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Abstract 

We describe a language for defining term rewriting strate- 
gies, and its application to the production of program op- 
timizers. Valid transformations on program terms can be 
described by a set of rewrite rules; rewriting strategies are 
used to describe when and how the various rules should be 
applied in order to obtain the desired optimization effects. 
Separating rules from strategies in this fashion makes it eas- 
ier to reason about the behaviof of the optimizer as a whole, 
compared to traditional monolithic optimizer implementa- 
tions. We illustrate the expressiveness of our language by 
using it to describe a simple optimizer for an ML-like inter- 
mediate representation. 

The basic strategy language uses operators such as se- 
quential composition, choice, and recursion to build trans- 
formers from a set of labeled unconditional rewrite rules. 
We also define an extended language in which the side- 
conditions and contextual rules that arise in realistic opti- 
mizer specifications can themselves be expressed as strategy- 
driven rewrites. We show that the features of the basic and 
extended languages can be expressed by breaking down the 
rewrite rules into their primitive building blocks, namely 
matching and building terms in variable binding environ- 
ments. This gives us a low-level core language which has a 
clear semantics, can be implemented straightforwardly and 
can itself be optimized. The current implementation gener- 
ates C code from a strategy specification. 

1 Introduction 

Compiler components such as parsers, pretty-printers and 
code generators are routinely produced using program gen- 
erators. The component is specified in a high-level lan- 
guage from which the program generator produces its imple- 
mentation. Program optimizers are difficult labor-intensive 
components that are usually still developed manually, de- 
spite many attempts at producing optimizer generators 
(e.g., [19, 12, 28, 25, 18, 111). 

‘This work was supported. in part. by the US Air Force Materiel 
Corrmar~I under contract F19628-93-C-0069 and by the National Sci- 
ence Foundation under grant CCR-9503383. 

A program optimizer transforms the source code of a 
program into a program that has the same meaning, but is 
more efficient. On the level of specification and documenta- 
tion, optimizers are often presented as a set of correctness- 
preserving rewrite rules that transform code fragments into 
equivalent more efficient code fragments (e.g., see Table 5). 
This is particularly attractive for functional language com- 
pilers (e.g., [3, 4, 241) that operate via successive small trans- 
formations, and don’t rely on analyses requiring significant 
auxiliary data structures. The paradigm provided by con- 
ventional rewrite engines is to compute the normal form of 
a program with respect to a set of rewrite rules. However, 
optimizers are usually not implemented in this way. In- 
stead, an algorithm is produced that implements a strategy 
for applying the optimization rules. Such a strategy con- 
tains meta-knowledge about the set of rewrite rules and the 
programming language they are applied to in order to (1) 
control the application of rules; (2) guarantee termination 
of optimization; (3) make optimization more efficient. 

Such an ad-hoc implementation of a rewriting system 
has several drawbacks, even when implemented in a lan- 
guage with good support for pattern matching, such as ML 
or Haskell. First of all, the transformation rules are em- 
bedded in the code of the optimizer, making them hard to 
understand, to maintain, and to reuse individual rules in 
other transformations. Secondly, the strategy is not speci- 
fied at the same level of abstraction as the transformation 
rules, making it hard to reason about the correctness of the 
optimizer even if the individual rules are correct. Finally, 
the host language has no awareness of the transformation 
domain underlying the implementation and can therefore 
not use this domain knowledge to optimize the optimizer 
itself. 

It would be desirable to apply term rewriting technol- 
ogy directly to produce program optimizers. However, the 
standard approach to rewriting is to provide a fixed strategy 
(e.g., innermost or outermost) for normalizing a term with 
respect to a set of user-defined rewrite rules. This is not 
satisfactory when-as is usually the case for optimizers- 
the rewrite rules are neither confluent nor terminating. A 
common work-around is to encode a strategy into the rules 
themselves, e.g., by using an explicit function symbol that 
controls where rewrites are allowed. But this approach has 
the same disadvantages as the ad-hoc implementation of 
rewriting described above: the rules are hard to read, and 
the strategies are still expressed at a low level of abstraction. 

In this paper we argue that a better solution is to use 
explicit specification of rewriting strategies. We show how 
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program optimizers can be built by means of a set of labeled 
rewrite rules and a user-defined strategy for applying these 
rules. In this approach transformation rules can be defined 
independently of any strategy, so the designer can concen- 
trate on defining a set of correct transformation rules for a 
programming language. The transformation rules can then 
be used in many independent strategies that are specified 
in a formally defined strategy language. Given such a high- 
level specification of a program optimizer, a compiler can 
generate efficient code for executing the optimization rules. 

Starting with simple unconditional rewrite rules as 
atomic strategies we introduce in Section 2 the basic com- 
binators for building rewriting strategies. We give examples 
of strategies and define their operational semantics. In Sec- 
tion 3 we explore optimization rules for RML programs, an 
intermediate format for ML-like programs (261. This ex- 
ample shows that there is a gap between the unconditional 
rewrite rules used in rewriting and the transformation rules 
used for optimization. For this reason, we need to enrich 
rewrite rules with features such as conditions and contexts. 
In order to avoid complicating the implementation by many 
ad-hoc features, we refine our language by breaking down 
rewrite rules into the notions of matching and building terms 
(Section 4). This gives us a low-level core language which 
has a clear semantics, can be implemented straightforwardly 
and can itself be optimized. The current implementation 
generates C code from a strategy specification. In Section 5 
we show how this core language can be used to encode high- 
level rules with conditions and contexts. In Section 6 we 
use the resulting language to give a formal specification of 
the RML rules presented earlier. Section 7 describes the 
implementation and Section 8 discusses related work. 

2 Rewriting Strategies 

A rewriting strategy is an algorithm for applying rewrite 
rules. In this section we introduce the building blocks for 
specifying such algorithms and give several examples of their 
application. The strategy language presented in this section 
is an extension of previous work [20] of one of the present 
authors. 

2.1 Terms 

We will represent expressions in the object language by 
means of first-order terms. A first-order term is a variable, 
a constant, a tuple of one or more terms, or an application 
of a constructor to one or more terms. This is summarized 
by the following grammar: 

t::=xIc)(t1,..., tn)If(tl)...) tn) 

where 2 represents variables (lowercase identifiers), c rep 
resents constants (uppercase identifiers or integers) and f 
represents constructors (uppercase identifiers). We denote 
the set of all variables by X, the set of terms with variables 
by T(X) and the set of ground terms (terms without vari- 
ables) by T. Terms can be typed by means of signatures. 
For simplicity of presentation, we will consider only untyped 
terms in this paper until Section 6. For now, we assume that 
a signature C is a function mapping operators to their ari- 
ties. We will also use a shorthand notation for lists. A term 
[tl, tz, . , tn] denotes a term 

Cons(tl, Cons(t2,. . . , Cons(t,,Nil))) 

Constants are considered to be constructors with zero-arity 
and tuples are considered to be constructed with a special 
constructor for each arity. 

2.2 Rewrite Rules 

A labeled rewrite rule has the form ! : 1 -+ r, where e is a 
label and 1, T are first-order terms. For example, consider a 
calculus of lists constructed with Cons and Nil and Boolean 
values True and False that defines transformation rules for 
the constructor Member as: 

Meml : Member(z, Nil) -+ False 

Mem2 : Member(z, Cons(z, ys)) 3 True 

Mem3 : Member(z, Cons(y, ys)) --f Member(s, ys) 

A rewrite rule specifies a single step transformation of a 
term. For example, rule Mem3 induces the following trans- 
formation: 

Member (A, Cons(B, Cons(A, Nil))) 

q Member(A, Cons(A, Nil)) 

In general, a rewrite rule defines a labeled transition re- 
lation between terms and reducts, as formalized in the op- 
erational semantics in Table 1. A reduct is either a term or 
t, which denotes failure. The first rule defines that a rule e 
transforms a term t into a term t’ if there exists a substitu- 
tion 0 mapping variables to terms such that t is a o-instance 
of the left-hand side 1 and t’ is a cr-instance of the right-hand 
side T. The second rule states that an attempt to transform 
a term t with rule e fails, if there is no substitution u such 
that t is a o-instance of 1. For instance, in our membership 
example we have 

Member(A, Cons(B, Cons(A, Nil))) 5 7 

Note that a rewrite rule applies at the root of a term. Later 
on we will introduce operators for applying a rule to a sub- 
term. 

t e’i+r> t’ if 30 : u(1) = t A g(r) = t’ 

t e”+r>t if 7% : a(l) = t 

Table 1: Operational semantics for unconditional rules. 

2.3 Reduction-Graph Traversal 

The reduction graph induced by a set of rewrite rules is the 
transitive closure of the single step transition relation. It 
forms the space of all possible transformations that can be 
performed with those rules. 

For instance, one path in the reduction graph induced 
by the rules Meml and Mem3 is the following: 

Member(A, Cons(B, Cons(C, Nil))) 

z Member(A, Cons(C, Nil)) 

a Member(A, Nil) 

a False 
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(b) negative rules 

Table 2: Operational semantics for basic combinators. 

A strategy is an algorithm for exploring the reduction 
graph induced by a set of rules. Rewrite rules are atomic 
strategies that describe a path of length one. In this section 
we consider combinators for combining rules into more com- 
plex strategies. The operational semantics of these strategy 
operators is defined in Table 2. 

The fundamental operation for compounding the effects 
of two transformations is the sequential composition 91;s~ of 
two strategies. It first applies si and, if that succeeds, it ap- 
plies 92. For example, the reduction path above is described 
by the strategy Mem3 ; Mem3 ; Meml. 

The non-deterministic choice SI +s2 chooses between the 
strategies si and s2 such that the strategy chosen succeeds. 
For instance, the strategy Meml + Mem2 applies either Meml 
or Mem2. Note that due to this operator there can be more 
than one way in which a strategy can succeed. 

With the non-deterministic choice operator the program- 
mer has no control over which strategy is chosen. The deter- 
ministic or left choice operator si + 92 is biased to choose 
its left argument fist. It will consider the second strategy 
only if the first does not succeed. This operator can be used 
to give higher priority to rules. For example, rule MemP and 
Mem3 are overlapping rules. To express that Mem3 should be 
applied only after it is certain that Mem2 does not apply, the 
strategy 

(Meml + Mem2) +t Mem3 

can be used. 
Strategies that repeatedly apply some rules can be de- 

fined using the recursion operator px(s). For instance, the 
strategy 

p((Meml + Mem2) +t (Mem3 ; z)) 

repeatedly applies rule Mem3 (if possible) until either rule 
Meml or Mem2 is applicable. The strategy fails if neither Meml 
nor MemZ is ever applicable. (Note that ; has higher prece- 
dence than + and +k. Therefore, (Meml + Mem2) + (Mem3 ; z) 
could also be written as (Meml + Mem2) + Memd ; z.) 

The identity strategy e always succeeds. It is often used 
in conjunction with left choice to build an optional strategy: 
s +t e tries to apply s, but when that fails just succeeds with 
e. The failure strategy 6 is the dual of identity and always 
fails. 

The strategy tests can be used to test whether a strat- 
egy s would succeed or fail without having the transforming 
effect of s. The negation 7s of a strategy s is similar to 
test, but tests for failure of s. We will see examples of the 
application of these operators in Section 6. 

Redex and Normal Form We will call a term an e-redex 
if it can be transformed with a rule e, otherwise it is in !- 
normal form. We will generalize this terminology to general 
strategies, i.e., if t -4 t’, then t is an s-redex and if t 4 t, 
then t is in s-normal form. 

Strategy Definitions In order to name common patterns 
of strategies we will use strategy definitions. A definition 
‘p(Zl,. . . ,x,) = s introduces a new n-ary strategy operator 
cp. An application ‘p(si , . . . , sn) of cp to n strategies denotes 
the instantiation s[zi := si . . . xn := sn] of the body s of 
the definition. Strategy definitions are not recursive and 
not higher-order, i.e., it is not possible to give a strategy 
operator as argument to a strategy operator. An example of 
a common pattern is the application of a strategy to a term 
as often as possible. This is expressed by the definitions 

repeat(s) = pz((s ; CC) +t- E) 

repeatl(s) = s; repeat(s) 

The strategy repeat(s) applies s as many times (zero or 
more) as possible. The strategy repeatl(s) is like repeat, 
except that it must succeed at least once. Using repeat, we 
can define the strategy repeat ((Meml + Mem2) +t Mem3) which 
is equivalent to pz((((Mem1 + Mem2) +t Mem3) ; z) tf e). It 
applies rules Meml, Mem2 and Mem3 as often as possible and 
will always succeed. 
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(a) positive rules 

Table 3: Operational semantics for term traversal operators 
all rules n E C(f), m s C(g) and 1 _< i _< n. 

Backtracking Operationally, the non-deterministic 
choice operator SI + sz randomly chooses one strategy to 
apply and if that fails backtracks and attempts to apply 
the other one. However, backtracking is local only; if the 
first strategy succeeds the second will never be attempted. 
If both s1 and sz succeed, then the order in which they 
are tried can affect the outcome of the larger strategy 
that encompasses the choice. For example, suppose that 
t -% t’ and t -% t”, but t’ “3, t and t” a t”‘. Then 

either t (~l+~zh p, or t (sl+Q)iR3 f depending on the 

choice made for s1 + ~2. The left choice operator +t is 
also a local backtracking operator, but the order in which 
the alternatives are tried is fixed. Therefore, a strategy 
composed without + is deterministic and either fails or 
succeeds. 

2.4 Term Traversal 

The operators introduced above apply strategies to the root 
of a term. This is not adequate for achieving all transfor- 
mations. For instance, consider the extension of our list 
calculus with a concatenation operator Cone: 

Cncl : Conc(Ni1, zs) -+ xs 

Cnc2 : Conc(Cons(z, zs), ys) + Cons(z,Conc(zs, ys)) 

Application of rule Cnc2 leads to an opportunity to apply 
these rules below the root of the term. For example, consider 
the reduction path: 

Cone (Cons (1, Nil) , Cons (2, Nil)) 

% Cons(l, Conc(Ni1, Cons(2, Nil))) 

z(cncl)> Cons(l, Cons(2, Nil)) 

The second step in this reduction is an application of rub 
Cncl to the second argument of the Cons. 

fV1 ,... ,tn)3t ifi>n 

ti 47 

f(tl )... ,ti )‘.. ,tn) i(s),1. 

ti 41‘ 

L 

(b) negative rules 

These rules are schemata that define a rule for each f E C. In 

In general, we want to be able to apply transformation 
rules at arbitrary depth in a term. For this purpose we 
introduce five basic operators for applying a transformation 
to the children of a constructor. The operational semantics 
of these operators is defined in Table 3. In conjunction with 
the operators defined above, these are sufficient to define a 
wide range of full term traversals. 

The fundamental operation for term traversal is the ap- 
plication of a strategy to a specific child of a term. The 
strategy i(s) applies strategy s to the i-th child. If it suc- 
ceeds the child is replaced with the result of the transforma- 
tion. If it fails the application of i(s) fails. It also fails if i 
is greater than then the arity of the constructor of the term 
to which it is applied. We saw an example above, Z(Cncl) 
applies rule Cncl to the second argument of the root. 

Congs-uence operators specify application of strategies to 
the children of terms constructed with a specific constructor. 
For each term constructor f E dam(C) there is a correspond- 
ing strategy operator f with arity C(f). If sl,...,s~(f) are 
strategies then f(sl, . . . . SC(~)) is the strategy that applies 
only to terms t with outermost constructor f and applies 
each si to the i-th child of t. For example, the strategy 
Cons(sl,sz) applies to Cons terms and applies s1 to the 
head of the list and s2 to the tail. In the example above 
Cons(c,Cncl) is equivalent to 2(Cncl). To apply the con- 
catenation rules until the application of Cone is eliminated 
we can use the strategy 

px(Cnc1 + (Cncl ; Cons(e, x))) 

The strategy either terminates with rule Cncl or else applies 
rule Cnc2 and then recursively applies the strategy to the 
Cone created in the tail of the list. Another example of 
the use of congruence operators is the strategy map(s) that 
applies a strategy s to each element of a list: 

map(s) = pz(Nil+ Cons(s,z)) 
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The path and congruence operators are useful for con- 
structing strategies for a specific data structure. To con- 
struct more general strategies that can traverse arbitrary 
data structures we introduce the operators Cl(s), O(s) and 
q . These operators are defined generically on all terms over 
a signature C. 

The strategy U(s) applies s to each child of the root and 
succeeds if s succeeds for each child. It fails if s fails for 
one or more of the children. In case of constants, i.e., con- 
structors without arguments, the strategy always succeeds, 
since there are no children. (As a consequence the strat- 
egy O(6) succeeds exactly on constants.) This allows us to 
define very general traversal strategies. For example, the 
following strategies apply a strategy s to each node in a 
term, in preorder (top-down), postorder (bottom-up) and a 
combination of pre- and postorder (downup): 

topdown = pz(s ; Cl(e)) 

bottomup = ~z(O(Z) ; s) 

downup = ~Z(S ; U(Z) ; s) 

For example, the strategy topdown((Cnc1 + Cnc2) + e) tries 
to apply the rules Cncl and Cnc2 everywhere in a term in a 
topdown traversal. It always succeeds because of the escape 
+e. 

The strategy O(s) is the dual of O(s); It applies s non- 
deterministically to one child for which it succeeds. It fails 
if there is no child for which it succeeds. In particular, it 
fails for constants, since they have no child for which s can 
succeed. As a consequence the strategy O(E) succeeds ex- 
actly on non-constants. The duals of the pre- and post-order 
traversals defined above apply a strategy s exactly once in a 
term while traversing the term in a top-down or bottom-up 
order: 

oncetd(s) = ,KZ(S it O(x)) 

oncebu(s) = p~(O(x) et s) 

The strategy oncetd(s) first tries to apply s at the root 
and terminates if that succeeds. Otherwise if s fails on the 
root, it tries to apply the strategy to one of the children. 
The strategy oncebu(s) first tries to find an application of 
s below the root. If that fails s must succeed at the root. 
For instance, the strategy oncetd(Cncl+ Cnc2) succeeds if it 
finds an application of either rule Cncl or Cnc2 in the term 
and fails otherwise. 

Finally, m(s) is a hybrid of O(s) and O(s) that applies s 
to some children. It is like 0 because it has to succeed for 
at least one child and it is like 0 because it applies to all 
children. The difference from 0 is that it does not have to 
succeed for all children. The analogue of oncebu with gS is 
the strategy somebu, defined as: 

somebu(s) = ~x(~(x) + s) 

Where oncebu finds a single subterm for which s succeeds, 
somebu finds as many subterms as possible to which s ap- 
plies, but at least one. However, as soon as s succeeds for a 
subterm t’ of t, s is not applied to any of the nodes in the 
spine from t to t’. A version of this strategy that finds still 
more subterms to apply to is manybu, defined as: 

manybu(s) = px( (Kl(x) ; (s +t E)) + s) 

After applying s to as many subterms as possible with a(z), 
s is also tried at the root. If s did not succeed on any 

subterm, it has to succeed on the root for the strategy to 
succeed. The analogous pre-order strategies are: 

sometd(s) = ~X(S tt Q(X)) 

manytd(s) = pz((s ; q (Z +t E)) +t a(,)) 

These strategies perform a single traversal over a term. 
A normalization strategy for a strategy s keeps traversing 
the term until it finds no more s-redexes. Examples of well- 
known normalization strategies are reduce, which repeat- 
edly finds a redex somewhere in the term, outermost, which 
repeatedly finds a redex starting from the root of the term 
and innermost, which looks for redexes from the leafs of the 
term. Their definitions are: 

reduce(s) = repeat(puz(O(x) + s)) 
outermost(s) = repeat(oncetd(s)) 

innermost(s) = repeat(oncebu(s)) 

Note that this definition of innermost reduction is not 
very efficient. After finding a redex, search for the next 
redex starts at the root again. A more efficient definition of 
innermost reduction is the following. 

innermost’(s) = pz(Cl(0) ; ((s ; X) tt e)) 

It first normalizes all subterms (O(x)), i.e., all strict sub- 
terms we in s-normal-form. Then it tries to apply s at the 
root. If that fails this means the term is in s-normal-form 
and normalization terminates with E. Otherwise, the reduct 
resulting from applying s is normalized again. Using the 
other traversal strategies defined above a wide range of al- 
ternative normalization strategies can be defined. See also 
[27] for examples of alternative evaluation strategies. 

3 Case Study: RML Optimizer 

RML (261 is a strict functional language, essentially similar 
to the core of Standard ML [22] with a few restrictions. In 
this paper we consider a subset of RML that includes ba- 
sic features of functional languages, namely basic constants 
(integer, boolean, etc.) and primitive built-in functions, tu- 
ples and selection, let-bindings and mutually recursive func- 
tions. Programs are pre-processed by the compiler of RML 
to A-normal form. The syntax of this restriction of RML is 
presented in Table 4. 

Table 5 describes a set of meaning preserving source-to- 
source transformation rules for RML. The transformations 
are intended to improve the performance of programs either 
directly (e.g., (Deadl) and (DeadS), which perform dead 
code elimination) or by enabling future improving trans- 
formations (e.g., (Hoi&l) and (Hoist2), which sequentialize 
code). For in-depth discussions of the intent and correctness 
of these rules we refer the reader to the literature on trans- 
formation of functional programs, e.g. [3, 4, 13, 241. These 
particular rules were inspired by those presented in [4]. In 
the sequel, we concentrate on the details of the implemen- 
tation of these rules. 

In these rules we use the following notation and auxil- 
iary notions: We write a’ for a list of phrases al . . . a, with 
the appropriate separator for the list type. The function 
vars produces the set of free variables of an expression. An 
expression is safe if it contains no calls to side-effecting prim- 
itives or to user-defined functions; any safe function is guar- 
anteed to be pure and terminating. An expression is small if 
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let x : t = let y : t’ = eo in el in ez * let g : t’ = eo in let z : t = el in ez 

if y # vars(ez) 

(Hoistl) 

let 2 : t = letrec f&c in el in ez + letrec fdc in let x : t = el in e2 (Hoist2) 

if for each f : t(2) = e’ in fd> : f @ vars(e2) 

let 2 : t = el in e2 + e2 if x g’ vars(e2) and el is safe (Deadl) 

letrec f&c in e -+ e if for each f : t (Z) = e’ in f&c: f 4’ vars(e) (Dead2) 
let 2 : t = se in e + let z : t = se in e{se/z} Prop) 

letrec f : t (2) = e’ in e[f (s’e)] ---+ letrec f : t (3) = e’ in e[rename(e’{G/Z})] (Inline) 

if f e (vars(G) U vars(e[-I)) or e’ is small 

letx:t=(ael,..., se,) in e[select(i,z)] ---t let 2 : t = (sel, . . . , se,) in e[sei] (Select) 

let f : {+ t = el in e2 + letrec f : X-t t (2) = let f’ : C--b t = el in f’(2) in e2 (EtaExp) 

if [Z/ = ITI, f’ and the xi are fresh variables and el is safe 

Table 5: Transformation rules for RML 

t::=bItl-+tzItl,...,tn (Types) 
se ::= x 1 c (Simple expressions) 

fdec ::= f : t (21,. . . , z,) = e (Function declarations) 
vdec :I= x : t = e (Variable bindings) 

e ::= se (Expressions) 

1 x(=1,. . . , se,) 

I d(sel,...,.m) 

(sel,...,.m) 

select(i, se) 

let udec in e 
letrec fdecl . . . fdec, in e 

where 2, f, fl,... range over variables, c over constants, 
md d over primitive built-in functions, i over integers, 
z,el,.. . over expressions, b over basic types, and t, tl , . . . 
lver types. No variable is bound twice. 

Table 4: Syntax of RML 

it contains no nested declarations; inlining a function whose 
body is small cannot increase the size of the program (mea- 
sured in number of expressions). 

It might seem straightforward to implement these rules 
by a rewriting system using the strategy combinators intro- 
duced in the previous section. Unfortunately, this is not the 
case! There is a gap between these transformation rules and 
the simple rewrite rules defined above. Only (Hoistl) and 
(Hoist2) conform to the format. (The conditions of these 
rules are redundant in case no variable is bound twice.) All 
the other rules use features that are not provided by basic 
rewrite systems. 

(Deadl) and (Dead2) are conditional rewrite rules that 
remove pieces of dead code. The condition (Deadl) tests 
whether the variable defined by the let occurs in the body 
of the let. The condition of (Dead2) tests whether any of the 
functions defined in the list of function declarations occur 
in the body. (Prop), which performs constant and variable 

propagation, requires substitution of free occurrences of a 
variable by an expression. (Inline) is a context-sensitive rule 
which replaces an application of the function f somewhere 
in the expression e by the body of the function. This is 
expressed by the use of a contest e[f (s-6)]. Inlining should 
only occur if f appears only once in e (expressed here as 
f $! (vars(a%) U vars(e[-I))) or its body is small. (Inline) uses 
simultaneous substitution of a list of expressions for a list of 
variables. Furthermore, the rule renames all occurrences of 
bound variables with fresh variables, to preserve the invari- 
ant that no variable is bound twice. This invariant simplifies 
substitution and testing for the occurrence of a variable in 
an expression. Finally, (EtaExp) requires the generation of 
variables that are fresh with respect to the entire program. 

4 Refining the Strategy Language 

The RML example shows that simple unconditional rules 
lack the expressivity to describe optimization rules for pro- 
gramming languages and that we need enriched rewrite rules 
with features such as side conditions and contexts and sup- 
port for variable renaming and substitution of object vari- 
ables. For other applications we might need other features 
such as list matching and matching modulo associativity and 
commutativity. Adding each of these features as an ad-hoc 
extension of basic rewrite rules would make the language 
difficult to implement and maintain. It is desirable to find 
a more uniform method to deal with such extensions. 

If we take a closer look at the features discussed above, 
we observe that they all have strategy-like behaviour. For 
instance, a rule with a context c[Z’] in the left-hand side and 
c[r’] in the right-hand side can be seen as a strategy that tra- 
verses the subterm that matches c and applies rule 1’ + P’. 
Also, checking that some term tl occurs as a subterm of 
a term t2 requires traversing t2. Therefore, instead of cre- 
ating more complex primitives such as rules with contexts, 
we break down rewrite rules into their primitives: match- 
ing against term patterns and building terms. Using these 
primitives we can implement a wide range of features in the 
strategy language itself by translating rules which use those 
features into strategy expressions. 
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Table 6: Operational semantics for environment operators. 

Match, Build and Scope We first define the semantics 
of matching and building terms. A rewrite rule f? : 1 + T 
first matches the term against the left-hand side 1 producing 
a binding of subterms to the variables in 1. Then it builds a 
new term by instantiating the right-hand side T with those 
variable bindings. By introducing the new strategy primi- 
tives match and build we can break down e into a strategy 
match(l) ; build(r). However, this requires that we carry the 
bindings obtained by match over the sequential composition 
to build. For this reason, we introduce the notion of envi- 
ronments explicitly in the semantics. 

An environment E is a mapping of variables to ground 
terms. We denote the instantiation of a term t by an en- 
vironment & by E(t). An environment E’ is an extension 
of environment E (notation E’ 2 E) if for each z E dom(&) 
we have E’(x) = E(x). An environment E’ is the smallest 
extension of E with respect to a term t (notation E’ zt E), 
if E’ 2 E and if dom(E’) = dam(E) U vars(t). 

Now we can formally define the semantics of match and 
build. We extend the reduction relation & from a relation 
between terms and reducts to a relation on pairs of terms 
and environments, i.e. a strategy 3 transforms a term t 
and an environment E into a transformed term t’ and an 
extended environment E’, denoted by t : & d, t’ : E’, or 
fails, denoted by t : E -% t. The operational semantics 
of the environment operators are defined in Table 6. The 
change in the format of the operational semantics should be 
reflected in the semantics of the operators introduced earlier. 
In the remainder of the paper the rules in Tables 2 and 3 
should be read as follows: a transition t -% t’ denotes a 
transition t : E --% t’ : E’. The only exceptions are the rules 
for congruence, 0 and KY See Table 6 for their definitions 
in the extended semantics, 

Once a variable is bound it cannot be rebound to a dif- 
ferent term. To use a variable name more than once we 
introduce variable scopes. A scope (3 : s} locally undefines 
the variables Z. That is, the binding to a variable xi outside 
the scope (2 : s} is not visible inside it, nor is the binding 
to xi inside the scope visible outside it. The notation & \ 5 
denotes & without bindings for variables in j?. E(4 denotes 
E restricted to Z The strategy operator where is similar to 
the test operator of Section 2 in that it tries a strategy and 
returns the original term if it succeeds. However, it keeps 
the transformation on the environment. This operator can 
be used to encode a local computation that binds the an- 
swer to a variable to be used outside it, without actually 
transforming the term. 

Note that this definition supports matching with non- 
linear patterns. If a variable z occurs more than once in a 
pattern t, then match(t) succeeds only if all occurrences of 
x in t are bound to the same term. Moreover, if a variable 
x in t was already bound by a previous match, it should 
match to the exact same term as it was bound to before. 
For example, consider the strategy in that tests whether x 
is a subterm of J/. It is defined as 

in = {x, y : match((x, y)) ; 
test(build(y) ; oncetd(match(x)))} 

The first match matches a pair of terms (tl, t2), binding tl to 
x and t2 toy. The build replaces the pair by t2. The traversal 
oncetd searches for an occurrence of tl in t2 by matching z 
(which is bound to tl) against subterms of t2. The strategy 
succeeds if it actually finds a matching subterm. The use of 
test ensures that the predicate does not affect the term to 
which it is applied. 
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5 Implementation of Transformation Rules 

We now have a strategy language that consists of match and 
build as atomic strategies (instead of rewrite rules) and all 
the combinators introduced in Section 2. Using this refined 
strategy language, we can implement transformation rules 
by translating them to strategy expressions. In this higher- 
level view of strategies we can use both the ‘low-level’ fea- 
tures match, build and scope and the ‘high-level’ features 
such as contexts and conditions. We start by defining the 
meaning of unconditional rewrite rules in terms of our re- 
fined strategy language. 

5.1 Unconditional Rewrite Rules Revisited 

A labeled rewrite rule e : 1 -+ r translates to a strategy 
definition 

! = {vars(l, r) : match(l) ; build(r)} 

It introduces a local scope for the variables vars(l, P) used in 
the rule, matches the term against 1 and then builds r using 
the binding obtained by matching. 

5.2 Subcomputation 

Many transformation rules require a subcomputation in or- 
der to achieve the transformation from left-hand side to 
right-hand side. For instance, the inlining rule in Table 5 
applies a substitution and a renaming to an expression in 
the right-hand side. 

Where The where clause is the basic extension of rewrite 
rules to achieve subcomputations. A rule 

e: 1 --t rwheres 

corresponds to the strategy 

! = {vars(l, r, s) : match(l) ; where(s) ; build(r)} 

that first matches I, then tests s and finally builds r. The 
strategy s can be any strategy that affects the environment 
in order to bind variables used in r or just tests a property 
of the left-hand side. Note that s can transform the original 
term, but the effect of t,his is canceled by the where. Only 
the side-effect of s on the environment matters. 

Boolean Conditions Conditions that check whether 
some predicate holds are implemented as strategies using 
the where clause. Failure of such a strategy means that the 
condition does not hold, while a success means that it does 
hold. Predicates are user-defined strategy operators. Con- 
ditions can be combined by means of the strategy combina- 
tors. In particular, conjunction of conditions is expressed by 
means of sequential composition and disjunction by means 
of choice. In such conditions we use the notation (s) t, which 
corresponds to build(t) ; s. For instance, the encoding of the 
dead code elimination rule (Deadl) is: 

Dead1 : Let(Vdec(z, t, er), ez) + er 
where -((in) (Var(z), ez)) ; (safe) er 

Where (in) (tl, t2) tests that tl is a subterm of t2 as defined 
before and safe tests that an expression is terminating and 
side-effect free. 

Matching Condition Another kind of subcomputation 
is the application of a strategy to a term built with vari- 
ables from the left-hand side 1, matching the result against 
a pattern with variables used in the right-hand side r. The 
notation s =+ t’ is a shorthand for s ; match(t’). The com- 
bined notation (s) t + t’ thus stands for build(t);s;match(t’). 
It first applies s to t and then matches the result against t’ 
binding its variables. 

Application in Right-hand Side Often it is annoying 
to introduce an intermediate name for the result of applying 
a strategy to a subterm of the right-hand side. Therefore, 
the application (s) t can be used directly in the right-hand 
side r. That is, a rule 

e : 1 -+ v-[(3) t] 

is an abbreviation of 

e : 1 -+ r [cc] where (s) t 3 z 

where z is a new variable. The notation t [t’] denotes a meta- 
context, i.e. a term t with a specific occurrence of a subterm 
t’. The replacement by t” of the subterm t’ in t is denoted 
by t [t”]. 

5.3 Contexts 

A useful class of rules are those whose left-hand sides do not 
match a fixed pattern but match a top pattern and some in- 
ner patterns which occur in contexts. For instance, consider 
the (Inline) and (Select) rules in Table 5. Contexts can also 
be implemented with the where clause. A rule 

with a context c[-] occurring in the left-hand side and the 
right-hand side corresponds to the rule 

e : 1 [c] -+ r [c’] 
where (p({vars(l’, r’)\vars(l [c], r [c’]) : 

match(?) ; build(r’)})) c =S c’ 

where c’ is a fresh variable. The strategy in the where clause 
traverses the subterm matching c to find one or more occur- 
rences of 1’ and replaces them with r’. The result of the 
traversal is bound to c’, which is then used in the right- 
hand side of the rule. Note that the variables of 1’ and r’ 
are locally scoped except those common with the variables 
of 1 and r, since those are instantiated in 1 and/or used 
in r. The strategy operator ‘p that is specified in conjunc- 
tion with the contexts indicates the strategy used for the 
traversal. This determines where and how often the rule is 
applied. 

As an example, consider the encoding of the (Select) rule: 

Se1 : Let(Vdec(z, t, ses), e[Select(i, z)]) + 

Let(Vdec(z, t, ses), e[(index) (i, ses)](sometd)) 

It uses the traversal strategy sometd to replace all occur- 
rences of Select(i,z) in e by the corresponding element of 
the record. The strategy index takes the i-th element from 
the list ses of simple expresions. Using the encoding defined 
above this rule translates to the rule: 

Se1 : Let(Vdec(z, t, SW), e) + Let(Vdec(z, t, ses), e’) 
where (sometd({i : match(Select(i,z)) ; 

build((index) (i, ses))})) e 3 e’ 
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Note that the variable i is local to the context traversal and 
can thus be instantiated to more than one value. 

We have only discussed rules with one context. Rules 
with more than one context are beyond the scope of this 
paper. 

5.4 Variable Renaming 

An important feature of program manipulation is bound 
variable renaming. A major requirement is to provide re- 
naming as an object language independent operation. This 
means that the designer should indicate the binding con- 
structs of the language. This is done by mapping each bind- 
ing construct to the list of variables that it binds. For exam- 
ple, the following rules map the variable binding constructs 
of RML to the list of variables they bind. 

Bind1 : Let(Vdec(,x, -), -) + [x]; 
Bind2 : Letrec(fdecs, -) + 

(map({f : match(Fdec(, f, -, -)); build(f)})) fdecs 

Bind3 : Fdec(, -, xs, -) -i xs 

Given these rules and a couple of additional rules for indi- 
cating in which arguments the constructs are binding (see 
Appendix A) the strategy rename renames all bound object 
variables. This strategy uses the built-in strategy new which 
generates fresh names. See Appendix D for its definition. 

6 Rules and Strategy for RML 

Rules Table 7 presents the specification of RML optimiza- 
tion. It consists of a signature, rewrite rules and strategy 
definitions. The signature defines the abstract syntax of the 
object language of the optimizer. The rules section defines 
the individual transformation rules. The strategies section 
defines two strategies for combining these rules into an op- 
timization algorithm. The module imports several auxiliary 
modules that are defined in the appendices. 

Observe that the specification of the rules is very close to 
the original rules in Table 5. The main difference is that the 
inline rule has been split into two rules. Rule In11 handles 
the case that the body of the function is small and hence can 
be inlined everywhere in the body of the Letrec. Rule In12 
has no condition and replaces exactly one occurence of an 
application of the function f in the body of the Letrec. To 
achieve the condition that this rule should only be applied 
when f does not occur in the body of the Letrec after inlin- 
ing the rule is always followed by an application of Dead2. If 
Dead2 succeeds this guarantees that f does not occur any- 
more. 

Strategies An advantage of our approach of separating 
the specification of rules from strategies is the ability to 
experiment with alternative strategies for the same set of 
rules. We present the strategies optimize1 and optimize2 
for the RML transformation rules. 

In optimize1 and optimize2, we have avoided applying 
EtaExp repeatedly since this rule is not terminating. Both 
optimize1 and optimize2 first apply EtaExp once every- 
where in the term. The strategy optimize1 uses the generic 
strategies innermost’ and manydownup (see Appendix B) to 
apply the rules. 

The strategy manydownup applies a strategy s at all posi- 
tions of a term once while going down into the term and once 

on the way back. It fails when none of these applications 
succeed. If it succeeds we know that some redex has been 
reduced. Hence, we can repeat manydownup to normalize a 
term. 

While optimize1 uses generic strategies, optimize2 uses 
the properties of the rules in order to apply them in a more 
restricted way. It first tries to hoist a Let at the root. Notice 
that it repeats Hoist1 since it may reapply at the root, 
whereas Hoist2 cannot reapply after one application. Then, 
only Let or Letrec expressions can be redexes. For each 
case there are specific rules that can apply. This leads us 
to define a sub-strategy for each case and compose them 
non-deterministically. In both cases we first normalize the 
body of the Let or Letrec expression. For a Let we try 
the rules Prop and Se1 and then Deadl. For a Letrec, we 
first normalize the bodies of the functions of the Letrec 
expression. Then we try In11 or In12 and if they succeed 
we try Dead2. Since inlining gives rise to new opportunities 
for optimization, we try to reapply the strategy to this term. 

7 Implementation 

The strategy language presented in this paper has been im- 
plemented in Standard ML. The programming environment 
consists of a simple interactive shell that can be used to load 
specifications and terms, to apply strategies to terms using 
an interpreter and to inspect the result. A simple inclu- 
sion mechanism is provided for modularizing specifications. 
The current implementation does not yet implement the sort 
checking for rules and strategies. 

In addition to an interpreter, the programming envi- 
ronment contains a compiler that generates C code. The 
compilation of non-deterministic strategies is reminiscent of 
the implementation of Prolog in WAM [l] using success and 
failure continuations and a stack of choicepoints to imple- 
ment backtracking. The run-time environment of compiled 
strategies is based on the ATerm C-library [23]. It pro- 
vides functionality for building and manipulating a term 
data-structure, reference count garbage collection, a parser 
and pretty-printer for terms. An important feature is that 
full sharing of terms is maintained (hash-consing) to reduce 
memory usage. We have used the implementation to exper- 
iment with the optimizer for RML discussed in this paper. 
No performance results are available yet. 

The compiler implements a straightforward translation 
of strategy expressions to C programs that performs no 
optimizations. Currently we are bootstrapping the com- 
piler by specifying it in the strategy language itself. This 
gives us the opportunity to apply optimizations to strategies. 
There are several levels of optimization we are considering: 
simplification of expressions by applying simple algebraic 
laws; factoring out common prefixes from the alternatives 
of choices; propagating knowledge about matching history 
through traversals. Finally, it is worth considering the au- 
tomatic derivation of more refined strategies by specializing 
applications of generic strategies to specific rules. An exam- 
ple would be to derive a strategy in the style of optimize2 
from a strategy in the style of optimize1 in Table 7. 

An alternative approach to implementation of the lan- 
guage would be as a library of functions in a general pur- 
pose language, e.g., a functional language such as ML or 
Haskell. For each operator in the core language a corre- 
sponding function is defined. In fact, our interpreter uses 
such a library. The advantage of such an embedded imple- 
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mentation is that work on run-time environment and such 
can be borrowed from the host language. However, since a 
more general framework is used, the host compiler cannot 
take advantage of knowledge of the specific domain of term 
transformation. 

8 Related Work 

Program Optimization There have been many at- 
tempts to build frameworks for program analysis and opti- 
mization, often using special-purpose formalisms. The sys- 
tems closest to ours in spirit are probably OPTRAN [19] and 
Dora/Tess 1121. Like our system, these are based on ideas 
from term rewriting and emphasize separating the declar- 
ative specification of rewrite rules from the strategy to be 
used in applying them. Unlike our system, however, they 
support only a fixed set of pre-defined strategy options, and 
the same strategy must be used for all rules and for the 
whole tree. The options provided by the two systems are 
similar: traverse the tree top-down or bottom-up; traverse 
children left-to-right or right-to-left; rewrite each node only 
once per traversal or iterate at each node until a fixed point 
is reached. Our strategy language can easily implement 
these options (e.g., in a general-purpose library), but can 
also define much more fine-grained strategies where needed. 

Numerous other systems provide mechanisms for gener- 
ating transformation code, but none appears to offer our 
flexible combination of generic and rule-specific strategies. 
DFA&OPT-MetaFrame [18], Sharlit [25], Genesis [28], and 
OPTIMIX [5] are all primarily designed as analyzer gener- 
ator systems, each focused on a particular style of analysis. 
Their published descriptions do not give many details about 
their transformation capabilities, but none appears to give 
the user any control over transformation order. At the oppo- 
site extreme, KHEPERA [ll], TXL 19, 211, and Puma 1151, 
provide succinct primitives for matching and building sub- 
trees, but for the most part require that tree traversal be 
programmed explicitly in imperative style, node by node. 
TXL includes a “searching” version of the match operator 
which behaves like an application of our oncetd strategy. 
KHEPERA provides a built-in construct to iterate over the 
immediate children of a node. 

Other recent approaches to high-level description of opti- 
mizations include Aspect-Oriented Programming (1.61, which 
advocates the use of domain-specific “aspect” languages to 
describe optimization of program IR trees (in practice, LISP 
is generally used), and Intentional Programming [2], which 
provides a library of routines for manipulating ASTs. Nei- 
ther of these approaches particularly encourages separation 
of rules from strategies for their application. 

Strategies In conventional term rewriting languages, 
rewrite systems are assumed to be confluent and terminat- 
ing and therefore, strategies are only considered at the meta- 
level of language design and implementation. In particular, 
algebraic specification formalisms such as ASF+SDF [lo] 
only provide one fixed strategy for normalizing terms with 
respect to a set of rewrite rules. A common work-around to 
implement strategies in such a setting is to encode a strat- 
egy into the rewrite system by providing an extra outermost 
constructor that determines at which point in the term a 
rewrite rule can be applied. 

In theorem proving such fixed strategies are not sufficient 
since a theorem can be proved in many ways. The theorem 
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proving framework LCF [14] introduced tactics for proving 
theorems. A tactic transforms a goal to be proved into a 
list of subgoals and a proof. By repeatedly applying tactics 
a list of goals is reduced to the empty list, which indicates 
that the original goal is proven. A series of basic tactics 
are provided, including a simplification tactic that applies a 
set of rewrite rules using a fixed strategy. New tactics can 
be formed from existing ones using tacticals. The standard 
tacticals are similar to our identity, sequential composition, 
left choice and repeat strategy operators, although they have 
a somewhat different semantics since they apply to a subgoal 
instead of to the root of a term. In the theorem proving 
domain there is no need for traversal tacticals. 

In the specification formalism ELAN [17] the notion of 
transformation of goals to a list of subgoals is generalized to 
arbitrary term rewrite rules. Strategies are regular expres- 
sions over the set of rule labels. In 1171 this approach is used 
to define constraint solvers that consist of rules that rewrite 
a list of constraint into a new list of constraints. A strategy 
repeatedly applies such rules until a solution is found. In 
later versions of the language, e.g., [7], the set of strategy 
operators is extended with congruence operators to support 
term traversal. 

ELAN does not provide generic traversal operators anal- 
ogous to our i(s), Cl, 0 and E3. Instead traversals have to 
be defined explicitly for each datatype using congruences. 
Recursive strategies are expressed in ELAN using recursive 
strategy definitions. Further differences with ELAN are the 
negation and test operators and the breakdown of rules into 
primitives. Where ELAN has a fixed syntax for rewrite rules 
our strategy language can easily be extended with expressive 
features that are implemented in terms of the core language. 

Maude [S] is a specification formalism based on rewrit- 
ing logic. It provides equations that are interpreted with 
innermost rewriting and labeled rules that are used with an 
outermost strategy. Strategies for applying labeled rules can 
be defined in Maude itself by means of reflection. 

The language described in this paper was inspired by the 
strategy language of ELAN. The first version was described 
in [20], which presents a strategy language with identity, se- 
quential composition, choice, recursion, and a generic ‘push- 
down’ operator that is used to define Cl and 1. Its design 
was guided by the process algebra ACP [6]. An interpreter 
for strategy expressions is specified in the algebraic specifi- 
cation formalism ASF+SDF [lo]. Basic strategies are un- 
conditional ASF+SDF rewrite rules 

In this paper we have extended our first language with 
the operators failure, negation, test, path, congruence and 
0. Furthermore, we cater for a much more expressive set 
of rules by means of the breakdown of rewrite rules into 
match, build and scope. In addition, our current language 
is implemented by compilation to C. 

Technical contributions of our work in the setting of 
strategy languages include the modal operators El, 0 and 
q that enable very concise specification of term traversal; 
a set general purpose traversal strategies; the explicit re- 
cursion operator pz(s); the refinement of rewrite rules into 
match and build; and the encoding of complex rewrite rules 
into strategies, in particular the expression of rules with con- 
texts. 

In [27] we describe how our core strategy language can be 
used to implement conventional term rewriting engines and 
how these can be extended with non-standard evaluation 
strategies. 



nodule rml 
imports traversal 
imports list 
imports substitution 
imports renaming 
imports rml-aux 
signature 

sorts TExp Vdec Fdec Se Exp 
operations 

Funtype : List(TRxp) * TExp -> TExp -- Type expressions 
Recordtype : List(TExp) -> TExp 
Primtype : String -> TExp 
Vdec : TExp * String * Exp -> Vdec -- Variable declarations 
Fdec : TExp * String + 

List(String) * Exp -> Fdec -- Function declarations 
Const : TExp * String -> Se -- Simple expressions 
k3.r : String -> Se 
Simple : Se -> Exp -- Expressions 
Record : List(%) -> Exp 
Select : Int * Se -> Exp 
Paw : String * List(Se) -> Exp 
APP : Se * List(Se) -> Exp 
Let : Vdec * Exp -> Exp 
Letrec : List(Fdec) * Exp -> Exp 

:ules 

Ioistl : Let(Vdec(t, x, Let(vdec, el)), e2) -> Let(vdec, Let(Vdec(t, x, el>, e2)) 

Ioist2 : Let(Vdec(t, x, Letrec(fdecs, el)), e2> -> Letrec(fdecs, Let(Vdec(t, x, ei>, e2)> 

lead1 : Let(Vdec(t, x, el), e2) -> e2 where not(<in> (Var(x), e2>>; <safe> el 

)ead2 : Letrec(fdecs, el) -> el where <map(Cf : match(Fdec(-,f,-,-)I; not(<in> (Var(f), el>>)>> fdecs 

'rap : Let(Vdec(t, x, Simple(se)), eCVar(x)l> -> Let(Vdec(t, x, Simple(se)), eke1 (sometd)) 

:n11 : Letrec([Fdec(t, f, xs, el)], ePCApp(Var(f), ss)l> -> 
Letrec([Fdec(t, f, xs, ei)], e2ksubs; rrename) (x8, 88, el>](sometd)> 
where <small> el 

Yn12 : Letrec([Fdec(t, f, xs, el)], e2[App(Var(f), sdl) -> 

Letrec([Fdec(t, f, xs, el)l, e2[<rsubs; rrename) (xs, ss, el>l(oncetd)> 

lel : Let(Vdec(t, x, Record(ss)), e[Select(i, Var(x))l> -> 
Let(Vdec(t, x, Record(ss)), e[Simple(<index> (i, ss))l(sometd>> 

:taExp : Let(Vdec(Funtype(ts, t>, fl, el>, e2) -> 
Letrec([Fdec(Funtype(ts, t), fl, x8, Let(Vdec(Funtype(ts, t), f2, el), App(Var 
where <safe> al; new => f2; <map(new)> ts => x8; Qnap(MkVar)> x8 => ses 

strategies 

(f2), ses))>l, e2) 

1pti = innermost'(Hoist1 + HoistSI; 
manydownup(((Inl1 <+ (In12; Dead21 + Se1 + Prop); repeat(Dead1 + Dead2) <+ repeatl(Dead1 + Dead2111 

Nptimizel = bottomup(try(EtaExp)); repeat(opt1) 

pt2 = ret x(repeat(Hoist1); try(Hoist2); 
try(Let(id, x1; try(Prop + Sell; try(Deadl; x) 

t Letrec(id, x); (Dead2 <+ try(Letrec(map(Fdec(id,id,id,x)),id); 
try((Inl1; try(Dead2) <+ In12; Deada); x))))) 

ptimixe2 = bottomup(try(EtaExp)) ; opt2 

Table 7: Specification of RML transformation rules 
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9 Conclusions 

We have illustrated how separating transformation rules 
from the application strategy can promote concise, under- 
standable descriptions of complex rewriting tasks. Our ex- 
ample compiler optimizer takes about 50 lines; the corre- 
sponding handwritten Standard ML code is several hundred 
lines. Moreover, we can completely alter the optimizer’s 
rewriting strategy by changing just two or three lines, or 
add a new transformation rule and inserting its tag at the 
appropriate place in the strategy; similar changes to the ML 
version would require extensive structural edits throughout 
the code. 

Although we concentrate on program optimizers in this 
paper, we believe that the techniques are equally well appli- 
cable in other areas where source to source transformations 
are used, including simplification, typechecking, interpreta- 
tion and software renovation. 
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A Auxiliary Strategies for RML 

The module rml-aux defines the predicates small and safe. 
Furthermore, it defines the strategies rsubs for substitution 
in RML expressions and rrename for renaming bound vari- 
ables in RML expresions. These strategies are instantiations 
of the language independent strategies subs (Appendix D) 
and rename (Appendix E). 

module rml-aux 
imports substitution 
imports renaming 
strategies 

small = SimpleCid) + Record(id) + Select(id, id) 
+ Pappcid, id) + App(id, id) 

safe = not(oncetd(App(id,id) + 
match(Papp("assign", ->))) 

rules 

IsVar : Var(x> -> x 

Mkvar : 

Bind1 : 
Bind2 : 

Bind3 : 

x -> Var(x> 

Let(Vdec(-,x,-),-) -> [xl 
Letreccfdecs, -1 -> 
<map({f : match(Fdec(-.f ,-,->I; 

build(f)))> fdecs 
Fdec(-,-,xs,-) -> xs 

PutVar : (f, Fdec(t, f', xs, e>> -> 
Fdec(t, f, xs, e> 

PutVars(nvs, nbnd) : 
fdecs -> <zip(PutVar; nbnd)> (fs, fdecs) 
where nvs => fs 

strategies 

rsubs = subs(IsVar) 

rn-apply(nvs, bnd, nbnd) = 
Let(Vdec(id, nvs; Hd, nbnd), bnd) 

+ Fdeclid, id, nvs, bnd) 
+ Letrec(PutVars(nvs. nbnd), bnd) 

rrename = 
reneme(IsVar, MkVar, Bind1 + Bind2 + Bind31 

B Traversal Strategies 

In this and the next appendices we present three sets of 
generally applicable strategy operators. Note that all, one, 
and some stand for q i, 0, and q , respectively. 

module traversal 
strategies 

try&> 

repeat(s) 
repeatl(s) 

bottomup 
topdown 
downup 

oncebuts) 
oncetd(s) 

somebu(s) 
sometd(s) 

manybu(s) 
manytd(s) 

= s <+ id 

= ret x(try(s; X)> 
= s; repeat(s) 

= ret x(all(x>; s> 
= ret x(s; all(x)> 
= ret x(s; all(x); s> 

= ret x(one (xl <+ s> 
= ret x(8 <+ one(x)> 

= ret x(some(x> <+ s) 
= ret x(8 <+ some(x)) 

= ret x((some(x>; try(s)) <+ s) 
= ret ~((8; all(try(x))) <+ some(x)> 

manydownup(s) 5: ret x((s; all(try(x)); try(s)) 
<t (some(x); try(s)>) 

alltdk) = ret x(6 <+ all(x)> 

reduce(s) = repeatcrec x(some(x> + s>> 
outermost(s) = repeat(oncetd(s)) 
innermost(s) = repeat(oncebu(s)) 
innermost'(s) = ret x(all(x); tryk; x1) 

in = {x,y: match((x,y)); 
test(<oncetd(match(x))> y) 
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C List Strategies 

module list 
signature 

operations 
Nil : List(a) 
Cons : a * List(a) -> List (a> 

rules 

Hd : Cons(x, xs) -> x 
Indl : (1, Cons(x, x6)) -> x 
Ind2 : h, Cons(x, xs>> -> (<minus> (n, 11, x8> 

where <geq> (n, 2) 

strategies 

index = repeat (Ind2) ; Indl 
map(s) = ret x(Ni1 + Cons(s, x1> 
at-tail(s) = ret x(Ni1; s + Conscid, xl> 
fetch(s) = ret x(Cons(s, id) <+ Conscid, x>) 

rules 

cone : (11, 12) -> <at_tail(build(l2))> 11 

lookup(mklst) : x -> v 

Zip0 : 
Zipl(a, b) : 

. 
where mklst; fetch(match((x, y))) 

(Nil, Nil) -> Nil 
(Cons(x, xs), Cons(y, ys)) -> 
Cons(<a> (x, y), <b> (xs, ys)) 

strategies 

zip(s) = ret x(Zip0 + Zipl(s, x1) 

D Substitution 

The strategy subs(isvar), applied to a triple (xs, ts, t) 
of a list of strings xs, a list of terms ts and a term t, re- 
places each occurence in t of a variable x from xs by the 
corresponding term in ts; The parameter strategy isvar 
should be a rule (or choice of rules) that maps a term rep- 
resenting an (object) variable to its name. Typically such a 
rule is of the form Vex(x) -> x. 

The strategy first matches its arguments. Then it zips 
together the string list and the term list to get a table tbl 
that associates variable names with terms they have to be 
substituted with. (This fails if xs and ts are lists of dif- 
ferent length, because zip will fail.) Finally, a traversal of 
the term t replaces each variable occuring in the table by 
its target. Note that the strategy alltd stops after it has 
found an application of its argument strategy. This is nec- 
essary to avoid applying the substitution to the terms being 
substituted. This strategy assumes that bound variables are 
renamed such that no variable is bound twice. 

module substitution 
imports traversal 
imports list 
rules 

subs (isvar) = 
{tbl, xs, ts, t 

: match((xs, ts, t)) ; 
<zip(id)> (xs, ts) => tbl; 
<alltd(isvar; CetVar(build(tbl)))> t 

3 

E Renaming 

The strategy rename(isvar, mkvar, bnd) renames all 
bound variables in a term to new variables. It is param- 
eterized with strategies that express what the variables and 
the binding constructs of the language are. The parameter 
isvar recognizes variables and maps them to their name. 
The parameter mkvar maps a string to a variable. The pa- 
rameter bnd maps each binding construct to the list of vari- 
ables that it binds. 

In addition, the user should specify the strategy operator 
m-apply (a, b, c) such that for each variable binding con- 
struct a is applied to the subterm containing the variable(s) 
b is applied to the subterms in which the variables are bound 
c is applied to the subterms in which the variables are not 
bound. For an example, see Appendix A. 

module renaming 
imports traversal 
imports list 
strategies 

rename (isvar, mkvar, bnd) = 
Ct : match(t); build((t, [I)>); 
ret reni 
(11: 

It: match((t, 1)); build(t)); 
ret ren2 
(isvar ; lookup (build (1) > ; mkvar 
<+ cxs, ys, 1’: 

where(bnd s> xs; map(new) => ys; 
<cone> (<zip(id)> (x8, ys), 1) -> 1'); 

rn-apply(build(ys), 
{x: match(x); build((x, 1'))); renl, 
Ix: match(x); build((x, 1))); renl)) 

<+ all(ren2)) 
3) 

GetVar (mktbl) 
: x -> z where mktbl; fetch(match((x, z>>> 

strategies 
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