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SUMMARY

Many language processing operations have a generic underlying algorithm. How-
ever, these generic algorithms either have to be implemented specifically for the
language under consideration or the language needs to be encoded in a generic
format that the generic algorithm works on. Stratego is a language for program
transformation that supports both specific and generic views of data types.

A Stratego program defines a transformation on first-order ground terms. Trans-
formation rules define single transformation steps. Transformation rules are
combined into transformation strategies by means of combinators that deter-
mine where and in what order rules are applied. These combinators include:
primitives for traversal to the direct subterms of a node, allowing the definition
of many kinds of full term traversals; full control over recursion in traversals;
patterns as first-class citizens; generic term construction and deconstruction.

These features create a setting in which it is possible to combine generic traversal
with data type specific pattern matching, and separating logic (transformation,
pattern matching) from control (traversal). This makes it possible to give lan-
guage independent descriptions of language processing operations that can be
instantiated to a specific language by providing the patterns of the relevant
constructs. These generic algorithms only touch relevant constructors and do
not need to know the entire datatype, making the algorithms insensitive to
changes in the abstract syntax that do not affect the constructors relevant to
the operation.

Stratego is currently implemented by compilation to C code. All constructs of
the language are implemented directly, i.e., the compiled program is as large
as the specification, in contrast to approaches that rely on preprocessing or
program generation which may have a scaling problem when dealing with large
languages.

The approach to generic programming in Stratego is illustrated by means of
several examples including free variable extraction, bound variable renaming,
substitution and syntactic unification.

In: J. Jeuring (editor) Proceedings of the Workshop on Generic Programming
(WGP2000), Ponte de Lima, Portugal, July 2000. Technical Report, Department
of Information and Computing Sciences, Universiteit Utrecht.



Section: Introduction

REPRESENTATION IMPEDES GENERIC IMPLEMENTATION OF
LANGUAGE PROCESSING ALGORITHMS

Many language processing operations have a generic underlying algorithm.
However, these generic algorithms either have to be implemented specifically
for the language under consideration or the language needs to be encoded in
a generic format that the generic algorithm works on. Stratego [2, 17, 18] is a
language for program transformation that supports both specific and generic
views of data types.

LANGUAGE INDEPENDENT PROGRAM TRANSFORMATION?

Program transformation systems are usually developed for transformations of
programs in a single language. After all transforming a C++ program is quite
different from transforming a Haskell program. However, many components
of transformation systems are independent of the particular language under
consideration. For example, consider the following tasks: collecting the free
variables in an expression, renaming the bound variables in an expression, flat-
tening the import structure of a program module, finding the modules imported
by a module, computing the call graph of a program, unifying two expressions.

For most languages, each of these tasks is an instance of the same generic al-
gorithm. In practice, however, one needs to spell out a new instance of the
algorithm for each language since the intermediate representations are different.
For example, consider the fragment of the abstract syntax of C++ in Figure 1
and a fragment of an intermediate representation for a functional language in
Figure 2. Then consider the task of renaming variables for each of these lan-
guages. At a high enough level of abstraction these tasks come down to the
same thing: For each binding construct create new names for the bound vari-
ables and substitute all bound occurrences of these variables by a new name.
This requires traversing the program to find binding constructs, renaming their
variables, finding variable occurrences and relating them to their renamings.

SPECIFIC VS GENERIC REPRESENTATION

On the whole there are two approaches to tackle the problem. (1) Adapt the
generic algorithm to work on the specific data type under consideration. (2)
Adapt the data type so that the generic algorithm can work with it.

In the first approach a language is represented by a specific data type as in
Figures 1 and 2. Implementing the scheme for variable renaming requires writing
out a traversal that is specific for the language under consideration and that
touches all constructors of the language. The advantage of this approach is
that transformations specific for the language can be expressed directly. The
disadvantage is the lack of genericity. This can be mitigated by generating
instantiations of generic functionality, e.g., [5, 4, 10]. However, this can result
in large programs with associated scaling problems and is inflexible since the
generator needs to be reprogrammed for each new generic algorithm.

In the second approach, programs are translated to a data type that is suited
especially for the algorithm under consideration, e.g., a generic intermediate
representation. This might not fit well with other, language specific, operations



Section: Introduction

that one wants to carry out. Another variant of this approach is the encoding
of programs in a universal data type such as XML [19] or ATerm [3] that make
generic operations easier. The advantage of this approach is that generic algo-
rithms can be expressed concisely. The disadvantage is that language specific
operations have to be encoded in the universal data type as well.

STRATEGO PROVIDES GENERIC AND SPECIFIC VIEWS OF REPRESENTATION

Stratego [2, 17, 18] is a language for automatic program transformation that
combines both a specific and a generic view of programs in a light-weight man-
ner. This is achieved by providing transformation rules that work on a specific
data type and basic building blocks for composing generic traversals over pro-
grams that apply transformation or compute analyses. This approach combines
the advantages of the approaches discussed above without their disadvantages.

The Stratego library [16] contains a large number of language independent pro-
gram transformation and analysis algorithms. In this paper we explain the
building blocks of Stratego programs by means of several small examples and
illustrate how these can be used for generic programming by means of several
examples: extracting free variables, renaming bound variables, safe substitution
under variable bindings and syntactic unification.

signature
constructors
Program : List(SD) -> Program
VarDecl : Name * Type * List(Spec) * Expr -> SD
FunDecl : Name * ArglList * Type * List(Spec)
* Qualifier * CInit * SD -> SD

Block : List(SD) -> SD

If : Expr * SD -> SD

Var : Name -> Expr

App : Expr * List(Expr) -> Expr
IdName : String -> Name

Figure 1: Fragment of an abstract syntax definition for representation of C++
programs.

signature
constructors
Var : String * Type -> Exp
App : Exp * List(Exp) -> Exp
If : Exp * Exp * Exp -> Exp
Abs : String * Type * Exp -> Exp
Let : String * Type * Exp * Exp -> Exp
Letrec : List(Fdec) * Exp -> Exp
Fdec : String * Type * List(String) * Exp -> Fdec

Figure 2: Fragment of the signature of a typed abstract syntax for a functional
language.
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CONTROLLING THE APPLICATION OF TRANSFORMATION
RULES

A Stratego program defines a transformation on first-order ground terms.
Transformation rules define single transformation steps. Transformation rules
are combined into transformation strategies by means of combinators that
determine where and in what order rules are applied.

FIRST-ORDER TERMS

Programs are represented by means of abstract syntax trees or terms. A term
is a structure of the form C(t1,...,tn), where the ti are terms. In case
n=0 the parentheses can be dropped, i.e., C is equivalent to C(). Lists of the
form [t1,...,tn]|t] are abbreviations for terms Cons(t1,...,Cons(tn,t)).
The list [t1,...,tn] is a special case denoting [t1,...,tn|[]1], where []
denotes the term Nil. Term tuples of the form (t1,...,tn) abbreviate terms
TCons(tl,...,TCons(tn,TNil)). Signatures (e.g., Figures 1 and 2) describe
subsets of the universal set of terms.

A strategy is a program that transforms a term to another term or fails to do
s0, in which case there is no result of transformation.

TRANSFORMATION RULES

Transformation rules are strategies that perform a single transformation step. A
rule of the form L : t1 -> t2 where s defines a strategy L that transforms a
term that matches with the pattern t1 into the instantiation of the pattern t2 if
the condition s (a strategy expression) is satisfied, i.e., when it succeeds to apply.
The notation <s> t denotes the application of strategy s to term t. Figure 3
gives some examples of transformation rules for the functional language.

SEQUENTIAL NON-DETERMINISTIC PROGRAMMING

Strategies can be combined into new strategies by means of sequential compo-
sition s1;s2 (first apply s1 then s2), non-deterministic choice s1+s2 (apply s1
or s2), left choice s1<+s2 (first try si, if that fails apply s2), negation not (s)
(succeeds if s fails) and recursion rec x(s) (recursively call the strategy when
applying x). The identity strategy id always succeeds and does not transform
the subject term.

A strategy definition f(x1,...,xn) = s defines a new strategy operator £ with
n strategies as arguments. Note that a strategy definition does not mention the
term to which the strategy is applied, but combines the parameter strategies
into a new strategy. Figure 4 defines several flavours of repeated application of
a strategy.

TERM TRAVERSAL

The strategies discussed above apply transformations at the root of a term. In
order to achieve transformations of subterms, some form of term traversal is
needed. The strategy all(s) applies the strategy s to each direct subterm of
a term. For example, <all(s)>F(A,B) corresponds to F(<s> A, <s> B). The
strategy one(s) applies s to exactly one direct subterm of a term. For example,
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<one(s)>F(A,B) result in either F(A, <s> B) or F(<s> A, B).

Figure 5 defines several generic traversals by means of recursion, sequential
composition or left choice, and the primitive term traversal operators all and
one. Figure 6 shows how generic control strategies can be used to apply selected
transformation rules.

rules
Alpha : e -> <lrename> e
Beta : App(Abs(x, t, el), e2) -> <1lsubs> ([(x,e2)], el)
LBeta : Let(x, t, el, e2) -> <1lsubs> ([(x, el)], e2)

Eta : Abs(x, t, App(e, Var(x, t))) -> e
where <not(in)>(x, <lvars> e)
Dead : Let(x, t, el, e2) —-> e2 where <not(in)>(x, <lvars> e2)

Figure 3: Some transformation rules for a typed functional language. The
strategies lrename (rename bound variables), 1subs (substitute expressions
for variables), 1vars (extract free variables) and in (check occurrence in term)
are all instantations of generic strategies.

strategies
try(s) = s <+ id
repeat(s, c) = rec x(s; x <+ ¢)
repeat(s) = repeat (s, id)
repeat-until(s, c) = rec x(s; (c <+ x))
for(i, c, s) = i; repeat-until(s, c)
while(c, s) = rec x(try(c; s; %))
do-while(s, c) = rec x(s; try(c; x))

Figure 4: Several kinds of iteration strategies defined by means of sequential
composition, choice and recursion. The parameter s denotes the body of the
loop and c the stop condition. Note that the success of the application of
the body s contributes to the control flow. For example, repeat (id) will not
terminate.

strategies
topdown(s) = rec x(s; all(x)) bottomup(s) = rec x(all(x); s)
downup(s) = rec x(s; all(x); s)
oncetd(s) = rec x(s <+ one(x)) alltd(s) = rec x(s <+ all(x))

Figure 5: Several flavours of one-pass traversals over terms. The first three
apply a strategy to all subterms in different orders, oncetd finds a single
application of s somewhere in a term and alltd applies a strategy along a
frontier.

strategies
remove-dead = bottomup(repeat(Eta + Dead))

Figure 6: A transformation on functional expresssions that removes dead code
by traversing the expression bottom up and repeatedly trying to apply the
rules Eta or Dead at each subterm.
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BASIC BUILDING BLOCKS OF TRANSFORMATION RULES

Transformation rules are not the smallest particles of program transformation.
Rules are composed of pattern matching and pattern instantiation. Making
these atomic actions available at the language level opens many possibilities
for genericity. Generic term construction and deconstruction are other atomic
actions that allow generic processing.

MATCHING AND INSTANTIATING PATTERNS

Transformation rules can be considered as strategies that first match a pattern (a
term with variables), then check the condition and finally build an instantation
of the pattern on the right-hand side. That is, given the operations 7t for
matching a pattern t and !t for instantiating a pattern t, a rule t1 -> t2
can be defined as a strategy 7tl;!t2. Since patterns contain variables, their
scope needs to be restricted. The construct {x1,...,xn:s} restricts the scope
of the variables xi to the strategy s. Using these primitives, a rule of the
form L : tl -> t2 where s is just syntactic sugar for a strategy definition
L = {x1,...,xn: 7tl; s; !'t2}, where the xi are the variables appearing in
the rule. The condition of a rule is just a strategy that needs to succeed in order
for the rule to apply.

Making pattern matching and instantiation first-class citizens allows the easy
definition of other useful constructs. If it is not necessary to make a rule
reusable by giving it a name one can use an anonymous rule of the form
\t1 -> t2 where s\, which denotes the strategy {x1,...,xn: 7t1l; s; !'t2},
where the xi are the variables of the left-hand side t1. Other syntactic sugar
that is defined in this manner is 7t <= s and s => t, both denoting s; ?7t,
and <s> t denoting !'t; s.

It is also possible to directly program with match and build strategies. Figure 7
shows several possibilities for using match and build in traversals.

GENERIC TERM CONSTRUCTION AND DECONSTRUCTION

Using pattern matching it is possible to get at the direct subterms of a construc-
tor application for a specific constructor. For some operations we are not inter-
ested in the constructor but just in combining the (transformed) subterms in
some manner. The pattern c#(xs) matches any term of the form C(t1,...,tn)
and binds "C" (the name of C) to ¢ and [t1,...,tn] to xs.

Figure 8 shows how generic term deconstruction can be used in the generic
definition of an algorithm for the collection of subterms.
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rules
in : (a, t) -> <oncetd(?a)> t

Inline : Let(x, t, el, e2) -> Let(x, t, el, e2’)
where <oncetd(?Var(x,t); <lrename> el)> e2 => e2’

get-imports :
Module(m, b) -> <collect(\Import(x) -> (m, x)\)> b

strategies
vars = collect(?Var(_,_))

Figure 7: Several examples of using match and build strategies.
The strategy in succeeds if a occurs in t.

The strategy Inline replaces an occurrence of Var (x) by the expression el.
Note that this is a non-linear match, i.e., the pattern ?Var (x,t) only matches
terms for which variable name and type are the same as in the declaration in
the left-hand side of the rule.

The strategy get-imports collects all imports from a module and returns a
list of pairs of the name of the importing module and the imported module.
This strategy assumes a strategy collect (s) that collects subterms for which
strategy s succeeds.

Using the same collect strategy, the strategy vars collects all subterms that
match the pattern Var(_,_ ), where ‘_’ is a wildcard for pattern matching.

rules
collect-kids(s) : _#(xs) -> <foldr('[], union, s)> xs

strategies
collect(s) = rec x(s; \y —> [yl\
<+ collect-kids(x))

foldr(sl, s2, f) = rec x(7[]1; sl +
\[ylys] —> <s2>(<f>y, <x>ys)\ )

Figure 8: A generic strategy for collecting subterms from a term.

The strategy collect(s) yields the set of sub-terms (represented as a list)
for which s succeeds. It tries to apply s to the subject term. If that succeeds
a subterm has been found and it is placed in a singleton list. Otherwise
the collection continues in the direct subterms (the kids). Note that ; binds
stronger than <+.

The collect-kids strategy deconstructs the subject term and takes the union
of the subterms found in the direct subterms. This is achieved by means of a
fold right over the list of direct subterms, where the subterms of the elements
are collected by means of the recursive call to the recursion variable x of
collect, which is passed to collect-kids.
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COLLECTING FREE VARIABLES

Free variable extraction is governed by the shape of variables and variable
binding constructs. Other elements of the abstract syntax are irrelevant for
the algorithm.

Collecting the free variables of an expression is a common operation in program
transformation. One application is closure conversion in which the free variables
of a nested function definition are turned into explicit parameters. Figure 9
shows a transformation rule for closure conversion in a functional language,
which makes use of the strategy lvars for extracting the free variables from a
function definition.

Collecting the free variables of an expression first of all requires the declaration
of the shape of variables. The strategy collect (?Var(_,_)), which collects all
subterms of an expression that match the pattern Var(_,_), does almost what
we want, but not quite. Figure 10 defines the rule LVars that maps variables
to a list containing the pair of the variable name and its type.

In addition to collecting the variables, variables that are bound should be re-
moved. That is, we also need to know what the binding constructs are and
which variables they bind. This requires the declaration of the binding con-
structs of the language. Figure 10 defines the rules LBnd that map each binding
construct to a list of pairs of variable name and type for the variables that are
bound by the construct. Note that multiple rules (definitions) with the same
name are equivalent with the non-deterministic choice of the bodies of the rules
(definitions).

Given the shape of variables and the bound variables we can define the collection
of free variables. Figure 10 defines free variable collection in terms of LVars and
LBnd by means of the generic strategy free-vars.

Figure 11 defines the generic strategy free-vars as a variant of collect. In
addition to computing the free variables of the direct-subterms with the strat-
egy collect-kids(x), the bound variables are computed with the parameter
strategy boundvars. The difference between the free variables and the bound
variables determines the free variables for a node.

This model for free variable extraction works well for representations in which
the scope of each binding construct ranges over all its subterms. However, this
is not always the case. The Let construct for instance does usually not bind
its variable in the expression assigned to the variable it defines. For example,
in the expression Let ("x",t,Var("x",t),e), the sub-expression Var("x",t)
refers to a definition outside the scope of this Let, i.e., is free in the expression.
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rules
CloseConv :
Letrec([Fdec(g,Arrow(ts,t) ,xs,e)], e’) ->
Letrec([Fdec(g’,Arrow(<conc>(ts,ts’),t),<conc>(xs,ys),e)], e’?)
where ?g’ <= new;
?vs <= <lvars> Fdec(g,Arrow(ts,t),xs,e);
?7ys’ <= <map(\(y,t) -> Var(y,t)\)> vs;
?(ys,ts’) <= <unzip(id)> vs;
?7e’? <= <topdown(try({as:7App(g, as);
'App(g’, <conc>(as, ys’))}))> e’

Figure 9: A transformation rule for closure conversion. The function declara-
tion for g is replaced with an new function declaration for g’ (a new name)
that takes as extra arguments the free variables of the body of g. All calls to
g(as) are replaced by calls to g’ (as,ys’).

strategies

lvars = free-vars(LVars, LBnd)
rules

LVars : Var(x,t) -> [(x,t)]

LBnd : Abs(x, t, e) —> [(x,t)]
LBnd : Let(x, t, el, e2) —> [(x,t)]
LBnd : Letrec(fdecs, e) —>
<map (\Fdec(f,t,xs,e) -> (£,t)\)> fdecs
LBnd : Fdec(f, Arrow(ts,t), xs, e) -> <zip(id)> (xs,ts)

Figure 10: Collecting free variables from functional expressions. The strategy
lvars is the strategy for extracting free variables. The rule LVars maps a vari-
able to the pair of its name and type. The rules LBnd map binding constructs
to a list of the variables they bind.

strategies
free-vars(getvars, boundvars) =
rec x(getvars
<+ split(collect-kids(x), boundvars <+ ![]); diff)
rules
split(f, g) : x -> (Kf> x, <g> x)

Figure 11: A generic algorithm for collecting free variables with the assumption
that all binding constructs declare bindings that range over all subterms. The
strategy diff computes the difference between a pair of lists.
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REFINING THE DEFINITION OF FREE VARIABLE COLLEC-
TION

In addition to determining the names of bound variables it is necessary to
determine the arguments in which these variables are binding. Furthermore,
the assumption that collection can stop at variables does not hold for rep-
resentations that declare variable names and contain other variable holding
constructs as subterms. To specify a refinement of a generic traversal Stratego
provides congruence operators, which allow the specification of traversal for
specific constructors.

BINDING POSITIONS

If variables are not bound in all direct subterms of a binding constructs, the
model of free variable extraction needs to be refined. Binding positions can
be declared by indicating for each binding construct the arguments in which
variables are bound, the arguments in which variables are not bound and the
arguments that do not contain variables at all and can thus be ignored.

Figure 12 defines the strategy LBoundIn with parameters bnd for positions where
variables are binding, ubnd for positions where variables are not binding and
ignore for positions where no variables occur. It declares binding positions
for abstraction, let, letrec and function declaration by means of congruence
operators.

SPECIFIC TERM TRAVERSAL WITH CONGRUENCES

The generic traversal operators all provides generic traversal through arbitrary
constructors. Sometimes it is necessary to refine the traversal of specific con-
structors. For each constructor C : t1 * ... * tn -> t declared in a signa-
ture there is a corresponding strategy operator C(s1,...,sn) (the congruence
over C) that transforms a term C(t1,...,tn) to C(<s1>t1,...,<sn>tn).

Figure 12 uses such congruence operators to direct traversal. For example, the
pattern Let (ignore,ignore,ubnd,bnd) declares that variables are not bound
in the third and are bound in the fourth argument. The declaration of binding
positions LBoundIn can be passed to the refined version of free-vars, which is
defined in Figure 13.

The computation of the free variables of the direct subterms is split into three
cases. In the first case, if a term is a variable it is returned. In the second case,
if the current node is a binding construct (boundvars succeeds), the boundin
strategy is used to differentiate between binding and non-binding positions. At
the binding positions the difference between the free variables and the bound
variables is computed, at the unbound positions all free variables are computed
and the other positions are ignored by building the empty list. In the third case,
if the term is neither a variable nor a binding construct the free variables of its
subterms are collected.

VARIABLES CONTAINING VARIABLES

The model in the extraction methods described above implies that variables are
leaves of abstract syntax trees and do not contain variables themselves. This
is not always appropriate. For example, consider an abstract syntax with an

10



Section: Case Studies

application declared as in Figure 14. Here variables in function and argument
positions have a different shape and in addition an application contains terms
that are variables. Figure 15 defines an alternative free variable collection strat-
egy that does not stop when encountering a variable, but instead takes the union
of the variables at a node and the variables contained in its subterms.

strategies
lvars = free-vars(LVars, LBnd, LBoundIn)
LBoundIn(bnd, ubnd, ignore) =
Abs(ignore, ignore, bnd)
+ Let(ignore, ignore, ubnd, bnd)
+ Letrec(bnd, bnd)
+ Fdec(ignore, ignore, ignore, bnd)

Figure 12: Declaration of binding positions by means of congruence operators.

strategies
free-vars(getvars, boundvars, boundin) =
rec x(getvars
<+ {vs: where(?7vs <= boundvars);
boundin(split(x, !vs); diff, x, !'[1)};
collect-kids(id)
<+ collect-kids(x))

Figure 13: Algorithm for collecting free variables that takes binding positions
into account.

signature
constructors
App : String * SimpleExp -> Exp
Var : String -> SimpleExp
rules
LVars : App(f, es) -> [f]
LVars : Var(x) -> [x]
strategies
lvars = free-vars2(LVars,LBnd)

Figure 14: Abstract syntax representation in which variables are not leaves
and extraction of variable names from expressions.

strategies
free-vars2(getvars, boundvars) =
rec x(split(getvars <+ ![],
split(collect-kids(x), boundvars <+ !'[]); diff);
union)

Figure 15: Algorithm for collecting free variables that takes variables in sub-
terms of variables into account. A variant of this algorithm taking into account
binding positions can be created analogously to Figure 13

11
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RENAMING BOUND VARIABLES

Renaming of bound variables depends on the shape of variables and the shape
of binding constructs. For binding constructs, in addition to determining what
variables are bound and in which arguments they are binding, it is necessary
to declare where new variables should be pasted. In order to keep track of
renamings it is also required to distribute an environment along with the
renaming traversal.

Renaming of bound variables is used to prevent name clashes between variables,
for example as a preparation for inlining to prevent free variable capture.

PASTING NEW VARIABLE NAMES

The same considerations as for free variable extraction hold. A renaming algo-
rithm depends on the shape of variables and on the shape of binding constructs.

A new aspect is that the renamed variables should be pasted back into the bind-
ing construct. This is the inverse of extracting variables bound by a binding
construct, i.e., replace the current binding variables by their renamings. For
example, replace Abs("x",t,e) by Abs("y",t,e). Since extraction of bound
variables from a binding construct is an arbitrary strategy we cannot automati-
cally reverse it. Therefore, an additional strategy is needed that replaces binding
variables by new names.

Figure 16 defines the strategy LPaste with parameter nwvars. Using congru-
ences it declares how the new variables should be pasted back into the binding
constructs. The parameter strategy nwvars builds a list of new variables names.
Using the strategies IsLvar, LBnd, LBoundIn and LPaste, the strategy rename
composes a renaming strategy for functional expressions.

DISTRIBUTING ENVIRONMENTS

Figure 17 defines the generic algorithm for renaming bound variables. It is
defined by means of the env-alltd traversal (Figure 18), which distributes an
environment through a traversal. The environment for renaming is a list of pairs
(x,y) with x a reference to the old variable and y the name of the new variable.

The rename strategy is defined by means of the rules RnVar, RnBinding and
DistBinding. RnVar renames a variable by looking up its name in the environ-
ment. RnBinding creates new variable names for the variables of a binding con-
struct and pastes the new names back into the term. It also creates an extended
environment mapping the old variables to the new variables. DistBinding ap-
plies the renaming to the binding and non-binding positions of the binding
construct using the same boundin strategy used for free variable extraction.
At the binding positions the extended environment is used, at the non-binding
positions the old environment is used.

12
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strategies

lrename = rename(IsLvar, LBnd, LBoundIn, LPaste)
rules

IsLvar(s) : Var(x,t) —> Var(<s>(x,t), t)

Hd : [xIxs] -> x
strategies

LPaste(nwvars) =

Abs(nwvars; Hd, id, id)
+ Let(nwvars; Hd, id, id, id)
+ Letrec(split(id, nwvars);
zip(\(Fdec(f, t, xs, e), g) -> Fdec(g, t, xs, e)\)
,id)
+ Fdec(id, id, nwvars, id)

Figure 16: Instantiation of a generic renaming algorithm and declaration of
pasting new variables in binding constructs.

strategies
rename (isvar, bndvars, boundin, paste) =
Nt -> (e, [1)\;
rec x(env-alltd(RnVar (isvar)
<+ RnBinding(bndvars, paste);
DistBinding(boundin, x)))

RnVar (isvar) : (t, env) -> <isvar(split(id, 'env); lookup)> t

RnBinding(bndvrs, paste)
(t, envl) -> (<paste(!ys)> t, envl, env2)
where <bndvrs> t => xs; map(new) => ys;
<conc>(<zip(id)>(xs,ys), envl) => env2

DistBinding(boundin, s)
(t, envl, env2) -> <boundin(\x -> <s>(x, env2)\
A\x > <s>(x, envi)\
,id)> t

Figure 17: Generic algorithm for renaming bound variables. The strategy new
creates a new unique string.

rules

dist(s) : (t, env) -> <all(\x -> <s>(x,env)\)> t
strategies

env-alltd(s) = rec x(s <+ dist(x))

Figure 18: Generic traversals that distributes an environment.

13
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SUBSTITUTING TERMS FOR VARIABLES

Substitution of expressions for variables in a language with variable bindings
requires renaming of bound variables to prevent free variable capture and
can be expressed as a generalization of the generic bound variable renaming
algorithm.

Substitution of expressions for variables is another common operation in pro-
gram transformation. One of the problems with substitution is the danger of
variable capture when substituting under a binding. The solution is to rename
bound variables while descending into the expression tree.

Figure 20 defines a generic definition of this solution as a generalization of the
generic variable renaming strategy. Figure 19 shows how this algorithm can be
instantiated.

strategies

lsubs = substitute(IsLvar, LBnd, LBoundIn, LPaste)

Figure 19: Instantiation of a generic algorithm for substitution for the func-
tional language.

strategies

substitute(isvar, bndvars, boundin, paste) =
?(sbs, t); '(t, [1);
rec x(env-alltd(RnVar (isvar)
<+ SubsVar(isvar, !sbs)
<+ RnBinding(bndvars, paste);
DistBinding(boundin, x)))

SubsVar (isvar, mksbs)
(t, env) -> <lookup> (t, sbs)
where <isvar(id)> t; mksbs => sbs

Figure 20: Generic algorithm for substituting expressions for variables under
variable bindings. Capture of free variables in the substituted expressions and
substituting for bound variables is prevented by renaming all variables on the
way.
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Section: Case Studies

UNIFYING TERMS WITH OBJECT VARIABLES

Syntactic unification depends on the shape of variables. For all other con-
structs the only requirement is that their structure is the same. This can be
expressed generically.

Syntactic unification is another example of a problem that can be solved by
means of a generic, language independent algorithm that is instantiated with
the shape of a language construct. Figure 21 shows the definition of a unifi-
cation algorithm by instantiation of a generic algorithm. Figure 22 presents
the definition of a generic unification algorithm. The algorithm does not take
variable bindings into account, nor does it unify modulo equations.

signature
sorts Types
constructors
TVar : String -> Type
Arrow : Type * Type -> Type
Prod : Type * Type -> Type
Tcons : String * List(Type) -> Type
strategies

tp-unify = unify(TVar(id))

Figure 21: Instantiation of generic unification algorithm for polymorphic types.

strategies
unify(isvar) =
for(\ pairs -> (pairs, [1) \
,\ ([1, sbs) -> sbs \
,UfIdem + UfVar(isvar) + UfSwap(isvar) <+ UfDecompose)
rules
UfIdem : ([(x,x) | ps]l, sbs) -> (ps, sbs)

UfVar (isvar)
([(x,y) | ps]l, sbs) -> (ps’, [(x, y) | sbs’’]1)
where <isvar> x; <not(in)>(x,y);
?7(sbs’’, ps’) <= <subs(isvar,![(x,y)])> (sbs, ps)

UfSwap (isvar)
([(x,y) | psl, sbs) —> ([(y,x) | psl, sbs)
where <not(isvar)> x; <isvar> y

UfDecompose :
([(£#(xs), f#(ys)) | psl, sbs) —->
(<conc>(<zip(id)>(xs, ys), ps), sbs)

Figure 22: Generic definition of syntactic unification. The algorithm manipu-
lates a list of pairs of terms to be unified and builds a substitution. Note that
the decomposition rule uses generic term deconstruction f#(xs).
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COMPARING STRATEGO GENERICITY TO OTHER FRAME-
WORKS

Traversal through data structures is a common problem in all programming
languages. Stratego provides primitives for concisely describing a wide range
of traversals.

TRAVERSAL SCHEMATA

In object-oriented programming the visitor design patttern [6] is used to separate
the methods making up a traversal over (objects in) a set of classes from those
classes. Visiting the actual classes is achieved through a hook (the accept
method) that calls back the visitor. The genericity of this method is resctricted
because the set of classes participating in the traversal is fixed and because the
control of each traversal has to be spelled out. The generic visitors of Palsberg
and Jay [12] overcome the problem of a fixed set of classes and default control by
definining generic traversal through an object by means of reflection. In absence
of a visit method for a class the generic behaviour is to traverse the fields of the
object. Visit methods that override the default method still have to define the
continuation of the traversal.

Attribute grammars (e.g., [14]) define propagation of attribute values through a
tree. This requires defining for each attribute and for each node how the value
is derived from other attribute values. Although some tools support copy rules
that fill in undeclared propagations, traversals are not first-class citizens; it is
not possible to define generic traversal patterns in the language itself.

Functional languages support the polymorphic definition of traversals over data
types, but these have to be implemented for each data type separately. Wal-
lace and Runciman [19] discuss two possible approaches for XML processing in
Haskell: generic combinators working on a universal data type for XML, and
type specific operations working on a Haskell data type generated from a DTD.
They note that the direct programming style of the latter and the genericity of
the former are difficult to combine.

GENERATION OF TRAVERSALS

In the absence of programmable traversals, it is possible to generate traversals.
For example, Van den Brand et al. [5, 4] describe the generation of traversals for
ASF+SDF from a grammar; Kort et al. [10] describe the generation of several
kinds of morhphisms in Haskell from a grammar; The Java Tree Builder [1]
generates parse tree classes and a default visitor for parse trees from grammars.
The adaptive object-oriented programming approach [11, 13] is close in spirit
to Stratego. It defines traversal through the object structure by means of a
regular expression over paths. Code to be executed during the the traversal
can be specified in wrappers. Different from Stratego is that traversals are not
first-class citizens; it is not possible in AOP to define a generic traversal schema,
which can be instantiated for a specific data type. Generation depends on the
availability of the entire signature before generation and is rather rigid in that
incorporation of a new traversal scheme requires reprogramming the generator.
Generation can also lead to scaling problems [10].
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In polytypic functional programming in PolyP [9] and in in the generalization
proposed by Hinze [8, 7], generic functions are defined on a universal data type
and conversion functions between regular data and the universal data type are
provided. Polytypic functions can be implemented by implementing the conver-
sion or by generating specializations as needed in a program. Only the conver-
sion functions from and to the universal data type are fixed and can be derived
from the data type declaration automatically.

TYPING STRATEGIES

Stratego requires the declaration of constructors in signatures for those con-
structors that are used in strategies. Occurrences of constructors are checked
against the signature. No further type system is imposed on specifications at
this point, because there are several options to choose from. In one approach,
the type system allows only type preserving transformations. A type system for
this approach is straightforward to realize; since strategies do not have a type
changing effect, only rules have to be checked. However, the restriction to type
preserving transformations would not allow the kinds of specifications discussed
in this paper. Transformations that are not type preserving in combination with
the generic traversal of terms lead to a more difficult typing problem for which
no satisfactory type system has been found yet.

Another non-standard feature of Stratego with respect to typing is that incom-
plete signatures are supported. This entails that subject terms can contain
constructors that are not known in the specification. This allows for concise
specifications and programs that are insensitive to irrelevant changes in the sig-
nature of subject terms. On the other hand, with complete signatures it would
be possible to shortcut generic traversals based on type information.

Type systems are useful for catching run-time errors statically and for catching
logical mistakes by checking for internal consistency. The former class of errors
does not occur in Stratego because failure is integrated in the language. (A
crash is caused by a bug in the implementation, not by a mistake from the
user.) For the latter class of errors it is not yet clear what kind of checking can
be provided. This is an area of research.

INPUT AND OUTPUT

Stratego programs can read and write terms represented in the annotated term
(ATerm) format [3], i.e., simple first-order prefix terms. The ATerm format
has a textual and a binary representation. In the latter maximal sharing of
sub-terms is maintained. A parser (written in YACC, SDF2, Happy, etc.) can
be connected to a transformer by having it output its (abstract) syntax tree in
the form of an ATerm. Pretty-printers can be connected by having them read
syntax trees represented as ATerms.
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