
Theoretical

ELSEVIER Theoretical Computer Science 199 (1998) 57-86

Computer Science

Polymorphic syntax definition

Eelco Visser *

Programming Research Group, Department of Computer Science, University of Amsterdam,
Kruislaan 403, NL-1098 Xl Amsterdam, Netherlands

Abstract

Context-free grammars are used in several algebraic specification formalisms instead of first-
order signatures for the definition of the structure of algebras, because grammars provide better
notation than signatures. The rigidity of these first-order structures enforces a choice between
strongly typed structures with little genericity or generic operations over untyped structures. In
two-level signatures level 1 defines the algebra of types used at level 0 providing the possibility
to define polymorphic abstract data types. Two-level grammars are the grammatical counterpart of
two-level signatures. This paper discusses the correspondence between context-free grammars and
first-order signatures, the extension of this correspondence to two-level grammars and signatures,
examples of the usage of two-level grammars for polymorphic syntax definition, a restriction of
the class of two-level grammars for which the parsing problem is decidable, a parsing algorithm
that yields a minimal and finite set of most general parse trees for this class of grammars, and
a proof of its correctness. @ 1998 Published by Elsevier Science B.V. All rights reserved

Keywords: Algebraic specification; Grammar formalisms; Polymorphism; Syntax definition;
Two-level grammars

1. Introduction

In the algebraic approach to programming language specification, languages are con-

sidered as algebras. A sentence, program or expression in a language is an object of its

algebra. The constructs for composition of expressions from smaller expressions and

the operations that interpret, translate, transform or analyze expressions are the oper-

ations of the algebra. Algebraic specifications describe algebras by means of a finite

structure that describes the sorts of the algebra, its operations and the relations between

the operations. Any algebra that has the structure prescribed by the specification and

that satisfies its relations is a model of the specification. Therefore, a specification al-

ways describes a class of algebras instead of precisely the intended algebra. There are

many formalisms for algebraic specification. Depending on the expressive power of a

* E-mail: visser@acm.org.

0304-3975/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved
PZZ SO304-3975(97)00268-S

58 E. Visserl Theoretical Computer Science 199 (1998) 5746

formalism the class of algebras described by a specification can be narrowed down to

the intended algebra. First-order algebraic specifications consist of a first-order signa-

ture and a set of equations over the terms generated by the signature. A first-order

signature consists of a finite set of sorts and a finite number of operations over those

sorts.

Grammars describe languages by means of a finite structure that describes the syntac-

tic categories of a language and the sentences of its categories. Context-free grammars

and first-order signatures generate the same class of algebras. Parse trees or abstract

syntax trees can be considered as terms over a signature and the language of terms

over a signature can be described by a context-free grammar [6,7]. This correspon-

dence is exploited in several algebraic specification formalisms by allowing the use of

signatures with mix-fix operators [1,5] or even arbitrary context-free grammars [lo]

instead of just prefix function signatures. This provides concrete notation for functions

and constructors in data type specifications and it enables definition of operations on

programming languages directly in their syntactic constructs.

The rigidity of first-order signatures and context-free grammars makes it difficult to

generically describe properties of an algebra. For example, an algebra with lists of

integers and lists of strings can be specified with a first-order signature by declaring

a sort LI (list of integers) and a sort LS (list of strings) and by defining operations

like the empty list, cons, head, tail and concatenation on both sorts. However, if these

list sorts have the same properties independent of the contents of the lists for some

operations, this cannot be expressed in a first-order specification. Similarly, if for both

list sorts an operation exists that applies a function to each element of a list, this cannot

be expressed in a generic way in a first-order specification. This lack of generic@

makes it difficult to develop libraries with specifications of common data types and

generic language constructs.

A higher type algebra [151 is an algebra with an algebraic structure imposed on

the set of sorts, i.e., the set of sorts is itself an algebra with operations. These sort

operators are interpreted as functions from collections of carrier sets to collections of

carrier sets. For instance, the sorts LI and LS above can be seen as sorts constructed

from the sorts I (integer) and S (string) by the sort operator L that constructs the

sort of sequences of integers and strings, respectively. In such algebras more generic

statements about (classes of) objects and operations of the algebra can be made. For

example, one can say that, for an arbitrary sort x, the tail function is a function from

LX to Lx that yields the argument sequence without its first element, where we abstract

from the fact that x is equal to I or S. One could say that higher type algebras provide

a higher resolution in the sort space of an algebra. Algebraic specifications in higher

types [9,14, 18,21,26] describe higher type algebras by means of two (or more) levels

of signatures. Each level specifies the sort operations for the next level, i.e., the terms

over the signature at level i+ 1 are the sort expressions of the signature at level i. Sort
expressions with variables are polymorphic sorts that describe all sorts obtained by

substituting sorts for the variables. Polymorphic sorts are used to specify polymorphic

functions that uniformly apply to many sorts.

E. Visser I Theoretical Computer Science I99 (1998) 57-86 59

In this paper we discuss polymorphic syntax definition by means of context-free and

two-level grammars. We argue that the grammatical counterpart of algebraic specifi-

cations with two-levels are two-level grammars. This correspondence can be extended

to multi-level signatures leading to multi-level grammars. The connections between the

various formalisms are summarized by the following diagram:

First-Order Two-Level Multi-Level
Signature

(3)
Signature

(4)
’ Signature

1 -r
1 I

(2)
I I
I I
1 I
I

Context-Free (1) lko-Level
Grammar) Grammar -----

where we refer to the following literature: (1) van Wijngaarden et al. [29], Pereira and

Warren [19], (2) Hatcher and Rus [7], Goguen et al. [6], Futatsugi et al. [5], Heering

et al. [lo], (3) Poignk [21], Meinke [14, 151, Heam and Meinke [9], (4) Heam [8],

Visser [26].

The rest of this paper is structured as follows. Section 2 contains a review of first-

order signatures, context-free grammars and their correspondence and gives some exam-

ples of data type specification with context-free grammars. Section 3 defines two-level

grammars and the parsing problem for two-level grammars. Section 4 illustrates how

two-level grammars can be used for polymorphic syntax definition. Section 5 discusses

several properties of two-level grammars including a characterization of a large class

of grammars for which the parsing problem is decidable, although membership of the

class is undecidable. Section 6 defines a parsing algorithm, with a correctness proof,

for this class of two-level grammars that yields for each string a minimal and finite

representation of the set of all parse trees for the string. Section 7 discusses related

grammar formalisms and type systems and Section 8 concludes the paper.

2. Signatures and grammars

In this section we review many-sorted algebras, context-free grammars, the corre-

spondence between first-order signatures and context-free grammars and the use of

context-free grammars in the algebraic specification of languages and data types.

2.1. Many-sorted algebra

Many-sorted algebras or C-algebras were introduced by Higgins [1 l] as a general-

ization of the theory of abstract algebra. Here we give the basic constructs needed in

this paper. For a further introduction to the theory of universal algebra see for instance

60 E. Visserl Theoretical Computer Science 199 (1998) 57-86

Meinke and Tucker [161, who also give several example applications. A note on no-

tation: We will frequently use the notion of a family, which is a collection of sets

indexed by some, finite or infinite, index set. If F is a family indexed by I, we denote

by F(i) the set at index i E Z and write F = (F(i) 1 i E I). If we want to indicate that x

is an element of some F(i), we loosely write x E F identifying F with U,,_l F(i).

Definition 2.1 (Signature). A many-sorted signature C is a pair (S, F) where S = S(Z)

2 S is a set of sort names and F = F(Z) C 0 x S(C)+ a set of function declarations

(with S and 0 some sets of sort names and operation names, respectively). We write

f:r, x ... xr,+ro if (f,ri . . . znzo) E F(C). Z U V is the extension of a signature C

with a S(C)-indexed family of sets of variables V. We write x : z if x E V(r). The class

of all signatures is denoted by SIG.

Definition 2.2 (C-Algebra). A C-algebra d is an S(C)-indexed family of carrier sets

A(z) and an assignment of each f : ri x . . . x z, -+ TO in F(C) to an & function

f&:A(q) x ... xA(z,)-+A(zo) such that fd(al,...,a,)EA(zo) if aiEA(zi) (l<i

<n). Alg(C) denotes the collection of all C-algebras.

An equational many-sorted algebraic specification consists of a signature and a set

of equations that define the relations between objects of the algebras described by the

specification. Note that the theory of universal algebra does not limit algebras to have

finitely many operations or sorts, but that an algebraic specification must be a finite

structure. The following example illustrates the definitions above. We use the keywords

sorts, functions and variables to indicate the declaration of S(E), F(C) and V,

respectively. We write # for x and -> for -+. Furthermore, we make use of modular

specifications consisting of modules that can import other modules, where a module

with imports denotes the pointwise union of the imported and importing specification.

Example 2.3. The following is an example of a first-order algebraic specification of

the algebra of natural numbers.

module naturals

sorts nat;

functions

zero : nat;

succ : nat -> nat;

add : nat # nat -> nat;

variables

I, J : nat;

equations

add(zero, I) = I;

add(succ(I), J> = succ(add(1, J>>

Definition 2.4 (Terms). The S(C)-indexed family Tree(C) of well-formed terms (or
trees) ouer signature E is defined by the inference rules below such that t E Tree(C)(z)

E. Visserl Theoretical Computer Science 199 (1998) 5746 61

iff C k t:r.

x E V(T)

zuvtx:z (Varl)

Definition 2.5 (Homomorphism). A C-homomorphism h : d -+ .93 is an S(C)-indexed

family of functions h, such that for any f : 71 x . . . x z, -+ z E F(C), h,(f&al,. . . , a,))

= fB(h,, (a,,), . . . , hTm(a,)). A Z-algebra & is initial in Alg(C) if for any $9 E Alg(C)

there is a unique homomorphism from d to 3’.

Because there is a unique homomorphism hd : Tree(Z) +LZZ for any &!’ E Alg(C),

i.e., h~Af(tl,. . .,t,>> =fd(hAtl),. . .,kd~)), we have

Proposition 2.6. Tree(C) is an inital algebra in Alg(C).

Definition 2.7 (Substitution). A substitution o : V + Tree(C U V) is a S(Z)-indexed

function mapping variables to terms. The function ~7 : Tree(C U V) + Tree(C U V) is

the homomorphic extension of a substitution cr that replaces all variables in a term

by their d images. A term t is an instance of term t’ or t’ is more general than t,

written as t’ 3 t, if there is some substitution 0 such that t = $t’). A term t is strictly

more general than t’, t > t’, if t 9 t’ and not t’ 2 t. In case t’ 3 t we also say that t

matches t’ and that g is the match. A substitution o is a unifier for two terms t and

t’ if 5(t) = o(t’). A unifier cr is a most general unijer for t and t’ if for each unifier

o’ we have that 5(t) 2 c?‘(t). A substitution G is a renaming of t if S(t) 3 t, i.e., if

runge(oluars(t)) &V, with vars(t) the set of variables in t. Two terms t and t’ are

equal up to renaming of variables (t - t’) if there is a renaming CJ such that o(t) = t’.

The S(C)-indexed family of equations of an algebraic specification with signature

C is a subfamily of the family Eq(C U V) such that Eq(C U V)(r) C Tree(C U V)(Z)~.

A C-algebra d satisfies an equation tl = t2, if for any substitution CJ, h o 5(tl) = h o 5(t2)

in -9e, where h is the unique homomorphism h : Tree(C) 4 d.

2.2. Context-free grammars

Context-free grammars can be used to define languages, i.e., sets of strings and

analyses of strings in the form of parse trees. The structure of parse trees corresponds

to the structure of terms over a signature as we shall see in the next subsection.

However, grammars provide more flexible notation for terms.

Definition 2.8 (Grammar). A context-free grammar 9 is a triple (S, L, P) with S =

Ss(9) a finite set of sort symbols or nonterminals, L = Sl(9) a finite set of literals

or terminals, with Ss(3) n Sl(3) = 8 and S(9) = Ss(%) U Sl(3) the set of symbols of

‘3, and P=P(‘29) C S(3)* x Ss(‘3) a finite set of productions. We write c1-+ r for a

62 E. Visser ITheoretical Computer Science 199 (1998) 5746

production (LX, r) E P(9). 9 U V is the extension of a grammar with variables. We write

x + r if x E V(r). The class of all context-free grammars is denoted by CFG.

Observe that productions are reversed in order to make them look like function

declarations in a signature - conventionally a production a -+ z is written as r + c(or

z ::= CL Also note that in the conventional definition of context-free grammars a single

symbol has the role of start symbol from which all sentences of the grammar are

generated. In the definition above all sort symbols are start symbols. Rus and Jones

[22] make a distinction between context-free grammars that have a single start symbol

or axiom, algebraic grammars that have all nonterminals as start symbol, and multi-
axiom grammars with a subset of the nonterminals as start symbol. In that terminology

our grammars might more appropriately be called algebraic grammars. However, in

our definition of language generated by a grammar (below), we distinguish the sets

generated by each nonterminal, whereas in the definition of Rus and Jones [22] the

language of a grammar is the union of all strings generated by all axioms, weakening

the expressive power of the formalism. With Goguen et al. [6] we stick with the

familiar ‘context-free grammar’.

As concrete syntax for grammars in examples we adopt the style of the syntax def-

inition formalism SDF [lo]. The keywords sorts, syntax and variables indicate

the sets of sort symbols, context-free productions and variables declarations, respec-

tively. Strings of characters between double quotes represent the literals of the grammar

and identifiers are used as sort symbols. The sort symbols are explicitly declared in

the sorts section, whereas literals are implicitly declared by their usage in produc-

tions. Grammars can be divided in modules and modules can import other modules.

A module with imports denotes the pointwise union of the imported and importing

grammar.

Example 2.9. The following specification uses a context-free grammar as signature in

the specification of succesor naturals. This specification is similar to the specification in

Example 2.3, but in the equations we can use the more natural infix notation familiar

from mathematics.

module naturals-cfg

sorts nat;

syntax
,I 0 II -> nat;

“s” nat -> nat;

nat I’+” nat -> nat Cleft);

I' 'I nat "1" -> nat {bracket); (
variables

"1" -> nat; “J” -> nat;

equations

0 +1=1;

s(I) + J = s(1 + 3)

E. Visser I Theoretical Computer Science 199 (1998) 57-86 63

The attributes attached to the productions are meant for disambiguation. The attribute

left indicate the left associativity of the addition function and the attribute bracket

indicates that parentheses around a natural number behave as the identity function.

Disambiguation will be further discussed below,

Definition 2.10 (Purse Trees). The S(S)-indexed family Tree(Y) of parse trees over

grammar 9 is defined by the inference rules below such that t E Tree(%)(r) iff 3 F t : T.

L E Sl(3)
3 t L :L (Lit2)

x E V(r)

3UV t- var(x,r):r
(Var2)

rt . . . z,--,zEP(~),~~ti:zi(l~i~~) (App2)

gFapp(rt...r,+r,[tt ,..., tJ):z

Example 2.11. As an example of this inference relation consider the following parse

tree for the sentence 0 + I over the grammar of Example 2.9.

app(nat “+I’ nat +nat, [app(“O” --+nat, [“O”]), “+“, var(“I”, nat)])

Rule (App2) defines the construction of application tree nodes for productions of a

grammar. Observe that the complete production is used as label in such application

nodes.

Because the structure of parse trees is different from terms over a signature, we

redefine the notion of substitution.

Definition 2.12 (Substitution). A substitution 0 : (V x S(Q)) + Tree(‘3 U V) is a S(g)-

indexed family of functions mapping variables to trees. The extension 5 of 0 to trees

is defined as

C(L) = L

$r)(var(x, 7)) = a(var(x, z)),

5(7)(app(7~ . . .7, ---f 7, [tl,. . . , &I)) = app(n . . .7, --t 7, [a(71)(tl), . . . , %J(tdl).

All other notions defined in Definition 2.7 are defined in the same way for parse trees.

Definition 2.13 (Language). The language L(S) generated by a context-free grammar

Q is the S(S)-indexed family of strings such that L(g)(r) = yield(Tree(g)(r)), where

the function yield : Tree(‘3 U V) ---) (S(g) U V)* is defined by

yield(l) = L,

yield(var(q 7)) =x,

yieWapp(7l . . .7” -+ 7, [tl , . . . , t,])) = yield(tt) . . . yield(&)

and applied to a set of trees denotes the pointwise extension to sets.

64 E. Visserl Theoretical Computer Science 199 (1998) $746

Definition 2.14 (Parsing). A parser for a context-free grammar 9 is a function II(g) :

S(S)* + g(Tree(?Q) that maps a string of symbols to a subfamily of Tree(g) such

that

U(~)(W)(Z) = {t E Tree(g)(r) 1 yield(t) = w}.

A recognizer is a predicate E L(9) that decides whether a string is in the language

generated by ‘9 or more specifically a predicate E L(%)(r) that decides whether a string

is in the language generated by sort symbol z.

2.3. Correspondence of signatures and grammars

There is a correspondence between the trees generated by first-order signatures and

context-free grammars such that grammars can be used to describe the structure of

algebras [6,7, lo].

Proposition 2.15. There are mappings grm : SIG -+ CFG and sig : CFG -+ SIG such

that Tree(grm(C)) 2 Tree(C) and Tree(sig(B)) % Tree(g).

Proof. Define grm such that for a signature C a grammar is constructed that expresses

the syntax of terms over a signature C by taking as nonterminals the sorts of C and

as literals the operator symbols of C, parentheses and commas.

Wm(~)) = S(V,

Sl(grm(C))={“f”\ f :zl x ... x~.~~z~EF(~)}U{“~“,“~“,“,“},

P(grm(C)) = {“f” ” (“rl I’, " . . . 'I, "t,") " + z. 1 f : 71 x . . . x zn + TO E F(C)}.

Now we can translate terms over C to parse trees over grm(Z) by means of the function

i, : Tree(C) + Tree(grm(C)) as follows:

[“f” ” (“i,(zl)(tl)“, ” . . . ‘I, “igrm(Zn)(tn)“) “1)

for each f : 71 x . . . x z, + z E P(Z). Define sig such that a grammar is translated to

a signature in which the productions of the grammar have the role of function names.

S(sk(W) = SC%,

F(sig(S)) = { “CY ---f z” : ~1 x . . . x 5, + z 1 a --) z E P(g), IX = z1 . . . 7,)

u {“L” :+L) L E Sl(%)}.

E. VisserITheoretical Computer Science I99 (1998) 5746 65

Now we can translate parse trees to terms by means of the function isig : Tree(%) -+ Tree

(sig(9)) as follows:

kig(r)(var(-% 2)) =x,

It is clear that igrm and isig are isomorphisms. (Note that grm and sig are not

isomorphisms from SIG to CFG and vice versa: C # sig(grm(C)) and Y #

gMsig(g)).) 0

The following proposition tells us that we can use context-free grammars as many-

sorted algebraic signatures, where productions play the role both of function symbol

and type declaration. We can thus speak of the class of algebras Alg(99) generated by

a context-free grammar 3, where the grammar symbols are interpreted as carrier sets

and productions as algebraic operations. It is clear that the family Tree(Y) of parse

trees over 9 is an initial algebra in Alg(9). The language L(Y) is also an element

of Alg(S), with yield as the unique homomorphism from Tree(g) -+ L(Y). However,

L(Y) is not necessarily initial in Alg(9). A context-free grammar is ambiguous if there

is some string w E L(9) for which more than one parse tree exists.

Proposition 2.16. L(Y) is initial in Alg(9) ifs 9 is unambiguous.

For if 3 is ambiguous, yield is not injective, hence not an isomorphism. This entails

that algebraic properties do not apply to the strings used to denote trees. For example, in

a grammar of arithmetic expressions with the production e “-‘I e--t e, the composition

of the strings x, - and y-z does not correspond with the composition of their trees, i.e.,

x-(y-z), but with (x- v)-z, which usually has a different semantic interpretation. We

could require the use of unambiguous grammars. However, it is undecidable whether

a context-free grammar is ambiguous. There are decidable subclasses of CFG, e.g., the

LR(R) grammars, that are unambiguous, but these classes are much more restrictive

than the class of unambiguous grammars and, moreover, not closed under union of

grammars, which is a handicap when developing modular specifications. Furthermore,

to disambiguate a grammar it is often necessary to introduce new sort symbols and to

restrict the possibility to compose expressions.

In the work of Klint and Visser [12] a method for disambiguation of context-free

grammars by means of disambiguation Jilters is proposed. A filter F_(Y) selects a

subset from the parse trees for a string, i.e., F(9)(IZ(%)(w)) c n(g)(w). A filter is

completely disambiguating if for each string w, I~(Y)(I~(Y)(w))I < 1.

Proposition 2.17. If a jifilter S(S) is completely disambiguating, then P(9) o L’(3)
is an injection L(9) + Tree(Y).

66 E. VisserlTheoretical Computer Science 199 (1998) 5746

However, the trees that are not selected by the filter become unreachable with this

method, i.e., 9(Q) o n(‘3’) is not sutjective. A solution to this problem is to try to add

bracket productions, which are interpreted as identity functions, to the grammar such

that all trees become reachable.

Proposition 2.18. Zf Tree(%) S! Tree(3 U 9br)/ = br and 5(‘S U 9br) is completely dis-
ambiguating, then L(3) Z Tree(C).

For a further discussion of this topic we refer to the work of Klint and Visser [12].

In the sequel we will assume that we are dealing with such grammars that we can

use strings to denote trees. In examples we use a simple method for disambiguation

by priority and associativity declarations. For instance, in the grammar of naturals

above we used the production attribute left to declare the addition operator as left

associative. Furthermore, the bracket attribute declares the production ” (” nat “> ”

-> nat {bracket} as the identity function on natural numbers and makes all trees in

Tree(nat) reachable by means of strings.

2.4. Data type specijication

By means of grammars as signatures we have a flexible framework for syntax defini-

tion in the algebraic specification of data types, for example, the typical stack construc-

tors might be defined as ” Cl ” -> stack; “push” int “on” stack -> stack. In

algebraic specification of programming languages, context-free grammars can be used

for instance to specify the syntax of a programming language as in var I’ : =‘I exp ->

stat and the syntax of operations on programs such as typecheckers decl I’ I -‘I exp

-> boo1 ; decl ‘I I -I’ stat -> boo1 that characterize the well-typed expressions and

statements, interpreters “eval” ” [: C” stat “I 1 I’ ‘I (I’ env “1” -> env that inter-

pret statements as functions from environments to environments and compilers “trams”

‘I [[‘I stat “11 I’ -> smc that translate statements to stack machine code.

The disadvantage of first-order signatures and context-free grammars is the rigid

monomorphic typing scheme. For instance, we cannot express that for each sort r, the

sort r* of sequences of r’s can be constructed and that for each function f: 71 -+ 72 E

F(C) the function f * : 7: + zl extends f to sequences such that f*(al . . .an)=
f(al). . . f(a,). The consequence is that for each special case of a generic construct

such as sequences and for each instance of a generic function such as _*, a separate

definition has to be given.

One solution to overcome this rigidity is to loosen the typing requirements. In the

work of Visser [25] terms of typed combinatory logic are encoded as simple untyped

applicative terms. In the work of Van den Brand et al. [2] a similar structure is

defined for the representation of parse trees and other structured data by means of

a generic format for term representation. We study a combination of the ideas from

those papers. The following grammar of generic terms (aterms) is defined by Van

den Brand et al. [2] to represent parse trees and abstract syntax trees over arbitrary

E. Visserl Theoretical Computer Science 199 (1998) 57-86 61

grammars. A term is a function symbol (afun), an application of a function symbol

to a list of arguments F(& . . . , T,), or a list of terms [ri, . . . , T,,]. A function symbol

is a literal or an identifier. Identifier function symbols have to defined explicitly. The

module literals that is imported in module aterms defines the syntax of literals,

i.e., strings of characters between double quotes.

module aterms

imports literals

sorts aterms atermlist afun aterm

syntax

aterm -> aterms;
aterm “,‘I aterms -> aterms;

(’ 1” “1 I’ -> atermlist ;
‘I [I’ aterms “1 I’ -> atermlist ;
literal -> afun;

afun -> aterm;

afun “(” aterms “>” -> aterm;

atermlist -> aterm;

variables
"T" -> atem. , “Ts” -> aterms; “Tl” -> aterms ;

With this term structure it is possible to define higher-order functions. For instance, the

following module defines the function * that applies a function F to each element of

a list of terms and the function : that adds an element to the front of a list. Functions
that are passed as arguments to higher-order functions are also represented as terms.

The function 0 defines the application of such symbolically represented functions to

their arguments.

module listops

imports aterms ;

syntax
aterm ‘I : I’ atermlist -> atermlist (right);

aterm “*” atermlist -> aterm (right);
“map ‘I -> afun;
aterm “C!” aterm -> aterm Cleft);
” (” aterm “1“ -> aterm {bracket);

variables
“Fun” -> aterm;

equations

T : Cl = CT1 ;
T : [Tsl = [T, Ts] ;
Fun * [] = Cl;
Fun * [T] = [Fun 0 T] ;
Fun * [T, Ts] = (Fun Q T) : (F * [Ts] > ;

map(Fun) Q T = Fun * T;

68 E. VisserITheoretical Computer Science 199 (1998) 5746

Such a definition works well as long as sensible terms are considered. However, (Cl
* map), the empty list mapped over the function map, is also a syntactically correct

term, but does not have a clear interpretation. We would rather forbid this term on the

basis of some typing rule without losing the genericity of the term structure.

One application of the generic term structure of aterms, is the representation of parse

trees. We add the following function symbols

module atrees

imports aterms

syntax

“var” -> afun; “app” -> afun; “prod” -> afun; “lit” -> afun;

The following proposition shows how this language can be used to represent parse

trees over arbitrary grammars. Observe that we use the concrete syntax of aterms to

represent elements of Tree(atrees).

Proposition 2.19. For any CFG 9, there is an injection r-1 : Tree(g) 4 Tree(aterms)

such that Tree(Y) is isomorphic with its r-1 image in aterms, i.e., Tree(Y) ” [Tree(S)].

Proof. Given some CFG 9 first define r-1 : S(3) + Tree(atrees) as

[L] = lit(“L”)

171 = “r” if T E Ss(9)

then define r-1 : Tree(g) -+ Tree(atrees) as

IL1 = “L”

[var(x, z)l = var(“x”, [zj)

bpP(Tl . ..T.--tZO,[tl,...,tnl)l

=app(prW[z11,..., Till, r~ol), [Ttll,..., Ttnll)

Now we have Tree(%) E [Tree(Y)]. 0

As a result, any sentence in a context-free language can be represented as a string

in the fixed language of aterms preserving the structure assigned to it by the context-

free grammar describing the language. For example, the parse tree for the string s 0

according to the grammar for natural numbers is translated as follows:

]app(“s”nat--tnat,[“s”app(“O” -nat,[“O”])])l

=app(prod([lit(“s”), “nat”1, “nat”) 2

[“s” , app(prod([lit(“O”>l , “nat”), [“O”l >I >

E. Visserl Theoretical Computer Science 199 (1998) 5746 69

The resulting string does not only have a fixed syntax, it is also self-descriptive. The

grammar 9 can be derived from the aterm that encodes a parse tree. With this encoding

we can define very generic, language independent operations on parse trees like substi-

tution, unification and searching of subtrees. Again, the disadvantage of this scheme is

that there are (many) aterms that are not encodings of parse trees, e.g., “abc” (“def ‘I>

is a syntactically correct aterm but is not an element of [Tree(Y)] for any 8. There-

fore, specifications and programs that manipulate aterms encoding parse trees have to

type check the terms they receive and have to preserve well-formedness of the terms

they process and construct.

3. Two-level grammars

Context-free grammars provide either a strongly typed but rigid syntactic structure or

a generic but untyped structure. Two-level grammars provide a method for polymorphic

syntax definition that supports definition of generic structures with type constraints.

Two-level grammars have been defined in several variants after the original formulation

for the definition of the syntax of Algol68 in the work of van Wijngaarden et al.

[29]. Here we introduce a definition of two-level grammars that is straightforwardly

formulated as two levels of context-free grammars, where level 1 defines the syntax

of the nonterminals of level 0. The productions at level 0 of a two-level grammar are

production schemata that uniformly describe sets of context-free productions in the

same way that polymorphic functions in a framework like ML [171 describe collections

of functions. Given the extension of context-free grammars to two-level grammars, it

is straightforward to generalize two-level grammars to multi-level grammars, in the

same way as multi-level specifications are defined by Visser [26]. In this paper we

will restrict our attention to two-level grammars.

Definition 3.1 (Two-level grammar). A two-level grammar r is a pair (gt,%o) of

context-free grammars such that the sort symbols of 90 are terms, possibly with vari-

ables, over 4, i.e., Ss(S0) C Tree(%r U Vt).

The following definition gives the meaning of finite two-level grammars in terms of,

possibly infinite, context-free grammars.

Definition 3.2. A two-level grammar r corresponds to a, possibly infinite, context-free

grammar [r]l that is derived from r by taking all substitutions of symbols S([r]i) = {ii(r)

jr E S(%,), o : VI + Tree(4 U VI)} and productions P([r]) = {Z(zt) + Z(Q) Izl+ 72 E

P(?&), 0 : VI + Tree(4 U VI)}).

Through the translation of a two-level grammar r to a CFG [r]l we immediately

have the definitions of the term algebra Tree([r]l) and the language L([T]). Another

70 E. Visser I Theoretical Computer Science 199 (1998) 57-86

characterization of the trees generated by a two-level grammar is given by means of

inference rules in the following definition.

Definition 3.3. The S(‘%c)-indexed family Tree(T) of parse trees over two-level gram-

mar r is defined by the inference rules below such that t E Tree(T)(z) iff r F t : z.

x E V(T’), T’ B T

TUV k var(x,r):r
(Var3)

PEP, P2 Tl

rtapp(zl

-:~~:3,ft ti:zi (lGi<n) cApp3)
n , ,...,td:z

Recall from Definition 2.7 that the relation p$p’ holds if production p’ is an

instance of p, i.e., p is more general than p’.

We observe that the two ways of defining the terms generated by a two-level gram-

mar are equivalent.

Proposition 3.4. r 1 t : z if [r] I- t : z

Proof. (+) by induction on t: (i) if t = L then [I-] t- L : L by (LiQ) (ii) if t = var(x, z)

then [r] k var(x, r) : z by (Var2) (iii) if t = app(p’, [tl, . . . , t,,]), by induction hypoth-

esis [Q k ti : Zip and by (App3) there is some p E P(Ys) such that pip’, i.e., there

is some rr such that Z(p) = p’, but then p’ E P([Q, therefore, by (App2), [rg t-

app(p’, [try . . . , t,]). (e) similarly. 0

Corollary 3.5. Tree([r]) = Tree(T) and L(T) = L(iT])

Definition 3.6 (Substitution). A two-level substitution cp is a pair ((~r,crs) of a type

substitution (rr : (Vr x S(%r)) + Tree(9r U Vr) and an object substitution LQ : (Vc x

S(Ys)) -+ Tree(Qs U VO). The extension (p of cp to level 0 trees is defined as

@(z)(var(x, T)) = 00tvaG 6(z))),

= appt& (71) . . .6(5d ---t h(T), [cp(Tl)(t1), . . .Y @(G&)1>*

All other notions defined in Definition 2.7 are defined in the same way for parse trees.

A two-level substitution with aa equal to the identity function is also denoted by z,

i.e., a function that substitutes type variables throughout a term.

E. VisserlTheoretical Computer Science 199 (1998) 5746 71

Definition 3.7 (Parsing). Given a two-level grammar r and a string w the parsing

problem is to find the set of parse trees n(r)(w) such that

II(r)(w)(z) = {t) r I- t : z A yield(t) = w}.

Discussion 3.8. According to the definition above, trees over level 1 are used as sort

symbols in level 0. However, if we write such grammars, we want to use strings instead

of trees, i.e., S(‘30) C L(%i U Vi) U S instead of S(Sc) C Tree(Yi U Vi) U S. This entails

that the syntax of two level grammars is not fixed, the syntax of the symbols of level 0

is determined by level 1. To parse a two-level grammar we first have to parse level 1

with a parser for a context-free grammar formalism in order to construct a parser for

level 0. Note that we use the same, SDF style, notation for productions and modules

at both levels.

4. Examples

In this section we discuss several examples of two-level grammars. The syntax of

grammars is the adaptation of the syntax of the multi-level specifications of Visser

[26] to grammars, i.e., function declarations become productions. It is not our intention

to explain every detail of the notation used, but we do want to illustrate the general

utility of two-level grammars for specification of data types.

4.1. Naturals

Module nat defines the syntax of natural number expressions. Level 1 introduces

the sort type and the type constant nat. The expression nat can then be used as

sort at level 0. Consider for example the production “s” nat -> nat of level 0. The

expression nat in this production, is the constant “nat” -> type defined at level 1.

module nat

level 1

sorts type;

syntax

“nat” -> type;

level 0

syntax

” 0 ” -> nat;

“s” nat -> nat;

nat “+” nat -> nat Cleft);
,U (II nat “1 I’ -> nat {bracket);

variables

” I ” -> nat; "J" -> nat;

equations

0 +1=1;

s(I) + J = ~(1 + J>;

72 E. Visser I Theoretical Computer Science 199 (1998) 5746

4.2. Booleans and polymorphic conditional

The grammar in module nat defines monomorphic syntax for natural numbers. Each

production has one instance, i.e., the production itself. The following module defines

the data type of Booleans. At level 1 the type constant boo1 is introduced, which is

used as sort at level 0. In addition to the ordinary Boolean connectives, the module

defines a polymorphic conditional for any type. The type variable A in the if-then-

else-fi production can be instantiated with any type expression. The production actually

denotes the set of all instantiations of this production. Furthermore, the module defines

a polymorphic bracket function.

module boo1

imports nat;

level 1

syntax

“bool” -> type;

variables

"A" -> type; "B" -> type; "C" -> type;

level 0

syntax

“true ” -> bool;

“false” -> bool;

“not” boo1 -> bool;

boo1 “\/” boo1 -> boo1 {left);

“if” boo1 “then” A "else" A "fi" -> A;
1, (,I A ,I> 1, -> A {bracket);

priorities

“not” boo1 -> boo1 > boo1 “\/” boo1 -> boo1

variables

"B" -> bool; "X" -' A; "XI" -> A;

equations

not true = false;

not false = true;

true \/ B = true;

false \/ B = B;

if true then X else X’ fi = X;

if false then X else X’ fi = X';

4.3. Polymorphic lists

Most grammar formalisms provide a built-in notion of lists. The next example shows

how such notation can be introduced with two-level grammars. Module list introduces

type operators at level 1 denoting the type of polymorphic lists. The operators {_ _}+

and {- -)* denote the type of non-empty and possibly-empty lists with separators,

E. Visserl Theoretical Computer Science 199 (1998) 57-86 13

respectively. The operators ” _+I’ and I’_* ” denote the type of nonempty and possibly-

empty lists without separators, respectively. The latter two operators are defined in

terms of the former two by means of the equations that define lists without separators

as lists with empty separators, where empty is a sep.

At level 0 polymorphic constructor functions for these types are defined. A nonempty

list of As separated by Seps is either an A or two lists concatenated by a Sep. The

first equation expresses that Sep concatenation associates to the right. An {A Sep}*

list is either empty or a nonempty list of As. {A Sep}*-lists can be concatenated

by means of the operator [- Sep -1. Note that ” ̂” is used as a variable to denote

separators.

module list

imports bool;

level 1

sorts regtype, sep;

syntax

“{” type sep “)” “*” -> regtype; type “*” -> regtype;

“{” type sep “)” “+” -> regtype; type “+” -> regtype;

‘I [” regtype “I ‘I -> type; “empty” -> sep;

variables

‘I Sep ” -> sep; “R” -> regtype;

equations

A* = CA empty)*; A+ = (A empty)+;

level 0

syntax

A -> CA Sep)+;

CA SepI+ Sep (A SepI+ -> CA Sep)+ (right);

-> (A SepH;

CA Sep3+ -> (A Sep)*;

“[” (A Sep)* Sep {A Sep)* “I” -> CA Sep)*;

-> empty;
,,(I, R “>,I -> R {bracket);

variables
“L” -> {A Sep)*; “Lp” -> {A Sep)+; “^” -> Sep;

equations

(Lpi - Lp2) .. Lp3 = Lpl - (Lp2 - Lp3);

C -L 1 = L;

[L _ 1 = L;

CLpl - Lp21 = Lpl - Lp2;

Observe again how expressions over the syntax defined at level 1 are used as sorts at

level 0. For instance, in the production {A Sep}+ -> {A Sep}*, the syntax of the ex-

pression {A Sep}+ is defined by the production “{” type sep “}” “+” -> regtype

and by the variables “A” -> type and “Sep” -> sep.

74 E. Visserl Theoretical Computer Science 199 (1998) 5746

We have introduced a new sort regtype at level 1 as the sort of list type constructors

in order to avoid an infinite chain caused by the injection of arbitrary types in the

corresponding list type. If we would have declared the list type constructor as

“{” type sep “}” “+” -> type

the production A -> {A Sep}+ would give rise to the productions

{A Sep}+ -> {{A Sep}+ Sep}+

{{A Sep}+ Sep}+ -> {{{A Sep}+ Sep}+ Sep}+

etc., causing each expression to have infinitely many nonunifiable types. By introducing

the new sort regtype, lists are not automatically embedded in types, i.e., A does not

unify with {A Sep}+ because their sorts are different.

The usage of list types is illustrated in the following grammar of a fragment of an

imperative language. A statement is either an assignment, a while-do loop or a list of

statements separated by semicolons.

module while

imports list, exp;

level I

syntax

“var ” -> type; “exp” -> type;

“stat” -> type; I’ ’ ; “I -> sep;

level 0

syntax

var ” :=‘I exp -> stat;

“while” exp “do” stat -> stat;

“begin” (stat ‘; ‘)* “end” -> stat;
II . II , -> ‘;‘;

The expression {stat ’ ; ’ }* is defined by the polymorphic productions in module

list, which have the following instantiations.

stat -> (stat I;‘)+;

{stat I;‘)+ I;’ {stat ‘;‘I+ -> {stat ‘;‘)+;

-> {stat ’ ; ‘)*;

{stat ‘; ‘I+ -> {stat ‘;‘I*;

4.4. Polymorphic operations

Now that we have a polymorphic definition of list construction we can also de-

fine polymorphic functions over lists. For instance, the length function that computes

the number of elements of a list can be polymorphically defined by the following

specification:

E. Visserl Theoretical Computer Science 199 (1998) 5746 15

module length

imports list;

level 0

syntax

“length” I1 (I0 {A Sep)* “) ‘I -> nat;

equations

length0 = 0;
length(X) = s(0);

length(Lp1 ^ ~p2) = length(Lp1) + length(Lp2);

4.5. Higher-order functions

Another example of a type constructor is the arrow => of function types. A term of

sort A => B, i.e., a function from A to B, can be applied to a term of sort A yielding

a B.

module arrow

imports list;

level 1

syntax

type “=>I’ type -> type {right);

level 0

syntax
(A => B) “(” A “)” -> B;

(A => B) “*” {A Sep)* -> (B Sep)*;

variables
“F” -> (A => B) ;

The higher-order function * (map) takes as arguments a function from A to B and a

list of As and applies the function to each element of the list.

equations

F * () = 0;

F * (X) = F(X);

F * (Lpi - Lp2) = [(F * Lpi) - (F * Lp2)1 ;

If we want to pass functions such as length and map themselves as arguments to some

higher-order function we need to define the combinators (curried versions) associated

with the functions as follows:

syntax
II if 01 -> (boo1 => A => A => A);

“f length” -> (CCA Sep)*l => nat) ;
” (*) ” -> (A => B) => ([CA Sep)*l => CCB Sep)*l) ;

76 E. Visserl Theoretical Computer Science 199 (1998) 5746

(A => [R’]) ,,(ll A ,*),I -> R’;

([RI => B) U(ll R II) It _> B;

([R] => CR']) “(” R “)” -> R’;

equations

if(B) (X) (Y) = if B then X else Y f i;

f length(L) = length(L) ;

(*> (F) CL) = F * L;

Observe the usage of the operator L-1 that injects regtypes into types in order to

reuse the functionality for type expressions. We added extra application operators to

apply functions like f length to lists.

These examples illustrate how two-level grammars provide user-definable syntax for

sort symbols and generic definition of polymorphic mix-fix functions and constructors

over data types. More advanced examples of two- and multi-level specifications (with

prefix function signatures instead of grammars) can be found in the works of Hear-n

and Meinke [9], Heam [8] and Visser [26].

5. Properties

We have seen how two-level grammars can be used for polymorphic syntax defi-

nition in algebraic specification. To actually use two-level grammars in an executable

specification formalism, it is necessary that we can parse strings over the language

specified by a grammar. Unfortunately, the parsing problem for two-level grammars is

in general undecidable as shown by the following theorem.

Theorem 5.1 (Sintzoff [23]). For every semi-Thue system T we can construct a Van
Wijngaarden Grammar W such that the set S(T) generated by T is the set S(W)
generated by W.

Corollary 5.2 (Sintzoff [23]). Every recursively enumerable set is generated by a Van
Wijngaarden grammar.

Corollary 5.3 (Sintzoff [23]). The problem of determining, of a given string, whether
or not it is generated by a given Van Wijngaarden grammar, is recursively unsolvable.

Although the version of two-level grammars defined in this paper is somewhat

weaker because it uses trees instead of strings as nonterminals at level 0, these con-

structs can be translated to our two-level grammars. From these theorems it follows

that we cannot construct terminating parsers for arbitrary two-level grammars in a gen-

eral way. However, for the purpose of polymorphic syntax definition we are interested

only in restricted forms of the formalism.

One view on two-level grammars is that they are used to abbreviate frequently oc-

curring patterns in context-free grammars, but that in the end we want only a finite

E. Visserl Theoretical Computer Science 199 (1998) 57-86 71

context-free grammar from a ground subgrammar and the appropriate instantiations of

generic productions. For instance, the grammar of the programming language in module

while gives rise to the instantiation of the list construction functions for {stat ’ ; ‘}*

and to the instantiation of the list and map functions for lists of statements. This is

the effect that is reached when reuse of functions is obtained by means of parame-

terized modules for which only finitely many instantiations are requested. Although

it is clear by looking at a grammar, which instantiations of productions are needed

for the implementation of a certain subgrammar, we have not yet found a syntac-

tic characterization of productions such that such subgrammar operations are possible.

A promising approach might be the extension of the layering operations of Hatcher

and Rus [7] and Rus and Jones [22] to two-level grammars.

In context-free grammars empty (E) and chain productions are the cause of infinite

ambiguities. In two-level grammars they are the cause of the undecidability of the

formalism. In the rest of this section we investigate the restriction of the usage of such

productions in order to achieve a subclass of the two-level grammars with a decidable

parsing problem that still allows the kind of grammars as shown in Section 4.

Definition 5.4 (&-elimination). The conventional method for eliminating s-productions

from context-free grammars applied to two-level grammars works by adding produc-

tions to the level 0 grammar 90 according to the rule

where (T is a most general unifier of A and A’. After no more productions can be added,

all s-productions are removed. Define ee(r) to be the result of removing e-productions

from two-level grammar r by the above procedure.

Note that e-elimination preserves both the language and the trees generated by the

grammar (if s-trees are identified).

Proposition 5.5. L(ee(T)) = L(T) and Tree(T) E Tree(ee(T)).

Deussen [4] shows that this method can turn finite two-level grammars into infinite

ones. Consider the following grammar that gives type <a”> to each sentence a* with

mbn.

level 1

sorts type, list;

syntax
“<” list ">" -> type
llall -> list

list "a" -> list

variables
“L” -> list

78 E. VisserlTheoretical Computer Science 199 (1998) 57-86

level 0

syntax

<L> <a> -> CL a>;
“a” -> <a>;

-> <a>;

If we try to eliminate the last production by substituting it in the first production we

get the productions

CL> -> <L a>; %% <a> can be empty

-> <a a>; %% CL> unifies with the rhs of -> <a>

-> <a a a>; %% CL> unifies with the rhs of -> <a a>

and all other productions of the form -> <a”> for n>O. However, for many applica-

tions s-productions can be eliminated. For instance, the production -> A* in the list

grammar in Section 4 can be eliminated by means of the procedure outlined above,

resulting in a finite two-level grammar defining the same language.

In a similar fashion chain productions can be eliminated from grammars.

Definition 5.6 (Chain elimination). To eliminate chain production from a two-level

grammar r, first take the transitive closure of all chains in the level 0 grammar $90:

then use chain productions as substitutions

rt + QE~O,cxZj~ + Z4E9O,cT(ZZ)=fT(Z3)

g(wB + T4)Ego,

and finally remove all chain productions from 90 resulting in cc(T).

This procedure also preserves the language and trees generated by a grammar.

Proposition 5.7. L(T) = L(ce(T)) and Tree(T) E Tree(ce(T)).

Also chain elimination does not terminate for all grammars. Take for instance the

grammar for lists in the previous section. If we redefine the syntax of the list operators

as

“{” type sep “)” “*I’ -> type;

“(” type sep “)” “+” -> type

then we have that A unifies with {A Sep}+ resulting in infinitely many productions

A -> (A Sep3+;

0 Sep3+ -> {(A Sep3+ Sep3+;

<IA Sep3+ Sep3+ -> {({A Sep3+ Sep3+ Sep3+;

An A is a singleton list of As, which is a singleton list of lists of As, etc.

E. VisserITheoretical Computer Science 199 (1998) 57-86 79

So we see that s-elimination and chain elimination will not terminate for arbitrary

grammars. However, for the grammars for which it succeeds we have the following

corollary from Theorem 6.8 that we will prove in the next section.

Corollary 5.8. If r is a finite two-level grammar without E- and chain productions,
then the question w E L(T) is decidable.

The intuition behind this result is that without e- and chain-free grammars at most

n reductions can be done for a string of length ~1. Based on the same idea, the next

definition defines a characterization of a larger class of two-level grammars for which

the parsing problem is decidable.

Definition 5.9 (Finite chain property). A two-level grammar r has the jinite chain

property if it is (1) s-free, (2) its chain productions are noncyclic and have a finite

transitive closure and (3) it does not contain redundant productions, where a production

p E P(90) is redundant if there is some p’ E P(%s) such that p # pf and p 3 p’.

In the next section we will define a parsing algorithm for two-level grammars and

prove that it is a decision procedure for membership of languages defined by finite

chain two-level grammars.

On the positive side we have a subclass of the two-level grammars with a decidable

parsing problem. On the negative side, membership of the class itself is undecidable.

Proposition 5.10. It is undecidable whether a two-level grammar satisjes the finite

chain property.

However, decidability of the finite chain property is not essential for using two-level

grammars for language specification. The situation can be compared to ambiguity of

context-free grammars. Although it is undecidable whether a context-free grammar is

ambiguous, it is a good formalism for defining unambiguous languages. A large class

of grammars is evidently nonambiguous and for others ambiguities will turn up when

working with the grammars.

The examples presented in Section 4 satisfy the finite chain property, except for the

empty production -> {A Sep}* for lists. As remarked above this production is not a

problematic c-production because it can be eliminated from the grammar. In general

we can follow the following procedure for determining whether a grammar has the

finite chain property: (1) Try to eliminate c-productions by the method of Definition

5.4. (2) Try to eliminate chain rules by means of the method in Definition 5.6. (3)

If this terminates we know that the grammar has the finite chain property and that

we can parse with it (see next section). (4) If either step (1) or step (2) takes too

long, this is a hint that it does not terminate. In such cases we can inspect the list of

a-productions or chain productions added by the elimination procedures. These traces

will give a clue about the productions that cause the nontermination, because these

80 E. Visserl Theoretical Computer Science I99 (1998) 57-86

will lead to a repetition of similar productions, as we saw in the example above. This

information can be used to redesign the grammar such that it satisfies the finite chain

property.

6. Parsing

In this section we define a parsing algorithm for finite chain two-level grammars.

The parsing algorithm below is a parallel bottom-up parsing algorithm that computes

all parse trees for a sentence. This procedure is similar to the Hindley-Milner-type

assignment procedure used in functional languages, that assigns to each expression a

single principal type [3]. The difference is that in two-level grammars strings can have

more than one principal type due to ambiguities. It will turn out that for finite chain

two-level grammars there are only finitely many principal types for a string. We first

define a function that gives the type of a parse tree.

Definition 6.1. The type of a parse tree is defined as:

type(L) = L

type(var(x,z)) = e

type(app(rl . . . z, -+ z, [h, . . . , GJ>) = z

Next we define the data structure of parse configurations that is used in parsing.

Definition 6.2. A parse configuration (toal . . . an)cg is an element of the set Tree(T U

V)* x Sl(T)* x Set(Vt), i.e., a triple consisting of a list of trees z= tt . . . t,,, (the stack),

a list of literals at . . . II, (the remaining input) and a set of sort variables @ (the sort

variables over level 1 that are used in ?).

Algorithm 6.3. Define the function parse(r) : S(T)* + Set(Tree(T)) as

parse(r)(w) = {t) (E 0 w) =SF (t 0 E)}

where +F is the transitive closure of the one-step parse relation jr on parse config-

urations, which is defined by the rules

(?. at ~2.. .un)~ +,- (?a~ l ~12.. . a,)~ (Shift)

x E V(r’), r =&r’)

p E P(Ss), p(p) = c1 -+ 7, 1~1 = in, mgu(a; type(t1,. . . , t,)) = 0

vt, . . . h l 3~ *r (F$app(p, [tl,. . . , Cd) l G~J~~~(~~(P))
(Red)

where p : Vt + Vt is a renaming of sort variables occurring in @ such that p(G) n

@ = 8. We identify configurations that are the same up to renaming of sort variables.

E. VisserlTheoretical Computer Science 199 (1998) 5746 81

We now prove that the algorithm is a correct implementation of n(r) for finite

chain two-level grammars. We first show that the trees produced by the parser are

correct parse trees.

Lemma 6.4 (Sound). Vt E Tree(T) : t E parse(r)(w) + yield(t) = w.

Proof. We first prove that if (6 l a<) =sr (t; l a?), then yield(t =yield(tT)u:.

For (Shift) and (Var) the property clearly holds. In (Red) we see yield@ tl . . .?,,,)a’=

yield@ d(app(p, [tl . . . tm])))a’ by definition of yield and by the fact that type sub-

stitutions do not affect the yield of a tree. But then also for (t; l ai) +;’ (t; l a:)

we have yield(t = yield(t;)ui. In particular, if (E l w) +F (t l E) we have that

w = yield(e)w = yield(t)c. 0

Next we show that the parser is complete, in the sense that any parse tree for the

sentence can be derived by instantiating one of the parse trees produced by the parser.

Lemma 6.5 (Complete). ‘dt E Tree(T) : yield(t) = w + 3’ i> t : t’ E parse(r)(w).

Proof. By induction on t: (1) if t =L then parse(r)(l) 3 L 3 L.

(2) if t = var(x, r), there is some 7’ 9 r such that x E V(r’), but then parse(r)(x) 3

var(x, r’) B var(x, r).

(3) If t = app(p, [tl,. . , tn]) with p = 71 . . t, 4 z (a) By definition of yield we

have yield(t) = yield(ti) . . . yield(&) = wi . . . w, with yield(t,) = wi for 1 <i<n. (b) By

induction we have t: 2 ti for 1 <i <n - and thus ri 2 ri with ri = type(t!) - such

that t; E parse(r)(wi). (c) By (App) there is some ry . . . T: + 7” = p” E P(90) such

that p” 3 p (variables of p” and p disjunct). By (b) and (c) there is a substitution

00 such that c?o(rl,‘...r~)=ri . ..t. =50(r’, . ..rA). Then there is also a most general

unifier, say 0. Now take t’ = d(app(p”, [ti . . . (1)) E Tree(T). It is clear that t’ B t and

that(s~wi...w,)+~(t~...t~~s)+r(t’os). 0

Next we show that the set of parse trees produced by the algorithm is minimal in

the sense that it generates only the most general parse trees for a string.

Lemma 6.6 (Minimal). ‘dt, t’ E parse(r)(w) : t 2 t’ v t’ 3 t + t ‘- t’.

Proof. Assume that t, t’ E parse(r)(w) and that t B t’. Because both trees are in the set

there must be sequences of configurations for their derivation, Because t S- t’, the trees

have the same structure, i.e., the configuration sequences have the same number of

reductions and shifts. But also because t s- t’, there must be some point at which the

sequences diverge, i.e.,

82 .I? Visserl Theoretical Computer Science 199 (1998) 57-86

and

for t and t’, respectively. Because t S- t’ we must have ~?i(pi) > &(p2). Now we have

either (1) p1 = p2 and [ri 3~2, but then cr2 is not a most general unifier and hence

t’ $parse(r)(w) or (2) if pl> ~2, then r does not satisfy the finite chain property

because it has the redundant production ~2. 0

Finally we prove that parse yields a finite set of parse trees, entailing that parse is

effectively computable.

Lemma 6.7 (Finite). Iparse EN.

Proof. (1) For each configuration and each production there is at most one reduction

step (Red) because there is at most one most general unifier for c(and zi . . . z,. For

each configuration there is at most one (Shift) step and one (Var) step. Therefore, the

graph of the relation +r is finitely branching.

(2) The length of configurations does not increase (no s-productions). For any con-

figuration (?o Z), Ia’/ (Shift) steps can be done. A (Red) step with a production c(+ t

such that /cl1 > 1 decreases the length of a configuration, therefore at most 1?1/2 such

reductions can be performed for a configuration (30 a-). By the finite chain property

only finitely many chain reductions can be done, i.e., for each configuration (it l ii)
there is a maximal value n such that (it l a’) +F (it’ l 2). Therefore, the graph of the

relation =kr has no infinite paths.

(3) From any configuration (io a’) only finitely many configurations are reachable.

In particular, for any string w only finitely many configurations of the form (t l E) are

reachable from (E l w). 0

Finally, we see that Algorithm 6.3 is a correct implementation of a parser for finite

chain two-level grammars.

Theorem 6.8 (Correct). For any jinite chain two-level grammar r and any string
w f Sl(T)*, parse(r)(w) is a minimal and finite set of parse trees, unique up to
renaming of sort variables, that generates L’(r)(w).

Proof. By Lemmas 6.4 and 6.5 all and exactly the trees in n(r)(w) can be de-

rived from parse(r)(w). By Lemma 6.7 parse(r)(w) is finite and by Lemma 6.6 it is

minimal. 0

As a result the recognition problem for finite chain two-level grammars is decidable.

Corollary 6.9 (Decidable). For a jinite chain two-level grammar r it is decidable
whether w E L(T) and w E L(T)(z).

E. VisserITheoretical Computer Science 199 (1998) 5746 83

The relation +r defines a tree shaped search space. Only the types of trees in the

configuration matter for the rest of the process. We would like to identify configurations

(ti l a’) and (t; l a’) for which it71 = It;] and type(ti) = type(@. This would lead to a

generalization of the graph structured stack and the parse forests of Tomita [24] to

parsing for two-level grammars.

7. Related formalisms

In the same way that context-free grammars correspond to first-order signatures, two-

level grammars correspond to two-level signatures. The type system of the functional

programming language ML [171 can be considered as two-level signatures in which the

expressions over level 1 are single-sorted expressions of sort type. This system was

used to introduce parametric polymorphic functions. Two-level signatures are discussed

by Poigne [21], Miiller [181 and Meinke [14]. After a two-level signature is expanded,

a, possibly infinite, one-level signature results that can again be used as the specification

of the sort space of a level 0 signature. In this manner the extension of signatures to

two-level signatures can be generalized to signatures with three and more levels. Heam

and Meinke [9] introduce the three-level algebraic specification formalism Atlas, which

is generalized by Heam [8] to a multi-level specification formalism. The complete and

formal specification of the related multi-level specification formalism MLS is presented

by Visser [26]. MLS supports overloading of function symbols, which entails that a

term can have infinitely many types, but only finitely many most general or principal

types. This property is not respected by general two-level grammars as discussed in

Section 5.

On the grammatical side, many variants of two-level grammars have been proposed

in the literature for various purposes. Van Wijngaarden grammars (VWG) [29] were

developed to express the syntax and semantics of Algo168. In VWGs strings, instead

of trees, over level 1 are used as nonterminals (hypemotions) at level 0. This leads to

the problem of grammatical unification - whether two sentential forms over a context-

free grammar are unifiable by means of a substitution of nonterminals with strings
_ which Maluszynski [13] shows to be undecidable. The transparent two-level gram-

mars of Maluszynski [131 are a restriction of VWGs such that grammatical unification

comes down to term unification. Another restriction of VWGs are the Extended Affix

Grammars (EAG) [28] that restrict the order in which the variables in nonterminals at

level 0 can be instantiated.

The observation that two-level grammars are Turing equivalent sparked another de-

velopment: two-level grammars as logic or functional programming languages. The

(context-free) metagrammar (level 1) is used to define the syntax of language and

semantic domains. The hypergrammar (level 0) is used to define the operations on the

data. See for example Maluszynski [131.

Definite Clause Grammars (DCG) introduced by Pereira and Warren [191 are gram-

mars embedded in Prolog programs. They are equivalent to two-level grammars with

84 E. VisserlTheoretical Computer Science 199 (1998) 57-86

a fixed level 1 equivalent to the following grammar:

module dcg

level 1

sorts fun, term;

syntax

[a-z] [A-Za-zO-91* -> fun;

fun -> term;

fun "("{term ",")* ")" -> term;

variables

[A-Z] [A-Za-zO-9]* -> term;

that defines an untyped domain of terms that can be used as grammar symbols in

level 0. These terms are then typically used at level 0 in productions such as the

following from a tiny natural language grammar:

rip(N)) VP(N) -> s;

det(N) n(N) rel(N) -> np(N);

Parsing of DCGs - parsing as deduction [20] - uses Prolog’s built-in resolution strategy

to answer queries like w E L(~)(S). With the normal evaluation strategy of Prolog

(SLD resolution) this comes down to top-down backtrack parsing. Problems with this

strategy are that it cannot cope with left-recursion and that already computed answers

are not reused. The tabulation strategy described by Warren [27] partially overcomes

these problems. One of the problems of the latter approach is that unification in Prolog

is not many-sorted, disabling solutions like that with regtype in Section 4.

8. Conclusions

Algebraic specification with first-order signatures or context-free grammars enforce

a choice between strongly typed structures with little genericity or generic operations

over untyped structures. Polymorphism combines genericity with typedness, making it

possible to develop libraries of specifications. In this paper we have discussed how the

integration of algebraic specification with user-definable syntax and polymorphism can

be materialized. The extension with polymorphism of algebraic specification formalisms

that use context-free grammars as signatures, e.g., OBJ or ASF+SDF, leads necessarily

to formalisms with two-level grammars as signatures. Likewise, the extension with user-

definable syntax of formalisms that have polymorphic signatures, including polymorphic

functional and logic programming languages, leads to two-level grammars.

In two-level grammars level 1 defines the syntax of sort symbols used at level 0.

Sort terms with variables are interpreted as sort schemata that can have many instan-

tiations. Productions at level 0 with such sorts are production schemata, i.e., declara-

tions of polymorphic functions with mix-fix syntax. Thus two-level grammars combine

polymorphism with user-definable syntax, as we illustrated by means of a number of

E. Visser I Theoretical Computer Science 199 (1998) 57-86 85

examples of polymorphic syntax definition in data type and programming language

specifications.

Although the parsing problem for context-free grammars and the type-assignment

problem for two-level signatures are decidable, the parsing problem for the integration

of both formalisms is undecidable if no restrictions are considered. We defined an

intuitive restriction of the class of two-level grammars that results in a class of two-

level grammars for which the parsing problem is decidable and for which we defined

a parsing algorithm that yields a minimal and finite set of most general parse trees for

each string.

Acknowledgements

This research was supported by the Netherlands Computer Science Research Foun-

dation (SION) with financial support from the Netherlands Organisation for Scientific

Research (NWO) under grant 612-3 17-420: Incremental parser generation and context-

dependent disambiguation, a multi-disciplinary perspective.

References

[1] M. Bidoit, M.-C. Gaudel, A. Mauboussin, How to make algebraic specifications more understandable:

an experiment with the PLUSS specification language, Sci. Comput. Programming 12 (1989) l-38.

[Z] M.G.J. Van den Brand, P. Klint, P. Olivier, E. Visser, ATerms: representing structured data for exchange

between heterogeneous tools. Technical report, Programming Research Group, University of Amsterdam,

1997.

[3] L. Damas, R. Milner, Principal type-schemes for functional programs, in: Proc. Conf. Record 9th Ann.

ACM Symp. Principles of Programming Languages, ACM, New York, 1982, pp. 207-212.

[4] P. Deussen, A decidability criterion for van Wijngaarden grammars, Acta Inform. 5 (1975) 353-375.

[5] K. Futatsugi, J. Goguen, J.-P. Jouannaud, J. Meseguer, Principles of 0BJ2, in: B. Reid (Ed.), Proc.

Conf. Record 12th AM. ACM Symp. on Principles of Programming Languages, ACM, New York,

1985, pp. 52-66.

[6] J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial algebra semantics and continuous

algebras, .I. ACM 24(1) (1977) 68-95.

[7] W.S. Hatcher, T. Rus, Context-free algebras, J. Cybemet. 6 (1976) 65-76.

[S] B.M. Heam, The design and implementation of typed languages for algebraic specification, Ph.D. Thesis,

University of Wales, Swansea, 1995.

[9] B.M. Heam, K. Meinke, ATLAS: a typed language for algebraic specification, in: J. Heering, K. Meinke,

B. Miiller, T. Nipkow (Eds.), Proc. 1st Intemat. Workshop on Higher-Order, Algebra, Logic and

Term Rewriting (HOA ‘93), Lecture Notes in Computer Science, vol. 816, Springer, Berlin, 1994,

pp. 146&168.

[lo] J. Heering, P.R.H. Hendriks, P. Klint, I. Rekers, The syntax definition formalism SDF - reference

manual, SIGPLAN Notices 24(11) (1989) 43-75.

[ll] P.J. Higgins, Algebras with a scheme of operators, Math. Nachr. 27 (1963) 115-132.

[12] P. Klint, E. Visser, Using filters for the disambiguation of context-free grammars, in: G. Pighizzini,

P. San Pi&o (Eds.), Proc. ASMICS Workshop on Parsing Theory, Milano, Italy, pp. l-20, Tech. Rep.

126-1994, Dipartimento di Scienze dell’Informazione, Universith di Milano, 1994.

[13] J. Maluszynski, Towards a programming language based on the notion of two-level grammar, Theoret.

Comput. Sci. 28 (1984) 13-43.

86 E. VisserITheoretical Computer Science 199 (1998) 57-86

[14] K. Meinke, Equational specification of abstract types and combinators, in: E. Boerger, G. Jaeger,

H.K. Buening, M.M. Richter (Eds.), Computer Science Logic - CSL’91, Lecture Notes in Computer

Science, vol. 626, Springer, Berlin, 1992, pp. 257-271.

[15] K. Meinke, Universal algebra in higher types, Theoret. Comput. Sci. 100 (1992) 385-417.

[16] K. Meinke, J.V. Tucker, Universal algebra, in: S. Abramsky, D. Gabbay, T.S.E. Maibaum (Eds.),

Handbook of Logic in Computer Science. vol. I: Mathematical Structures, Oxford University Press,

Oxford, 1992, pp. 189-141.

[17] R. Milner, A theory of type polymorphism in programming, J. Comput. System Sci. 17 (3) (1978)

348-375.

[18] B. Miiller, Algebraic specification with higher-order operators, in: L. Meertens (Ed.), Program

Specification and Transformation, Elsevier, Amsterdam, 1987, pp. 367-398.

[19] F.C.N. Pereira, D.H.D. Warren, Definite clause grammars for language analysis - a survey of the

formalism and a comparison with augmented transition networks. Artificial Intelligence 13 (1980)

231-278.

[20] F.C.N. Pereira, D.H.D. Warren, Parsing as deduction, in: Proc. 21st Ann. Meeting of the Assoc.

Computational Linguistics, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[21] A. PoignB, On specifications, theories, and models with higher types, Inform. and Control 68 (1986)

l-46.

[22] T. Rus, J.S. Jones, Multi-layered pipeline parsing from multi-axiom grammars, in: A. Nijholt,

G. Scollo, R. Steetskamp (Eds.), Algebraic Methods in Language Processing AMiLP’95, Twente

Workshops in Language Technology, vol. 10, Twente University of Technology, Enschede,

The Netherlands, 1995, pp. 65-81.

[23] M. Sintzoff, Existence of a van Wijngaarden syntax for every recursively enumerable set, Ann. Sot.

Sci. Bruxelles Ser. II 81 (1967) 115-l 18.

[24] M. Tomita, Efficient Parsing for Natural Languages. A Fast Algorithm for Practical Systems, Kluwer,

Dordrecht, 1985.

[25] E. Visser, Combinatory algebraic specification & compilation of list matching, Master’s thesis,

Department of Computer Science, University of Amsterdam, Amsterdam, 1993.

[26] E. Visser, Multi-level specifications, in: A. van Deursen, J. Heering, P. Klint (Eds.), Language

Prototyping. An Algebraic Specification Approach, AMAST Series in Computing, vol. 5, World

Scientific, Singapore, 1996, pp. 105-196.

[27] D.S. Warren, Memoing for Logic Programs, Comm. ACM 35 (3) (1992) 94-111.

[28] D.A. Watt, The parsing problem for affix grammars, Acta Informatica 8(1) (1977) l-20.

[29] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff, C.H. Lindsey,

L.G.L.T. Meertens, R.G. Fisker (Eds.), Revised Report on the Algorithmic Language Algol 68, Springer,

Berlin, 1976.

