
Strategic Pattern Matching

Eelco Visser?

Department of Computer Science, Universiteit Utrecht
P.O. Box 80089, 3508 TB Utrecht, The Netherlands
http://www.cs.uu.nl/~visser/, visser@acm.org

Abstract. Stratego is a language for the specification of transforma-
tion rules and strategies for applying them. The basic actions of trans-
formations are matching and building instantiations of first-order term
patterns. The language supports concise formulation of generic and data
type-specific term traversals. One of the unusual features of Stratego
is the separation of scope from matching, allowing sharing of variables
through traversals. The combination of first-order patterns with strate-
gies forms an expressive formalism for pattern matching. In this paper
we discuss three examples of strategic pattern matching: (1) Contextual
rules allow matching and replacement of a pattern at an arbitrary depth
of a subterm of the root pattern. (2) Recursive patterns can be used
to characterize concisely the structure of languages that form a restric-
tion of a larger language. (3) Overlays serve to hide the representation
of a language in another (more generic) language. These techniques are
illustrated by means of specifications in Stratego.

1 Introduction

First-order terms are used to represent data structures in term rewriting systems,
functional and logic programming languages. First-order patterns are used to
decompose such terms by simultaneously recognizing a structure and binding
variables to subterms, which would otherwise be expressed by nested conditional
expressions that test tags and select subterms. However, first-order patterns are
not treated as first-class citizens and their use poses limitations on modularity
and reuse: no abstraction over patterns is provided because they may occur only
in the left-hand side of a rewrite rule, the arms of a case, or the heads of clauses;
pattern matching is at odds with abstract data types because it exposes the data
representation; a first-order pattern can only span a fixed distance from the root
of the pattern to its leafs, which makes it necessary to define recursive traversals
of a data structure separately from the pattern to get all needed information.

For these reasons, enhancements of the basic pattern matching features have
been implemented or considered for several languages. For example, list matching
? This paper was written while the author was employed by the Pacific Software Re-

search Center, Oregon Graduate Institute, Portland, Oregon, USA. This work was
supported, in part, by the US Air Force Materiel Command under contract F19628-
93-C-0069.

P. Narendran and M. Rusinowitch (Eds.): RTA’99, LNCS 1631, pp. 30–44, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Strategic Pattern Matching 31

in ASF+SDF [7] is used to divide a list in multiple sublists possibly separated
by element patterns. Associative-commutative (AC) matching in OBJ, Maude
[5] and ELAN [3] supports the treatment of lists as multi-sets. Higher-order
matching in λProlog [17] allows the matching of subterms at a variable depth.
Views for Haskell, as proposed in [24], provide a way to view a data structure
using different patterns than are used to represent them. Each of these techniques
provides a mix of structure recognition, variable binding, term traversal, and
transformation. For instance, in list (AC, higher-order) matching a term is first
transformed by application of the associative and identity laws (associative and
commutative laws, βη-conversion) and then matched against the given pattern.
Matching a view pattern involves the transformation of the underlying data
structure to the view data type.

This paper shows how the rewriting strategies paradigm [3,5,14,22,23] pro-
vides a general framework for describing and implementing such pattern match-
ing combinations. Rewriting strategies are programs that determine the order in
which rewriting rules are applied. One of the important aspects of strategies is
the definition of term traversals to find subterms to which rules can be applied.
Here the application of such traversals in the definition of patterns at the level
of individual rules is considered.

This paper explores strategic pattern matching in Stratego [22,23], a language
for the specification of program transformation systems. Stratego is a layer of
syntactic abstractions on top of System S, a core language for the definition of
rewriting strategies. The basic actions of System S are matching and building
instantiations of first-order term patterns. The language supports concise for-
mulation of generic and data type specific term traversals. One of the unusual
features of System S is the separation of scope from matching, allowing shar-
ing of variables through traversals. The combination of first-order patterns with
strategies forms an expressive formalism for pattern matching.

The next section gives a brief overview of System S and Stratego. The follow-
ing sections discuss three applications of strategic pattern matching illustrated
by means of specifications in Stratego: (1) Contextual rules allow matching and
replacement of a subterm at an arbitrary depth with respect to the root of a
pattern. Section 3 shows how contextual patterns are used in a concise speci-
fication of a type checker. (2) Recursive patterns can be used as predicates to
characterize concisely the structure of languages that form a subset of a larger
language. Section 4 illustrates the idea by means of a characterization of con-
junctive and disjunctive normal forms as a restriction of propositional formulae.
Section 5 applies the same technique to characterize the embedding of AsFix,
the abstract syntax representation of ASF+SDF, into ATerms, a universal data
type. (3) Overlays are pseudo-constructors that abstract from an underlying
(complex) representation using real constructors. They can be used to overlay a
language on top of another more generic representation language. Section 5 de-
fines overlays for AsFix to hide the details of its embedding in ATerms. Related
work is discussed in Section 6 and some conclusions are drawn in Section 7.



32 Eelco Visser

2 Rewriting Strategies

This section introduces System S, a calculus for the definition of tree transfor-
mations, and Stratego, a specification language providing syntactic abstractions
for System S expressions. For an operational semantics see [22,23].

2.1 System S

System S is a hierarchy of operators for expressing term transformations. The
first level provides control constructs for sequential non-deterministic program-
ming, the second level introduces combinators for term traversal and the third
level defines operators for binding variables and for matching and building terms.

First-order terms are expressions over the grammar

t := x | C(t1,...,tn) | [t1,...,tn] | (t1,...,tn)

where x ranges over variables and C over constructors. The arity and types of
constructors are declared in signatures. The notation [t1,...,tn] abbreviates
the list Cons(t1,...,Cons(tn,Nil)). Transformations in System S are applied
to ground terms, i.e., terms withouth variables.

Level 1: Sequential Non-deterministic Programming Strategies are programs that
attempt to transform ground terms into ground terms, at which they may suc-
ceed or fail. In case of success the result of such an attempt is a transformed
term. In case of failure the result is an indication of the failure. Strategies can be
combined into new strategies by means of the following operators: The identity
strategy id leaves the subject term unchanged and always succeeds. The failure
strategy fail always fails. The sequential composition s1; s2 first attempts to
apply s1 to the subject term and, if that succeeds, applies s2 to the result. The
non-deterministic choice s1 + s2 attempts to apply either s1 or s2. It succeeds
if either succeeds and it fails if both fail; the order in which s1 and s2 are tried
is unspecified. The deterministic choice s1 <+ s2 attempts to apply either s1
or s2, in that order. The recursive closure rec x(s) attempts to apply s, where
at each occurence of the variable x in s, the strategy rec x(s) is applied. The
test strategy test(s) tries to apply s. It succeeds if s succeeds, and reverts the
subject term to the original term. It fails if s fails. The negation not(s) succeeds
(with the identity transformation) if s fails and fails if s succeeds. Two examples
of strategies defined with these operators are try and repeat in Figure 1.

Level 2: Term Traversal The Level 1 constructs apply transformations to the root
of a term. In order to apply transformations throughout a term it is necessary
to traverse it. For this purpose, System S provides the following operators: For
each n-ary constructor C the congruence operator C(s1,...,sn) is defined. It
applies to terms of the form C(t1,...,tn) and applies si to ti for 1 <= i <=
n. An example of the use of congruences is the operator map(s) in Figure 1 that
applies s to each element of a list.



Strategic Pattern Matching 33

module traversals

imports lists

strategies

try(s) = s <+ id map(s) = rec x(Nil + Cons(s, x))

repeat(s) = rec x(try(s; x)) list(s) = rec x(Nil + Cons(s, x))

topdown = rec x(s; all(x)) alltd(s) = rec x(s <+ all(x))

bottomup = rec x(all(x); s) oncetd(s) = rec x(s <+ one(x))

downup(s) = rec x(s; all(x); s) sometd(s) = rec x(s <+ some(x))

onebu(s) = rec x(one(x) <+ s) somebu(s) = rec x(some(x) <+ s)

downup2(s1, s2) = rec x(s1; all(x); s2)

Fig. 1. Specification of several generic term traversal strategies.

Congruences can be used to define traversals over specific data structures.
Specification of generic traversals (e.g., pre- or post-order over arbitrary struc-
tures) requires more generic operators. The operator all(s) applies s to all
children of a constructor application C(t1,...,tn). In particular, all(s) is the
identity on constants (constructor applications without children). The strategy
one(s) applies s to one child of a constructor application C(t1,...,tn); it is
precisely the failure strategy on constants. The strategy some(s) applies s to
some of the children of a constructor application C(t1,...,tn), i.e., to at least
one and as many as possible. Like one(s), some(s) fails on constants.

Figure 1 defines various traversals based on these operators. For instance,
oncetd(s) tries to find one application of s somewhere in the term starting at
the root working its way down; s <+ one(x) first attempts to apply s, if that
fails an application of s is (recursively) attempted at one of the children of the
subject term. If no application is found the traversal fails. Compare this to the
traversal alltd(s), which finds all outermost applications of s and never fails.

Level 3: Match, Build and Variable Binding The operators introduced thus far
are useful for repeatedly applying transformation rules throughout a term. Ac-
tual transformation rules are constructed by means of pattern matching and
building of pattern instantiations.

A match ?t succeeds if the pattern term t matches the subject term. As a
side-effect, any variables in t are bound to the corresponding subterms of the
subject term. If a variable was already bound before the match, then the binding
only succeeds if the terms are the same. This enables non-linear pattern match-
ing, so that a match such as ?F(x, x) succeeds only if the two arguments of F in
the subject term are equal. This non-linear behaviour can also arise accross other
operations. For example, the two consecutive matches ?F(x, y); ?F(y, x) suc-
ceed exactly when the two arguments of F are equal. Once a variable is bound
it cannot be unbound.

A build !t replaces the subject term with the instantiation of the pattern t
using the current bindings of terms to variables in t. A scope {x1,...,xn: s}
makes the variables xi local to the strategy s. This means that bindings to these
variables outside the scope are undone when entering the scope and are restored



34 Eelco Visser

after leaving it. The operation where(s) applies the strategy s to the subject
term. If successful, it restores the original subject term, keeping only the newly
obtained bindings to variables.

2.2 Stratego

The specification language Stratego provides syntactic abstractions for System S
expressions. A specification consists of a collection of modules that define signa-
tures, transformation rules and strategy definitions.

A signature declares the sorts and operations (constructors) that make up the
structure of the language(s) being transformed. An example signature is shown
in Figure 2. A strategy definition f(x1,...,xn) = s introduces a new strategy
operator f parameterized with strategies x1 through xn and with body s. Such
definitions cannot be recursive, i.e., they cannot refer (directly or indirectly) to
the operator being defined. All recursion must be expressed explicitly by means
of the recursion operator rec. Labeled transformation rules are abbreviations of
a particular form of strategy definitions. A conditional rule L : l -> r where s
with label L, left-hand side l, right-hand side r, and condition s denotes a strat-
egy definition L = {x1,...,xn: ?l; where(s); !r}. Here, the body of the
rule first matches the left-hand side, and then attempts to satisfy the condition
s. If that succeeds, then it builds the right-hand side r. The rule is enclosed in a
scope that makes all term variables xi occurring in l, s and r local to the rule. If
more than one definition is provided with the same name, e.g., f(xs) = s1 and
f(xs) = s2, this is equivalent to a single definition with the sum of the original
bodies as body, i.e., f(xs) = s1 + s2.

The following definitions provide a useful shorthand. The notation <s> t
denotes !t; s, i.e., the strategy that builds the term t and then applies s to
it. The notation s => t denotes s; ?t, i.e., the strategy that applies s to the
current subject term and then matches the result against t. The combined nota-
tion <s> t => t’ thus denotes (!t; s); ?t’. The <s> t notation can also be
used in a build expression. For example, the strategy expression !F(<s> t, t’)
corresponds to {x: <s> t => x; !F(x,t’)}, where x is a new variable.

This paper is about three programming idioms and the syntactic abstractions
to support them. Recursive patterns are an idiom that is directly supported by
Stratego as introduced above. The syntax of Stratego has been extended for
contexts and overlays to provide more concise syntax for these idioms. However,
these syntax extensions are implemented without extending System S.

2.3 Implementation

The Stratego compiler translates a specification to a C program that reads a
term, applies the specified transformation to it, and, if succesful, outputs the
transformed term. The compiler first translates a specification to a System S
expression, which is then translated to a list of abstract machine instructions.
The instructions are implemented in C. The run-time system is based on the
ATerm library [19]. The compiler is implemented in Stratego itself.



Strategic Pattern Matching 35

module pico-syntax

imports list-basic

signature

sorts Program Decl Stat Expr Type Id

operations

Block : List(Decl) * Stat -> Program

Decl : Id * Type -> Decl

Natural : Type Plus : Expr * Expr -> Expr

String : Type Minus : Expr * Expr -> Expr

Skip : Stat Conc : Expr * Expr -> Expr

Assign : Id * Expr -> Stat Var : Id -> Expr

Seq : Stat * Stat -> Stat Int : Int -> Expr

If : Expr * Stat * Stat -> Stat Str : String -> Expr

While : Expr * Stat -> Stat Id : String -> Id

Fig. 2. Abstract syntax of Pico.

3 Contexts

This section describes contextual patterns, i.e., patterns that relate some bit of
information from the root pattern to a subterm at variable depth. This is illus-
trated by the specification of a type checker for the toy language Pico [7]. Heering
[11] gives a concise specification of such a typechecker using a combination of
second-order matching to relate variable declarations and their occurrences in a
program and an abstract interpretation style of type checking.

Pico is a small imperative while-language. It has expressions ranging over
natural number and string values and the usual statement combinators. A pro-
gram consists of a block, which contains a list of variable declarations and a
statement. Variable declarations associate a type (Natural or String) with a
variable identifier. The abstract syntax of Pico is defined in Figure 2.

A program is statically correct if variables are used consistently with their
declarations. Conventionally, type checkers are defined as a predicate that tra-
verses the program carrying the declarations and checking the correctness of
expressions and statements. In the abstract interpretation style of [11] first all
variable occurrences are replaced by their types (using an injection Tp of types
into identifiers), then consistent combinations of such typed expressions and
statements are reduced to simpler forms. For example, let variables "a" and
"b" have type String, the expression Conc(Var(Id("a")),Var(Id("b"))) is
first transformed into Conc(Var(Tp(String)),Var(Tp(String))), which then
reduces to Var(Tp(String)). If the program is correct it will reduce to a block
with a skip statement. However, if the program contains type errors, residuals
of this error will remain in the result of the type checking procedure and point
to the offending parts of the program. For example, the program

Block([Decl(Id("a"), Natural), Decl(Id("b"), String)],

While(Var(Id("a")), Assign(Id("b"), Plus(Var(Id("a")), Var(Id("a"))))))

reduces to



36 Eelco Visser

module pico-typecheck

imports pico-syntax traversals

signature

operations

Tp : Type -> Id

rules

InlTp : Block(ds[Decl(Id(x), t)], s[Id(x)]) -> Block(ds, s[Tp(t)])

IntTp : Int(n) -> Var(Tp(Natural))

StrTp : Str(s) -> Var(Tp(String))

Check : Seq(Skip, s) -> s

Check : Seq(s, Skip) -> s

Check : Assign(Tp(t), Var(Tp(t))) -> Skip

Check : If(Var(Tp(Natural)), s1, s2) -> Seq(s2, s3)

Check : While(Var(Tp(Natural)), s1) -> s1

Check : Plus(Var(Tp(Natural)), Var(Tp(Natural))) -> Var(Tp(Natural))

Check : Minus(Var(Tp(Natural)), Var(Tp(Natural))) -> Var(Tp(Natural))

Check : Conc(Var(Tp(String)), Var(Tp(String))) -> Var(Tp(String))

strategies

typecheck = downup2(repeat(InlTp + IntTp + StrTp), repeat(Check))

Fig. 3. Type checking rules and strategy for Pico.

Block([Decl(Id("a"),Natural), Decl(Id("b"), String)],

Assign(Tp(String), Var(Tp(Natural))))

making clear that the assignment statement is not type correct.
A specification of this approach is shown in Figure 3. The typecheck strat-

egy declares a downup2 traversal over the program. On the way down identi-
fiers and constants are replaced by their types by means of rules InlTp, IntTp
and StrTp. On the way up well-typed expressions and statements are reduced
to simpler forms by the Check rules. Distribution of type information over a
program is achieved by means of the contextual rule InlTp. The sub-pattern
ds[Decl(Id(x), t)] is a context that matches one instance of the pattern
Decl(Id(x), t) as a subterm of the ds argument of the Block pattern. The
sub-patterns s[Id(x)] in the left-hand side and s[Tp(t)] in the right-hand
side form a context that replaces one occurrence of Id(x) somewhere in the
statements by Tp(t), where x and t are determined by the match in the ds
context.

Contextual rules are implemented by translation to primitive constructs. A
context x[t], occurring on the left-hand side only, corresponds to a traversal over
the term matching x trying to find a match of the pattern t. A context x[l]
in the left-hand side and x[r] in the right-hand side corresponds to a traversal
over the term matching x that replaces an occurrence of l by the corresponding
instantiation of r. Thus, a first attempt at implementation of rule InlTp is:

InlTp : Block(ds, s) -> Block(ds, s’)

where <oncetd(?Decl(Id(x), t))> ds;

<oncetd(?Id(x); !Tp(t))> s => s’



Strategic Pattern Matching 37

The first clause in the condition makes a traversal over the declarations finding a
declaration. The second clause traverses the statements replacing an occurrence
of the identifier in the declaration by its type.

However, this does not achieve the desired effect. If the first traversal finds
a declaration for which there are no (more) occurrences of the identifier in the
statements, then the second traversal will fail, even if there are other declarations
for which it would succeed. In other words the first traversal needs to backtrack
to find other declarations if the second traversal fails. This is achieved by inlining
the second traversal in the first, as follows:

InlTp : Block(ds, s) -> Block(ds, s’)

where <oncetd(?Decl(Id(x), t);

where(<oncetd(?Id(x); !Tp(t))> s => s’))> ds

The where clause of this rule computes a new value s’. The outer traversal walks
over the declarations. When a declaration for an identifier Id(x) is found the
inner traversal walks over the statements and replaces one occurrence of Id(x)
with its type Tp(t) from the declaration. If no occurrence of the identifier is
found in the statements the outer loop continues to search for another declara-
tion. If no declaration and matching identifier occurrence in the statements can
be found, the rule fails.

4 Recursive Patterns

This section treats recursive patterns, i.e., patterns that describe recursive struc-
ture as opposed to the fixed structure described by first-order patterns. The
idiom of recursive patterns is illustrated by the specification of language restric-
tions. Recursive patterns are also useful tools in program analysis.

A signature generates a language of terms. A language restriction is a subset
of a language. Restrictions are not always syntactic, i.e., do not correspond to
the language generated by a subsignature, but can require constructs only to
be used in certain combinations. Examples of language restrictions abound in
language processing: (1) The set of normal forms with respect to a set of rewrite
rules is a restriction. The rewrite rules give an operational method for obtaining
the normal form of a term, but they do not describe the structure of the nor-
mal forms. (2) A core language reflects the computational kernel of a language.
Again, the transformation that translates a program in the complete language
to a core language program does not define the structure of core language pro-
grams. (3) The intermediate languages produced by the stages of a compiler are
often restrictions of a common language. Subsequent stages introduce lower-level
features. The combination of all constructs might not form a valid language. (4)
Languages embedded in a generic representation format. The generic format
allows a wide range of expressions, only a few of those are expressions in the
embedded language.

Language restrictions are often dealt with informally. A component of a lan-
guage processor assumes its input to be in a certain form that is not defined any-
where. Descriptions of language restrictions separate from the transformations



38 Eelco Visser

module prop

signature

sorts Prop

operations

Atom : String -> Prop And : Prop * Prop -> Prop

Not : Prop -> Prop Or : Prop * Prop -> Prop

strategies

conj(s) = rec x(And(x, x) <+ s)

disj(s) = rec x(Or(x, x) <+ s)

conj-nf = conj(disj(Atom(id) + Not(Atom(id))))

disj-nf = disj(conj(Atom(id) + Not(Atom(id))))

Fig. 4. Characterization of conjunctive and disjunctive normal forms.

that produce them are useful for documentation (what restriction is consumed
or produced by this language processor) and validation (check that the input or
output of a processor conforms to the restriction). Strategies support the concise
description of language restrictions by means of recursive patterns. A recursive
pattern is a strategy that describes the structure of a set of terms by means of
recursion and congruences. This technique is illustrated by two examples: dis-
junctive and conjunctive normal forms of propositional formulae and, in the next
section, the embedding of AsFix in ATerms.

As a first example, consider a language of propositional formulae constructed
from atoms (proposition letters) with negation, conjunction and disjunction. The
signature describing the abstract syntax of this language is shown in Figure 4.

A formula is in conjunctive normal form if it is a conjunction of disjunctions
of atoms or negated atoms. Likewise, a formula is in disjunctive normal form
if it is a disjunction of conjunctions of atoms or negated atoms. These restric-
tions can be characterized concisely by means of the recursive patterns in Fig-
ure 4. Given some strategy s that characterizes formulae in some form, the strat-
egy rec x(And(x, x) <+ s) describes conjunctions of the form And(And(...,
...), And(..., ...)) with leaves of the form s. Thus, the operators conj(s)
and disj(s), describe conjuncts and disjuncts of s’s, respectively. Hence, the
combination conj(disj(s)) describes conjuncts of disjuncts of s’s. Unfolding
the definition of conj and disj in conj-nf gives:

conj-nf = rec x(And(x, x) + rec y(Or(y, y) + Not(Atom(id)) + Atom(id)))

So conj-nf and disj-nf describe conjunctive and disjunctive normal forms,
respectively.

5 Overlays

This section introduces overlay patterns, i.e., patterns composed with pseudo-
constructors that abstract from a concrete representation with real constructors.
Overlays are first-class citizens in the sense that all operations that apply to



Strategic Pattern Matching 39

normal constructors, i.e., matching, building and congruence, apply to overlays
as well. Furthermore, overlays can be defined in terms of other overlays, allowing
a hierarchy of abstractions. The technique is illustrated by the definition of
overlays for the representation of AsFix constructs in ATerms. These are applied
in another example of recursive patterns to describe the restriction of ATerms
to AsFix expressions.

5.1 ATerms and AsFix

The Annotated Term Format or ATerms [19] is a universal data type designed
for representing data types in a generic manner for the purpose of data exchange,
generic manipulation and persistent storage of data. Figure 5 gives the signature
of ATerms. An ATerm is either an application (Appl) of an AFun to a list of terms,
or a list (AList) of terms. An AFun is either an integer (Int), quoted string (Str)
or an unquoted symbol (Sym). For example, the ATerm

Appl(Sym("And"), [Appl(Sym("Atom"), [Appl(Str("a"), [])]),

Appl(Sym("Atom"), [Appl(Str("b"), [])])])

is an encoding of the propositional formula And(Atom("a"), Atom("b")).
AsFix is the abstract syntax for the algebraic specification formalism ASF+

SDF [7]. It is used as the intermediate representation for language processors
such as a term rewriting compiler and a pretty-printer generator. The AsFix
representation of a specification consists of a signature and a list of conditional
equations over typed first-order terms. Here only unconditional equations over
first-order terms are considered.

One of the characteristics of AsFix is its encoding of syntactic information.
In ASF+SDF constructors are defined by means of a context-free production
that declares its mix-fix syntax and the sorts of its arguments. In AsFix both
the sort information and the syntactic information is retained. For example, the
production E "+" E -> E is represented by the AsFix expression

Prod([Sort("E"), Lit("+"), Sort("E")], Sort("E"))

Productions p of this form are used as the constructor ‘names’ in applications
of the form App(p, [a1,...,an]). Below a precise definition of AsFix is given.

AsFix expressions can be represented as ATerms. For instance, the production
above is represented by the ATerm

Appl(Sym("Prod"), [AList([Appl(Sym("Sort"), [Appl(Str("E"), [])]),

Appl(Sym("Lit"), [Appl(Str("+"), [])]),

Appl(Sym("Sort"), [Appl(Str("E"), [])])]),

Appl(Sym("Sort"), [Appl(Str("E"), [])])])

This representation allows easy exchange, persistency and generic manipulation
of AsFix expressions. However, the representation has two problems: (1) Since
the ATerm format is a universal datatype, not every ATerm is a valid AsFix
expression. (2) Since the ATerm format is bulky, specifying operations on AsFix
using pattern matching on the ATerm representation is rather tedious. The first



40 Eelco Visser

module aterms

signature

sorts AFun ATerm

operations

Int : Int -> AFun Appl : AFun * List(ATerm) -> ATerm

Str : String -> AFun AList : List(ATerm) -> ATerm

Sym : String -> AFun

Fig. 5. ATerm signature.

problem is solved by definining a recursive pattern that characterizes the ATerms
that are valid AsFix expressions. This recursive pattern can be used to validate
input to language processors. The second problem is solved by defining overlays
that abstract from the concrete ATerm representation of AsFix expressions, while
still maintaining that representation under the hood.

5.2 Overlays for AsFix

Overlays are abstractions of term patterns. An overlay definition C(x1, ...,
xn) = pat introduces a new constructor C with n arguments that is an abbrevi-
ation of the pattern pat. This new constructor can be used in all places where
the pattern pat can be used, i.e., in match patterns, build patterns and con-
gruences. An expression ?t (!t) with an occurrence of C(t1,...,tn) denotes
the expression ?t’ (!t’), where t’ is obtained by replacing C(t1,...,tn) by
pat[t1/x1,...,tn/xn] in t. A congruence expression C(s1,...,sn) denotes
the instantiation of the congruence derived from the pattern t, with the strate-
gies si substituted for the variables xi.

Figure 6 defines overlays for the constructs of AsFix. For example, the overlay

Prod(as, r) = Appl(Sym("Prod"), [AList(as), r])

defines an abstraction for the ATerm pattern encoding an AsFix production.
Using these overlays the complicated ATerm above can be written as

Prod([Sort("E"), Lit("+"), Sort("E")], Sort("E"))

Overlays can now be used in the recursive pattern that characterizes the
restriction of ATerms to AsFix. The patterns asfix-... in Figure 6 describe
the syntactic categories of AsFix expresions using the congruences — expressions
such as Lit(string) and App(asfix-prod, list(x)) — that are derived from
the overlays. The pattern asfix-prod defines a production as a Prod with a list
of asfix-sorts as first argument and an asfix-sort as second argument. The
pattern asfix-term defines an AsFix term as a literal, a typed variable, or an
application of a production to a list of terms. The pattern asfix-equ defines an
equation as an Equation with a non-variable term as left-hand side and a term
as right-hand side.

The recursive patterns only describes ‘raw’ AsFix expressions and do not
check that the argument sorts in the Prod of an application correspond to the



Strategic Pattern Matching 41

module asfix

imports aterms traversals strings

overlays

Sort(n) = Appl(Sym("Sort"), [Appl(Str(n), [])])

Lit(l) = Appl(Sym("Lit"), [Appl(Str(l), [])])

Prod(as, r) = Appl(Sym("Prod"), [AList(as), r])

App(p, as) = Appl(Sym("App"), [p, AList(as)])

Var(s, n) = Appl(Sym("Var"), [s, n])

Equation(l, r) = Appl(Sym("Equation"), [l, r])

strategies

asfix-sort = Sort(string) + Lit(string)

asfix-prod = Prod(list(asfix-sort), asfix-sort)

asfix-term = rec x(Lit(string) +

Var(asfix-sort, string) +

App(asfix-prod, list(x)))

asfix-equ = Equation(asfix-term; not(Var(id, id)), asfix-term)

asfix-eqs = list(asfix-equ)

rules

Check1 : Var(x, _) -> x

Check2 : App(Prod(args, res), args) -> res

Check3 : Equation(srt, srt) -> Equation(srt, srt)

strategies

typecheck-term = rec x(Lit(id) + Check1 + App(id, list(x)); Check2)

typecheck-eqs = list(Equation(typecheck-term, typecheck-term); Check2)

Fig. 6. AsFix: overlays, recursive pattern and type checker.

sorts of the actual arguments of the application. To test this a typechecker in an
abstract interpretation style similar to that of the Pico typechecker in Section 3
is defined in Figure 6. Only now there is no need to distribute type information,
since terms are already annotated with their types.

The process of defining overlays to hide the underlying representation can
be repeated, e.g., to define on top of the AsFix abstractions another layer to
describe patterns for a specific instantiation of AsFix terms. For instance, take
the SDF productions E "+" E -> E and E "*" E -> E. The following overlays
define shorthands for AsFix terms using these productions:

overlays

BinexpOp(o) = Prod([Sort("E"), Lit(o), Sort("E")], Sort("E"))

Binexp(l, o, r) = App(Binexp(o), [l, Lit(o), r])

Plus(l, r) = Binexp(l, "+", r)

Mul(l, r) = Binexp(l, "*", r)

These overlays allow the ‘domain-specific’ transformation rule

Distr : Mul(x, Plus(y, z)) -> Plus(Mul(x, y), Mul(x, z))

Although this rule is written at the level of the embedded language of expressions,
they are applied at the level of the underlying ATerm representation.



42 Eelco Visser

6 Related Work

Programmable rewriting strategies originate in theorem proving tactics and were
first introduced in rewriting in the specification language ELAN [13]. In the al-
gebraic specification formalism Maude [5] strategies can be defined by the user
as meta-level specifications. System S and Stratego were developed in [14] (se-
quential non-deterministic programming and generic term traversal) and [22,23]
(breaking down rewrite rules in matching and building term patterns). ELAN
supports congruences and recursive equations, which should support definition of
recursive patterns. Overlays and contexts are not supported either by ELAN or
by Maude. See [22,23] for more details on the relation between these languages.

A wide range of languages introduce enhanced pattern matching features. A
brief and necessarily incomplete overview follows:

The transformation languages Dora [10] and TXL [6,15] are examples of
languages with some ad-hoc combinations of traversal and pattern matching.

Context patterns can be implemented by means of higher-order matching in
λProlog [17]. A higher-order pattern F(t) instantiates the function variable F
such that application to t yields the term that is matched. Heering [11] gives
an example of second-order matching that we discussed in Section 3. Mohnen’s
context patterns for Haskell [16] are similar to higher-order matching in λProlog.
Sellink and Verhoef [20] show how list matching can be used to implement shal-
low contexts (that can find statements in a list of statements, but at a fixed
nesting depth) used for transforming COBOL programs. Stratego contexts pro-
vide the additional possibility of specifying the traversal to be used. This implies
that restrictions on the structure of the context can be imposed and that more
than one replacement can be done.

Aiken and Murphy [1] describe a language of regular tree expressions for
program analysis. Their language is very similar to the recursive patterns in this
paper, but is restricted to recognition only.

An overlay is an abbreviation for three abstractions: a match abstraction,
a build abstraction and a congruence abstraction. The pattern templates for
SML of Aitken and Reppy [2] define two abstractions: a match abstraction and
a build abstraction. Congruences are not supported in SML. Another difference
with templates is that templates need to be linear. In a definition C(x) = t, the
variable x can occur only once in t. Overlays do not need to be linear.

A view type in Wadler’s proposal for views in Haskell [24] presents an al-
ternative view to a representation data type by means of a pair of conversion
functions that translate between the representation type and the view type.
Views are more general than overlays and templates, in that they allow rear-
rangement of the underlying pattern. However, this added expressivity turns
into a disadvantage if one considers pattern matching. Overlays are abstractions
that do not result in a loss of efficiency, while views can require an arbitrary
transformation. View-like transformations are of course expressible in Stratego.
Thompson’s lawful types [21] for Miranda are similar to views.

Another problem with general views is that it can destroy equational reason-
ing [4]. Several proposals [4,8,9,18] repair this by only allowing views in match



Strategic Pattern Matching 43

expressions and not in build expressions. Values in the underlying data represen-
tation should be constructed by means of functions. Erwig’s active patterns [8]
could be considered as functions that inspect and transform their argument and
then bind subterms to variables or fail. Fähndrich and Boyland [9] syntactically
restrict the patterns used in pattern abstractions such that pattern matching
becomes statically checkable.

7 Conclusions

This paper presented three examples of strategic pattern matching: contexts,
recursive patterns and overlays. These idioms provide concise specification of
expressive patterns that enhance standard first-order patterns. Their definition
follows naturally from the features of System S; for some of the techniques new
syntactic abstractions were added to Stratego, but no new System S constructs
were needed. The key features that enable this expressivity are: (1) ability to
abstract over pattern matching (where abstraction over building is a common
feature of many languages), and (2) the separation of variable scope and match-
ing, which enables the communication of variable bindings over other operations,
and (3) generic term traversals through all, some and one.

The techniques described in this paper have been applied in the specification
of the (bootstrapped) Stratego compiler, in an optimizer for RML [23], and
in a specification of the warm fusion transformation for functional programs
[12]. Future work includes: the application of these techniques in other program
transformations; the development of more abstractions for concise specification
of program transformations; and the optimization of strategies, in particular
traversal fusion, which is important for the optimization of contextual rules.

Acknowledgements The author thanks Andrew Tolmach, Patty Johann and the
referees for comments on drafts of this paper.

References

1. A. Aiken and B. Murphy. Implementing regular tree expressions. In Functional
Programming and Computer Architecture (FPCA’91), pages 427–447, Aug. 1991.

2. W. E. Aitken and J. H. Reppy. Abstract value constructors. In ACM SIGPLAN
Workshop on ML and its Applications, pages 1–11, San Francisco, Cal., June 1992.

3. P. Borovanský, C. Kirchner, and H. Kirchner. Controlling rewriting by rewriting. In
J. Meseguer, editor, Proceedings of the First International Workshop on Rewriting
Logic and its Applications, volume 4 of Electronic Notes in Theoretical Computer
Science, Asilomar, Pacific Grove, CA, September 1996. Elsevier.

4. F. W. Burton and R. D. Cameron. Pattern matching with abstract data types.
Journal of Functional Programming, 3(2):171–190, April 1993.

5. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on Rewriting
Logic and its Applications, volume 4 of Electronic Notes in Theoretical Computer
Science, pages 65–89, Asilomar, Pacific Grove, CA, September 1996. Elsevier.



44 Eelco Visser

6. J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Programming Language,
Version 8, Apr. 1995.

7. A. Van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific, Singapore, September 1996.

8. M. Erwig. Active patterns. In Implementation of Functional Languages, volume
1268 of Lecture Notes in Computer Science, pages 21–40, 1996.

9. M. Fähndrich and J. Boyland. Statically checkable pattern abstractions. In In-
ternational Conference on Functional Programming (ICFP’97), pages 75–84, Am-
sterdam, The Netherlands, June 1997. ACM SIGPLAN.

10. C. D. Farnum. Pattern-Based Languages for Prototyping of Compiler Optimizers.
PhD thesis, University of California, Berkeley, 1990. Technical Report CSD-90-608.

11. J. Heering. Second-order term rewriting specification of static semantics: An ex-
ercise. In Van Deursen et al. [7], chapter 8, pages 295–305.

12. P. Johann and E. Visser. Warm fusion in Stratego. A case study in generation
of program transformation systems. Technical report, Department of Computer
Science, Universiteit Utrecht, 1999. http://www.cs.uu.nl/∼visser/stratego/.

13. C. Kirchner, H. Kirchner, and M. Vittek. Implementing computational systems
with constraints. In P. Kanellakis, J.-L. Lassez, and V. Saraswat, editors, Proceed-
ings of the first Workshop on Principles and Practice of Constraint Programming,
pages 166–175, Providence R.I., USA, 1993. Brown University.

14. B. Luttik and E. Visser. Specification of rewriting strategies. In M. P. A. Sellink,
editor, 2nd International Workshop on the Theory and Practice of Algebraic Spec-
ifications (ASF+SDF’97), Electronic Workshops in Computing, Berlin, November
1997. Springer-Verlag.

15. A. Malton. The denotational semantics of a functional tree-manipulation language.
Computer Languages, 19(3):157–168, 1993.

16. M. Mohnen. Context patterns, part ii. In Implementation of Functional Languages,
pages 338–357, 1997.

17. G. Nadathur and D. Miller. An overview of λProlog. In R. A. Kowalski, editor,
Logic Programming. Proceedings of the Fifth International Conference and Sympo-
sium, volume 1, pages 810–827, Cambridge, Mass., USA, 1988. MIT Press.

18. C. Okasaki. Views for Standard ML. In SIGPLAN Workshop on ML, pages 14–23,
Baltimore, Maryland, USA, September 1998.

19. P. A. Olivier and H. A. de Jong. Efficient annotated terms. Technical report,
Programming Research Group, University of Amsterdam, August 1998.

20. M. P. A. Sellink and C. Verhoef. Native patterns. In M. Blaha, A. Quilici, and
C. Verhoef, editors, Proceedings of the 5-th Working Conference on Reverse Engi-
neering (WCRE’98), pages 89–103, Honolulu, Hawaii, USA, October 1998.

21. S. Thompson. Laws in Miranda. In ACM Symposium on Lisp and Functional
Programming, pages 1–12. ACM, August 1986.

22. E. Visser and Z.-e.-A. Benaissa. A core language for rewriting. In C. Kirchner
and H. Kirchner, editors, Second International Workshop on Rewriting Logic and
its Applications (WRLA’98), Electronic Notes in Theoretical Computer Science,
Pont-à-Mousson, France, September 1–4 1998. Elsevier.

23. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. In International Conference on Functional Programming
(ICFP’98), pages 13–26, Baltimore, Maryland, September 1998. ACM.

24. P. Wadler. Views: A way for pattern matching to cohabit with data abstraction. In
ACM Symposium on Principles of Programming Languages, pages 307–313, Mu-
nich, January 1987. ACM.


	Introduction
	Rewriting Strategies
	System S
	Stratego
	Implementation

	Contexts
	Recursive Patterns
	Overlays
	ATerms and AsFix
	Overlays for AsFix

	Related Work
	Conclusions

