A Bootstrapped Compiler for Strategies
(Extended Abstract)

Eelco Visser

Department of Computer Science, Universiteit Utrecht
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

http://www.cs.uu.nl/"visser/, visserQacm.org

Abstract. Stratego is a language for the specification of program trans-
formation based on rewriting strategies. The Stratego compiler is based
on program transformation; it transforms a high-level Stratego specifica-
tion via several intermediate representations to C. Several optimizations
are performed on the intermediate representations. The compiler is boot-
strapped, i.e., it is specified in Stratego itself. In this paper we give an
overview of the Stratego compiler: architecture; issues in the compilation
of strategies; some high-lights of the specification; and experience with
using strategies for writing program transformations.

1 Introduction

One of the shortcomings of implementing algebraic specifications by means of
term rewriting is the necessity to encode the strategy to apply ‘equations’ by
means of functions. This obscures the equational nature of specifications and
hampers their modularity because rules become part of one particular strategy.
This observation was done in several projects that used ASF+SDF [3] to de-
fine language processors, in particular program transformations. For example:
normalization of box expressions for pretty-printing [2]; normalization of syntax
definitions [8]; transformation of C++ programs [4].

Stratego is a language for the specification of program transformations that
overcomes this shortcoming by providing user-definable rewriting strategies. A
rewriting strategy is an expression in a language of strategy operators that com-
bine rules (usually via their labels) in a program that traverses a term and applies
the rules.

The preliminary ideas for the strategy operators in Stratego, inspired by
the specification formalism ELAN [1], include operators for sequential non-
deterministic programming, data-type specific and generic term traversal. In
[6] an implementation of these operators in ASF+SDF is described. That in-
terpretive implementation style can be used to write strategies for ASF+SDF
equations and can be applied in other settings as well; the traditional way of
defining a strategy with functions is replaced by a style in which an evaluation
function interprets a strategy expression. This allows the concise specification of
various strategies and the use of one rule with many different strategies.

73

These preliminary ideas are further developed in [10,11]. Rewrite rules are
no longer primitives, but are broken down into operations for matching, building
and variable scope. System S, the resulting set of strategy operators, provides the
primitive operations for definining both rewrite rules and strategies for applying
them. A Stratego specification provides syntactic abstractions on top of Sys-
tem S. For example, a rewrite rule is an abstraction for a sequence of operations
that first matches the subject term against a pattern, then satisfies a condition
and finally builds the instantiation of a term pattern. The identification of this
intermediate level allows the definition of very expressive abstractions such as
contextual rules and overlays [9].

The Stratego compiler first translates a high-level Stratego specification to
a System S expresssion, which is then translated to a list of abstract machine
instructions that are implemented in C. The first compiler was written in SML.
Based on the first experience with that compiler an improved compiler was
specified in Stratego itself and bootstrapped. Bootstrapping proves to be a good
approach for developing the compiler and the language because it provides a
realistic case study and a good test case for the compiler. The compiler is being
used in several program transformation case studies, such as a specificiation
of an optimizer for a functional language [11], a deforestation algorithm for a
functional language [5] and a transformation tool to speed up C++ programs
for high-performance computing.

In this abstract we give an overview of System S and Stratego, present the
architecture of the compiler and show some examples of the use of strategies
in the compiler. In the full paper we will further elaborate the application of
strategies in the compiler and give a first evaluation of the use of strategies in
program transformation.

2 The Language

This section introduces System S, a calculus for the definition of tree transfor-
mations, and Stratego, a specification language providing syntactic abstractions
for System S expressions. For an operational semantics see [10, 11].

2.1 System S

System S is a hierarchy of operators for expressing term transformations. The

first level provides control constructs for sequential non-deterministic program-

ming, the second level introduces combinators for term traversal and the third

level defines operators for binding variables and for matching and building terms.
First-order terms are expressions over the grammar

t :=x | C(t1,...,tn) | [t1,...,tn] | (t1,...,tn)

where x ranges over variables and C over constructors. The arity and types of
constructors are declared in signatures. The notation [t1,...,tn] abbreviates
the list Cons(t1,...,Cons(tn,Nil)). Transformations in System S are applied
to ground terms, i.e., terms withouth variables.

74

module traversals

imports lists

strategies
try(s) =s <+ id map (s) = rec x(Nil + Comns(s, x))
repeat(s) = rec x(try(s; x)) list(s) = rec x(Nil + Coms(s, x))
topdown = rec x(s; all(x)) alltd(s) = rec x(s <+ all(x))
bottomup = rec x(all(x); s) oncetd(s) = rec x(s <+ one(x))
downup(s) = rec x(s; all(x); s) sometd(s) = rec x(s <+ some(x))
onebu(s) = rec x(one(x) <+ s) somebu(s) = rec x(some(x) <+ s)
downup2(sl, s2) = rec x(sl; all(x); s2)

Fig. 1. Specification of several generic term traversal strategies.

Level 1: Sequential Non-deterministic Programming Strategies are programs that
attempt to transform ground terms into ground terms, at which they may suc-
ceed or fail. In case of success the result of such an attempt is a transformed
term. In case of failure the result is an indication of the failure. Strategies can be
combined into new strategies by means of the following operators: The identity
strategy id leaves the subject term unchanged and always succeeds. The failure
strategy fail always fails. The sequential composition s1; s2 first attempts to
apply s1 to the subject term and, if that succeeds, applies s2 to the result. The
non-deterministic choice s1 + s2 attempts to apply either s1 or s2. It succeeds
if either succeeds and it fails if both fail; the order in which s1 and s2 are tried
is unspecified. The deterministic choice s1 <+ s2 attempts to apply either si
or s2, in that order. The recursive closure rec x(s) attempts to apply s, where
at each occurence of the variable x in s, the strategy rec x(s) is applied. The
test strategy test(s) tries to apply s. It succeeds if s succeeds, and reverts the
subject term to the original term. It fails if s fails. The negation not (s) succeeds
(with the identity transformation) if s fails and fails if s succeeds. Two examples
of strategies defined with these operators are try and repeat in Figure 1.

Level 2: Term Traversal The Level 1 constructs apply transformations to the root
of a term. In order to apply transformations throughout a term it is necessary
to traverse it. For this purpose, System S provides the following operators: For
each n-ary constructor C the congruence operator C(s1,...,sn) is defined. It
applies to terms of the form C(t1,...,tn) and applies si to ti for 1 <= i <=
n. An example of the use of congruences is the operator map(s) in Figure 1 that
applies s to each element of a list.

Congruences can be used to define traversals over specific data structures.
Specification of generic traversals (e.g., pre- or post-order over arbitrary struc-
tures) requires more generic operators. The operator all(s) applies s to all
children of a constructor application C(t1,...,tn). In particular, all(s) is the
identity on constants (constructor applications without children). The strategy
one(s) applies s to one child of a constructor application C(t1,...,tn); it is
precisely the failure strategy on constants. The strategy some(s) applies s to

75

some of the children of a constructor application C(t1,...,tn),i.e., to at least
one and as many as possible. Like one(s), some(s) fails on constants.

Figure 1 defines various traversals based on these operators. For instance,
oncetd(s) tries to find one application of s somewhere in the term starting at
the root working its way down; s <+ one(x) first attempts to apply s, if that
fails an application of s is (recursively) attempted at one of the children of the
subject term. If no application is found the traversal fails. Compare this to the
traversal alltd(s), which finds all outermost applications of s and never fails.

Level 3: Match, Build and Variable Binding The operators introduced thus far
are useful for repeatedly applying transformation rules throughout a term. Ac-
tual transformation rules are constructed by means of pattern matching and
building of pattern instantiations.

A match 7t succeeds if the pattern term t matches the subject term. As a
side-effect, any variables in t are bound to the corresponding subterms of the
subject term. If a variable was already bound before the match, then the binding
only succeeds if the terms are the same. This enables non-linear pattern match-
ing, so that a match such as 7F (x, x) succeeds only if the two arguments of F in
the subject term are equal. This non-linear behaviour can also arise accross other
operations. For example, the two consecutive matches 7F(x, y); 7F(y, x) suc-
ceed exactly when the two arguments of F are equal. Once a variable is bound
it cannot be unbound.

A build 't replaces the subject term with the instantiation of the pattern t
using the current bindings of terms to variables in t. A scope {x1,...,xn: s}
makes the variables xi local to the strategy s. This means that bindings to these
variables outside the scope are undone when entering the scope and are restored
after leaving it. The operation where(s) applies the strategy s to the subject
term. If successful, it restores the original subject term, keeping only the newly
obtained bindings to variables.

2.2 Stratego

The specification language Stratego provides syntactic abstractions for System S
expressions. A specification consists of a collection of modules that define signa-
tures, transformation rules and strategy definitions.

A signature declares the sorts and operations (constructors) that make up the
structure of the language(s) being transformed. Example signatures are shown
in the modules in Figure 2. A strategy definition f(x1,...,xn) = s introduces
a new strategy operator f parameterized with strategies x1 through xn and with
body s. Such definitions cannot be recursive, i.e., they cannot refer (directly or
indirectly) to the operator being defined. All recursion must be expressed ex-
plicitly by means of the recursion operator rec. Labeled transformation rules
are abbreviations of a particular form of strategy definitions. A conditional rule
L : 1 -> r where s with label L, left-hand side 1, right-hand side r, and con-
dition s denotes a strategy definition L = {x1,...,xn: ?1; where(s); !r}.
Here, the body of the rule first matches the left-hand side, and then attempts

76

module terms
imports list-cons
signature

sorts Term

2 ...

operations
Wld : Term (* _ *)
Var : String -> Term (* x *)
Int : Int -> Term (* 0, 1,
Str : String -> Term (x "", "a",

module strategy
imports terms

signature

sorts SVar Strat SDef

operations
Id
Fail
Test : Strat ->
Not : Strat ->
Seq : Strat * Strat ->
Choice : Strat * Strat ->
LChoice : Strat * Strat ->
SVar : String ->
Rec : String * Strat ->
Let : SDef * Strat ->
SDef : String * List(String) #* Strat ->
Call : SVar * List(Strat) ->
Path : Int * Strat ->
Cong : String * List(Strat) ->
One : Strat ->
Some : Strat ->
A1l : Strat ->
Match : Term ->
Build : Term ->
Scope : List(String) * Strat ->
Where : Strat ->
Prim : String -> Strat

Strat
Strat

Strat
Strat

Strat
Strat
Strat

SVar
Strat
Strat
SDef
Strat

Strat
Strat
Strat
Strat
Strat

Strat
Strat

Strat
Strat

*)

*)
Op : String * List(Term) -> Term (* £(tl,...,tn) *)

(*
(*

(*
(*

(*
(*
(*

(*
(*
(*
(*

(*
(*
(*
(*
(*

(*
(*

(*
(*

id *)

fail *)
test s *)
not s *)

sl ; s2 %)
sl + s2 %)

sl <+ s2 *)

rec x (s) *)

let sdef in s2%)
f(xs) = s *)
f(ss) *)

i(s) *)
f(sl,...,sn) *)
one(s) *)

some (s) *)

all(s) *)
7t *)
1t *)
{xs: s} *)

where s *)

Fig. 2. Abstract syntax of terms and System S expressions.

7

to satisfy the condition s. If that succeeds, then it builds the right-hand side r.
The rule is enclosed in a scope that makes all term variables xi occurring in 1,
s and r local to the rule. If more than one definition is provided with the same
name, e.g., (xs) = sl and f(xs) = s2, this is equivalent to a single definition
with the sum of the original bodies as body, i.e., f(xs) = s1 + s2.

The following definitions provide a useful shorthand. The notation <s> t
denotes !'t; s, i.e., the strategy that builds the term t and then applies s to
it. The notation s => t denotes s; 7t, i.e., the strategy that applies s to the
current subject term and then matches the result against t. The combined nota-
tion <s> t => t’ thus denotes (!'t; s); 7t’. The <s> t notation can also be
used in a build expression. For example, the strategy expression !'F(<s> t, t’)
corresponds to {x: <s> t => x; !'F(x,t’)}, where x is a new variable.

2.3 Library

The language comes with a growing library of strategy operators with function-
ality for

— Simple traversals (such as in Figure 1)

— Fixed-point traversals

— List operations

— Tuple operations

— Manipulation of expressions with (bound) variables, such as variable renam-
ing, substitution, collection of the set of free variables etc. These operations
are language independent and can be specialized to a language by instanti-
ation of generic operations. Note that this concerns object variables in the
language being manipulated, which are different from the meta-variable used
in rules.

3 The Compiler

A Stratego specification defines a transformation on terms. The Stratego com-
piler translates a specification to an executable program that reads in a term,
transforms it according to the specification and outputs the resulting trans-
formed term. In this section we discuss the architecture of the compiler and the
run-time system used in the generated programs. In the next section we give
some examples of the specification of the compiler in Stratego itself.

3.1 Architecture

The overall architecture of the compiler is shown in Figure 3. The compiler
consists of four main components: front-end, optimizer, matching-tree, and back-
end.

The front-end takes a Stratego specification (in abstract syntax form) and
translates it to a list of System S expressions (SSE). The front-end itself is com-
posed of five stages: joining sections of the same kind (normalization); translation

78

Stratego
specification

Stratego in
LEX/YACC [

Stratego spec-
AST / to-sdefs

frontend.r

optimizer.r

matching-tree.r

SSE

back-end.r |- - >@ -

AMI (= C)

Fig. 3. Architecture of the Stratego compiler (sc)

79

of rules and signatures to strategy definitions; extraction of the definitions that
are actually needed for implementation of the operator main; elimination of the
syntactic abstractions (sugar) of the Stratego level; and (selective) inlining defi-
nitions. The result of this stage is a list of strategy definitions for parameterless
operators.

The optimizer simplifies a System S expression by applying algebraic laws.
The matching-tree automaton transformer targets expressions that are choices
of strategies starting with a match. Common prefixes are extracted to prevent
inspecting a term more than once. The back-end translates an expression to
abstract machine instructions.

3.2 Run-time System

The abstract machine instructions produced by the compiler are implemented
as macros or procedures in C. These procedures make use of a run-time system
that supports stack and term management. The return- and choice-stacks are
needed for control. The term-stack is used to deconstruct terms in matching and
term traversal. For the representation of terms the ATerms package [7] is used.
This package provides an implementation of terms based on hash-consing and
supports garbage collection.

The run-time system is implemented in C. Therefore, the compiler and gener-
ated transformation programs only depend on gcc. The Stratego compiler (sc) is
being developed on a Linux platform and is also used on Sun machines. Although
this has not been done, there should be no problem in porting the compiler to
Windows NT platforms with GNU software.

4 Examples

In this section we give some examples to illustrate the specification of the com-
piler in Stratego.

4.1 Example 1: Pipelines

The main strategy of the front-end defines a pipeline of operations. In addition
to the operations discussed in the previous section, use-def analysis is used to
determine if variables are used in builds without being bound in match opera-
tions.

Note that in general such a pipeline may fail to apply to a term. In this
case, if an error is detected either in the use-def analysis (due to undeclared or
unitialized variables) or in the needed-defs transformation (missing definition),
the pipeline fail. In these cases an error message is derived from the failure.

80

module frontend

imports normalize-spec spec-to-sdefs needed-defs
desugar inlining use-def

strategies

main = normalize-spec;
where (spec-use-def) ;
spec-to-sdefs;
needed-defs;
desugar-spec;
inline

4.2 Example 2: Desugaring

The following specification is a fragment from module desugar.r that defines
the elimination of syntactic abstractions (sugar). Rules Bapp2 transforms a build
expression such as !'F(<s> G(y)) to {x: <s> G(y) => x; !'F(x)} in order to
extract the strategy application inside the build.

Rule Bapp2 uses a contextual pattern t [App(s, t’)] toreach an application
App(s, t’) at an arbitrary depth inside the term matching t. This application
is replaced with the newly generated variable Var (x) in the right-hand side by
means of the context t[Var(x)]. The right-hand side replaces the build by a
scope construct that declares a new local variable x. Inside the scope first s is
applied to t’ and the result matched against the new variable x. This variable
is then used inside the term t in the build.

The strategy desugar desugars an expression by applying a set of rules,
including Bapp2, repeatedly in a topdown traversal. The strategy desugar-spec
applies this strategy to each definition body in a list of definitions.

module desugar
rules
Bapp2 : Build(t[App(s, t’)]1) ->
Scope ([x], Seq(BAM(s, t’, Var(x)), Build(t[Var(x)])))
where new => x

strategies

desugar = topdown(try(desugarRule);
repeat (HL + (BappO <+ Bappl <+ Bapp2)))

desugar-spec = map(SDef(id, id, desugar))

81

4.3 Example 3: Compilation

The back-end of the compiler translates expressions to lists of abstract machine
instructions. For each language construct a rule defines the pattern of instruc-
tions it corresponds to. For example, the following rules define the translation
of left choice <+ and the generic traversal operator all.

module compiler
rules
C : Instr(LChoice(sl, s2), env, rcs) ->
Block ([Cpush(fc),
Instr(sl, env, rcs), Cpop, Goto(sc),
Label(fc), Instr(s2, env, rcs),

Label(sc)])
where new => sc ; new => fc

C : Instr(All(s), env, rcs) ->

Block([AllInit,
Label(cl),
AllNextSon(c2),
Instr(s, env, rcs),
Goto(cl),
Label(c2),
Al1Buildl)

where new => cl ; new => c2

These rules are combined in the compilation strategy compile. The default C
rules are applied after the specialized Cs rules. After translation the nested code
is flattened to a single list. Some simple optimizations are performed by peephole
and finally, the code is wrapped in some support code by Assemble.

module backend
strategies

compile = map(MkInstr;
topdown(repeat (Cs <+ C)));
flatten-blocks;
peephole;
Assemble

82

References

1.

10.

11.

P. Borovansky, C. Kirchner, and H. Kirchner. Controlling rewriting by rewriting. In
J. Meseguer, editor, Proceedings of the First International Workshop on Rewriting
Logic and its Applications, volume 4 of Electronic Notes in Theoretical Computer
Science, Asilomar, Pacific Grove, CA, September 1996. Elsevier.

M. van den Brand and E. Visser. From Box to TEX: An algebraic approach to
the generation of documentation tools. Technical Report P9420, Programming
Research Group, University of Amsterdam, July 1994.

A. Van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, Singapore, September 1996.

T. Dinesh, M. Haveraaen, and J. Heering. An algebraic programming style for nu-
merical software and its optimization. CWI Report SEN-R9844, CWI, Amsterdam,
The Netherlands, December 1998.

P. Johann and E. Visser. Warm fusion in Stratego: A case study in the generation
of program transformation systems. Technical report, Department of Computer
Science, Universiteit Utrecht, 1999.

B. Luttik and E. Visser. Specification of rewriting strategies. In M. P. A. Sellink,
editor, 2nd International Workshop on the Theory and Practice of Algebraic Spec-
ifications (ASF+SDF’97), Electronic Workshops in Computing, Berlin, November
1997. Springer-Verlag.

P. A. Olivier and H. A. de Jong. Efficient annotated terms. Technical report,
Programming Research Group, University of Amsterdam, August 1998.

E. Visser. Syntaz Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

E. Visser. Strategic pattern matching. In Rewriting Techniques and Applications
(RTA’99), Lecture Notes in Computer Science, Trento, Italy, July 1999. Springer-
Verlag.

E. Visser and Z.-e.-A. Benaissa. A core language for rewriting. In C. Kirchner
and H. Kirchner, editors, Second International Workshop on Rewriting Logic and
its Applications (WRLA’98), Electronic Notes in Theoretical Computer Science,
Pont-a-Mousson, France, September 1-4 1998. Elsevier.

E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. In International Conference on Functional Programming
(ICFP’98), pages 13-26, Baltimore, Maryland, September 1998. ACM.

83

84

