing problem. However, there are examples of operations on programs thatrequire the structure of the program, i.e., the parse tree, but also the layout inthe source. Examples are source to source translations, transformations on thesource text and program documentation tools. Although a conventional parsercould be instructed to add the layout to the parse tree via some detour, thiswould usually require a non-standard extension of the method. If the layoutwould be explicitly speci�ed in the grammar we would get an approach that isvery similar to scannerless parsing.Expressive Lexical Syntax Context-free grammars provide a more expres-sive grammar formalism for lexical syntax than regular grammars. This addi-tional expressive power opens the way to concise de�nitions of nested commentsand syntactically correct expressions in comments. For example, consider thefollowing extension of the expression grammar above that de�nes C-like com-ments as a list of comment words between /* and */.sorts ComWord Commentlexical syntax~[\ \t\n\|\/]+ -> ComWordcontext-free syntax"/*" ComWord* "*/" -> CommentComment -> LAYOUTA comment word is a non-empty list of characters that are not whitespace, | or/. Since the de�nition of comments is part of the context-free syntax, commentwords can be separated by layout. These comments are made into layout by thelast line of the grammar, which is an injection of comment into layout. Becauselayout can occur between any two adjacent tokens, comment can as well.According to this de�nition, comments can be nested, because commentwords are separated by layout, which includes comments. For instance, thestringh /* height *//** w /* width */* d /* depth */*/is a syntactically correct expression over the grammar above in which part ofan expression including comments is commented out. This is a tedious job ifnested comments are not supported by the language.Moreover, the following extension of the grammar above de�nes that a com-ment word can also be an expression between two |s.9



context-free syntax"|" Exp "|" -> ComWordThis entails that comments can contain quoted expressions that must be syn-tactically correct. For instance, the following sentence contains the expressionx + y as part of a comment.a + b /* an expression |x + y| denotesthe addition of |x| and |y| */+ cThis is useful for typesetting comments in literate programs and for generatingcross-references.2.2 Problems & SolutionsNow one might ask why scannerless parsing was not introduced earlier, if ithas so many advantages. The answer is that there are several problems causedby the integration of lexical and context-free syntax as well. In this paper wediscuss solutions to these problems that make scannerless parsing feasible.Limitations of Parsing Techniques The main problem with scannerless pars-ing are the limitations of the conventional deterministic parsing techniques.Most complete character level grammars are not LR(1), LL(1), or even LR(k)due to lookahead needed for lexical elements. When parsing with a scanner alookahead of 1 entails looking one token ahead. In scannerless parsing a looka-head of 1 entails only considering the next character. Furthermore, when layoutis skipped by the scanner this need not be considered in the lookahead. Thesolution used in the SDF2 implementation is to use the generalized-LR parsingalgorithm of Tomita (1985) and Rekers (1992) to get dynamic lookahead.Grammar Size Another problem is the size of grammars. Complete char-acter level grammars are large because all constructs have to be speci�ed downto the character level. Furthermore, the placement of layout between tokensshould be explicitly declared in productions. For maintenance and readabilityof grammars this is problematic. To support the development of complete char-acter level grammars an expressive formalism is needed that hides the detailsof the interface between lexical and context-free syntax and of the placementof layout. In x3 we discuss the approach of grammar normalization in order toprovide an expressive formalism with a minimal semantic basis. In x4 we discussthe extension of context-free grammars with various disambiguation constructsto keep grammars concise.Lexical Disambiguation Although many lexical ambiguities are solved au-tomatically through the integration of lexical and context-free syntax, there arestill cases where disambiguation of lexical constructs needs to be expressed.Since lexical analysis is now based on context-free parsing, familiar lexical dis-ambiguation rules such as `prefer longest match' and `prefer keyword' have tobe rede�ned and their implementation reconsidered. In x4 we discuss two dis-ambiguation constructs for lexical disambiguation: follow restriction and rejectproductions that su�ce to express all common lexical disambiguation rules.10



Interpretation of Disambiguation Rules There are a number of ways tointerpret disambiguation constructs. One possibility is to implement them asa �lter on parse forests as proposed in Klint and Visser (1994). However, fordisambiguation of lexical constructs and context-free expressions with prioritiesthis can lead to an exponential size of the parse forest before �ltering, whichmakes the method too ine�cient. In x5 we discuss the techniques used in parsergeneration to encode disambiguation rules in the parse tables such that decisionsare taken early. In x8 an extension of the GLR parsing algorithm with rejectreductions is presented.E�ciency The �rst problem that comes to mind when considering scan-nerless parsing is e�ciency. Since scanning with a �nite automaton has a lowercomplexity than parsing with a stack, scannerless parsing, i.e., replacing the�nite automaton part by a stack machine, should be less e�cient. The fol-lowing considerations led us to attempt scannerless parsing, nonetheless: (1)LR parsing is linear, in particular for regular grammars. Since lexical syntaxis traditionally formulated by means of regular grammars, we should expectlinear behaviour for the lexical part of scannerless parsers. (2) The completecomplexity of the scanner/parser setup should be considered including lexicaldisambiguation. If lexical disambiguation rules cannot solve all ambiguities anddisambiguation has to be deferred to the parser, a kind of graph structured stackhas to be maintained to keep track of the possible segmentation of the string intokens. (Such a setup is used in the ASF+SDF Meta-Environment (Klint, 1993)that forms the background for the development of SDF2.) It seems even moree�cient to maintain a single graph structured stack, instead of two. (3) If morecomplex grammars for lexical syntax are used, we get into an area where scan-nerless parsing and parsing with scanners can no longer be properly comparedbecause such syntax is not expressible in the scanner framework. Therefore, theworst case complexity of context-free parsing should not be taken as a referencepoint for considering the complexity of scannerless parsing.Of course, these considerations should be veri�ed by means of experiments.However, experiments with scannerless parsing can only be performed aftersolutions have been found for the other problems discussed above. It seems thatthese problems are the cause for the late introduction of scannerless parsingrather than bad e�ciency of the method. In x9 we will discuss a few simpleexperiments that have been performed with the scannerless parsing methoddescribed in this paper and that seem to con�rm our expectations.3 Grammar NormalizationWe need an expressive grammar formalism in which lexical syntax and context-free syntax are integrated and that supports concise syntax de�nitions. SDF2is such an expressive formalism. It provides regular expressions, lexical andcontext-free syntax, character classes, literals, priorities, modules, renaming,and aliases. The �rst version of the formalism was described in Visser (1995b).The full de�nition is presented in Visser (1997c). Because it is expensive toextend tools to such an expressive formalism, all features that are expressiblein more primitive features are eliminated by means of a normalization functionon grammars. 11



3.1 Normal FormThe expressive power of the syntax de�nition formalism SDF2 can be charac-terized by the equationSDF2 = context-free grammars + character-classes + priorities+ reject productions + follow restrictionsThat is, any SDF2 de�nition is equivalent to a context-free grammar makinguse of character classes, priorities, reject productions and follow restrictions. Allother features are expressed in terms of these features. The equivalence is suchthat a de�nition is equivalent to a de�nition of the formsorts s1 : : : sjsyntax p1 : : : pkpriorities pr1; : : : ; prlrestrictions r1 : : : rmwhere the si are sort symbols, the pi are context-free productions of the form� ! A, the pri priority declarations of the form pj R pj0 with R a priorityrelation, and the ri follow restrictions of the form � �6 � cc with � a list ofsymbols and cc a character class.A production can have a number of attributes that may include the attributereject, which makes the production a reject production. A priority relationis one of left, right, assoc, non-assoc or >. A symbol can be a characterclass or some other symbol. Only character classes are interpreted during parsergeneration. Other symbols constructed using symbol operators are simply in-terpreted as a name. For instance, the symbol A+ used to indicate the iterationof symbol A has no special meaning after normalization.Given a grammar G the following projection functions are de�ned:S(G) 7! sorts of GSyms(G) 7! symbols used in GP(G) 7! productions of GPr(G) 7! priorities of GR(G) 7! restrictions of G3.2 NormalizationAs an example of the normal form, consider the grammar in Figure 3. It com-pletely describes the lexical and context-free syntax of expressions with identi-�er, multiplication and addition|the same language described in the examplein x2. In fact, this grammar is derived from that grammar by application of anormalization procedure. We briey discuss the elements of this normalizationthat is formally speci�ed in Visser (1997c). Refer to Figure 3 for examples ofthe normalization rules.Lexical and Context-free Syntax The most important aspect of the normal-ization for this paper is the integration of lexical and context-free syntax. Theproductions of lexical and context-free syntax are merged. In order to avoidinterference of lexical and context-free syntax the symbols in productions arerenamed. The symbols in the lexical syntax|except for character classes and12



literals|are renamed using the symbol constructor h -LEXi. For instance, Idbecomes hId-LEXi and [\97-\122]+ becomes <[\97-\122]+-LEX>. Similarly,the symbols in the context-free syntax are renamed using h -CFi. Furthermore,the symbols on the left-hand side of context-free productions are separated byhLAYOUT?-CFi, which entails that layout can occur at that position. In thisway two disjunct sets of symbols are created. The interface between lexical andcontext-free syntax is now expressed by an injection hA-LEXi ! hA-CFi for eachsymbol A used both in the lexical and the context-free syntax.Top Symbol A syntax de�nition de�nes a number of symbols. A text oversuch a de�nition can be one produced by any of its symbols. For context-freeparsing we need a single start symbol from which all strings are generated. Forthis purpose for each sort A a productionhLAYOUT?-CFi hA-CFi hLAYOUT?-CFi ! hSTARTiis added to the grammar, de�ning the start symbol hSTARTi. The productionalso de�nes that a string can start and end with layout. Furthermore, to expressthe termination of a string the productionhSTARTi [\EOF]! hStartide�nes that a string consists of a string generated by hSTARTi followed by theend of �le character.Character Classes Character classes are expressions of the form [cr1 : : : crn]where the cri are either characters or character ranges of the form c�c0. Charac-ter classes are normalized to a unique normal form by translating the charactersto a numeric character code|the ASCII code|and by ordering and mergingthe ranges such that they are in increasing order and do not overlap. Thisnormalization is formally speci�ed and proven correct with respect to the setinterpretation of character classes in Visser (1997b).Literals Literals are abbreviations for �xed lists of characters. Literalsare de�ned in terms of a production with the literal as result and singletoncharacter classes corresponding to the characters as arguments. For example,the production [\108] [\101] [\116] -> "let"de�nes the literal "let" as the sequence of characters l, e and t in ASCII.Regular Expressions An extensive set of regular expressions including op-tional, alternative, tupling, several kinds of iteration and permutation are ex-pressed by means of de�ning productions. For instance, consider the de�nitionof <[\97-\122]+-LEX> in Figure 3, which de�nes a list of one or more lowercaseletters.Priorities Priorities can be declared using chains of > declarations andassociativities of productions can be declared using groups and attributes. Theseare all de�ned in terms of binary priority and associativity declarations.
13



sorts Id Expsyntax[\9-\10\32] -> <LAYOUT-LEX><LAYOUT-LEX> -> <LAYOUT-CF><LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> {left}-> <LAYOUT?-CF><LAYOUT-CF> -> <LAYOUT?-CF>[\42] -> "*"[\43] -> "+"[\97-\122] -> <[\97-\122]+-LEX><[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>{left}<[\97-\122]+-LEX> -> <Id-LEX><Id-LEX> -> <Id-CF><Id-CF> -> <Exp-CF><Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> {left}<LAYOUT?-CF> <Id-CF> <LAYOUT?-CF> -> <START><LAYOUT?-CF> <Exp-CF> <LAYOUT?-CF> -> <START><START> [\EOF] -> <Start>priorities<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>left<[\97-\122]+-LEX> <[\97-\122]+-LEX> -> <[\97-\122]+-LEX>,<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF> left<LAYOUT-CF> <LAYOUT-CF> -> <LAYOUT-CF>,<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> ><Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left<Exp-CF> <LAYOUT?-CF> "*" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>,<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF> left<Exp-CF> <LAYOUT?-CF> "+" <LAYOUT?-CF> <Exp-CF> -> <Exp-CF>Figure 3: Expression grammar in normal form. The grammar contains norestrictions or reject productions.Modules An SDF2 de�nition can be divided over a number of modules.Modules can import other modules. This is used to share common syntax de�-nitions in several language de�nitions. Renamings of symbols and productionscan be used to adapt the de�nition in a module to some application. Fur-thermore, symbol aliases can be used to abbreviate long regular expressions.Modular syntax de�nitions are completely expanded by the normalization func-tion.
14



3.3 SemanticsA syntax de�nition de�nes a language, i.e., a set of strings, and the structurethat is assigned to those strings. The strings of the language are importantto its users who write down programs. The structure of those strings is im-portant for the de�nition of language processors such as compilers, interpretersand typecheckers. The productions of an SDF2 de�nition describe both thelanguage and the structure assigned to strings in the language. The semanticsof a syntax de�nition is a set of parse trees from which a set of strings can bederived. The mapping from trees to strings is achieved by taking the yield ofa tree. The reverse mapping from strings to trees is called parsing. At thispoint, we formally de�ne the semantics of context-free grammars without con-sidering disambiguation rules such as priorities, reject productions and followrestrictions.A context-free grammar G generates a family of sets of parse trees T (G) =(T (G)(X) j X 2 Syms(G)), which contains the minimal sets T (G)(X) such thatc 2 ccc 2 T (G)(cc) (Char)A1 : : : An ! A 2 P(G); t1 2 T (G)(A1); : : : ; tn 2 T (G)(An)[t1 : : : tn ! A] 2 T (G)(A) (Prod)In rule (Char) c is a character and cc a character class. We will write t� for alist t1 : : : tn of trees where � is the list of symbols X1 : : : Xn and ti 2 T (G)(Xi)for 1 � i � n. Correspondingly we will denote the set of all lists of trees of type� as T (G)(�). Using this notation [t1 : : : tn ! A] can be written as [t� ! A]and the concatenation of two lists of trees t� and t� is written as t�t� and yieldsa list of trees of type ��.The yield of a tree is the concatenation of its leafs. The language de�ned bya grammar G is the family L(G) = (L(G)(X) j X 2 Syms(G)) of sets of stringsthat are yields of trees over the grammar, i.e., L(G)(X) = yield(T (G)(X)). Aparser is a function � that maps a string of characters to a set of parse trees. Aparser � accepts a string w if j�(w)j > 0. A parser for a context-free grammarG that accepts exactly the sentences in L(G) is de�ned by�(G)(w) = ft 2 T (G)(X) j X 2 Syms(G); yield(t) = wgA parser � is deterministic if j�(w)j � 1 for all strings w. A grammar isambiguous if there are strings with more than one parse tree, i.e, j�(G)(w)j > 1.4 DisambiguationDisambiguation methods are used to select the intendend tree from a set of pos-sible parse trees for an ambiguous string. SDF2 provides three disambiguationmethods. Priority and associativity declarations are used to disambiguate con-cise expression grammars. Follow restrictions and reject productions are usedto express lexical disambiguation. In this section we discuss these methods.4.1 Disambiguation by PrioritiesBy using priority and associativity declarations, fewer grammar symbols have tobe introduced and a more compact abstract syntax can be achieved. Consider15



the following grammar of expressions in a functional programming languagewith binary function application and let binding.sorts Var Termlexical syntax[a-z]+ -> Var[\ \t\n] -> LAYOUTcontext-free syntaxVar -> TermTerm Term -> Term {left}"let" Var "=" Term "in" Term -> TermTerm "=" Term -> Term {non-assoc}"(" Term ")" -> Term {bracket}context-free prioritiesTerm Term -> Term >Term "=" Term -> Term >"let" Var "=" Term "in" Term -> TermAn example term over this grammar islet sum = foldr plus zero in sum lstThe grammar is disambiguated by means of priorities. The binary applicationoperator is declared as left-associative. This entails that x y z should be read as(x y) z and not as x (y z). This is illustrated in Figure 4 that shows the right-and left-associative parse trees for three adjacent terms. The priority declarationde�nes applications to have higher priority than equalities. Consider the treesin Figure 5. According to the priority declaration, the �rst tree has a priorityconict and therefore only the second tree is a correct parse tree. The followingde�nition formally de�nes the notion of priority conicts.De�nition 4.1 Given some grammar G with priority declarations Pr(G), theset conicts(G) of priority conicts over grammar G is the smallest set of parsetree patterns of the form [�[� ! B] ! A] such that:�B ! A > � ! B 2 Pr(G)[�[� ! B] ! A] 2 conicts(G) (CF1) 6= �; � ! B (right [ non-assoc) B ! A 2 Pr(G)[[� ! B] ! A] 2 conicts(G) (CF2)� 6= �; � ! B (left [ assoc [ non-assoc) �B ! A 2 Pr(G)[�[� ! B]! A] 2 conicts(G) (CF3)A parse tree over a grammar G has a priority conict if one of its nodes matchesa pattern [�[� ! B] ! A] 2 conicts(G). 2Using the notion of priority conicts we can de�ne a �lter on sets of parsetrees that selects the trees without a conict. For example, according to rule(CF3) and because of the declaration of application as a left-associative opera-tor, the pattern[hT-CFi hL?-CFi [hT-CFi hL?-CFi hT-CFi ! hT-CFi]! hT-CFi]16
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<L?-CF> <Term-CF>Figure 5: Two parse trees for application and equality.describes a tree with a conict. (Term and LAYOUT are abbreviated to T and L,respectively.) Therefore, the second tree in Figure 4 has a conict and the �rstone is selected by the disambiguation method. According to rule (CF1) andbecause application has higher priority than equality, the pattern[[hT-CFi hL?-CFi "=" hL?-CFi hT-CFi ! hT-CFi] hL?-CFi hT-CFi ! hT-CFi]is a member of the conicts generated by the functional language grammar.This means that the �rst tree in Figure 5 has a priority conict. The secondtree has no conict.4.2 Lexical DisambiguationIf we consider the example of functional expressions again we see that it containstwo occurrences of lexical ambiguities.4.2.1 Longest Match In the �rst place there is a longest match problemcaused by the syntax-less binary application operator. Two adjacent letterscould be the concatenation of two letters forming a variable, or it could be theapplication of two single letter variables. Figure 6 shows two parse trees for thestring fa. In the �rst tree the concatenation of letter lists is used to make theminto a single variable. In the second tree each letter is interpreted as a variableon its own. We want to solve this ambiguity by means of the longest matchrule that prefers the longest possible lexical token. In this case the string faas a single variable. We de�ne the longest match notion formally by comparingthe lengths of tokens. For this de�nition we �rst need the notion of the tokenstream associated to a parse tree.De�nition 4.2 (Token Stream) The token stream associated with a parsetree is the list of subtrees that have as root either an injection hA-LEXi ! hA-CFior a literal de�ning production. The length jtj of a token t is the number ofcharacters in its yield. 217



According to this de�nition the token streams for the trees in Figure 6 arethe single token[[[[f! <[a-z]+-LEX>][a! <[a-z]+-LEX>]! <[a-z]+-LEX>]! <Var-LEX>]! <Var-CF>]and the tokens[[[f! <[a-z]+-LEX>]! <Var-LEX>]! <Var-LEX>][[[a! <[a-z]+-LEX>]! <Var-LEX>]! <Var-LEX>]The idea of longest match disambiguation is to compare two token streams fromleft to right. While the tokens have the same length the streams are similar.The �rst token that di�ers in length solves the ambiguity by taking the treeassociated with the longer token. In the example above, the �rst token streamis larger because its �rst token has length 2 while the �rst token of the secondstream has length 1.
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aFigure 6: Two parse trees for fa over the functional expression grammar.Formally we have the following de�nition of longest match disambiguation:De�nition 4.3 (Longest Match) Given the token streams t1 : : : tn associ-ated with the tree t and s1 : : : sm associated with tree s, tree t is larger in thelongest match ordering >lm than s (t>lm s), if there is some 1 � i � min(n;m)such that jtj j = jsj j for 1 � j < i and jtij > jsij. 2This de�nition can be used as a method to �lter parse forests by selectingthe largest trees according to the longest match ordering. However, becausea longest match ambiguity causes an exponential explosion of the parse forestthis is not feasible. We need a method that can be applied during parsing,if possible as a �lter on parse tables. A naive solution for the longest matchproblem in the example above is to require non-empty layout as a separatorbetween the two terms of an application. In the example this would indeed solve18



the problem because the second tree would be forbidden. However, this solutionis immediately refuted by considering the expression f(a), where brackets areused around the argument.A method that works in all cases we have encountered so far is that of followrestrictions. A follow restriction of the form A1 : : : An �6 � cc declares that thesymbols Ai should not be followed by any of the characters in the characterclass cc. In the example above the restrictionlexical restrictionsVar -/- [a-z]forbids a variable to be followed by a letter. This entails that the second treein Figure 6 violates the follow restrictions and the desired �rst tree is selected.4.2.2 Prefer Literals The second problem in the functional expression gram-mar is the overlap between the literals "let" and "in" and variables. This isparticularly problematic in combination with the = operator on terms. A letbinding let x = t1 in t2 can be interpreted also as an equality (let x) =(t1 in t2), where let and in are now read as variables. We clearly want todeclare let and in as reserved words of the language that should not be usedas variables. This lexical disambiguation rule is called `prefer literals' and canbe de�ned formally as follows.De�nition 4.4 (Prefer Literals) A tree violates the prefer literals rule if itcontains a subtree with function hA-LEXi ! hA-CFi and the yield of that treeis also used as literal in the grammar. 2This rule can be expressed by means of reject productions. A reject produc-tion is a production � ! A attributed with the attribute reject. It declaresthat a string is not of type A if it can also be derived from �. For example todisambiguate the grammar above we add the following productions.lexical syntax"let" -> Var {reject}"in" -> Var {reject}This creates an ambiguity: let can be a variable in two ways, via the lexicalde�nition or via the production above. Because this is a reject production bothderivations are forbidden, i.e., let can only occur in the context of a let binding.We also need the restrictionslexical restrictions"let" "in" -/- [a-z]to prevent letter to be interpreted as the literal let and the variable ter. Wewill further discuss some properties of reject productions in x7.4.2.3 Automatic Lexical Disambiguation We have de�ned two extensions ofcontext-free grammars that enable us to express lexical disambiguation rules ongrammars for integrated lexical and context-free syntax. However, it is desirableto derive the rules for lexical disambiguation automatically from the grammar.In x6 we will discuss this issue, after we have discussed parser generation.19



5 Parser GenerationWe have discussed a grammar formalism with disambiguation methods for con-cise de�nition of lexical and context-free syntax of languages. Now we turn ourattention to deriving parsers from such syntax de�nitions. In this section wepresent the rules for the generation of parse tables for a shift-reduce parser. Therules constitute a modi�cation of the well known SLR(1) algorithm. We �rstdiscuss shift-reduce parsing.5.1 Shift-Reduce ParsingA shift-reduce parser is a transition system that manipulates its state consistingof a stack and an input stream by repeatedly shifting a symbol from the input tothe stack or reducing a number of elements on top of the stack to a single elementuntil it enters an accepting state. The transitions between parse con�gurationsare determined by the functions `actions' and `goto' as de�ned by the followingtransition rules: actions(sm; ai) 3 shift(sm+1)(s0t1s1 : : : tmsm � ai : : : an)) (s0t1s1 : : : tmsmaism+1 � ai+1 : : : an) (Shi)actions(sm+k; ai) 3 reduce(p; k);s = goto(sm; p); t = tree(p; [tm+1; : : : ; tm+k])(s0t1 : : : tmsmtm+1sm+1 : : : tm+ksm+k � ai : : : an)) (s0t1 : : : tmsmts � ai : : : an) (Red)actions(s1; \EOF) 3 accept(s0t1s1 � \EOF)) accept(t) (Acc)Here a con�guration (s0t1s1 : : : tmsm � ai : : : an) consists of a stack on the leftside of the � and a list of input characters on the right side of the �. The stack is�lled alternatingly with states s and trees t. Parsing starts in the con�gurationC0 = (s0 �a1 : : : an), where s0 is the initial state of the parser. Parsing succeedsif there is some sequence of steps C0 ) C1 ) : : :) accept(t) that ends in theaccepting con�guration accept(t).There are various ways to de�ne the actions and goto functions that drivea shift-reduce parser. The SLR(1) algorithm of DeRemer (1971) and Andersonet al. (1973) is a simpli�cation of the LR(k) parsing algorithm of Knuth (1965).It works by �rst constructing an LR(0) parse table. This involves no lookaheadsets in the parse items. The lookahead of reductions is constrained to the followset of the nonterminal de�ned by the production being reduced.In the rest of this section we describe a modi�cation of the SLR(1) algo-rithm that incorporates priorities and follow restrictions. This modi�cation isbased on the derivation in Visser (1997a), where starting with a schema for Ear-ley's parsing algorithm, a parsing schema is derived such that the parser doesnot build trees with priority conicts. Other changes are the use of characterclasses, the use of productions instead of symbols in follow and goto and theinterpretation of follow restrictions to restrict the lookahead set of reductions.5.2 FirstThe �rst set for a symbol contains those symbols with which a phrase for thesymbol can start. Given some grammar G, de�ne for each list of symbols � and20



each character class cc the �rst characters in � followed by cc is the smallestcharacter class �rst(�; cc) such that:�rst(�; cc) = cc (Fi1)�rst(cc0 �; cc) = cc0 (Fi2)�! A 2 P(G)�rst(A�; cc) � �rst(��; cc) (Fi3)The de�nition of the �rst set can be extended to the set of symbols that startsa sentence derived from a list of symbols.�! A 2 P(G)�rsts(A�;�) � fAg [ �rst(��;�) (Fi4)5.3 FollowIn the conventional SLR(1) algorithm the follow set is computed for each non-terminal of the grammar. It maps a nonterminal to the set of terminals thatcan follow that nonterminal in a sentence, i.e.,�A� !� hStartifollow(A) � �rst(�; ;)This can be computed as the closure of�A ! B 2 P(G)follow(A) � �rst(; follow(B)) (Fo1)that adds the characters in the �rst set of  to the follow set of A if  followsA in some production. The follow of B is added in case  can also produce theempty string.This notion can be re�ned to the follow-set of productions. The rule�A ! B 2 P(G)follow(�! A) � �rst(; follow(�A ! B)) (Fo2)de�nes the follow-set of production � ! A as those characters that can followA in some context. In case of plain context-free grammars, rule (Fo2) has thesame e�ect as rule (Fo1). But if we consider priorities, the rule is extended to�A ! B 2 P(G); [�[� ! A] ! B] 62 conicts(G)follow(�! A) � �rst(; follow(�A ! B)) (Fo3)Here the follow-set of a production is restricted to those contexts where it canactually be used without causing a priority conict. For instance, in the expres-sion grammar of x2, the follow-set of the addition production does not containthe character � because addition can not occur as a direct descendant of multi-plication.Finally, if the grammar also de�nes follow restriction rules A �6 � cc, thefollow-set of a production for A can be further restricted as�A ! B 2 P(G); [�[�! A] ! B] 62 conicts(G); A �6 � cc 2 R(G)follow(�! A) � �rst(; follow(�A ! B)) n cc (Fo4)21



The production can be followed by the di�erence of the �rst set of the rightcontext and the character class cc.To see the e�ect of the last rule consider the follow-set of the production[a-z]+ -> Var in the functional expression grammar of the previous section.Because of the application production and the injection of variables into terms,the follow-set of [a-z]+ -> Var is [\EOF\t\n\ \(\)\=a-z]. The lexical re-striction Var -/- [a-z] removes the character class [a-z] from this follow-set,resulting in [\EOF\t\n\ \(\)\=]. This entails that a variable cannot directlybe followed by a letter.5.4 Goto TableThe states of an LR parser are formed by item-sets. An item is an object of theform [� �� ! A], i.e., a context-free production with a � somewhere in betweenthe symbols on the left-hand side. Such an item indicates that a sentential formof type � has already been recognized.The initial state of the parser for grammar G is the item-set init(G) de�nedas init(G) = closure([�hSTARTi [\EOF]! hStarti])This state expresses that a sentence can be recognized by recognizing a stringof sort hSTARTi followed by the special end of �le character that indicates theend of strings.The closure of a set of items adds all initial items to an item set for whichthe result symbol is predicted by one of the items in the set.I � closure(I) (Cl0)[� �B� ! A] 2 closure(I);  ! B 2 P(G)[� ! B] 2 closure(I) (Cl1)In the presence of priorities the closure is restricted to those items that do notcause a priority conict.[� �B� ! A] 2 closure(I);  ! B 2 P(G);[�[ ! B]� ! A] 62 conicts(G)[� ! B] 2 closure(I) (Cl2)For example, the item [�E+E ! E] is not added to the closure as a result of theitem [E+ �E ! E] if this production is left-associative, because [E+[E+E !E]! E] is a conict patternThe parsing of a string starts with the parser in the initial state. Uponrecognition of a symbol, either by reading a character or by completing a pro-duction, the parser can enter other states as prescribed by the transitions of thegoto graph. The goto function maps an item-set to another item-set, given thesymbol that has been recognized. The function `goto' is de�ned bygoto(X; I) = closure(shift(X; I))i.e., create a new item-set by shifting the � over the symbol X and produce theclosure of the resulting item-set. In normal LR(0) parsing a shift with a symbol22



B creates an item-set containing all items of the previous set that have the �before a B symbol. [� �B� ! A] 2 I[�B � � ! A] 2 shift(B; I) (Sh1)We re�ne the de�nition of shift to shifting with characters and shifting withproductions. Shifting an item-set with a character or character-class is de�nedby the rule [� � cc0 � ! A] 2 I; cc � cc0[� cc0 � � ! A] 2 shift(cc; I) (Sh2)The character-class cc induces a shift of each item that predicts a character-classcc0 that is a superset of cc.Shifting with nonterminals is re�ned to shifting with complete productions.A shift is only successful if the production do not cause a priority conict as adirect descendant at the position of the predicted symbol.[� �B� ! A] 2 I; [�[ ! B]� ! A] 62 conicts(G)[�B � � ! A] 2 shift( ! B; I) (Sh3)For example, the production E + E ! E cannot be used to shift the item[E+�E ! E] if this production is left-associative, because [E+[E+E ! E]!E] is a conict. This restriction of the closure and goto functions guaranteesthat we can never enter a state where we have built a parse tree with a priorityconict.5.5 Action TableThe action table declares the actions to be taken in each state. Given an item-set, the function `actions' maps a character to the set of actions that the parsercan take. If the set of actions is empty the parser has reached an erroneousstate. If the set contains more than one action there is more than one way toproceed. [� � cc � ! A] 2 I; c 2 ccactions(I; c) 3 shift(goto([c]; I)) (Shi)[�� ! A] 2 I; c 2 follow(�! A)actions(I; c) 3 reduce(�! A; j�j) (Red)[hSTARTi � [\EOF]! A] 2 Iactions(I; \EOF) 3 accept (Acc)Note that shift(I) denotes the shift action to state I, whereas shift(X; I) isthe application of the shift function de�ned above.The following proposition states that the actions and goto functions de�nedabove constitute a correct shift-reduce parser.Proposition 5.1 (Correctness) Given the actions and goto functions for agrammar G, we have that (init(G) �w) )� accept(t) i� t 2 �(G)(w) and t con-tains no priority conicts according to Pr(G) and violates no follow restrictionsin R(G). 23



5.6 RemarksThe transition rules for shift-reduce parsing are non-deterministic. If more thanone action is possible in some con�guration more than one transition is possible.If the actions function is deterministic, at most one transition path is possiblefor a string. Traditional parsing techniques only accept grammars that have adeterministic action function. In x8 we will discuss an e�cient implementationfor non-deterministic actions functions.The rules for parser generation above ignore reject productions, i.e., they aretreated just like other productions. In x7 we will discuss how reject productionscan be interpreted by means of a �lter on parse forests. In x8 we will discuss howreject productions can be interpreted during parsing by means of an adaptationof the GLR algorithm. For this purpose, an item-set I is marked as rejectableif it can be reached using a reject production, i.e., I is rejectable, if there is anI 0 such that goto(�! A; I 0) = I and �! A is a reject production.6 Automatic Lexical DisambiguationIn x4 we discussed the speci�cation of lexical disambiguation by means of followrestrictions and reject productions. Although this is an e�ective way to expresslexical disambiguation, it is rather tedious to write down the rules. Therefore,it would be desirable to derive lexical disambiguation rules automatically fromthe other grammar rules such that the grammar is disambiguated according tothe longest match and prefer literals criteria. Here we discuss some possibilities.The perfect rules for longest match disambiguation have not been found yet. Itis a question whether this is possible at all, since it is undecidable whether acontext-free grammar is ambiguous.6.1 Prefer LiteralsThe prefer literals disambiguation rule can be expressed by generating rejectproductions according to the following rule:"c1 : : : cn" 2 L(hA-LEXi)"c1 : : : cn"! hA-LEXi frejectg 2 P(G)i.e., if the literal is a lexical phrase of sort hA-LEXi|there is an overlap|thereject rule is added to the grammar. This implements the reserved keywordsrule. The only (implementation) problem is that a parser is needed to recog-nize the literals as lexicals. This can be solved by �rst generating a parser forthe grammar without reject rules and using that parser to determine overlapbetween literals in the grammar and lexical categories. Reject rules can then beadded to the grammar accordingly and a new parser can be generated for theextended grammar.State Explosion A problem with reject productions to exclude keywords aslexicals is that it can add many items to item-sets. For instance, if a languagecontains 200 keywords that match with the identi�ers of the language, each item-set containing an item [� � hId-LEXi� ! A] would be expanded with 200 items[�"c1 : : : cn" ! hId-LEXi frejectg] and 200 items [�[c1] : : : [cn] ! "c1 : : : cn"]24



along with many extra transitions. To prevent this expansion, we de�ne therejection of literals in an indirect way, as follows:"c1 : : : cn" 2 L(hA-LEXi)() hA-LITi ! hA-LEXi frejectg 2 P(G)"c1 : : : cn"! hA-LITi 2 P(G)where the symbol () denotes the empty phrase, i.e., there is a production ! ().The sort hA-LITi is used to collect all literals to be rejected from hA-LEXi. Theproduction () hA-LITi ! hA-CFi frejectg de�nes the rejection for all literalsat once. The e�ect of the empty symbol () in the second production is that onlythe item [�() hA-LITi ! hA-LEXi] is added when hA-LEXi is predicted. Thiswill cause a reduction with the production ! () to an item-set where hA-LITiis predicted. This item-set is only computed once and is reused for all otheritem-sets that predict hA-LEXi. It is the initial state of a �nite automaton forthe matching of literals.As an example, consider how the prefer literals rule for our functional lan-guage example is expressed using this modi�ed rule:syntax() <Var-LIT> -> <Var-LEX> {reject}"let" -> <Var-LIT>"in" -> <Var-LIT>Local Exclusion An alternative for the expression of the prefer literals ruleis the rulef[�hA-LEXi ! hA-CFi]; [�[c1] : : : [cn]! "c1 : : : cn"]g � closure(I)[�"c1 : : : cn"! hA-CFi frejectg] 2 closure(I)that locally forbids predicted literals as lexicals by extending the parser gen-erator. This does not implement the reserved keywords rule in the sense offorbidding the use of a keyword as a lexical in all positions. Only when a lexicaland a literal can appear in the same place, the literal is preferred. Therefore, itmight still lead to ambiguities.6.2 Longest MatchIt is less straightforward to �nd a general rule to express `longest match' usingfollow restrictions. An attempt is the rulehB-LEXi 2 follows(hA-LEXi ! hA-CFi)hA-LEXi �6 � �rst(hB-LEXi) \ last(hA-LEXi) 2 R(G) (FR)This restricts the follow set of hA-LEXi by excluding the elements of the �rstset of hB-LEXi that can also be used at the end of hA-LEXi for those hB-LEXisthat can follow the injection hA-LEXi ! hA-CFi. Here follows is the extensionof the follow function to produce all symbols that can follow a production.This rule is adequate in many cases. Consider for instance the functionalexpression grammar. The follow restriction for Var in x4.2.2 is derived exactlyusing this rule. However, the rule is not general enough. One counter example isthe following grammar of expressions with single character variables and implicitmultiplication operator. This describes mathematical expressions such as xythat denotes the multiplication of x and y.25



lexical syntax[a-z] -> Var[\ \t\n] -> LAYOUTcontext-free syntaxVar -> ExpExp Exp -> Exp {left}Rule (FR) would forbid xy as an expression forcing the use of whitespace, i.e.,x y. Although this example shows that rule (FR) is unsound if considered asan analytic rule, one could also consider it as a normative rule forcing a clearerstyle of language de�nition.Rule (FR) generates follow restrictions for lexicals. We also need restrictionsfor literals overlapping with lexicals. For instance, the restrictionslexical restrictions"let" "in" -/- [a-z]forbids the interpretation of letter as the literal let and the variable ter. Thefollowing rule adds restrictions to prevent this overlap.hA-LEXi 2 follow("c1 : : : cn");c 2 �rst(hA-LEXi); "c1 : : : cnc" 2 L(hB-LEXi)"c1 : : : cn" �6 � [c] 2 R(G)If the literal L = "c1 : : : cn" followed by some character c from the �rst set ofa lexical hA-LEXi that is a member of the follow set of L can form a lexicalhB-LEXi, there is a longer match than the literal L. Therefore, c is restrictedfrom the follow set of the literal.This rule is stronger than the longest match �lter we formulated before.It can forbid sentences that have a single unambiguous interpretation. Forinstance, consider the string let x = l int. Here int is forced to be read asa variable and not as the juxtaposition of the literal in and the variable t.It is clear that these rules are not the �nal word about fully automatic lexicaldisambiguation. Further research is needed to decide what is su�cient.7 Reject ProductionsIn x4 we introduced reject productions to express `prefer literals' lexical dis-ambiguation. The parser generator discussed in x5 treats reject productions asnormal productions. This will cause ambiguous parses for those cases wherea normal production and a reject production overlap. In this section we �rstde�ne the semantics of context-free grammars with reject productions, then weinvestigate several properties of such grammars including an interpretation ofrejects to solve such ambiguities. [The author thanks Jan van Eijck and AnniusGroenink for the email discussion that led to the results in this section.]7.1 SemanticsThe semantics of reject productions is obtained by re�ning the inductive de�-nition of parse trees from x4. The inductive rule (Prod) is restricted to exclude26



the construction of parse trees that have a yield that could be obtained via areject production.A context-free grammar G with reject productions generates a family of setsof parse trees Tr(G) = (Tr(G)(X) j X 2 Syms(G)), which contains the minimalsets Tr(G)(X) such that c 2 ccc 2 Tr(G)(cc) (CharR)A1 : : : An ! A 2 P(G); t1 2 Tr(G)(A1); : : : ; tn 2 Tr(G)(An);:9� ! A frejectg 2 P(G); t� 2 Tr(G)(�) : yield(t�) = yield(t1 : : : tn)[t1 : : : tn ! A] 2 Tr(G)(A) (ProdR)The second condition of (ProdR) excludes from Tr(G)(A) those trees for whichan A tree with the same yield could be built using a reject production at itsroot. This second condition is the only di�erence with the de�nition of T (G),i.e., we have Tr(G) � T (G). Note that only trees in Tr(G)(�) are excluded.That is, if there are nested reject productions such that some tree in T (G)(�)is rejected and thus not part of Tr(G)(�), then it is not used to exclude treesusing � ! A frejectg.Unfortunately, this de�nition is inconsistent for grammars with a cycle con-taining a reject production. For instance, consider the grammarsyntax[a] -> AA -> BB -> A {reject}and consider whether the string a is a member of the language of this grammar:if [a ! A] 2 Tr(A), then [[a ! A] ! B] 2 Tr(B) and hence [a ! A] 62 Tr(A).Conversely, if [a ! A] 62 Tr(A), then [[a ! A] ! B] 62 Tr(B) and hence[a ! A] 2 Tr(A). For this reason, we restrict the class of grammars that wewant to consider to grammars that do not contain a cycle (disregarding therejects) for which one of the transitions is via a reject production.7.2 Expressive PowerIn the rest of this section we explore some of the properties of reject productions.anbncn First of all context-free grammars with reject productions can beused to describe some non-context-free languages. Consider for example, thelanguage anbncn with n � 0, which is a standard example of a non-context-freelanguage. The following grammar, due to Van Eijck (1997), de�nes this languageusing reject productions. The �rst four productions de�ne the language a�b�c�.The next four productions de�ne the sorts D and E denoting, respectively, anbnand bncn. The last four productions exclude from sort S all strings for whichone of the pairs xnym have unequal numbers of xs and ys.A* B* C* -> S -> D D B+ C* -> S {reject}"a" -> A A D B -> D A+ D C* -> S {reject}"b" -> B -> E A* B+ E -> S {reject}"c" -> C B E C -> E A* E C+ -> S {reject}27



Di�erence Given a context-free grammar de�ning sorts A and B we cande�ne the di�erence of the languages of these sorts by adding the followingproductions.A -> AminBB -> AminB {reject}The �rst adds all A trees to AminB, the second excludes from this all A trees thatmatch with a B tree.Intersection Extending this result, we can express the intersection betweensorts A and B by adding two new sorts AminB and AandB and by adding thefollowing productions:A -> AminB A -> AandBB -> AminB {reject} AminB -> AandB {reject}This de�nes AminB as the di�erence A�B, and AandB as the di�erence A�(A�B),i.e., the intersection of A and B.We can generalize the results above. Given two context-free languages, wecan express the di�erence and intersection of those languages using context-freegrammars with reject productions. Take the union of the context-free grammarsfor the two languages, after renaming symbols to prevent interference. Then addproductions for the sorts to be intersected as explained above.Weak Complement If we are only interested in the strings that can begenerated from a grammar (and not in their structure), the complement of athe language generated by sort A is de�ned by extending a grammar with thefollowing rules:~[]* -> NotAA -> NotA {reject}The �rst production de�nes the complement of A as a string of arbitrary char-acters. The complement ~[] of the empty character class is the character classwith all characters. The second production excludes from this language allstrings in the language of A. Using this complement we can of course also ex-press the weak intersection of two sorts.Decidable We have seen that context-free grammars with reject productionsare very expressive. It is now appropriate to ask whether it is even decidablewhether a string is in the language of such a grammar. The following theoremstates that this is indeed the case. The proof uses the notion of a parse forestthat will be discussed in the next section. For the proof of the theorem we needthe following proposition about generalized-LR parsers.Proposition 7.1 Let G be a context-free grammar. If t1; t2 2 T (G)(A) andyield(t1) = yield(t2) = w, then a GLR parse of w will result in an ambiguitynode with t1 and t2 as possibilities.Theorem 7.2 The parsing problem for context-free grammars with reject pro-ductions (without rejects in cycles) is decidable.28
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Figure 7: Ambiguity node caused by overlap between syntax for <Var-LEX> andreject production "let" -> <Var-LEX>Proof. Given a context-free grammar G with reject productions (withoutrejects in cycles), construct a generalized-LR parser for G ignoring the rejectannotations. The result is a parser for a possibly ambiguous context-free gram-mar. Now, given a string, parse it with this parser. If parsing fails, the stringis also not in the language of the grammar with reject productions. Otherwise,the result of parsing is a parse forest. Since cycles do not contain rejects, thesecan be removed from the forest.Now, if a tree t = [t1 : : : tn ! A] should be rejected according to the secondcondition of rule (ProdR), there is a reject production � ! A and trees t� suchthat yield(t�) = yield(t1 : : : tn). But then, yield([t� ! A]) = yield([t1 : : : tn !A]) and hence, according to the proposition above, the parse forest contains anambiguity node on top of t also containing [t� ! A] as possibility.Reject productions are now interpreted by traversing the forest, in a bottom-up manner, marking tree nodes according to the following rules: (1) Leafs arenot marked. (2) A reduction node is marked if any of its direct descendants ismarked. (3) An ambiguity node is marked if either all its direct descendants aremarked, or if it contains an unmarked tree with as root label a reject production.Since the parse forest is �nite, this procedure terminates.If the root of the parse forest is marked after this procedure, the string isnot accepted by the grammar, otherwise it is accepted and the forest withoutmarked nodes represents all parse trees for the string. 2The tree in Figure 7 illustrates the proof. The overlap between the literal"let" and the syntax for variables causes an ambiguity. The ambiguity nodeis marked because "let" -> <Var-LEX> is a reject production. Therefore, theinterpretation of let as a variable is dismissed.This shows that we can construct a complete implementation of parsersfor grammars with reject productions. In the next section we will discuss howreject productions can be interpreted during parsing to inuence parse decisionsto prevent trees with rejected subtrees from being built at all.29



Expressive Power From the above we can conclude that context-free gram-mars with reject productions are stronger than pure context-free grammars, buthave a decidable parsing problem. This gives a lower bound and upper boundfor the expressive power of the formalism, but it is an open question what classof languages is described by context-free grammars with reject productions.Regular Rejects We introduced reject productions in order to express theprefer literals rule. This means that only a regular language is excluded from acontext-free one. This gives us the guarantee that the resulting language is stillcontext-free. We could exploit this property and restrict the formalism to suchregular reject productions and implement these by means of a grammar trans-formation. However, such a grammar transformation would probably yield largegrammars. Furthermore, our implementation gives a general way to express theprefer literals rule and it allows the expression of other interesting grammarsthat have not been in the reach of declarative speci�cation. This feature cangive rise to as yet unforeseen applications.8 Generalized-LR ParsingIn x5 we have de�ned the generation of shift-reduce parsers from context-freegrammars with priority declarations and follow restrictions. If the actions func-tion derived from a grammar is deterministic then the shift-reduce parser is alsodeterministic and can be implemented in a standard way.However, since we do not restrict the class of grammars, it is not guaranteedthat the actions function is deterministic. This can have two causes: (1) Thelookahead needed for the grammar is more than provided by the parser gener-ator. (2) The grammar is ambiguous. In the case of scannerless parsing we willfrequently see grammars for which unbounded lookahead is needed. This entailsthat no variant of the LR parser generation algorithms will produce a determin-istic actions function. Therefore, we need a non-deterministic implementationof the shift-reduce parsing algorithm. When a con�guration is reached wheremore than one action is possible, all possibilities should be tried. In case ofunbounded lookahead only one of the possible transitions leads to an acceptingcon�guration. In case of an ambiguous string, multiple accepting con�gurationswill be reached giving all possible parse trees for the string.The advantage of such a non-deterministic approach is, �rst of all, the un-bounded lookahead that it provides. Furthermore, a parser producing all parsetrees for an ambiguous string can be used as a front-end for a disambiguation�lter that selects the correct tree according to some disambiguation method.Finally, it is undecidable whether a grammar is ambiguous or has lookaheadproblems. Having a parser that yields all possible parses can help in detect-ing the ambiguities and resolve them in a much easier way than by inspectingconicts in a parse table.A naive way to implement such a non-deterministic parsing algorithm isto copy the entire con�guration at each point where two or more actions arepossible and to continue parsing with each those con�gurations. This will notbe very e�cient because of the memory requirements and because it will notreuse parses for substrings that are the same in two forked o� con�gurations.Generalized-LR parsing is an e�cient implementation of non-deterministic shift-reduce parsing. A GLR parser deals with conicts in the parse table by splitting30



the parser into as many parsers as there are conicts. If the conict was due toa lack of lookahead, some of the parsers will not succeed in parsing the sentenceand will die. If several parsers succeed in parsing, the grammar was ambiguous.In that case parse trees for all possible parses are built.Generalized-LR parsing was developed for natural language processing byTomita (1985). It is a specialization of the more general framework of Lang(1974) (later also described in Billot and Lang (1989)) for creating generalizedparsers. The algorithm was improved by Rekers (1992) and applied to parsing ofprogramming languages. The feasibility of GLR parsing for parsing of program-ming languages has been shown by the experience with GLR in the ASF+SDFMeta-Environment (Klint, 1993). More experience with GLR parsing of pro-gramming languages using an adaptation of Reker's algorithm is reported byWagner and Graham (1997).Besides the non-determinism in the parse table, we also need to interpret thereject productions in the grammar. In the previous section we showed how rejectproductions can be interpreted as a disambiguation �lter after parsing. But wewould rather interpret them earlier. In this section we explain GLR parsing andpresent an adaptation of the algorithm to interpret reject productions duringparsing.8.1 Parse ForestA generalized parser deals with ambiguous grammars by producing all possibleparse trees for an ambiguous string. In GLR parsing the possible parse treesare represented by means of a parse forest. This is a compact representation ofa set of parse trees. A parse tree is constructed using application and ambiguitynodes. An application node represents the application of a production to a listof subtrees. An ambiguity node represents a set of possible parse trees for a(sub)string. By packing all trees for a substring into an ambiguity node, theseparses can be shared in all trees for strings containing the substring.For example, consider the following grammar of simple expressions withambiguous addition and multiplication operator.sorts Expsyntax[a-z] -> ExpExp "+" Exp -> ExpExp "*" Exp -> ExpExp -> <START>To keep the example small, layout is not allowed between the tokens. Theparse forest for the ambiguous string a+b*c is shown in Figure 8. The ellipserepresents an ambiguity node. Observe that various subtrees are shared in theforest.8.2 Graph Structured StackA GLR parser deals with conicts in the parse table by maintaining a number ofstacks in parallel. Each time a parse stack leads to n conicting actions, n newstacks are created that continue the parse with those actions. These stacks arenot copies of the old stack. The new top nodes have pointers to the old stack. If31
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8.4 The AlgorithmBelow the complete SGLR algorithm is presented. The di�erences with theGLR algorithm of Rekers (1992) are the use of productions in the goto functionand the handling of reject reductions. Furthermore, the parser does not makeuse of a scanner, but reads characters from a �le or string. This could of coursebe a stream of token codes and does not make a di�erence to the algorithm. Aswe discussed in the x5 character classes are handled in the parse table and arethus transparent to the parser.Algorithm 8.1 (SGLR) Given the parse table table for some grammar, parsethe string of characters in �le. If the string is a sentence in the language de-scribed by the grammar, return the parse forest for the string, and an errormessage otherwise.Parse The function parse reads the characters from a �le and returns a parsetree if the text is syntactically correct, an error message otherwise. The list ofactive stacks is initialized to contain a single stack with the initial state of theparse table as its state. For each character in the input, the parser handles allactions for each active stack. The shifts for each stack are stored and performedby the shifter after all possible reductions have been performed. When all char-acters have been read or when no more stacks are alive, parsing terminates. Ifparsing succeeded, the accepting stack has a direct link to the initial state. Thislink has a reference to the parse forest with all possible parse trees for the entirestring. If parsing failed an error term is returned.PARSE(table, �le)global accepting-stack := ;global active-stacks := fnew stack with state init(table)gdo global current-token := get-next-char(�le)PARSE-CHARACTER()SHIFTER()while current-token 6= \EOF ^ active-stacks 6= ;if accepting-stack contains a link to the initial stack with tree t thenreturn telsereturn parse-errorParse Character The list of active stacks is moved to the list of stacks of theactor that performs the actions for a stack unless the stack is rejected. The listof stacks for the actor is extended when reductions are performed. If actionsfor newly added stacks are performed before all links to it have been created, astack that becomes rejected might escape. Therefore, new stacks are added tofor-actor-delayed if they are rejectable and are only considered when all stackson for-actor are exhausted. Then stacks are taken from the delayed list in orderof priority. The operation `pop' removes the stack with the highest priority froma list of stacks.PARSE-CHARACTER() 36



global for-actor := active-stacksglobal for-actor-delayed := ;global for-shifter := ;while for-actor 6= ; ^ for-actor-delayed 6= ; doif for-actor = ; thenfor-actor := fpop(for-actor-delayed )gfor each stack st 2 for-actor doif : all links of stack st rejected thenACTOR(st)Actor Handle the actions for stack st and the current token. A reduce actionis immediately handled. Shift actions are saved on for-shifter for handling ifafter all reductions have been performed. An accept action results in savingthe current stack as the accepting stack. An error action is ignored because thecurrent stack can be a wrong attempt while other stacks are still alive. Theentire parse fails if all stacks lead to error actions. This will become apparentafter shifting because no more active stacks will be alive.ACTOR(st)for each action a 2 actions(s, current-token) docase a ofshift(s) ) for-shifter := fhst; sig [ for-shifterreduce(�! A) ) DO-REDUCTIONS(st, �! A)accept ) accepting-stack := stReductions Function do-reductions performs a reduction for stack st with pro-duction �! A. For each path of length j�j following the links from st to somestack st0 the trees along the path are collected and the reducer is called to han-dle the reduction.DO-REDUCTIONS(st, �! A)for each path from stack st to stack st0 of length j�j dokids := the trees of the links which form the path from st to st0REDUCER(st0, goto(state(st0), �! A), �! A, kids)Reducer Given a stack st, a state s, a production � ! A and a list of treeskids, the reducer creates the application node for the production and the listof direct descendants kids and creates a new stack with state s and a link tostack st. However, because there might already exist as stack with state s, thelist of active stacks is searched. If there is no such stack a new stack is created(else branch) and added to the list of active stacks and the list of stacks for theactor. The new stack has state s and a link with a pointer to the newly createdtree. If a stack with state s already exists and there is a direct link nl fromst1 to st0, an ambiguity has been found. The tree t is added to the ambiguitynode of the link. If there is no direct link, a new link is created from st1 to st0with t as parse tree. Because this new link entails that new reductions fromalready inspected stacks might be possible, all active stacks are reconsidered.In all cases, the link that is created or extended is marked as rejected if theproduction is a reject production.REDUCER(st, s, �! A, kids) 37



t := application of �! A to kidsif 9st1 2 active-stacks : state(st1) = sif 9 a direct link nl from st1 to st0 thenadd t to the possibilities of the ambiguity node at tree(nl)if �! A is a reject production then mark link nl as rejectedelseadd a link nl from st1 to st0 with tree tif �! A is a reject production then mark link nl as rejectedfor each st2 2 active-stackssuch that : all links of st2 rejected^ st2 62 for-actor ^ st2 62 for-actor-delayed dofor each reduce(� ! A) 2 actions(state(st2), current-token)do DO-LIMITED-REDUCTIONS(st2, �! A, nl)elsest1 := new stack with state sadd a link nl from st1 to st0 with tree tactive-stacks := fst1g [ active-stacksif rejectable(state(st1)) thenfor-actor-delayed := push(st1, for-actor-delayed)elsefor-actor := fst1g [ for-actor-delayedif �! A is a reject production then mark link nl as rejectedLimited Reductions The function do-reductions is used to do all reductions forsome state and production that involve a path going trough link nl.DO-LIMITED-REDUCTIONS(st, �! A, l)for each path from stack st to stack st0 of length j�j going through link ldo kids := the trees of the links that form the path from st to st0REDUCER(st0, goto(state(st0), �! A), �! A, kids)Shifter After all possible reductions have been performed, for-shifter containsa list of stacks that can do a shift. Only these stack make it into the next cycleof the parse. The list of active stacks is reinitialized to the empty list. For eachstack st0 in for-shifter a new stack is created with a link to st0 with as tree thecurrent token. That is, if a stack with state s was already created only a linkfrom that stack to st0 is created.SHIFTER()active-stacks := ;t := current-tokenfor each hs; st0i 2 for-shifter doif 9st1 2 active-stacks: state(st1) = s thenadd a link from st1 to st0 with tree telsest1 := new stack with state sadd a link from st1 to st0 with tree tactive-stacks := fst1g [ active-stacksend 38



� AandB -> <Start>� A -> AandB� AminB -> AandB frejectg� A -> AminB� B -> AminB frejectg B � -> AminB frejectgAminB � -> AandB frejectg
A � -> AminBA � -> AandB
AandB � -> <Start>

ABAminBAandB0 1234Figure 12: Goto graph for grammar with nested reject productions.8.5 RemarksThe algorithm above does not actually mark stacks as rejected, but the linkfrom a stack that is created with a reject production. Further action on a stackis forbidden if all links from that stacks are rejected. This is done because, inprinciple, there could be situations where two links are created from the samestack that are not merged (as is the case when the links are to the same stack)and only one is rejected. It is not clear whether such a situation can occur. Butthere is no proof of the contrary either.The ordering on states that is assumed in the priority pop operation used inprocedure PARSE-CHARACTER() is needed to ensure that nested reject pro-ductions are treated properly. For example, consider again a grammar extendedwith productions expressing the intersection of sorts A and B.A -> AminB A -> AandBB -> AminB {reject} AminB -> AandB {reject} AandB -> <Start>This gives rise to the goto graph in Figure 12. States 3 and 4 are rejectablebecause they can be reached with a reject production. When parsing a stringthat is in A and in B, state 2 is reached using the reduction for B. The nextreduce action with the reject production B -> AminB {reject} leads a stackwith state 3, which is rejected. No further action is taken from that stack. Thereduction of A -> AandB leads to a stack with state 4 and then, correctly, toacceptance of the string.Now consider the case where a string is in A, but not in B. Then there is noreduction to state 2 and hence state 3 is not rejected, but there is a reductionto state 3 using A -> AminB and a reduction to state 4 using A -> AandB. Nowthere are two rejectable stacks on the for-actor-delayed list. If the stack withstate 3 is released �rst a reduction with AminB -> AandB {reject} occurs andthe stack with state 4, which is still on for-actor-delayed, is rejected; and parsingfails as it should. However, if state 4 is released �rst, parsing succeeds beforethe stack with state 4 is rejected. It is clear that in this case state 3 has higherpriority than state 4.It is not clear how the ordering on states should be determined in general. Itwould seem that a state s1 with productions that are reachable from the produc-tions in a state s2 has higher priority. This is only a guess, however, and shouldbe worked out more carefully. For single, i.e., non-nested reject productions theordering plays no role. Therefore, the implementation of exclusion by means of39



reject productions, of which prefer literals is a special case, is not dependent on�nding an ordering on states.9 ImplementationIn the previous sections we have presented an approach to scannerless parsing.These techniques are implemented as part of the SDF2 tools. The tools havebeen used to construct parsers for a number of languages including SDF2 it-self. Although no detailed data on the performance of the implementation areavailable at the time of this writing, a couple of preliminary observations canbe made nonetheless.Grammar Normalizer The syntax de�nition formalism SDF2 is completelyspeci�ed in ASF+SDF. Part of the de�nition is the grammar normalizer dis-cussed in x3. This speci�cation has been compiled to an executable termrewriter, which has a reasonable performance. The literate speci�cation of SDF2and the normalization of syntax de�nitions is presented in Visser (1997c). Thespeci�cation also de�nes the format of parse trees encoded in the ATerm formatof Van den Brand et al. (1997).Parser Generator The parser generator described in x5 has been completelyspeci�ed in ASF+SDF. The compiled speci�cation of the parser generator istoo ine�cient. It is probably necessary to implement this component in animperative language that allows direct access instead of lookup in lists.There are several factors that make parser generation more di�cult com-pared to normal SLR(1) parser generation for context-free grammars. Thereare more item-sets because of the productions for the lexical syntax. Extraproductions are added because of the reject productions expressing the preferliterals rule, this increases the number of items in item-sets. The goto tablecontains a transition for each production instead of a transition for each non-terminal. The last factor can be reduced by sharing transitions to the samestate.Productions and item-sets are encoded by numbers. Character classes areimportant for reducing the size of the parse table. A set of actions that isshared by several characters is stored e�ciently by means of a character class,i.e., `actions' is a mapping from item-sets and character classes to sets of actions.Parser The SGLR parsing algoritm has been implemented in C. The im-plementation makes use of the C implementation of ATerms (Van den Brandet al., 1997) to represent stacks and trees.The parser includes visualization tools for parse forests and graph structuredparse stacks that were used to produce the pictures in this paper. The forestvizualization might be used as basis for an interactive disambiguation tool.The C implementation of the SGLR parsing algorithm seems reasonablye�cient, although sharing of trees can be improved. Output of parse trees isnot optimal because sharing of subtrees is completely lost when writing out aparse forest in a linear term format. This can solved by using a linear encodingof graphs such as the graph exchange language GEL of Kamperman (1994).Furthermore, a mark-scan garbage collector for stack and tree nodes is used.This entails that all stack and tree nodes are visited on a collect, which is tooexpensive, since a large amount of the heap will not change status. A referencecount garbage collector should make a di�erence.40



Complexity of Lexical Analysis We have performed a few experiments toget an idea of the complexity of lexical analysis with scannerless generalized-LR parsers. The experiments were based on the simple expression grammarin x2. The experiments that were performed were of the form: (a) Parsing asingle identi�er of increasing length (up to 425KB). (b) Parsing an expressionconsisting of ten additions with identi�er arguments of increasing length (upto 325KB). (c) Parsing an expression consisting of an increasing number ofadditions (up to 16K arguments with length 490KB).For all these experiments we saw an almost linear behaviour for small �lesdeteriorating to square behaviour for the large �les. However, when garbagecollection was turned o�, this behaviour changed into linear for all experiments.This con�rms the observation about the inappropriateness of the garbage collec-tion algorithm. It also con�rms the idea that lexical analysis will behave linearlyfor simple, i.e., regular lexical syntax. The prototype implementation should befurther optimized before its performance can meaningfully be compared to scan-ner/parser combinations such as LEX/YACC. Nonetheless, these experimentsshow the feasibility of the scannerless generlized-LR parsing approach.10 Related WorkThe syntax de�nition formalism SDF2 is formally speci�ed in Visser (1997c).The speci�cation in ASF+SDF comprises the syntax of the formalism, the nor-malization procedure and the parse tree format de�ned by a grammar.The syntax de�nition formalism SDF of Heering et al. (1989) was the start-ing point for the work discussed in this paper. The de�nition of SDF2 grew outof the speci�cation of SDF in ASF+SDF. A number of generalizations whereapplied to make the formalism more orthogonal and uniform and a numberof improvements and new features were added based on the experience withSDF in the ASF+SDF Meta-Environment (Klint, 1993). SDF introduced theintegration of lexical syntax and context-free syntax, but only at the formal-ism level. In the implementation, an SDF de�nition is mapped to a regulargrammar de�ning the lexical syntax and a context-free grammar de�nining thecontext-free syntax. The scanners produced for the lexical syntax yield a graphstructured stream of all possible tokenizations of the input �ltered by a setof lexical disambiguation rules. Although this is a fairly advanced setup, theinterface su�ers from several of the problems that we discussed in x1 and x2.The generalized-LR parsing algorithm was �rst developed by Tomita (1985)for application in natural language processing. It was later improved by Rekers(1992) and applied in the ASF+SDF Meta-Environment for parsing of program-ming languages. The algorithm presented in x8 is based on Rekers' version.Wagner and Graham (1997) describe the use of GLR parsing in incrementalparsing of programming languages. Earley (1970) described the �rst generalizedparsing algorithm that is closely related to the LR algorithm of Knuth (1965).A more recent approach to parsing with dynamic lookahead is the extension oftop-down parsing with syntactic predicates of Parr and Quong (1994).Scannerless parsing was introduced by Salomon and Cormack (1989, 1995).They de�ne an extension of SLR(1) parsing in which the lack of lookaheadis repaired by extending item-sets if conicts are found. This non-canonicalSLR(1) parser generation works only for a limited set of grammars, making41



grammar development di�cult. The follow restrictions presented in this paperare a simpli�cation of the adjacency restriction rule of the NSLR(1) approach inwhich arbitrary grammar symbols can be forbidden to be adjacent. Our rejectproductions are called exclusion rules by Salomon and Cormack (1989, 1995).We have presented a complete implementation for follow restrictions and rejectproductions, whereas the adjacency restrictions and exclusion rules are onlypartially implemented in NSLR(1) parsing.A similar approach using GLR parsing is tried in the area of natural languageprocessing. Tanaka et al. (1996) discuss the integration of morphological andsyntactic analysis of Japanese sentences in a single GLR parser. The morpholog-ical rules describe how words can be formed from characters. Segmentation ofa string of characters into a string of words is guided by a connection matrix re-stricting the categories that can be adjacent in a sentence. These rules do usuallynot su�ce to �nd an unambiguous segmentation. by integrating morphologicalcomposition into the context-free grammar of the syntactic phase, such `contex-tual' ambiguities can be avoided. This creates the problem of disambiguatingthe combined context-free grammar usingthe morphological connection matrix.This is partly done as a �lter on the generated LR table and partly dynamicallyduring parsing.Disambiguation by means of priority and associativity declarations was in-troduced simultaneously by Aho et al. (1975) and Earley (1975). The formerdescribe the solution of conicts in LR parse tables by means of a restricted formof priorities. Aasa (1991, 1992) describes the solution of LR table conicts bymeans of precedence declarations. Thorup (1992, 1994a, 1994b) describes thesolution of parse table conicts by means of a collection of excluded subtrees.The method is more expressive than the priorities of SDF, but only succeeds ifall conicts are solved, which is not guaranteed.In Klint and Visser (1994) logical disambiguation methods are formalized asdisambiguation �lters on sets of parse trees. Based on this approach an e�cientimplementation of disambiguation by priorities is derived in Visser (1995a) fromthe disambiguation �lter for priorities. This derivation forms the foundation forthe parser generator algorithm presented in this paper.11 ConclusionsIn this paper we have presented a new approach to parsing that has several ad-vantages over conventional techniques. It overcomes the drawbacks of the tra-ditional scanner/parser interface by abolishing the scanner completely (hencethe name scannerless parsing). The lexical and context-free syntax of a lan-guage are described in a single integrated uniform grammar formalism. Lexicalambiguities can frequently be solved by means of the parsing context. Lexicalstructure and layout are preserved in the parse tree and thus accessible in se-mantic tools. A more expressive formalism for lexical syntax is obtained, suchthat for example nested comments can be expressed.The approach encompasses an expressive syntax de�nition formalism. Agrammar normalizer to reduce the complexity of the formalism by simplifyingsyntax de�nitions to context-free grammars with a few extensions. An SLR(1)parser generator that deals with character-classes, follow restrictions and pri-ority and associativity rules. A generalized-LR parser that can be used for42



arbitrary context-free grammars with reject productions, at least if they are notnested. In parsing unambiguous languages, the GLR parser is used to dynami-cally handle lookahead problems by forking o� parsers in parallel.Reject productions turn out to be a very expressive device that brings us outof the domain of context-free languages. It is as yet unclear how expressive thisformalism is exactly, but we have a lower bound|stronger than context-freebecause it describes anbncn|and an upper bound because the parsing problemis decidable.Priorities are compiled into the parse table such that no parse trees withpriority conicts can be produced by the parser. This reduces the size of theparse forest (in case of ambiguous binary expressions the parse forest growsexponentially) and decreases the number of paths in the graph structured stack.The technique is more general than conventional techniques for this kind ofdisambiguation and works even if there remain conicts in the parse table dueto other causes. For instance, if the grammar requires more lookahead than theparser generator provides.An open issue is the fully automatic derivation of lexical disambiguationrules from the grammar that would make the method still easier to use. Apartfrom this minor point, scannerless generalized-LR parsing is a feasible parsingmethod that makes syntax de�nition more expressive and solves a number ofproblems with conventional parsing approaches.Acknowledgments The author thanks Arie van Deursen, Jan van Eijck, An-nius Groenink and Paul Klint, for useful suggestions and comments on previousversions of this paper.This research was supported by the Netherlands Computer Science ResearchFoundation (SION) with �nancial support from the Netherlands Organisationfor Scienti�c Research (NWO). Project 612-317-420: Incremental parser gener-ation and context-sensitive disambiguation: a multi-disciplinary perspective.ReferencesAasa, A. (1991). Precedences in speci�cations and implementations of program-ming languages. In J. Maluzynski and M. Wirsing, editors, Programming Lan-guage Implementation and Logic Programming , volume 528 of Lecture Notesin Computer Science, pages 183{194. Springer-Verlag.Aasa, A. (1992). User De�ned Syntax . Ph.D. thesis, Department of ComputerSciences, Chalmers University of Technology and University of G�oteborg, S-412 96 G�oteborg, Sweden.Aho, A. V., Johnson, S. C., and Ullman, J. D. (1975). Deterministic parsing ofambiguous grammars. Communications of the ACM , 18(8), 441{452.Anderson, T., Eve, J., and Horning, J. (1973). E�cient LR(1) parsers. ActaInformatica, 2(1), 12{39.Billot, S. and Lang, B. (1989). The structure of shared forests in ambiguous pars-ing. In Proceedings of the Twenty-Seventh Annual Meeting of the Associationfor Computational Linguistics . Association for Computational Linguistics.43
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