
Annals of Mathematics and Artificial Intelligence29: 1–34, 2000.
 2001Kluwer Academic Publishers. Printed in the Netherlands.

Warm fusion in Stratego: A case study in generation of
program transformation systems

Patricia Johanna and Eelco Visserb

a Department of Mathematics, Bates College, Lewiston, Maine 04240, USA
E-mail: pjohann@bates.edu

b Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box 80089, 3508 TB Utrecht,
The Netherlands

E-mail: visser@acm.org

Stratego is a domain-specific language for the specification of program transformation sys-
tems. The design of Stratego is based on the paradigm of rewriting strategies: user-definable
programs in a little language of strategy operators determine where and in what order transfor-
mation rules are (automatically) applied to a program. The separation of rules and strategies
supports modularity of specifications. Stratego also provides generic features for specification
of program traversals.

In this paper we present a case study of Stratego as applied to a non-trivial problem in
program transformation. We demonstrate the use of Stratego in eliminating intermediate data
structures from (also known asdeforesting) functional programs via thewarm fusionalgorithm
of Launchbury and Sheard. This algorithm has been specified in Stratego and embedded in a
fully automatic transformation system for kernel Haskell. The entire system consists of about
2600 lines of specification code, which breaks down into 1850 lines for a general framework
for Haskell transformation and 750 lines devoted to a highly modular, easily extensible speci-
fication of the warm fusion transformer itself. Its successful design and construction provides
further evidence that programs generated from Stratego specifications are suitable for integra-
tion into real systems, and that rewriting strategies are a good paradigm for the implementation
of such systems.

1. Introduction

Automatic program transformation is applied in many branches of software engi-
neering – including application generation and compiler construction – to translate high-
level, but inefficient, specification code to lower-level and more efficient implementation
code. It plays a particularly important role in compilers for functional programming lan-
guages [1,6,7,23,26].

1.1. Transforming programs with rewriting strategies

An important paradigm for the description of program transformation systems is
that of rewrite rules. Ad-hoc implementation of transformation systems based on rewrite
rules can be difficult, however, because the rules must be embedded in algorithms that

2 P. Johann, E. Visser / Warm fusion in Stratego

determine strategies for applying them. Stratego [15,31,34,35] is a domain-specific lan-
guage for the specification of program transformation systems. Its design is based on the
paradigm of rewriting strategies. Rewriting strategies combine user-definable rewriting-
based programs with a little language of independent strategy operators that can be used
to specify where and in what order transformation rules are applied to a program.

Stratego’s separation of rewrite rules from the strategies which control their appli-
cation facilitates modular specification of program transformations: transformation rules
are specified independently of the application strategy and can be reused in more than
one strategy. Stratego also offers both fine and coarse grain control over the application
of transformation rules. This control makes it possible to specify the exact forms that
programs can assume at various stages of processing. It also allows the programmer to
govern the interactions between individual transformation rules. The Stratego compiler
translates specifications to C programs that transform abstract syntax trees to abstract
syntax trees.

In [35] it is shown how rewriting strategies can be used to modularly specify and
implement optimizers for functional programs. A set of transformation rules is combined
into a code simplification algorithm by means of a strategy that traverses programs and
applies rules where appropriate. The emphasis in [35] is on rules that are independently
applicable. As demonstrated there, it is particularly easy to combine transformation rules
into different simplification strategies by adding or omitting rules. But in many settings
the construction of interrelated transformation rules from several more primitive rules is
necessary.

1.2. Applying strategies in deforesting functional programs

In this paper we present a case study illustrating the use of rewriting strategies to
eliminate intermediate data structures from (deforest) functional programs. Deforesta-
tion algorithms typically perform a number of smaller transformations before determin-
ing whether or not the deforestation is considered successful. Combining primitive rules
into complex program transformations often requires the exchange of more information
between their rules than is contained in the individual program fragments they transform.
The parameterization of strategies supported by Stratego provides a means of specifying
and implementing rules which pass such information between them. In the case study
presented here information exchanged between transformations takes the form, for ex-
ample, of assumptions about bindings, dynamic rewrite rules that recognize recursive
function calls, and terms generated by splitting functions to facilitate program transfor-
mation. Parameterized strategies have not been used extensively in previous Stratego
specifications.

We have specified the warm fusion algorithm of Launchbury and Sheard [14] in
Stratego. This technique combines the cheap deforestation based on foldr-build fusion
of Gill et al. [7,8] with the fold promotion of Sheard and Fegaras [24] and a general-
ization of the technique of Peyton Jones and Launchbury [22] for splitting a function
into a worker and a wrapper. The foldr-build fusion, which has been implemented in

P. Johann, E. Visser / Warm fusion in Stratego 3

the Glasgow Haskell Compiler (GHC), requires the manual transformation of functions
to build-foldr form and is only defined for lists. The warm fusion algorithm general-
izes cheap deforestation to arbitrary regular data types and automatically derives more
general build-cata forms.

As a case study, the warm fusion algorithm is an interesting example of a non-
trivial program transformation, and its specification provides evidence of the feasibility
of implementing such transformations in Stratego. The case study supplies experience
with the design and implementation of a complete transformation system, including in-
terfaces with a parsing and typechecking front-end and a pretty-printing back-end for
Haskell. The application to Haskell provides an environment in which to assess the
effectiveness of warm fusion for deforesting more realistic programs than would other-
wise be possible. The case study also demonstrates Stratego’s support for the construc-
tion of transformation rules that combine basic transformation steps in various ways,
the description and checking of intermediate representation formats, language indepen-
dent definition of substitution and the renaming of bound variables, and the discovery of
new programming idioms resulting from the strategy-induced shift away from a purely
functional implementation style.

Warm fusion is also an interesting problem in its own right. The first fully auto-
matic implementation of warm fusion was hand-coded in Haskell in 1997 [11]. The al-
gorithm had previously been implemented only as “a toolbox of operations” [14]. This is
perhaps because the description of warm fusion in [14] elides much of the detail required
to turn the theory into practice. The type-driven nature of the algorithm, in particular,
is fundamental to its automation, as well as to its extension to non-list data structures.
The critical dependence of warm fusion on type information is reflected in its Stratego
specification.

The product of our case study is a fully automatic implementation of the warm
fusion algorithm. This implementation could be an important step toward the use of
warm fusion in compilers or as a preprocessor for (library) programs. It can also serve
as a basis for further experimentation with extensions of cheap deforestation; Stratego
makes it easy, for example, to modify the set of program transformation rules and to
experiment with a variety of application orders. Experience with a working system often
gives rise to a deeper understanding of its underlying algorithm. It was such experience
that led, for instance to our “double splitting” wrapper-worker technique for recognizing
certain variables as static parameters of programs undergoing warm fusion. (This step
happens “automagically” in [14].) This technique has since been incorporated into the
Haskell implementation of warm fusion detailed in [11].

1.3. Outline

In the next section we briefly review some background on deforestation, discuss
the principles of cata-build fusion, and illustrate the warm fusion transformation tech-
nique by means of an example. In section 3 we give an overview of the operators of
System S, a calculus for the definition of tree transformations, as well as of the syntactic

4 P. Johann, E. Visser / Warm fusion in Stratego

abstractions built on System S that form Stratego. In section 4 we present the overall
architecture of the warm fusion transformation tool built with Stratego. In sections 5–7
we discuss several highlights from the specification, focusing particularly on some of the
new programming idioms that have emerged during the process of specifying the warm
fusion algorithm in Stratego. The full text of the specification can be found in [13].

2. Warm fusion

Modularity in functional programming is achieved by dividing programs into
small, generally applicable functions that communicate via data structures. Such func-
tions are commonly defined as recursive operations that construct and deconstruct data
structures. The definitions in figure 1 are common examples of such functions;sumand
foldr consume lists,upto produces lists, andmapdoes both. Using these functions
we can, for instance, define the sum of the squares of the numberslo to hi as

sos :: Int -> Int -> Int
sos = \lo hi -> sum(map(square)(upto lo hi))

where the functionsquare is defined as

square :: Int -> Int
square = \x -> (x ∗ x)

data Bool = True | False;
data List a = Nil | Cons a (List a);
map :: (a -> b) -> List a -> List b;
map = \f l ->

case l of {
Nil -> Nil;
Cons x xs -> Cons(f x)(map f xs)};

foldr :: b -> (a -> b -> b) -> List a -> b;
foldr = \n c xs ->

case xs of {
Nil -> n;
Cons y ys -> c y (foldr n c ys)};

upto :: Int -> Int -> List Int;
upto = \low high ->

case low > high of {
True -> Nil;
False -> Cons low (upto(low + 1)(high))};

sum :: List Int -> Int;
sum = foldr 0 (+);
sos :: Int -> Int -> Int;
sos = \lo hi -> sum(map(square)(upto lo hi))

Figure 1. Recursive functions on lists.

P. Johann, E. Visser / Warm fusion in Stratego 5

This implementation of the sum-of-squares function is straightforward and mod-
ular. Its disadvantage is that it constructs, traverses, and deconstructs two intermediate
lists – even though both the input and output of the computation are integers. This is
computationally expensive, both slowing execution time and increasing heap space re-
quirements.

It is often possible to avoid manipulating intermediate data structures by using
a more elaborate style of programming in which parts from component functions are
intermingled. In this monolithic style of programming the sum-of-squares function is
defined as

sos’ :: Int -> Int -> Int
sos’ = \lo hi ->

let {sos’’ :: Int -> Int;
sos’’ = \i -> case i > hi of {

True -> 0;
False -> square(i) + sos’’(i + 1)}}

in sos’’(lo)

Note that no intermediate data structures at all are processed bysos’ . In this case,
eliminating the manipulation of intermediate lists results in an order of magnitude gain
in program performance.

Experienced programmers writing a square summing function would instinctively
producesos’ rather thansos ; small functions likesos are easily optimized at the
keyboard. But when programs are either very large or very complex, even experienced
programmers may find that eliminating intermediate data structures by hand is not a very
attractive alternative to the modular style of programming. In such situations a tool for
automatically eliminating them is needed.

2.1. Deforestation

Automatic elimination of intermediate data structures by transformation combines
the clarity and maintainability of the modular style of programming with the efficiency
of the monolithic style. The process of eliminating intermediate data structures from
programs is often calleddeforestationafter an early transformation technique of Wadler
[36] which removes tree-like data structures from first-order programs.

In Wadler’s deforestation, compositions of treeless expressions (a syntactic restric-
tion of normal expressions that allows no intermediate data structures) are transformed
into new treeless expressions. The technique uses function unfolding to expose con-
sumption of constructors by case selections. Subsequent folding creates new recursive
functions. To prevent non-termination of unfolding, global program patterns must be
monitored. Because this is computationally expensive, Wadler’s deforestation has not
been incorporated into functional language compilers.

Gill et al. [7,8] introduce a less general, but cheaper, variant of deforestation for
list-producing and -consuming functions. The key observation underlying theirshort

6 P. Johann, E. Visser / Warm fusion in Stratego

cut to deforestation is that many list-manipulating functions can be written in terms of
the uniform list-consuming functionfoldr and the uniform list-producing function
build . Sincefoldr is essentially another name for the standard catamorphism for
lists, we denote it bycata-list in this paper. And since thebuild function of Gill
et al. is the instantiation to lists of a more generalbuild function applying to arbitrary
regular data types, we denote it bybuild-list below.

Operationally,cata-list takes as input typesa and b, a replacement func-
tion f1 :: a -> b -> b for Cons[a] , a replacement functionf2 :: b for
Nil[a] , and a listls of type List a . (The list constructorsCons andNil have
the polymorphic typesforall a. a -> List a -> List a andforall a.
List a , respectively, and so must be instantiated for each particular list type; the no-
tation e[t] instantiates the polymorphic expressione to type t .) It replaces byf1
and f2 , respectively, all occurrences ofCons[a] and Nil[a] in ls which actu-
ally contribute to the result of the computation. The result is a value of typeb. The
functionbuild-list , on the other hand, takes as input a functiong providing a type-
independent template for constructing lists and instantiates its “abstract” list constructors
with appropriate instances of the “concrete" list constructorsCons andNil . In other
words, if g is any function with polymorphic typeforall b . b -> (a -> b
-> b) -> b , then

build-list[a](g) = g[List a] (Nil[a]) (Cons[a])

Compositions of list-consuming and -producing functions defined in terms of
cata-list andbuild-list can be simplified (deforested) by means of the short
cut fusion rule for lists:

cata-list[a][t](f1, f2)(build-list[a](g)) = g[t] f1 f2

The short cut describes one precise way in which compilers can take advantage of unifor-
mity in the production and consumption of lists to optimize programs which manipulate
them. It makes sense intuitively: the result of a computation is the same regardless of
whether the functiong is first applied toCons andNil and occurrences ofCons and
Nil in the resulting list are then replaced byf1 and f2 , respectively, or the abstract
constructors ing are replaced byf1 and f2 , respectively, directly. The fact thatg is
polymorphic in its result typet ensures the correctness of this fusion rule [12].

2.2. An example of cata-build fusion

Figure 2 shows the build-cata forms of the functions in figure 1. The notation
/\a -> e denotes the abstraction of type variablea from the expressione. Such an
expression has typeforall a . t , wheret is the type ofe. Type abstraction is
normally implicit in definitions in Haskell because it only occurs at the top of a defin-
ition, i.e., a Haskell definitionf = \x -> e that is polymorphic in type variablea
abbreviates the definitionf = /\a -> \x -> e .

The deforested functionsos’ can be derived fromsos by inlining the definitions
in figure 2 and applying the short cut in conjunction with the standard program simpli-

P. Johann, E. Visser / Warm fusion in Stratego 7

map :: (a -> b) -> List a -> List b;
map = \f l ->

build[List b](/\t -> \(n :: t) (c :: (b -> t -> t)) ->
cata[List a][t](n, \(y :: b) -> c(f y)) l);

foldr :: b -> (a -> b -> b) -> List a -> b;
foldr = \n c -> cata[List a][b](n, c);

upto :: Int -> Int -> List Int;
upto = \lo hi ->

build[List Int]
(/\t -> \(n :: t) (c :: int -> t -> t) ->

let {upto’ :: Int -> t;
upto’ = \i -> case i > hi of {

True -> n;
False -> c(i)(upto’(i + 1))}}

in upto’(lo));

sum :: List Int -> Int;
sum = cata[List Int][Int](0, (+))

Figure 2. Functions in build-cata form.

fication rules in section 7. Inlining the (type-instantiated) function definitions forsum,
mapandsquare gives

sos = \lo hi -> sum(map(square)(upto lo hi))
= \lo hi ->

cata[List Int][Int](0, (+))
((\f l -> build[List Int]

(/\t -> \(n :: t) (c :: Int -> t -> t) ->
cata[List Int][t](n, \(y :: Int) -> c(f y)) l))

(\x -> x * x) (upto lo hi))

Simplifying the application ofmap to square andupto lo hi produces

= \lo hi ->
cata[List Int][Int](0, (+))
(build[List Int]

(/\t -> \(n :: t) (c :: Int -> t -> t) ->
cata[List Int][t](n, \(y :: Int) -> c(y*y))(upto lo hi))

Applying the short cut rule to thecata-build pair and simplifying yields

= \lo hi ->
cata[List Int][Int](0, \(y :: Int) -> (+)(y*y))(upto lo hi)

Inlining the definition forupto gives

8 P. Johann, E. Visser / Warm fusion in Stratego

= \lo hi ->
cata[List Int][Int](0, \(y :: Int) -> (+)(y*y))
(build[List Int]

(/\t -> \ (n :: t) (c :: Int -> t -> t) ->
let {upto’ :: Int -> t;

upto’ = \i -> case i > hi of {
True -> n;
False -> c(i)(upto’(i+1))}}

in upto’(lo)))

Using the short cut and simplifying once more gives

sos = \lo hi ->
let {upto’ :: Int -> Int;

upto’ = \i -> case i > hi of {
True -> 0;
False -> (i*i) + (upto’(i+1))}}

in upto’(lo)

Up to renaming and inlining of square in the local function, this is precisely the definition
of sos’ .

2.3. Warm fusion: Automatically deriving cata-build forms

The short cut fusion rule calculates program improvement based on a program’s
explicit local structure. To do this, it requires that functions be written in the highly
stylized build-cata form, rather than using explicit recursion. But this is often not the
most natural way to develop programs. Moreover, becausebuild does not have a
Hindley–Milner type – and so can only be used in certain well-defined ways – providing
it for programmers’ direct use is problematic. The warm fusion algorithm of Launchbury
and Sheard [14] was designed to automate the safe introduction ofbuild into recursive
list-processing functions, as well as the transformation of the resulting functions into
equivalent ones in build-cata form.

The existence of a catamorphism and abuild function for each regular data
type makes it possible to generalize the warm fusion method to arbitrary regular
data types. IfF is a functor defining a regular data type, then the catamorphism
cata[F a1...an][t](f1,...,fn) replaces the constructors of a data structure
of typeF a1...an with the functionsfi . The result of the catamorphism has typet .
The data structure-producing functionbuild[F a1...an] , on the other hand, takes
as input a polymorphic functiong which constructs the kind of data structures associated
with the functorF. It replaces the abstract data constructors ofg by the concrete data
constructorsci to produce the data structure of typeF a whose descriptiong embodies.
That is,

build[F a1...an](g) = g[F a1...an] c1 ... cn

P. Johann, E. Visser / Warm fusion in Stratego 9

Note thatcata-list[a][t] is just cata[List a][t] andbuild-list[a]
is preciselybuild[List a] , whereList is the functor associated with the list data
type. The short cut fusion rule forcata-list andbuild-list generalizes to:

cata[F a1...an][t](f1,...,fn)(build[F a1...an](g)) = g[t] f1...fn

2.4. Warm fusion by example

To illustrate the process of warm fusion we will examine the transformation of the
consumer-producermap. In the following examples we will omit the type declarations
for variables and constructors when these are clear from the context or from previous
declarations.

2.4.1. Abstracting from constructors
The goal of the preprocessing step of warm fusion is to transform a recursive defi-

nition into a definition in build-cata form:

f = /\a1 ... an -> \x ... ->
build[F a1...an](/\t -> \c1...cn ->

cata[F a1...an][t](h1,...,hm) x)

The functional argument ofbuild is a catamorphism that consumes the input data
structurex and builds up a structure that is constructed with the abstract constructors
ci . This transformation shifts the recursion boundary of the function from the site of
construction of the result data structure to the site of consumption of the input data
structure. All recursion in build-cata forms is expressed via catamorphisms.

The first phase of the transformation abstracts away from the concrete con-
structors in the body of the function. This cannot be done simply by replacing
all constructors in the body by variables, however, because not all occurrences of
constructors necessarily contribute to the result of the computation. By applying
cata[F a1...an][t](c1,...,cn) to the body of the function, the result-
producing constructors are transformed into the corresponding abstract constructorsci .

The identity

x = build[F b1..bn](/\ t -> \c1 ... cn ->
cata[F b1..bn][t](c1, ..., cn) x)

is used to introduce this catamorphism to the body. Formap this becomes

map = /\a b -> \f l ->
build[List b](/\t -> \(n :: t) (c :: b -> t -> t) ->
cata[List b][t](n, c)(

case l of {
Nil -> Nil;
Cons x xs -> Cons(f x)(map[a][b] f xs)))}

Distribution of the catamorphism over the case expression gives

10 P. Johann, E. Visser / Warm fusion in Stratego

map = /\a b -> \f l -> build[List b](/\t -> \n c ->
case l of {

Nil -> cata[List b][t](n, c) Nil;
Cons x xs -> cata[List b][t](n, c)(Cons(f x)(map[a][b] f xs)))}

Specialization of the catamorphism to the constructors that it is applied to produces:

map = /\a b -> \f l -> build[List b](/\t -> \n c ->
case l of {

Nil -> n;
Cons x xs -> c(f x)(cata[List b][t](n, c)(map[a][b] f xs)))}

Note that the catamorphism is applied to the recursive second argument of the abstract
replacement function forCons.

2.4.2. Splitting off the recursive consumer
We have now abstracted away from the result-producing constructors ofmapand

written it in the form of an abstracted call tobuild . Next we derive a catamorphism
to replace the case analysis inmap’s body. This is accomplished according to the steps
outlined in the remainder of this section.

First the function body is split into two new definitions. Formapwe get the “wrap-
per” mapand the “worker”map# (a generally applicable idea first presented in [22]):

map = /\a b -> \f l ->
build[List b](/\t -> \n c -> map# l [t] n c)

map# = \l -> /\t -> \n c ->
case l of {

Nil -> n;
Cons x xs -> c(f x)(cata[List b][t](n, c)(map[a][b] f xs))}

The splitting has the effect of isolating a recursive definition not involvingbuild .
Note that the functionf and the type variablesa andb are not passed tomap#.

From the definition ofmap before splitting it is clear that these arguments are passed
unchanged to the recursive call ofmap. That is, they arestatic parametersof map.
Since we do not abstract over them, the static parameters of a function remain free in
the definition of its worker. This means thatf , a, andb remain free inmap#. When,
at the end of the transformation, the transformed version of the function’s worker is
folded back into the definition of its wrapper, its static parameters will become bound
again.

By unfolding the wrapper in the worker we obtain a recursive definition of the
worker. Formapwe get

map# = \l -> /\t -> \n c ->
case l of {

Nil -> n;
Cons x xs ->

c(f x)(cata[List b][t](n, c)
((/\a’ b’ -> \f’ l’ ->

P. Johann, E. Visser / Warm fusion in Stratego 11

build[List b](/\t’ -> \n’ c’ -> map# l’ [t’] n’ c’))
[a][b] f xs))}

Beta-reduction and short cut fusion reduces this to

map# = \l -> /\t -> \n c ->
case l of {

Nil -> n;
Cons x xs -> c(f x)(map# xs [t] n c)}

Observe now that all arguments except forl are static parameters ofmap#. By repeating
the splitting and unfolding procedure once more we get

map# = \l -> /\t -> \n c -> map## l
map## = \l -> case l of {

Nil -> n;
Cons x xs -> c(f x)(map## xs)}

The parameterst , n, and c of map# are now also recognized as static inmap##.
The free variablef in map## is inherited frommap. In [14], mechanical recogni-
tion of the abstracted constructors as static parameters (when they are), happens magi-
cally.

2.4.3. Recursion to catamorphism
Finally, the recursive definition ofmap## is turned into a catamorphism by means

of fold promotion. Fold promotion is based on a generic promotion theorem introduced
by Malcolm [16]. The promotion theorem, which has its origins in a categorical de-
scription of programming [9], describes conditions under which the composition of an
arbitrary (strict) function and a catamorphism over a regular data type may be fused to
arrive at a new catamorphism equivalent to the original composition. Formap## the
promotion theorem takes the form

map## Nil = h1,
map##(Cons y1 y2) = h2 y1 (map## y2)
--
map##(cata[List a][List a](Nil, Cons) xs)

= cata[List a][t](h1, h2) xs

This means that we can findh1 andh2 by applyingmap## to Nil andCons y1 y2 ,
respectively, and abstracting from the recursive call tomap##. For Nil this simply
produces the abstracted constructorn. ForCons we get

h2 = \y1 y2 -> (\l -> case l of {
Nil -> n;
Cons x xs -> c(f x)(map## xs)})

(Cons z1 z2)

where thezi are special constants. This reduces to

12 P. Johann, E. Visser / Warm fusion in Stratego

\y1 y2 -> c(f z1)(map## z2)

Now we use special rewrite rules generated from the type of the constructor to rewrite
the dummy variableszi to the real variablesyi . This makes it possible to dis-
cover the recursive invocation of themap## function and replace it by the induc-
tion variable. For theCons constructor the rewrite rulesz1 -> y1 andmap## z2
-> y2 are generated. The first corresponds to an occurrence of the type parametera
and the second to a recursive occurrence of the typeList a .

By application of the rewrite rulesz1 -> y1 andmap## z2 -> y2 the recur-
sive call is recognized and we get

h2 = \y1 y2 -> c(f y1)(y2)

Putting this together gives the non-recursive definition

map## = \l -> cata[List a][t](n, \y1 y2 -> c(f y1)(y2)) l

2.4.4. Folding
By unfolding the worker functionsmap## andmap# back into their subsequent

wrappers we obtain the build-cata form ofmap:

map = /\a b -> \f l -> build[List b](/\t -> \n c ->
cata[List a][t](n, \y1 y2 -> c(f y1)(y2)) l)

2.4.5. Transforming programs
The transformation procedure illustrated above is attempted (it may fail) for all

functions. Compositions of functions in build-cata form can be deforested by unfolding
their definitions and applying short cut fusion as part of standard simplification (see sec-
tion 7). The unfolding can be done without risk of non-termination because the functions
are not explicitly recursive.

The build-cata forms in figure 2 are all obtained using this transformation. Note
that not all of these functions do both produce and consume a list;foldr only consumes
a list andupto only produces a list. Their cata-and-or-build forms are obtained using
variants of the transformation process described above. These variants are discussed in
section 7 below.

We have specified the warm fusion transformation algorithm in Stratego. In the
remainder of this paper we will give an overview of the specification. In particu-
lar, we will discuss the basic steps of the transformation such as splitting, unfolding,
folding and deriving a catamorphism and how these can be used in various combina-
tions and orders to obtain different results. First we give an overview of Stratego it-
self.

3. Stratego

In this section we briefly introduce System S, a calculus for the definition of tree
transformations, and Stratego, a specification language providing syntactic abstractions

P. Johann, E. Visser / Warm fusion in Stratego 13

for System S expressions. For a detailed description of Stratego, its operational seman-
tics, and additional examples of its use we refer the reader to [15,31,33–35,37]. Figure 3
shows a Stratego module defining several generic transformation operators. Other ex-
ample specifications that use these operators will be discussed in the rest of the paper.

3.1. System S

System S is a hierarchy of operators for expressing term transformations. The first
level provides control constructs for sequential non-deterministic programming, the sec-
ond level introduces combinators for term traversal and the third level defines operators
for binding variables and for matching and building terms.

Transformations in System S are applied to first-order terms, which are expressions
over the grammar

t := x | C(t1,...,tn) | [t1,...,tn] | (t1,...,tn)

wherex ranges over variables andC over constructors. The notation[t1,...,tn]
abbreviates the listCons(t1,...,Cons(tn,Nil)) . In addition, the notation
[t1,..,tn | t] denotesCons(t1,...,Cons(tn,t)) .

Level 1: Sequential non-deterministic programming. Strategiesare programs that at-
tempt to transform terms into terms, at which they may succeed or fail. In case of success
the result of such an attempt is a transformed term. In case of failure there is no result
of the transformation. Strategies can be combined into new strategies by means of the
following operators. Theidentity strategyid leaves the subject term unchanged and
always succeeds. Thefailure strategyfail always fails. Thesequential composition
s1 ; s2 of strategiess1 ands2 first attempts to applys1 to the subject term and,
if that succeeds, appliess2 to the result. Thenon-deterministic choices1 + s2 of
strategiess1 ands2 attempts to apply eithers1 or s2 . It succeeds if either succeeds
and it fails if both fail; the order in whichs1 ands2 are tried is unspecified. Thedeter-
ministic choices1 <+ s2 of strategiess1 ands2 attempts to apply eithers1 or s2 ,
in that order. Therecursive closurerec x(s) of the strategys attempts to applys to
the entire subject term and the strategyrec x(s) to each occurrence of the variablex
in s . Theteststrategytest(s) tries to apply the strategys . It succeeds ifs succeeds,
and reverts the subject term to the original term. It also fails ifs fails. Thenegation
not(s) succeeds (with the identity transformation) ifs fails and fails ifs succeeds.
Two examples of strategies that can be defined with these operators are thetry and
repeat strategies in figure 3.

Level 2: Term traversal. The combinators discussed above combine strategies that ap-
ply transformations to the root of a term. In order to apply transformations throughout
a term it is necessary to traverse it. For this purpose, System S provides acongruence
operatorC(s1,...,sn) for eachn-ary constructorC. It applies to terms of the form
C(t1,...,tn) and appliessi to ti . An example of the use of congruences is the
operatormap(s) defined in figure 3 that applies a strategys to each element of a list.

14 P. Johann, E. Visser / Warm fusion in Stratego

module traversals
imports lists
strategies

try(s) = s <+ id
repeat(s) = rec x(try(s; x))
map(s) = rec x(Nil + Cons(s, x))
filter(s) = rec x(Nil + Cons(s, x) <+ Tl; x)
topdown(s) = rec x(s; all(x))
bottomup(s) = rec x(all(x); s)
downup(s) = rec x(s; all(x); s)
downup2(s1, s2) = rec x(s1; all(x); s2)
alltd(s) = rec x(s <+ all(x))
oncetd(s) = rec x(s <+ one(x))
sometd(s) = rec x(s <+ sone(x))
manytd(s) = rec x(s; all(try(x)) <+ some(x))
onebu(s) = rec x(one(x) <+ s)
somebu(s) = rec x(some(x) <+ s)

Figure 3. Specification of several generic term traversal strategies.

Congruences can be used to define traversals over specific data structures. Speci-
fication of generic traversals (e.g., pre- or post-order over arbitrary structures) requires
more generic operators. The operatorall(s) appliess to all children of a constructor
applicationC(t1,...,tn) . In particular,all(s) is the identity on constants (con-
structor applications without children). The strategyone(s) appliess to one child of
a constructor applicationC(t1,...,tn) ; it is precisely the failure strategy on con-
stants. The strategysome(s) appliess to some of the children of a constructor appli-
cationC(t1,...,tn) , i.e., to at least one and as many as possible. Likeone(s) ,
some(s) fails on constants.

Figure 3 defines various traversals based on these operators. For instance,
oncetd(s) tries to findone application ofs somewhere in the term starting at the
root working its way down;s <+ one(x) first attempts to applys , if that fails an ap-
plication ofs is (recursively) attempted at one of the children of the subject term. If no
application is found the traversal fails. Compare this to the traversalalltd(s) , which
findsall outermost applications ofs and never fails.

Level 3: Match, build and variable binding.The operators we have introduced thus far
are useful for repeatedly applying transformation rules throughout a term. Actual trans-
formation rules are constructed by means of pattern matching and building of pattern
instantiations.

A match?t succeeds if the subject term matches with the termt . As a side-
effect, any variables int are bound to the corresponding subterms of the subject term.
If a variable was already bound before the match, then the binding only succeeds if the
terms are the same. This enables non-linear pattern matching, so that a match such as

P. Johann, E. Visser / Warm fusion in Stratego 15

?F(x, x) succeeds only if the two arguments ofF in the subject term are equal. This
non-linear behavior can also arise across other operations. For example, the two consec-
utive matches?F(x, y); ?F(y, x) succeed exactly when the two arguments ofF
are equal. Once a variable is bound it cannot be unbound.

A build !t replaces the subject term with the instantiation of the patternt using
the current bindings of terms to variables int . A scope{x1,...,xn: s} makes the
variablesxi local to the strategys . This means that bindings to these variables outside
the scope are undone when entering the scope and are restored after leaving it. The
operationwhere(s) applies the strategys to the subject term. If successful, it restores
the original subject term, keeping only the newly obtained bindings to variables.

Built-in data types. There are two predefined sorts with an infinite number of construc-
tors: integers and strings. Several operators provide standard operations on these data
types. Of particular importance for our purposes is the operatornew that builds a new
string that does not occur anywhere in the term being transformed.

3.2. Specifications

The specification language Stratego provides syntactic abstractions for System S
expressions. A specification consists of a collection of modules that define signatures,
transformation rules, and strategy definitions.

A signature declares the sorts and operations (constructors) that make up the struc-
ture of the language(s) being transformed. An example signature is shown in fig-
ure 4. A strategy definitionf(x1,...,xn) = s introduces a new strategy oper-
ator f parameterized with strategiesx1 through xn and with bodys . Such defini-
tions cannot be recursive, i.e., they cannot refer (directly or indirectly) to the oper-
ator being defined. All recursion must be expressed explicitly by means of the re-
cursion operatorrec . Labeled transformation rules are abbreviations of a particular
form of strategy definitions. A conditional ruleL : l -> r where s with la-
bel L, left-hand sidel , right-hand sider , and conditions denotes a strategy defini-
tion L = {x1,...,xn: ?l; where(s); !r} . Here, the body of the rule first
matches the left-hand sidel against the subject term, and then attempts to satisfy the
condition s . If that succeeds, it builds the right-hand sider . The rule is enclosed in
a scope that makes all term variablesxi occurring freely inl , s and r local to the
rule. If more than one definition is provided with the same name, e.g.,f(xs) = s1
andf(xs) = s2 , this is equivalent to a single definition with the sum of the original
bodies as body, i.e.,f(xs) = s1 + s2 .

Strategy operators can only have strategies as arguments. Data can be passed to
strategy operators by wrapping them in build expressions. For instance, the strategy
map(!A) will replace every element of a list by the constant termA. Parameterized
strategies have not often been used in previous Stratego specifications. They are nev-
ertheless critical in specifying the warm fusion transformer and in other situations in
which information must be passed between strategies.

16 P. Johann, E. Visser / Warm fusion in Stratego

module AHaskell
signature

sorts Decl Constr Type Exp Alt
operations

Program : List(Decl) -> Program

Data : Type ∗ List(Constr) ∗ Deriving -> Decl
ConstrDecl : Option(Forall) ∗ Option(Context)

∗ String ∗ List(Type) -> Constr

SignDecl : Vars ∗ Type -> Decl
Valdef : Exp ∗ Exp -> Decl

TCon : String -> Type
TVar : String -> Type
TApp : Type ∗ List(Type) -> Type
TFun : List(Type) ∗ Type -> Type
Forall : List(String) ∗ Type -> Type

Typed : Exp ∗ Type -> Exp
Var : String -> Exp
Constr : String -> Exp
Lit : Literal -> Exp
Abs : List(Exp) ∗ Option(Type) ∗ Exp -> Exp
App : Exp ∗ List(Exp) -> Exp
Let : List(Decl) ∗ Exp -> Exp
Case : Exp ∗ List(Alt) -> Exp
Alt : Exp ∗ Option(Type) ∗ Exp -> Alt
TAbs : List(String) ∗ Exp -> Exp
TInst : Exp ∗ List(Type) -> Exp

Build : Type ∗ Exp -> Exp
Cata : Type ∗ Type ∗ List(Exp) -> Exp

Figure 4. Signature for kernel Haskell.

The following definitions provide a useful shorthand. The notation<s> t denotes
!t; s , i.e., the strategy which builds the termt and then appliess to it. The notation
s => t denotess; ?t , i.e., the strategy which appliess to the current subject term
and then matches the result againstt . The combined notation<s> t => t’ thus
denotes!t; s; ?t’ . The<s> t notation can also be used inside a term in a build
expression. For example, the strategy expression!F(<s> t, t’) corresponds to
{x: <s> t => x; !F(x,t’)} , wherex is a new variable.

3.3. Derived idioms

Stratego’s syntactic abstractions give rise to a number of useful programming id-
ioms. Foremost among these arerecursive patternsanddistributed patterns.

P. Johann, E. Visser / Warm fusion in Stratego 17

Recursive patterns are strategy expressions that describe term formats by means of
congruences and recursion. Nested congruences in Stratego are similar to pattern match-
ing in functional languages, and Stratego’s recursive patterns involving nested patterns
are akin to recursive functions which verify the structure of terms. Like pattern match-
ing in functional languages, Stratego’s recursive patterns are completely general. For
example, the following recursive pattern describes the subset of Haskell expressions that
corresponds to untypedλ-calculus terms:

lambda-exp =
rec x(Var(id) + App(x, x) + Abs([Var(id)], None, x))

Their use is further demonstrated in the term format checking in section 5. They can also
be used to characterize more complicated formats such as normal forms or expressions
in a core language. More generally, recursive patterns can be used whenever expressions
in a sublanguage of a larger representation language must be recognized or manipulated.

Distributed patterns combine the pattern matching of recursive patterns with the
traversal capabilities of strategy operators. They serve as “pattern templates” that can
be used to match against expressions containing specified subexpressions at variable
depths within them. For example, the warm fusion transformer uses the distributed
patternunderabstr to determine whether or not a term in the expression language
of figure 4 contains an application whose argument term is an abstraction in which the
variable (determined by the strategy)s appears:

underabstr(s) = oncetd(App(id, Abs(id,id,oncetd(Var(s)))))

Note that the argument term to the abstraction need not actuallybe the variable deter-
mined bys ; all that is required is that the variable appear somewhere within the argument
term. More general distributed patterns are constructed with the same ease.

3.4. Implementation

The Stratego compiler translates a specification to a C program that reads a term
and applies the specified transformation to it. The compiler first translates a specification
to a System S expression, which is then translated to a list of abstract machine instruc-
tions. The instructions are implemented in C. The run-time system is based on the ATerm
library [28], which supports complete sharing of subterms (hash-consing). ATerms are
also used for exchange of data between components of a transformation systems. The
compiler is bootstrapped, i.e., implemented in Stratego itself. The Stratego library [32]
provides a large of number generic, language independent rules and strategies.

4. Architecture

The architecture of the warm fusion program transformation system is depicted in
figure 5. The system consists of four main components: a parser, typechecker, the actual
warm fusion transformer, and a pretty-printer. The system could have been defined as

18 P. Johann, E. Visser / Warm fusion in Stratego

Figure 5. Architecture of the warm fusion transformation tool. Boxes represent data, ellipses represent
components. Dashed arrows represent generation of components from specifications via the Stratego com-
piler (sc), the SDF2 parser generator (pgen) and a C compiler (gcc). The intermediate data-formats are also

described in Stratego and format checkers are generated from their specifications.

a single component, but dividing it into separate components encourages separation of
concerns during development and makes future application of the transformation tool in
another setting – e.g., connection to a compiler front-end – easier.

The parser is generated from a specification of the full1 Haskell98 syntax [21] in
the syntax definition formalism SDF2 [30]. Although the parser supports the full syntax,
currently only the kernel subset of Haskell is supported by the subsequent components.
A Haskell desugaring component can be added in the future to extend the transformer to
full Haskell.

1 The syntax definition is complete up to layout.

P. Johann, E. Visser / Warm fusion in Stratego 19

Note that SDF2 based parsers are not required for Stratego. Parsing front-ends
can also be written using YACC or any other parser generator, as long as the generated
parsers output abstract syntax trees in the ATerm format. The SDF2 parser that we use
actually outputs parse trees. These are transformed to abstract syntax trees by a generic
– i.e., grammar independent – tool (implode-asfix) written in Stratego.

The current typechecker is basically a preprocessor that distributes type informa-
tion from signature declarations to variable uses. This could be enhanced to a tool that
does full type inference, but for the purposes of our case study this was not necessary;
types of variables are declared explicitly in input programs. Note that this is not too
much of a restriction. In Haskell it is customary to declare the types of functions any-
way.

The intermediate data structures that are exchanged between components are rep-
resented in the generic ATerm format [28]. Furthermore, each component consumes and
produces a different subset of the general abstract syntax of the language. These formats
are also described in Stratego by means of strategies that check the structure of a term.
These strategies can be used by components to verify their input.

The warm fusion transformer processes each of the function definitions in a pro-
gram and tries to transform it into build-cata form. It also inlines previously transformed
functions in the definitions it is processing to achieve deforestation by the short cut.

The pretty-printer is a formatter that translates abstract syntax to strings. A Stratego
specification (PP-Haskell) defines the translation from abstract syntax to Box terms.
These are translated to formatted text by a generic Box formatter [4,29].

In the next sections we will discuss various aspects of the specification of the warm
fusion transformation system. In section 5 we discuss the specification of the abstract
syntax, checking subsets of an abstract syntax, and the specification of bound variable
renaming and substitution by instantiating generic language independent algorithms. In
section 6 we present the overall structure of the transformer. In section 7 we discuss the
details of some of the transformations.

5. Abstract syntax

The warm fusion transformation is performed on the abstract syntax of kernel
Haskell, orAHaskell . The signature of the language is shown in figure 4. It is
a standard functional language with abstraction, application, data type deconstruction
by means of case expressions, and a recursive let binding. The language is explicitly
typed, which entails that types of variables in bindings can be declared, and that atomic
expressions (variables, constructors and constants) can be annotated with their types.
Polymorphic expressions are constructed by means of type abstraction and instantiated
by means of type application. A program consists of a list of type and function defini-
tions.

20 P. Johann, E. Visser / Warm fusion in Stratego

5.1. Format checking

In the course of the transformation we encounter three intermediate formats that are
subsets ofAHaskell (figure 4). The input formaths-input allows atomic expres-
sions without type annotations because requiring annotations would clutter the source
code. It also allows infix operators as syntactic sugar for prefix application. In the inter-
mediate formaths-typed all atomic expressions are annotated with their types and are
type correct. In addition, all operators are in prefix form. Likehs-typed , the output
formaths-output requires fully annotated atoms, but it also allows expressions con-
structed using theBuild andCata operators. The latter are not allowed in the input to
the transformation.

These three expression formats could be described by introducing three separate
signatures with different constructors. This would, however, require three sets of names
for the same constructs and trivial translations from one set to the next. Instead, we use
one signature and the recursive patterns of section 3 to characterize the three restrictions.
These recursive patterns document the formats and can be used to check the inputs to
the transformation components.

We now consider in turn the forms of expressions in each of the three subformats
of AHaskell . Atomic expressions in thehs-typed format consist of a variable,
constructor or literal and a type annotation as described by the patterns

AExp = Var(id) + Constr(id) + Lit(id)
atom(t) = Typed(AExp, t)
TypedVar = Typed(Var(id),Type)
TypedAtom = atom(Type)

whereType is a recursive pattern which describes the structure ofAHaskell ’s types.
Type annotations are represented by means of the constructorTyped , which represents
thee::t notation in Haskell. Note that these patterns are parameterized with the format
for typest . The basic shape of ahs-typed expression is described by the patterns

exp(e, t, pat, var) =
Abs(list(var), option(t), e) +
Case(e, list(alt(e, t, pat))) +
Let(list(decl(e, t)), e) +
App(e, list(e)) +
TAbs(list(TVar(id)), e) +
TInst(e, list(t))

alt(e, t, pat) =
Alt(pat, option(t), e)

simple-pattern(var) =
Constr(id) +
App(Constr(id), list(var))

P. Johann, E. Visser / Warm fusion in Stratego 21

TypedPat =
simple-pattern(TypedVar)

and a typed expression is characterized by the recursive pattern

TypedExp =
rec e(TypedAtom + exp(e, Type, TypedPat, TypedVar))

In thehs-input format, atomic expressions (variables, constructors and literals)
can be untyped. Furthermore, infix operator applications in addition to prefix application
and binary in addition ton-ary application are allowed. This is described by

PreVar =
Var(id) +
Typed(Var(id), PreType)

PrePat =
simple-pattern(PreVar)
+ rec x(AppBin(x, PreVar) + Constr(id))

pre-exp(e) =
OpApp(e, id, e) +
AppBin(e, e) +
Negation(e) +
If(e, e, e)

PreExp =
rec e(AExp + atom(PreType) + pre-exp(e) +

exp(e, PreType, PrePat, PreVar))

The typechecker normalizes infix and binary applications ton-ary applications and an-
notates all atomic expressions with their types.

Finally, the expressions in the output formaths-output are typed expressions
extended withBuild andCata operators:

ext-exp(e, t) =
Cata(t, t, list(e)) +
Build(t, e)

ExtExp =
rec e(TypedAtom + exp(e, Type, TypedPat, TypedVar) +

ext-exp(e, Type))

5.2. Variable renaming and substitution

AHaskell has variable binding constructs. The Stratego library defines (using
standard Stratego) the generic, language independent strategiesrename for renaming
bound variables,substitute for parallel substitution of expressions for variables,

22 P. Johann, E. Visser / Warm fusion in Stratego

and free-vars for the extraction of the free variables from an expression. These
operations are instantiated by declaring the shape of variables, indicating the binding
constructs, and identifying the binding positions. We illustrate their instantiation for
AHaskell . The implementation of the generic algorithms is presented in [33].

The following rules are used to describe the shape of variables.

IsVar(s) : Var(x) -> Var(<s> Var(x))
ExpVar : Typed(Var(x),_) -> Var(x)
ExpVar : Var(x) -> Var(x)
ExpVars : Var(x) -> [Var(x)]

The binding constructs of expressions are lambda abstraction, case alternatives, and let
binding. The rulesExpBnd define the projection from these constructs to the list of
variables that they bind.

ExpBnd : Abs(xs, _, _) -> <map(ExpVar)> xs
ExpBnd : Alt(App(c, xs), t, e) -> <map(ExpVar)> xs
ExpBnd : Let(decls, e) -> <filter(DeclVar)> decls
DeclVar : Valdef(Var(x), e) -> Var(x)

Using the rules above the instantiations offree-vars , substitute , andrename
for expressions are

expvars = free-vars(ExpVars, ExpBnd)
exprename = rename(IsVar, ExpBnd)
expsubst = substitute(Typed(Var(id),id) + Var(id), etrename)

Proper substitution entails that bound type variables in expressions that are substituted
for term variables are also renamed, and so an exercise similar to that above must be
carried out for type variables. This gives rise to the corresponding operatorstpvars ,
tpsubst , andtprename for types. The strategyetrename is the sequential com-
position ofexprename andtprename .

6. Transformer: Big picture

In this section we discuss the specification of the top-level of the warm fusion
transformer. The reader is directed to [13], from which the following code is excerpted,
for a complete code listing.

6.1. Transforming a program

The main strategy takes a program, i.e., a list of type and function declarations, and
transforms each in turn. This is achieved by a transition step for each declaration:

Main = etrename;
where(collect-data-defs);
InitWF;

P. Johann, E. Visser / Warm fusion in Stratego 23

repeat(TransformDecl <+ NormD);
ExitWF

Note that all bound variables in the entire program are first renamed to establish the
unique variable invariant. Furthermore, the strategycollect-data-defs finds the
data type definitions in the program and stores them in a symbol table for later reference.
The initial configuration is created from a list of declarations and the final configuration
derives a transformed list of declarations:

InitWF :
ds -> ([], [], ds)

ExitWF :
(ds1, ds2, []) -> <reverse> ds2

The first accumulator list stores the functions that have been transformed to build-cata
form. These are used for inlining in other functions. The second accumulator list stores
all functions, including the non-transformed ones.

A definition is transformed by first inlining functions that were transformed earlier
(in the listds1) and then applying the warm fusion transformation to it.

TransformDecl :
(ds1, ds2, [d | ds3]) -> ([d’ | ds1], [d’ | ds2], ds3)
where <ior(inline(!ds1), Transform)> d => d’

Inlining and transformation can fail. If at least one succeeds then the result is considered
to be transformed and is added to both accumulator lists. (The ruleior computes the
inclusive or of two strategies, i.e.,ior(s1,s2) appliess1 , s2 or both.) If both fail
then the function is added only to the list of non-transformed functions using the rule

NormD :
(ds1, ds2, [d| ds3]) -> (ds1, [d| ds2], ds3)

Inlining is achieved by replacing calls to functions in a given list of declarations
by (renamings of) their bodies and then simplifying the resulting expressions using the
rules of section 7. Inlining replaces as many calls as possible, but at least one call must
be replaced in order for it to succeed:

inline(mkenv) = manytd(Inline(mkenv)); simplify

The function to be inlined is looked up in the list of declarations passed to the rule
Inline . The strategy<not(in)> checks for recursion in the definition of the func-
tion. Recursive functions are not inlined.

Inline(mkenv) :
Typed(Var(x), t) -> <tpsubst; etrename> (sbs, e)
where mkenv; fetch(?Valdef(Var(x), e)); <not(in)> (Var(x), e);

<tpunify> [(<type> e, t)] => sbs

24 P. Johann, E. Visser / Warm fusion in Stratego

6.2. Transforming a definition

The basic algorithm for transforming a recursive definition to build-cata form – as
defined in [14] and illustrated in section 2 – is the following:

Transform =
IntroBuildCata;
simplify;
SplitBodyCP;
Unfold1in2;
[id, simplify;

MakeCataBody];
Unfold2in1;
simplify

This strategy introduces the build-cata identity, splits the body into a wrapper and a
worker, unfolds the wrapper in the worker, transforms the worker into a catamorphism,
and unfolds the worker back in the wrapper. In between it simplifies the definitions.

As we remarked in section 2 this procedure applies only to functions that both con-
sume and produce data structures. To accommodate functions that either only consume
or only produce data structures we refine the algorithm using the same building blocks
to the following:

Transform =
((IntroBuildCata;

simplify;
(ConsumerProducer

<+ Producer
<+ NonRecursiveProducer))

<+ Consumer);
simplify

The strategiesConsumerProducer , Consumer , Producer , and NonRecur -
siveProducer represent the different possible ways of transforming a function. The
strategyConsumer is applied when introduction of the outerbuild andcata fails.
In this case the output type of the function is not a data type and so the function does
not produce a data structure. It may, however, still be a consumer. If, on the other hand,
the introduction of the outerbuild andcata succeeds, thenConsumerProducer
splits the body of the function into a wrapper and a worker and tries to derive a cata-
morphism for the worker. If deriving a catamorphism from the worker fails, then the
function is only a producer.

Although it is not apparent at this level of abstraction, the introduction of the outer
build andcata is governed by the input and output types of the function being trans-
formed. We consider the details of the above transformation in section 7.

The derivation of a catamorphism for the worker and unfolding it back in the wrap-
per is defined in the strategyBodyToCata :

P. Johann, E. Visser / Warm fusion in Stratego 25

BodyToCata =
Unfold1in2;
[id, simplify;

SplitBodyP;
Unfold1in2;
[id, simplify;

MakeCataBody];
Unfold2in1];

Unfold2in1

Unlike Transform , this strategy splits and unfolds the worker twice in order to recog-
nize the abstracted constructors as static parameters.

7. Transformer: Details

In this section we go into the details of some of the transformations mentioned
above.

7.1. Simplification

The simplifier consists of a number of standard simplification rules for functional
programs such as beta reduction:

BetaOne :
App(Abs([x|xs], t, e), [a|as]) ->
App(Abs(xs, t, <expsubst> ([x], [a], e)), as)
where <value> a + <linear> (x, e)

Here,value and linear are strategies that prevent duplication of work during re-
duction. An expression is a value if it represents either a function or a data object; a
variablev appears linearly in the expressionb if reduction ofb can never cause duplica-
tion of any term substituted forv . Terms which do not encode computation are literally
copied regardless of whether or not the variables they instantiate occur linearly in their
host terms.

The beta reduction ruleBetaOne reduces an application of a function to its first
argument. The following rule reduces such an application as far as possible, either ex-
hausting all formal or all actual parameters.

Beta :
App(Abs(xs, t, e), as) ->
App(Abs(ys, t, <expsubst> (sbs, e)), bs)
where <rest-zip(id)> (xs, as) => (ys, bs, sbs);

(<lzip((id,value) + (Fst,id); linear)> (sbs, e))

Other simplification rules include elimination of deadlet bindings, inlining of
let bindings, case specialization, distribution of application over cases, uncurrying of

26 P. Johann, E. Visser / Warm fusion in Stratego

expression and type applications; see the definition ofbasic-rules below. A partic-
ularly important rule for the warm fusion transformation is, of course, cata-build fusion:

CataBuild :
App(Cata(t1, t2, fs), [Build(t1, g)]) ->
App(TInst(g, [t2]), fs)

Heret1 is the input type for the catamorphism andt2 is its return type. Similarly,t1
is the type ofbuild ’s output.

These basic rules can be combined in various ways to build simplifiers, depending
on the desired effect. We use the following configuration in the warm fusion transformer.

basic_rules =
Beta + Eta + (Inl; Dead) + TEta + TBeta +
CaseConstr + CaseDistL + CaseDistR + Uncurry

basic-cata = CataConstr + CataBuild + basic_rules

simplify = innermost(basic-cata)

The strategyinnermost is defined by

innermost(s) = rec x(all(x); (s; x <+ id))

Although the definition ofsimplify here uses innermost reduction, Stratego’s sepa-
ration of logic from control make it particularly convenient to change the term reduction
strategy used in the simplifier.

7.2. Build-cata introduction

The initial build-cata identity is introduced into the body of the function defi-
nition under its leading abstractions:

IntroBuildCata = Valdef(id, under-abs(MkBuildCata))

where the notion “under its leading abstractions” can be expressed by the recursive pat-
tern

under-abs(s) = rec x((Abs(id, id, x) + TAbs(id, x)) <+ s)

In concrete syntax thebuild-cata identity has the form

build[t1](/\t2 -> \fs :: t2 -> (cata[t1][t2](fs) e))

wheret1 is the type of the expressione, t2 is a new type variable and thefs are the
abstract constructors corresponding to the constructors of the data type. Generation of
this form is defined by the following rule:

MkBuildCata :
e -> Build(t1, TAbs([t2], Abs(fs, Some(t2),

App(Cata(t1, t2, fs), [e]))))

P. Johann, E. Visser / Warm fusion in Stratego 27

where new-tvar => t2; <type> e => t1;
<get-constructors> t1 => cdecls;
<lzip(AbsConstr)> (cdecls, (t1, t2)) => fs

Type information plays a crucial role inbuild-cata introduction and subsequent
processing. It is used not only to determine which instances of theCata andBuild
functions to introduce, but also to generate arguments of the appropriate types for these
instances. The strategytype derives the type from an expression. The strategyget-
constructors obtains the constructor declarations corresponding to the type ofe.
For each constructor of the data type an abstract constructor (variable) with the appro-
priate type is constructed by ruleAbsConstr :

AbsConstr :
(ConstrDecl(_, _, c, ts), (t1, t2)) ->
Typed(Var(f), TFun(ts’, t2))
where new => f; <map(try(?t1;!t2))> ts => ts’

The rule creates a variable expression with new variablef and its type. The function has
the same number of arguments as the original constructor. The output of the function is
of type t2 . Where the constructor has a recursive argument, indicated by the recursion
type t1 , the output typet2 is instantiated. The other arguments remain the same type.

7.3. Splitting function definitions

Splitting a function into a wrapper and a worker involves determining where in the
body the split is performed, which variables the worker is abstracted over, creating the
definition of the worker and replacing the expression in the wrapper body by a call to
the worker. There are several ways to do this. We discuss one of them.

The strategySplitBodyP first computes the non-static parametersvs of
the function definition and then splits the body. This is achieved by instantiating
SplitBody with a strategy for splitting expressions:

SplitBodyP =
where(NonStaticParams => vs);
SplitBody(SplitExpr(!vs))

NonstaticParams extracts the nonstatic parameters from a function definition; the
function’s case selector must be the head of the list of nonstatic parameters in order to
satisfy the strictness requirement of the promotion theorem. Given any listxs of value
and type variables, the ruleSplitExpr creates a definition for a function with a new
namef that has the expression as its body and abstracts overxs . It also creates a call tof
with xs as arguments. The definition ofSplitExpr assumes that the type parameters
to a function are always static.

SplitExpr(mkxs) :
e -> (App(Typed(Var(f), t), xs), Valdef(Var(f), body))
where mkxs => xs; new => f;

28 P. Johann, E. Visser / Warm fusion in Stratego

<etrename> Abs(xs, Some(<type> e), e) => body;
<type> body => t

Given a strategysplit for splitting an expression, ruleSplitBody splits the
body of a function definition by creeping under its leading abstractions and splitting the
expression it encounters there.

SplitBody(split) :
Valdef(Var(x), body) -> [Valdef(Var(x), body’), def]
where <under-abs-build(split => (e, def); !e)> body => body’

The split results in an expression (the call) and a new definition. The expres-
sion split => (e, def); !e matches the result of splitting against the pattern
(e, def) and then replaces it by just the expression. The binding todef is used in
the right-hand side of the rule, where a list of two definitions is created.

Since we want to split off the worker under the build expression, if present, we use
a variant of theunder-abs pattern that we saw before.

under-abs-build(split) =
rec x((Abs(id,id,x) + TAbs(id,x) + Build(id,split)) <+ split)

Similar patterns can be used to describe other contexts in which a transformation has to
take place.

Parameterizing overunder-abs-build as well as split would make
SplitBody a completely generic splitting strategy. However, even as defined here,
SplitBody is a general strategy for splitting under any type and term abstractions
and anybuild s in a function definition. Our splitting mechanism therefore general-
izes that from [22] upon which the wrapper-worker decomposition in [14] is based. The
extra generality is useful: splitting a function definition into a wrapper and a worker
sometimes requires splitting under a function’s leadingbuild , while at other times no
build s are present. The strategyunder-abs-build given here is general enough
to accommodate both situations.

7.4. Unfolding

Unfolding is defined by the following contextual rules [35] that replace all oc-
curences of atoms with the name of the function being unfolded by its body.

Unfold1in2 :
[Valdef(Var(x),body1), Valdef(Var(y),body2[Typed(Var(x),_)])]

-> [Valdef(Var(x),body1), Valdef(Var(y),body2[body1’](alltd))]
where <exprename> body1 => body1’

Unfold2in1 :
[Valdef(Var(x),body1[Typed(Var(y),_)]), Valdef(Var(y),body2)]

-> Valdef(Var(x),body1[body2’](alltd))
where <not(in)> (Var(y), body2); <exprename> body2 => body2’

P. Johann, E. Visser / Warm fusion in Stratego 29

7.5. Cata promotion

In section 2 we discussed how a catamorphism can be derived from a recursive
definition using the promotion theorem. The core of the promotion is the creation of a
function

h = \z1 ... zn -> e(c(y1)...(yn))

for each constructorc with n arguments. The functione is then unfolded exactly once,
and the result is simplified using the standard rules, together with a dynamically gener-
ated set of rules that rewrite recursive applications involving theyi s to the appropriate
variableszi . The abstract syntax of the initial form of the functionh is

Abs(zs, App(e, [App(Typed(Constr(c), TFun(ts, t)), ys)]))

The ruleDynRules creates for a specific constructor, the lists ofy andz variables and
the corresponding dynamic rewrite rules. The strategydsimplify extends the normal
simplification with the application of these dynamic rules.

dsimplify(mkrls) = innermost(AppDynRule(mkrls) <+ basic_rules)

Putting this together the ruleMkHcreates the replacement function corresponding to a
constructor of the original function’s input data type.

MkH :
(ConstrDecl(_, _, c, ts), (g, e, t)) -> h
where

<DynRules> (t, g, c) => (ys, zs, rls);
!Typed(Constr(c), TFun(ts, t)) => ct;
<dsimplify(!rls)>

Abs(zs, None, App(<etrename> e,[App(ct, ys)])) => h;
<not(oncetd({y : ?Var(y);

where(<fetch(Typed(Var(?y),id))> ys)}))> h

Note that the bound variables in expressione are renamed to maintain the unique vari-
able invariant.

These replacement functions are then used byMakeCataBody to construct the
catamorphic version of that function’s worker. Unfolding the worker in the wrapper
yields the build-cata form of the function definition being transformed.

MakeCataBody :
Valdef(Var(g), e) -> Valdef(Var(g), Cata(t1, t2, hs))
where <type> e => tg;

<split(dom, range)> tg => (t1, t2);
<get-constructors> t1 => cdecls;
<lzip(MkH)> (cdecls, (Typed(Var(g), tg), e, t1)) => hs

This concludes our sample of the specification. The complete text of the specifica-
tion can be found in [13].

30 P. Johann, E. Visser / Warm fusion in Stratego

8. Related work

The first ideas for rewriting strategy operators with general traversal operators are
described in [15]. In [35] these ideas are formalized by means of an operational seman-
tics and are extended to the full set of System S operators by splitting simple rewrite
rules into match, build and scope. This allows easy expression of contextual rules. An
application to the specifiation of optimizers is discussed. In [34] it is shown how Sys-
tem S can be used to describe various features and evaluation strategies of traditional
conditional rewriting systems. In [31] three programming idioms forstrategic pattern
matchingare studied: recursive patterns, contextual rules, and overlays. The imple-
mentation of generic algorithms such as used for variable renaming and substitution is
discussed in [33]. For a discussion of related work on rewriting strategies see [34]. The
relation to other systems for program transformation is discussed in [35].

Techniques for program fusion can be classified into two broad categories:search-
basedand calculation-based. The earliest techniques for program fusion [2,3,27,36]
were search-based. These rely on analyses of thefold-unfold transformation process of
Burstall and Darlington to fuse compositions of recursive functions. In search-based
fusion it is necessary to keep track at each step of the transformation process of all
function calls that have been made. New function definitions to be used in unfolding
must then be introduced. Search-based fusion is systematic, but relies on clever control
mechanisms to avoid the possibility of infinite sequences of transformations by repeated
unfolding of function definitions. As a result, good implementations of search-based
fusion techniques have been somewhat difficult to achieve.

The warm fusion method and the short cut to deforestation which it facilitates are
in the more recent tradition of calculation-based fusion [8,10,14,24,25]. In calculation-
based fusion the recursive structure of each component participating in the fusion is
made explicit. This enables fusion by direct application of simple transformation
laws like the cata-build rule and the acid rain theorem [25]. The theoretical basis for
calculation-based fusion lies in the study ofconstructive algorithmics[5,17,18].

9. Future work

The implementation of program fusion algorithms offers many additional oppor-
tunities for investigation. Among the issues pertaining directly to the Stratego imple-
mentation and meriting attention are: experimenting with various orders and strategies
for applying the simplification transformations; experimenting with more unfolding of
function definitions when converting recursion to catamorphisms via fold promotion so
that fusion is not unnecessarily blocked; making inlining more context sensitive, so that
build-cata forms are inlined only when there is the possibility of fusion via the short cut;
and extending the transformations with Gill’saugment . Benchmarking to determine
the sense(s) in which deforested programs are “better” than their monolithic counterparts
is also appropriate for the current warm fusion implementation. So is comparison of the
Stratego specification with other implementations of warm fusion.

P. Johann, E. Visser / Warm fusion in Stratego 31

Other lines of inquiry involve the integration of automatic fusion tools into existing
systems. Candidate systems include the optimizer of the RML compiler discussed in [26,
35], as well as state-of-the-art functional language compilers. Nemeth [19] has recently
implemented warm fusion in the Glasgow Haskell Compiler and reported benchmarks
on programs from the nofib suite [20].

Finally, rather than using Stratego as a tool to help deepen our understanding of
program fusion techniques, we can turn the relationship between strategy-based lan-
guages and program fusion on its head and ask about possible applications of fusion
to strategy-based languages. Can we formalize our intuition that certain combinations
of strategies should themselves be amenable to suitable forms of strategy fusion? Is it
possible, for example, to make precise the observation that

!C(t1,...,tn); ?C(t1’,...,tn’) = !t1;?t1’;...;!tn;?tn’

assuming that the term that is built is not used again?

10. Conclusion

We have presented a case study of the application of Stratego to build a com-
plete, non-trivial program transformation system. Table 1 shows the sizes of the main
components of the transformation system in number of modules, lines of code (text in-
cluding comments), number of rules and number of strategies. Note that these figures
do not include the signature and the pretty-printing modules. Distributed over time, it
took us about 30 days to develop the entire transformation tool from scratch including
a syntax definition for full Haskell. The development time included finding out how
to program in Stratego and developing programming idioms. That is, when undertak-

Table 1
Size metrics of main components of the specification. Measuring number of mod-
ules (mod), lines of code (LOC) including documentation, number of constructors

(cons), rules and strategies (strat).

Language Component mod LOC cons rules strat

SDF Haskell.sdf 650 300 –

Stratego Warm fusion 11 739 0 60 31
Stratego Format checking 1 202 1 1 32
Stratego Haskell library 4 246 0 32 21
Stratego Haskell normalize 1 75 0 17 3
Stratego Haskell typecheck 1 120 1 13 6

Stratego Subtotal specification 18 1382 2 123 93

Stratego Signature 28 544 103 0 0
Stratego Pretty-printer 28 671 0 90 7

Stratego Total specification 74 2597 105 213 100

Stratego Stratego library 48 3634 65 131 317

32 P. Johann, E. Visser / Warm fusion in Stratego

ing this case study, Stratego was a new language, even for its author, and discover-
ing idioms of use beyond the basic paradigm takes time. The development was aided
by the wealth of generic, language independent rules and strategies in the Stratego li-
brary [32].

This case study strengthens our view that rewriting strategies are a good paradigm
for the implementation of program transformation systems. The specification is highly
modular at all levels and can easily be modified or extended with new transformations.
It will serve as the basic infrastructure for further experimentation with transformations
on full Haskell. The specification also provides examples of several Stratego idioms that
can be used in the implemention of transformation systems for other languages. In par-
ticular the specification shows the use of compound rules, recursive patterns, distributed
patterns, exchange of information between transformation rules through parameterized
strategies and the compact specification of variable renaming, substitution, and free vari-
able projection.

Acknowledgements

The authors would like to thank various anonymous referees for their comments
on earlier versions of this paper.

References

[1] A.W. Appel, Compiling with Continuations(Cambridge University Press, 1992).
[2] R.M. Burstall and J. Darlington, A transformational system for developing recursive programs, J. of

the ACM 24(1) (1977) 44–67.
[3] W.N. Chin, Safe fusion of functional expressions, ACM Lisp Pointers 5(1) (1992) 11–20, Proceedings

of the 1992 ACM Conference on Lisp and Functional Programming.
[4] M. de Jonge, A pretty-printer for every occasion, in:Proceedings of the 2nd International Symposium

on Constructing Software Engineering Tools (CoSET2000), eds. I. Ferguson, J. Gray and L. Scott,
Limerick, Ireland (June 2000); also: Technical Report, University of Wollongong, Australia.

[5] M. Fokkinga, Law and order in algorithmics, Ph.D. thesis, Twente University (1992).
[6] P. Fradet and D. Le Métayer, Compilation of functional languages by program transformation, ACM

Trans. Programming Languages Syst. 13(1) (1991) 21–51.
[7] A.J. Gill, Cheap deforestation for non-strict functional languages, Ph.D. thesis, University of Glasgow

(January 1996).
[8] A. Gill, J. Launchbury and S.L. Peyton Jones, A short cut to deforestation, in:Functional Program-

ming Languages and Computer Architecture (FPCA’93), ed. Arvind (ACM Press, 1993) pp. 223–232.
[9] T. Hagino, A categorical programming language, Ph.D. thesis, University of Edinburgh (1987).

[10] Z. Hu, H. Iwasaki and M. Takeichi, Deriving structural hylomorphisms from recursive definitions,
ACM SIGPLAN Notices 31(6) (1996) 73–82, Proceedings of the International Conference on Func-
tional Programming (ICFP’96), Philadelphia.

[11] P. Johann, An implementation of warm fusion, available atftp://ftp.cse.ogi.edu/pub/
pacsoft/wf/ (1997).

[12] P. Johann, Short cut fusion is correct, Technical report, Bates College, Lewiston, Maine, USA (2000).

P. Johann, E. Visser / Warm fusion in Stratego 33

[13] P. Johann and E. Visser, Warm fusion in Stratego: A case study in the generation of program trans-
formation systems, Technical report, Institute of Information and Computing Sciences, Universiteit
Utrecht, Utrecht, The Netherlands (2000).

[14] J. Launchbury and T. Sheard, Warm fusion: Deriving build-catas from recursive definitions, in:Func-
tional Programming Languages and Computer Architecture (FPCA’95), ed. S.L. Peyton Jones (ACM
Press, 1995) pp. 314–323.

[15] B. Luttik and E. Visser, Specification of rewriting strategies, in:2nd International Workshop on the
Theory and Practice of Algebraic Specifications (ASF+SDF’97), ed. M.P.A. Sellink, Electronic Work-
shops in Computing, Berlin, November 1997 (Springer, Berlin, 1997).

[16] G. Malcolm, Homomorphisms and promotability, in:Mathematics of Program Construction, Lecture
Notes in Computer Science, Vol. 375 (Springer, Berlin, 1989) pp. 335–347.

[17] G.J. Malcolm, Data structures and program transformation, Sci. Comput. Programming 14 (1990)
255–279.

[18] E. Meijer, M. Fokkinga and R. Paterson, Functional programming with bananas, lenses, envelopes
and barbed wire, in:Functional Programming and Computer Architecture (FPCA’91), ed. R.J.M.
Hughes, Lecture Notes in Computer Science, Vol. 523 (Springer, Berlin, 1991) pp. 124–144.

[19] L. Németh, Catamorphism based program transformation for non-strict functional langauges, Draft,
Ph.D. thesis, University of Glasgow (2000).

[20] W. Partain, Thenofib benchmark suite of Haskell programs, in:Functional Programming, eds.
J. Launchbury and P.M. Sansom (Springer, Berlin, 1992) pp. 195–202.

[21] S. Peyton Jones, J. Hughes et al., Report of the programming language Haskell98 a non-strict, purely
functional language (February 1999).

[22] S.L. Peyton Jones and J. Launchbury, Unboxed values as first class citizens in a non-strict functional
language, in:Functional Programming and Computer Architecture (FPCA’91), ed. R.J.M. Hughes,
Lecture Notes in Computer Science, Vol. 523 (Springer, Berlin, 1991) pp. 636–666.

[23] S.L. Peyton Jones and A.L.M. Santos, A transformation-based optimiser for Haskell, Sci. Comput.
Programming 32(1–3) (1998) 3–47.

[24] T. Sheard and L. Fegaras, A fold for all seasons, in:Functional Programming and Computer Archi-
tecture (FPCA’93), ed. Arvind, Copenhagen, Denmark (ACM Press, 1993) pp. 233–242.

[25] A. Takano and E. Meijer, Shortcut deforestation in calculational form, in:Functional Programming
and Computer Architecture (FPCA’95), ed. S.L. Peyton-Jones, San Diego, CA (June 1995).

[26] A. Tolmach and D. Oliva, From ML to Ada: Strongly-typed language interoperability via source
translation, J. Funct. Programming 8(4) (1998) 367–412.

[27] V. Turchin, The concept of a supercompiler, ACM Trans. Programming Languages Syst. 8(3) (1986)
292–326.

[28] M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier, Efficient annotated terms, Software
Practice Exper. 30 (2000) 259–291.

[29] M.G.J. van den Brand and E. Visser, Generation of formatters for context-free languages, ACM Trans.
Software Engrg. Methodol. 5(1) (1996) 1–41.

[30] E. Visser, Syntax definition for language prototyping, Ph.D. thesis, University of Amsterdam (Sep-
tember 1997).

[31] E. Visser, Strategic pattern matching, in:Rewriting Techniques and Applications (RTA’99), eds.
P. Narendran and M. Rusinowitch, Lecture Notes in Computer Science, Vol. 1631, Trento, Italy, July
1999 (Springer, Berlin, 1999) pp. 30–44.

[32] E. Visser, The Stratego Library, Institute of Information and Computing Sciences, Universiteit
Utrecht, Utrecht, The Netherlands (1999).

[33] E. Visser, Language independent traversals for program transformation, in:Workshop on Generic
Programming (WGP2000), ed. J. Jeuring, Ponte de Lima, Portugal, July 6 (2000); also: Technical
Report UU-CS-2000-19, Universiteit Utrecht.

[34] E. Visser and Zine-el-Abidine Benaissa, A core language for rewriting, in:Proceedings of the Second
International Workshop on Rewriting Logic and its Applications (WRLA’98), eds. C. Kirchner and
H. Kirchner, Electronic Notes in Theoretical Computer Science, Vol. 15 (1998).

34 P. Johann, E. Visser / Warm fusion in Stratego

[35] E. Visser, Zine-el-Abidine Benaissa and A. Tolmach, Building program optimizers with rewriting
strategies, ACM SIGPLAN Notices 34(1) (1999) 13–26, Proceedings of the International Conference
on Functional Programming (ICFP’98).

[36] P. Wadler, Deforestation: Transforming programs to eliminate trees, Theor. Comput. Sci. 73 (1990)
231–248.

[37] www.stratego-language.org.

