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Abstract Strategic programming is an idiom for generic programming where the
concept of a strategy plays a central role. A strategy is a generic, data-
processing action. Strategies are first-class citizens as witnessed by a
combinator style. Two important characteristics of strategies are that
they can traverse into compound data, and that they can be customized
by type-specific actions. We provide a general definition of strategic
programming, and we demonstrate how this idiom can be realized inside
several programming language paradigms.
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1. Introduction
In various areas of programming, control over the application of basic

data-processing actions is needed. In standard programming paradigms
it is usual that control and basic actions become intertwined, precluding
reusability of control patterns and basic actions. Strategic programming
is a programming idiom for untangling concerns such as computation
and control in which basic computations can be reused across different
control constructs, and patterns of control can be defined generically as
first-class entities.

Evaluation strategies: explicit versus implicit In rule-based pro-
gramming (e.g., algebraic term rewriting, expert systems, abstract state
machines), the programmer supplies a set of computation rules and relies
on the system’s built-in evaluation strategy (e.g., leftmost-innermost) for
applying these rules to input data. The order in which the rules fire,
and at which parts of the input data, is not specified by the program-
mer. In contrast, by explicitly programming (recursive) function calls, a
functional programmer exhaustively specifies the order and location in
which the functions are to be evaluated. In this approach, the evaluation
strategy is explicit in the function calls, but heavily entangled with the
other functionality.

These contrasting approaches trade lack of control over the evaluation
strategy against tangling, and vice versa. The idiom of strategic program-
ming allows one to have his cake and eat it too: complete control over
the evaluation strategy can be obtained without tangling computation
and control.

Traversal strategies: types versus reuse In several application
areas, one can observe a need for traversal control. For example, in
program transformation, the ordering of atomic transformations, check-
ing for their applicability, the repetitive application of them, and their
restriction to particular parts of the input program are essential to guar-
antee correctness and termination of many transformations. Similarly,
in program analysis and understanding, control is needed to traverse call
graphs, data-flow graphs, or other kinds of highly structured source mod-
els. Several program analyses require work-list algorithms that schedule
element processing in, e.g., breadth-first or best-first fashion. In the
field of document processing a similar need for control can be observed.
Specific elements in documents need to be identified, retrieved, and con-
verted. This requires control over the order, scope, nesting level, or path
along which elements are visited.
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When traversing highly structured data, such as parse trees, source
models, or documents, the programmer usually trades type-safety for
reusability. To obtain type-safety, the data must be heterogenous: each
kind of tree, graph, or document element is assigned a specific type.
But when the data structure is heterogenous, access to and traversal
over its subelements will involve dealing with many specific types in
specific ways. If no generic access or traversal is available, this approach
implies lengthy traversal code which cannot be reused for differently
typed data structures. The most obvious way to recover concision and
reusability is to abandon type-safety and instead to employ homogenous,
universal data representations. This dilemma occurs regardless of the
fact if we assume strong static types, or if we resort to more liberal,
even dynamic, well-formedness checking of heterogenous data structures.
Existing notions of generic programming do not immediately remedy this
dilemma of type-safety vs. reusability because, often, generic entities are
not first-class and type-specific customization is cumbersome.

As we will see, this dilemma can be solved with strategic program-
ming, because it caters for generic access to the subcomponents of het-
erogeneously typed data structures.

Strategic programming The need for control over evaluation and
traversal strategies in different areas of computing, has led to a number
of innovations, including rewriting strategies for tactics and tacticals in
theorem proving [58], generalized folds [53], visitors [20], propagation
patterns [47], and traversal functions [10]. In previous work [49, 64, 38,
44, 65] we have built on these innovations, culminating in a programming
style which we have termed strategic programming. We have worked out
detailed realizations of this style in several programming paradigms.

In this paper we generalize over these various realizations, providing a
general characterization of strategic programming, and its central notion
of a strategy. We reassess and compare several realizations in light of
this general characterization.

Outline We will begin by formulating a definition of strategic pro-
gramming in Section 2. In Sections 3 to 5, we will discuss realiza-
tions of the strategic programming idiom in three programming lan-
guage paradigms in detail: term rewriting, functional programming,
and object-oriented programming. Throughout the paper we will use
examples from the area of grammar engineering, that is, our strategic
programs analyse and transform syntax definitions [60, 14, 37, 43, 46].
A discussion of related work can be found in Section 6. The paper is
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concluded in Section 7 with a comparison of the incarnations, a brief
review of applications, and pointers to implementations.

2. Strategic Programming
In this section we will explain the notion of strategic programming.

We will give defining characteristics of the concept of a strategy. These
characteristics are embodied by a minimal set of basic strategy combi-
nators. The expressiveness of these combinators is illustrated by the
definition of several reusable traversal schemes and other parameterized
strategies. Then we make an inventory of the challenges to be met by
a strategic programming setting. We conclude with a discussion of the
benefits to be expected from adopting strategic programming.

2.1. Ingredients
To define the notion of strategic programming, we need to delineate its

principle notion: the concept of a strategy. In our opinion, this concept
is best described by enumerating its defining characteristics.

Genericity Strategies are generic in the sense that they are applicable
to data of any shape (type, sort, class).

Specificity Though generic, strategies provide access to the data struc-
tures on which they operate via type-specific operations.

Traversal Strategies enable generic traversal into subcomponents of
compound data structures.

Partiality The application of a strategy to a given datum may fail. A
mechanism for recovery from failure must be present.

Control Strategies can be used to generically model control over the
application of basic computations.

First-class Strategies are first-class citizens in the sense that they can
be named, can be passed as arguments, etc. Their first-class status
enables a combinator-style of programming.

Together, these defining characteristics define an abstract notion of strat-
egy that is not bound to any particular programming language or para-
digm. The idiom of strategic programming, then, can be defined simply
as program construction with the use of strategies.
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Comb. Signature Meaning
[ ] π × τ → ατ Type specialization

adhoc π × ατ → π

{
adhoc(s, r)@t⇒ r(t) (if r(t) well-typed)
adhoc(s, r)@t⇒ s@t (otherwise)

id π id@t⇒ t
fail π fail@t⇒ undef
; π × π → π (s; s′)@t⇒ s′@(s@t)

< + π×π×π → π

{
(s<s′+s′′)@t⇒ s′@(s@t) (if s@t 6⇒ undef )
(s<s′+s′′)@t⇒ s′′@t (if s@t⇒ undef )

all π → π all(s)@f(t1, . . . , tn)⇒ f(s@t1, . . . , s@tn)
one π → π one(s)@f(. . . , ti, . . .)⇒ f(. . . , s@ti, . . .)

Figure 1. Basic strategy combinators.

2.2. Basic Combinators
The notion of strategy can be made significantly more concrete by

prescribing a minimal set of strategy combinators that any strategic
programming incarnation must supply. Figure 1 specifies such a set.
We define the profiles of the combinators, and we sketch their meaning
by indicating their effect when they are applied to data. Application of a
data-processing action a to a datum t is written as a@t. The meaning of
such an application is then indicated by judgements of the form a@t⇒ t′.
We do not suggest a very formal reading of the table because we aim at
a general, language-independent definition of strategies.

Specificity vs. genericity In the figure, we use π to denote the type
of strategies (i.e., nullary strategy combinators), and we use ατ to denote
the type of a basic action meant to process data of a specific type τ . In
different paradigms, this latter type will be incarnated differently, e.g.,
as the type of a many-sorted rewrite rule in term rewriting, as the type
of a unary monadic function in functional programming, and as the type
of a visit method in object-oriented programming. Note that strategies
π are generic data-processing actions whereas basic actions ατ are type-
specific.

The first two combinators in the table mediate between the generic
and the specific world. s[τ ] turns a strategy s into a basic action to
process data of type τ by type specialization. The combinator adhoc
performs strategy update. It updates a default strategy s with a basic
action r such that the resulting strategy will behave like r on data of
r’s input type, and like s otherwise (type case). When we indicate
the meaning of strategies we leave out type specialization for concision,
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but we assume that a strategy is always first type-specialized before it
is applied to a term of a specific type. In fact, type specialization is
a standard notion required for polymorphic entities, whereas strategy
update is an essential contribution of strategic programming.

Combinator style The lower part of Figure 1 defines the basic com-
binators for control and traversal. The nullary strategy id succeeds for
any datum and returns its input without change. The strategy fail fails
for any datum, indicated by the output undef . The sequence combina-
tor ; applies its two argument strategies in succession. The conditional
combinator < + first attempts application of its first argument strat-
egy. If this application succeeds, the second argument is applied to the
intermediate result. Otherwise, the third argument is applied to the
original term. The unary combinators all and one both push their ar-
gument strategy one level down into the input datum. The expression
f(t1, . . . , tn) does not mean to imply that strategies necessarily work on
terms formed by constructor application. It is only meant to indicate
that the input datum can in some sense be compound, and that its direct
components can be retrieved.

As will become evident in subsequent sections, the minimal set of
basic combinators need not coincide with the primitives of a strategic
programming incarnation. Also, depending on the host paradigm, ad-
ditional basic combinators might be appropriate, and the semantics of
each combinator might slightly deviate. Nonetheless, the set of combi-
nators given here provides a concrete guideline (norm, standard) for an
incarnation of strategic programming.

2.3. Defined Combinators
The power of our admittedly small set of basic combinators can best be

demonstrated with a few examples. Figure 2 shows a list of combinators
defined in terms of the basic ones.

The first combinator defines left-biased choice in terms of the con-
ditional combinator < + . The next two combinators manipulate the
success value of their argument strategy: not inverts this value, while
try recovers from failure via id if necessary. The strategy test(s) has
the same success value as s, but ignores the output of s. The repeat
combinator applies its argument strategy until a fixpoint is reached. The
topdown and bottomup combinators apply their argument at the root of
the incoming datum, and at all its immediate and non-immediate com-
ponents. The topdown combinator traverses the data in pre-order, while
the bottomup combinator defines a post-order traversal. The combi-
nators once-bu and while-td are variations on bottomup and topdown
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Combinator Definition
choice(s, s′) s<id+s′

not(s) s<fail+id
try(s) choice(s, id)
test(s) not(s)<fail+id
repeat(s) try(s; repeat(s))
topdown(s) s; all(topdown(s))
bottomup(s) all(bottomup(s)); s
once-bu(s) one(once-bu(s))<id+s
while-td(s) s<all(while-td(s))+id
naive-innermost(s) repeat(once-bu(s))
innermost(s) all(innermost(s)); try(s; innermost(s))
below(sb, st) once-td(st; once-td(sb))
strict-below(sb, st) below(one(sb), st)

Figure 2. Some defined strategy combinators

that apply the argument strategy only to the first component at which it
succeeds, or at all components above which it does not fail, respectively.
The naive-innermost and innermost combinators both implement the
leftmost innermost evaluation strategy, but the second is more efficient
than the first. Finally, below and strict-below take two argument
strategies and apply the first at a component nested inside a component
where the second is applied. In the case of below these two components
are allowed to coincide.

These examples demonstrate all but one of the defining ingredients of
strategies: type-specific operations. Forcibly, these operations are highly
dependent on the kind of data present in a given programming paradigm.
For concrete examples we must therefore beg the reader’s patience until
subsequent sections. There we will demonstrate how generic algorithms
can be implemented as generic defined strategy combinators, which can
be instantiated for particular data structures by supplying strategies as
arguments that employ type-specific operations.

2.4. Challenges
When realizing the strategic programming idiom in a specific pro-

gramming paradigm, several challenges await us.

Semantics The semantics of strategies, as sketched in Figure 1 must
be mapped onto the semantics of the host paradigm. This involves in-
habiting notions such as basic action, datum, subcomponent, and failure.
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Typing The typing of strategies is a major challenge. The requirement
of generic traversal calls, as we will see, for sophisticated typing concepts.
This concerns traversal combinators like all and one. Also, the tension
must be resolved between genericity and data access via type-specific
operations. This concerns the combinator adhoc for strategy update.

Access to host paradigm We want all programming features that
are ‘native’ to the host paradigm to remain available to the programmer
when using strategies. For instance, in object-oriented programming,
strategies should blend with reference semantics, side-effects, and in-
heritance. In functional programming they should have value semantics,
allow monadic I/O, and be strict or lazy depending on the host language.

Deviation from guideline combinator set As mentioned above,
the set of basic combinators of Figure 1 is meant only as a guideline to
clarify the concept of strategies. A strategic programming incarnation
might offer additional combinators, or variations on the given set of basic
combinators. The actual basic combinators offered by an incarnation
are either primitive concepts of the incarnation, or the combinators are
programmed using an even more fundamental interface supported by
the incarnation. This latter option is intriguing because it offers the
strategic programmer the possibility to extend the set of basic strategy
combinators.
To what extent we have succeeded in meeting these challenges in the
various incarnations of strategic programming will become clear in the
upcoming sections.

2.5. Benefits
Programming with strategies offers a number of benefits over doing

without them.

Separation of concerns Strategies allow one to implement conceptu-
ally separable concerns in distinct modules, whilst otherwise they would
be entangled in a single code fragment. As a result, these concerns can be
understood, reasoned about, developed, tested, maintained, and reused
separately. Examples of (categories of) concerns that we encountered
include traversal, evaluation, computation, control, accumulation, state,
testing.

Reuse Strategies enable reuse in several dimensions. Within an appli-
cation, a single concern, such as a particular traversal strategy or appli-
cability condition, needs to be implemented only once in a reusable strat-
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egy. Across applications, strategies can be reused that capture generic
behaviour. Examples are defined combinators for traversal and control,
such as topdown and repeat, but also combinators that capture generic
algorithms, e.g., for free variable analysis or refactoring [61, 44, 40].

Robustness Using strategies, each concern can be implemented with
explicit reference only to types and operations that are relevant to it.
As a result, changes in specific data structures will not unduly affect the
implementation of the concern. This isolation from changes in class hier-
archy, term signatures, or algebraic data type definitions (depending on
the paradigm) diminishes the resistance to change of software systems,
and makes them more maintainable.

Concision When programming on heterogeneous data structures, strate-
gic programming can be radically more concise than non-generic pro-
gramming. Due to the generic access to specific data structures, the
strategic programmer does not need to repeatedly implement for each
type the behaviour that is conceptually generic to them all. Instead,
generic behaviour can be captured in first-class combinators and reused
across types.

2.6. Realizations of Strategic Programming
The idiom of strategic programming outlined above is not just a theo-

retical artifact. It has actually been realized within several program-
ming paradigms and applied in the construction of numerous tools.
In the upcoming three sections we will closely examine the realiza-
tion of the strategic programming idiom in term rewriting (Section 3),
functional programming (Section 4), and object-oriented programmming
(Section 5). This examination will inhabit the ingredient notions of
strategic programming and show interaction with type-specific opera-
tions, which is different for each paradigm. It will clarify the contribu-
tion that strategic programming can make to the individual paradigms,
and the problems encountered when implementing a realization.

Each of these sections follows the same pattern. First we introduce
the programming paradigm and illustrate the problems with tangling of
logic and control. We then argue that the conventional solutions to this
problem are not adequate. Subsequently, we discuss the realization of
the strategic programming combinators, and show how they lead to a
general solution of the tangling problem. Finally, we show the extras that
the programming paradigm has to offer to the strategic programmer.
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3. Term Rewriting
In conventional term rewriting systems the strategy that determines

the application of rewrite rules is implicit; rules are usually applied ex-
haustively to a term. In areas such as program transformation and
theorem proving many possible rewriting sequences exist for a given set
of valid rewrite rules and a given term. That is, a collection of interest-
ing rewrite rules is usually non-confluent and non-terminating. In a pure
rewrite system, control over the application of rewrite rules can only be
obtained by means of additional constructors and rewrite rules. There
are many approaches that address aspects of the problem of control in
rewriting; [63] surveys approaches to rewriting strategies in program
transformation.

In this section we illustrate the problem of control in pure rewrite
systems, discuss the usual approach to solving this problem, and show
how the extension of a rewriting language with programmable rewriting
strategies provides a more general solution. In particular, we explain the
incarnation of strategic programming in the strategic rewriting language
Stratego [64, 62].

As a running example throughout this paper we will use the Extended
BNF language for syntax definition and consider various transformations
on grammars to illustrate aspects of strategic programming.

3.1. Terms and Rewrite Rules
Term rewriting systems [15] consist of a set of rewrite rules that spec-

ify basic transformations on tree structured data, usually described by
means of terms.

A term is built from simpler terms by means of constructor applica-
tion, i.e., if t1 to tn are terms and C is a constructor, then C(t1, ..., tn) is
another term. Term languages can be described by means of many-sorted
algebraic signatures, which assign sorts to the arguments of construc-
tors. Terms can be used to represent abstract syntax trees of programs.
For example, the signature in Figure 3 defines the structure of EBNF
grammars. A grammar consists of a start non-terminal and a list of
productions. A production consists of a non-terminal and the regular
expression defining it. Regular expressions are composed from termi-
nals, non-terminals and empty string, with the combinators star (zero
or more repetitions), plus (one or more repetions), opt (zero or one),
sequential composition, and alternative.

A rewrite rule of the form t1 -> t2 declares the transformation of a
term matching pattern t1 to the instantiation of pattern t2. A pattern
is a term with variables. Rewrite rules can be used to express basic
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module EBNF-core

imports Layout

signature

constructors

Grammar : NonTerminal * List ( Prod ) -> Grammar

Prod : NonTerminal * RegExp -> Prod

T : Terminal -> RegExp

N : NonTerminal -> RegExp

Empty : RegExp

Star : RegExp -> RegExp

Plus : RegExp -> RegExp

Opt : RegExp -> RegExp

Seq : RegExp * RegExp -> RegExp

Alt : RegExp * RegExp -> RegExp

Figure 3. Signature for abstract syntax of EBNF.

module ebnf-laws

imports EBNF

rules

SAR : Seq(Seq(e1, e2), e3) -> Seq(e1, Seq(e2, e3))

SAL : Seq(e1, Seq(e2, e3)) -> Seq(Seq(e1, e2), e3)

AAR : Alt(Alt(e1, e2), e3) -> Alt(e1, Alt(e2, e3))

AAL : Alt(e1, Alt(e2, e3)) -> Alt(Alt(e1, e2), e3)

DSAL : Seq(Alt(e1, e2), e3) -> Alt(Seq(e1, e3), Seq(e2, e3))

DSAR : Seq(e1, Alt(e2, e3)) -> Alt(Seq(e1, e2), Seq(e1, e3))

DASL : Alt(Seq(e1, e2), Seq(e1, e3)) -> Seq(e1, Alt(e2, e3))

DASR : Alt(Seq(e1, e2), Seq(e3, e2)) -> Seq(Alt(e1, e3), e2)

DASL : Alt(Seq(e1, e2), Alt(Seq(e1, e3), e4)) ->

Alt(Seq(e1, Alt(e2, e3)), e4)

DASR : Alt(Seq(e1, e2), Alt(Seq(e3, e2), e4)) ->

Alt(Seq(Alt(e1, e3), e2), e4)

Figure 4. Some rewrite rules on regular expressions.

transformation rules and can be considered as operationalizations of the
algebraic laws of a language. For example, the rewrite rules in Fig-
ure 4 express basic laws of regular expressions such as associativity and
distributivity. These rules are considered valid when they preserve the
semantics of the expressions that are transformed; in the case of EBNF,
the expression before and after transformation should generate the same
set of strings (we will not consider preservation of tree structure here).
Many more laws exist. In conditional rewrite rules additional tests on
the patterns can be stated.

A term is in normal form with respect to a set of rewrite rules, if it
contains no subterms that match with the left-hand side of a rewrite rule.
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(For conditional rewriting the notion of normal form is more complex.)
Rewrite engines for term rewrite systems compute the normal form of
terms with respect to sets of rules in specifications. This involves exhaus-
tively applying rules to subterms until no more rules apply. A rewrite
engine can employ different strategies to order the application of rules.
In innermost rewriting all subterms of a term are normalized before rules
are applied to the term itself. In outermost rewriting subterms closest
to the root of the term are rewritten first. Thus rules are automatically
applied throughout a term and no traversals over the syntax tree need
to be defined. Exhaustive application of rewrite rules is supported by
systems such as OBJ [21], ASF+SDF [17], and ELAN [6], among many
others.

3.2. Encoding Control
The complete normalization approach of rewriting turns out not to be

adequate for program transformation, because a library of valid and in-
teresting rewrite rules for a given programming language will often form
a non-terminating and/or non-confluent rewriting system. In general, it
is not desirable to apply all rules at the same time, or to apply all rules
under all circumstances.

As an example, consider again the set of rewrite rules in Figure 4.
This rewrite system is non-terminating because rules DSAL and DSAR
enable rules DASR and DASL, and vice versa. If we want to define a trans-
formation to flatten out regular expressions to alternatives of sequences,
i.e., disjunctive normal form, we could discard the DASL and DASR rules.
However, if in another part of the transformation we would like to factor
out common prefixes or suffixes of alternatives we need a rewrite system
with the DASL and DASR rules. It is not possible to combine these rules
in one rewrite system that terminates.

The implicit normalizing strategy of standard rewriting engines does
not allow control over the selection of rules to apply. The common solu-
tion to this lack of control is the introduction of additional constructors
(functions) that achieve normalization under a restricted set of rules.
Figure 5 shows how the rewrite system in Figure 4 can be turned into a
terminating rewrite system that defines the normalization to ‘disjunctive
normal form’. (We assume at this point that only the basic Seq and Alt
combinators are used.) To normalize a formula to DNF the function dnf
should be applied to it.

The dnf function mimics the innermost normalization strategy by re-
cursively traversing terms. The auxiliary functions dnfseq and dnfalt
are used to apply the distribution and associativity rules. In the defini-
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module dnf

imports EBNF

signature

constructors

dnf : RegExp -> RegExp

dnfalt : RegExp * RegExp -> RegExp

dnfseq : RegExp * RegExp -> RegExp

rules

D1 : dnf(T(x)) -> T(x)

D2 : dnf(N(x)) -> N(x)

D3 : dnf(Empty) -> Empty

D4 : dnf(Alt(x, y)) -> dnfalt(dnf(x), dnf(y))

D5 : dnf(Seq(x, y)) -> dnfseq(dnf(x), dnf(y))

S1 : dnfseq(Seq(e1, e2), e3) -> dnfseq(e1, dnfseq(e2, e3))

S2 : dnfseq(Alt(e1, e2), e3) -> dnfalt(seq(e1, e3), dnfseq(e2, e3))

S3 : dnfseq(e1, Alt(e2, e3)) -> dnfalt(seq(e1, e2), dnfseq(e1, e3))

S4 : dnfseq(x, y) -> Seq(x, y) // default

A1 : dnfalt(Alt(e1, e2), e3) -> dnfalt(e1, dnfalt(e2, e3))

A2 : dnfalt(x, y) -> Alt(x, y) // default

Figure 5. Functionalized rewrite system for ‘disjunctive normal form’ of regular
expressions.

tion of the rules for dnfseq and dnfalt it is assumed that the arguments
of these functions are already in normal form. (In functional program-
ming such auxiliary functions are known as smart constructors [19].)

In the solution in Figure 5, the original rules have been completely
intertwined with the dnf transformation. The associativity rules cannot
be reused in the definition of a left factoring transformation. For each
new transformation, e.g., factoring out common prefixes or suffixes, or
desugaring EBNF combinators into simpler ones, a new traversal func-
tion and new auxiliary functions have to be defined. Many additional
rules have to be added to traverse the term to find the places to apply
the rules. Rules S4 and A2 are default rules that only apply if the other
rules do not apply. Without this mechanism even more rules would have
had to be used to handle the cases were the actual transformation rules
do not apply. Default rules were introduced in ASF+SDF [17].

The problem illustrated in the example above is typical for all kinds of
program transformations. Overcoming the problems of non-termination
and non-confluence leads to encoding of control in terms of additional
rewrite rules. This usually leads to a functional programming style of
rewriting, overhead in the form of traversal rules for each constructor
in the signature, intertwining of rules and function definitions—all of
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which makes reuse of rules impossible, and leads to specifications that
are much harder to understand.

3.3. Traversal Functions
The overhead caused by the definition of traversals over terms is a ma-

jor obstacle in the implementation of controlled rewriting. Especially for
the specification of transformations for large languages such as COBOL
the overhead of traversals makes manual definition infeasible.

Based on the observation that a traversal function has a regular pat-
tern, one can opt to generate traversal rules that capture the default
behaviour of a traversal function [10, 11]. By overriding the cases where
non-standard behaviour is needed, a useful traversal function is obtained.
In this approach typically only a few rewrite rules have to be specified,
corresponding to the non-default behaviour of the traversal. However,
the number of generated rules still proves to be a source of overhead, be
it for the compiler, not the programmer. Furthermore, providing a new
traversal scheme requires the implementation of a new generator.

In the scheme described in [9] traversal functions are directly sup-
ported in the rewriting engine of ASF+SDF, thus making the genera-
tion of rules transparent to the programmer. Figure 6 illustrates the
approach applied to the problem of normalization to disjunctive normal
form. The specification is the same as that in Figure 5, but the dnf
function has been declared a traversal function in the signature. The
attribute traversal(trafo,bottom-up) declares that dnf performs a
bottom-up traversal over its argument. This means that the function
is first applied to the direct subterms (and, thus, recursively to all sub-
terms) before it is applied at the term itself. Rules need to be declared
only for those constructs that are transformed. The default behaviour
is to reconstruct the term with the original constructor. Thus, in the
example only rules D4 and D5 from Figure 5 need to be specified. The
other D rules are obtained by default. For a signature with n construc-
tors only m of which need to be handled in a special way, this saves
n − m rules. If n is large—the abstract syntax of COBOL has some
300–1000 constructors (depending on dialect and grammar style)—this
is significant. But even for smaller languages, writing out the traversal
time and again becomes a pain and obscures specifications.

In addition to the bottom-up traversal schema, ASF+SDF provides
a top-down schema. A top-down function traverses down the tree and
stops as soon as a rule applies. In addition a traversal can be a transfor-
mation (trafo) and/or a traversal which accumulates information along
the way (accu). Finally, traversal functions can be parameterized with
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module dnf

imports EBNF

signature

constructors

dnf : RegExp -> RegExp {traversal(trafo,bottom-up)}

dnfalt : RegExp * RegExp -> RegExp

dnfseq : RegExp * RegExp -> RegExp

rules

D4 : dnf(Alt(x, y)) -> dnfalt(x, y)

D5 : dnf(Seq(x, y)) -> dnfseq(x, y)

S1 : dnfseq(Seq(e1, e2), e3) -> dnfseq(e1, dnfseq(e2, e3))

S2 : dnfseq(Alt(e1, e2), e3) -> dnfalt(seq(e1, e3), dnfseq(e2, e3))

S3 : dnfseq(e1, Alt(e2, e3)) -> dnfalt(seq(e1, e2), dnfseq(e1, e3))

S4 : dnfseq(x, y) -> Seq(x, y) // default

A1 : dnfalt(Alt(e1, e2), e3) -> dnfalt(e1, dnfalt(e2, e3))

A2 : dnfalt(x, y) -> Alt(x, y) // default

Figure 6. Disjunctive normal form with traversal function

additional arguments that contain static information to be used during
traversal.

The advantage of traversal functions is that default traversal be-
haviour does not need to be implemented manually. This is similar
to folds with updatable fold algebras in functional programming (see
Section 4) or default visitors in object-oriented programming (see Sec-
tion 5). However, the approach has a number of limitations.

First of all, there is no separation of rules from strategies. A rule is
bound to one specific traversal via the traversal function. It is not possi-
ble to reuse rules in different traversals, for example, to normalize under
different rule sets. Furthermore, rules are intertwined with strategies,
making it hard to distinguish the basic transformation rules from the
traversal code, and to argue about correctness of the whole.

Secondly, the traversal function schema provides a limited range of
traversals. The bottom-up variant does a full traversal of the tree. The
top-down variant stops as soon as it has found a rule application, this
requires explicit definition of recursion in rules. Although it is possible
to implement a wide range of traversals, this requires gluing together the
basic traversals in an ad-hoc manner. It is not possible to define new
traversal schemas in a reusable way, i.e., as a new traversal attribute.
That would require extending the rewrite engine.

Finally, the traversals provided by the language capture an abstrac-
tion, i.e., certain traversal schemata. There is no possibility in the lan-
guage to give further abstractions for alternative traversal schemata, or
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for more elaborate functionality involving traversals. This is desirable
for building libraries with language independent strategies. For exam-
ple, defining substitution without variable capture is similar for many
languages, given the shape of variables and variable bindings. Extrapo-
lating the traversal function approach, more and more such abstractions
will be captured as additional primitives in the rewrite engine. At some
point it will make sense to extend the language with a mechanism for
specifying such abstractions generically.

In short, the traversal function approach addresses the easy use of
certain traversal schemes, but fails to address the other characteristics
of strategic programming, i.e., genericity, partiality, and first-classness.
Other approaches to providing control over rewrite rules such as the ‘se-
quence of normalizations’ approach of TAMPR [7] similarly address only
a few strategic programming ingredients, thus limiting the programmer
when venturing outside the standard repertoire.

3.4. Programmable Rewriting Strategies
Stratego [64, 62] is a language for term rewriting with strategies. It

provides a full incarnation of the strategic programming idiom by pro-
viding the basic combinators of Figure 1 as language primitives (with
some slight notational deviations).

In Stratego, pure rewrite rules can be combined in various ways using
strategy combinators, instead of encoding control in rewrite rules, Thus,
it is possible to select the rules that are needed in a particular trans-
formation and to carefully control their application. Thus, the problem
of non-confluence and non-termination in term rewriting is solved by
making the rewriting strategy programmable.

Type specialization and strategy update The data manipulated
by Stratego’s rewrite rules and strategies are first-order ground terms.
The typing system is very liberal: only term constructors that are men-
tioned in the program need to be declared. Stratego strategies are
generic by definition. Application of a strategy s to a term t is written
<s>t. No explicit type specialization is needed. Labeled rewrite rules
provide data-structure specific operations. A rule is referred to by its
label. In fact, the label of a rewrite rule can be used directly as a named
strategy. Thus, a rewrite rule can be applied to a term of any type, just
like strategies. If there is no match the application fails.

Because rewrite rules double as strategies, there is no need for a strat-
egy update combinator like adhoc. Instead, the choice combinator can
be used to update strategies with rules. Such updates do not involve a
type case, but rely on success and failure of pattern matches.
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Control and traversal combinators A strategy is a program which
may fail, for example, when the left-hand side of a rule does not match
with a term. Control over strategies is defined using sequential compo-
sition (_;_), non-deterministic local choice (_+_), guarded deterministic
local choice (_<_+_), and non-determinstic global choice (_++_). The
local choice operators commit after one of the branches has succeeded,
even if the continuation fails. The global choice operator guarantees a
choice which makes the continuation succeed, if possible, and is imple-
mented using global backtracking.

Traversals are defined by means of the one-step traversal operators
all(_), one(_) and a few variations. Type-specific traversal can be
defined by means of congruence operators. For each n-ary constructor C
in the signature the corresponding congruence operator C(s1,...,sn)
transforms C terms by applying the argument strategies to the direct
subterms, i.e., the application <C(s1,...,sn)>C(t1,...,tn) yields the
term C(<s1>t1,...,<sn>tn).

First-class pattern matching Rewrite rules are composed from more
primitive operations. The left-hand side of a rule matches the subject
term against a term pattern and the right-hand side of a rule constructs
a new term by instantiating a term pattern. Implicitly, the scope of the
pattern variables is restricted to the rule, i.e., their bindings cannot be
observed outside a rule. Instead of restricting these operations to rewrite
rules, Stratego provides them as first-class citizens in their own right.
Thus the operation ?t matches the subject term to the term pattern t,
and the operation !t replaces the subject term by the instantiation of
the term pattern t. The scope of the pattern variables in the patterns
of the ?t (match) and !t (build) operations can be managed by means
of the scope operator {x1,...,xn:s}, which delimits the scope of the
variables xi to the strategy expression s.

Rewrite rules are defined in terms of these basic actions. That is, a
conditional rewrite rule L : t1 -> t2 is translated to the strategy def-
inition L = {x1,...,xn: ?t1 ; !t2}, where the xi are the variables in
the rule. Since match and build are first-class citizens they can be used at
will. For instance, a partially bound match operation can be passed to a
traversal to look for a subterm with a particular shape. Furthermore, the
operations can be used to implement syntactic abstractions such as apply
and match <s> t1 => t2, which denotes !t1; s; ?t2 and anonymous
rules \ t1 -> t2 \, which denotes {x1,...,xn: ?t1; !t2}, where the
xi are the variables of left-hand side t1.
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strategies

try(s) = s <+ id

repeat(s) = rec x(try(s; x))

map(s) = rec x([] + [s | x])

topdown(s) = rec x(s; all(x))

bottomup(s) = rec x(all(x); s)

alltd(s) = rec x(s <+ all(x))

oncetd(s) = rec x(s <+ one(x))

innermost(s) = rec x(all(x); try(s; x))

Figure 7. Defined strategies

Defined strategies Strategy definitions allow the definition of strat-
egy operators as abstractions of strategy expressions. Definitions can be
recursive, but recursive strategies can also be defined using the rec_(_)
shorthand notation, which allows for anonymously recursive strategy
expressions. Figure 7 shows a few definitions of generic strategies in
Stratego notation. The Stratego Standard Library defines a wide range
of generic and specific strategies, including the ones in Figure 7.

The map(s) strategy is an example of data-type specific traversal in
which a strategy s is applied to the elements of a list. Although this
strategy is type specific, it can actually be applied to terms of arbitrary
type; when the term is not a list the strategy simply fails.

Implementation and extensibility Stratego is its own language
with the basic strategy combinators forming its basic constructs. Strat-
ego is implemented by compilation to C code. The implementation of
term representation is provided by the ATerm Library [8], which main-
tains maximal sharing of subterms. As a consequence, checking for
equality of terms is a constant time operation. Furthermore, the library
takes care of garbage collection and persistence of terms for storage and
exchange with other tools. Failure is implemented by means of C’s ex-
ception handling mechanism represented by the setjmp and longjmp
functions. The implementation of full backtracking is an extension of
this mechanism provided by the Choice Point Library [55].

Stratego is open to extension with new basic operators. User defined
primitives can be added by providing an implementation in C, which
can be accessed via the prim(f,[t1,...,tn]) operator. Such primitive
functions can be implemented as ‘high-level’ C functions with ATerms as
arguments and results. Strategies are passed as C function pointers. As
an example consider the C implementation of the all(_) traversal prim-
itive in Figure 8. (The actual implementation handles ATerm lists as a
separate case.) In this fashion, the Stratego Library provides primitives
for arithmetic, I/O, and process management.
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ATerm _all(ATerm t, ATerm f(ATerm))

{

Symbol c = ATgetSymbol((ATermAppl) t);

int i, arity = ATgetArity(c);

ATerm kids[arity];

for(i = 0; i < arity; i++)

kids[i] = f(ATgetArgument(t, i));

return (ATerm) ATmakeApplArray(c, kids);

}

Figure 8. C implementation of all combinator

3.5. Composing Strategies
We will now define several transformations on EBNF grammars to

illustrate the application of strategies and discuss several extensions of
the basic scheme.

Rule selection Figure 9 defines several simplification strategies for
regular expressions. The strategies Simplify and Desugar are abstrac-
tions for sets of rules. The Simplify strategy combines a number of unit
and idempotency rules on regular expressions. The Desugar strategy
combines three rules that define regular operators in terms of sequence
and alternative as defined in Figure 10.

The other strategies combine different associativity and distributiv-
ity rules with the standard simplification rules. The left-factorize
strategy associates sequences to the right (SAR) and factorizes on the left
(DASL), i.e., if the prefix of two adjacent alternatives is equal they can
be factored out. Right factorization works just the other way around;
associate sequences to the left (SAL) and factor out common suffixes

module ebnf-simplify

imports EBNF ebnf-laws ebnf-traversals ebnf-sugaring ebnf-inline

strategies

Simplify =

SEL + SER + AEE + SE + PE + OE + ADL + ADR + SDL + SDR

+ OO + SS + PS + OS + PO + OP + AOL + AOR + AAI

left-factorize = innermost(SAR + DASL + AAR + Simplify)

right-factorize = innermost(SAL + DASR + AAR + Simplify)

Desugar = DefOpt + DefStar + DefPlus

dnf = innermost(SAR + DSAL + DSAR + AAR + Simplify)

dnf-desugar = innermost(SAR + DSAL + DSAR + AAR + Desugar + Simplify)

ebnf-sugar = topdown(try(RecStar + RecPlus + RecOpt))

Figure 9. Normalization of regular expressions under different sets of rules
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(DASR). The dnf strategy implements the simplification to ‘disjunctive
normal form’ discussed in Sections 3.2 and 3.3 in addition to standard
simplifications. The strategy dnf-desugar adds desugaring rules to dnf
normalization. Finally, strategy ebnf-sugar replaces BNF definitions
of optionals and lists with the corresponding regular operators in a sin-
gle topdown traversal. Thus, using a single set of rules and generic
definitions of rewriting strategies, different transformations can be im-
plemented. Note that the strategies in Figure 9 concisely cover a much
wider range of grammar transformations than Figures 5 or Figure 6, and
that all EBNF term constructors are taken into account. Note also that
these strategies can be applied to entire grammars just as well as to
individual regular expressions.

New constructors Figure 10 presents the definitions of the desugar-
ing rules mentioned above. The rules express the regular operators Opt,
Star, and Plus in terms of the alternatives and sequences and auxiliary
non-terminals. Since the definitions of Star and Plus need to be recur-
sive, the auxiliary recursion operator Rec is introduced, which represents
a fixed point of its argument expression. For example, a Star(e) expres-
sion is defined as the fixed point over non-terminal N(x) of empty or e
followed by N(x), for some new name x. Thus, it is possible in Stratego,
as in other algebraic specification languages, but not in (mainstream)
functional programming languages, to extend a signature imported from
another module with additional constructors. Traversals implemented

module EBNF

imports EBNF-core

signature

constructors

Delta : RegExp

Parens : RegExp -> RegExp

Rec : NonTerminal * RegExp -> RegExp

module ebnf-sugaring

imports EBNF ebnf-traversals

rules

DefOpt :

Opt(e) -> Alt(Empty, e)

DefStar :

Star(e) -> Rec(x, Alt(Empty, Seq(e, N(x)))) where new => x

DefPlus :

Plus(e) -> Rec(x, Alt(e, Seq(e, N(x)))) where new => x

Figure 10. Desugaring of regular expressions.
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using generic traversal strategies can cope with such extensions since
only relevant constructs are touched.

Unique names The auxiliary non-terminals used in the desugaring
in Figure 10 are generated by the new primitive strategy, which gener-
ates a unique new name. This is possible as a result of the maximal
sharing implementation of terms; all strings in all ‘live’ terms are known
such that the name generator can guarantee that no existing string is
produced as new name, thus avoiding name clashes.

Generic term (de)construction Figure 11 defines a transformation
from EBNF to BNF. The expression definining a BNF production con-
sists of alternatives consisting of sequences of non-terminals and ter-
minals, i.e., regular expressions in disjunctive normal form without it-
eration operators. The dnf-desugar strategy from Figure 9 achieves
this normal form, except that it leaves the recursive definitions of the
iteration operators in place. To achieve proper BNF these need to be
lifted out and made into proper productions. The strategy in Figure 11
achieves this by means of the generic collect-split(f) strategy, which
applies a transformation f to the subterms of a term, possibly splitting
it into a pair (t,ts) of a residual term t which stays behind and a
list of terms ts which is collected. In the translation to BNF, the Rec
terms produced by desugaring are replaced by the non-terminal with the
recursion variable as its name. At the same time the Rec terms are col-
lected after being transformed to Prod terms, i.e., productions. The list

module ebnf-to-bnf

imports EBNF lib ebnf-simplify

strategies

ebnf-to-bnf =

iowrap(

dnf-desugar;

Grammar(id, collect-split(\Rec(x,e) -> (N(x),[Prod(x,e)])\); conc)

)

strategies

collect-split(splitter) =

rec x(CollectSplit(x, splitter <+ !(<id>,[])))

rules

CollectSplit(s, splitter) :

c#(as) -> (t, <union> (ys, <unions> xs))

where <unzip(s)> as => (bs, xs);

<splitter> c#(bs) => (t, ys)

Figure 11. Simplification of grammars in EBNF to grammars in BNF.
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of transformed original productions and the list of collected productions
are then concatenated by conc.

The generic definition of collect-split employs the _#(_) operator
for generic (de)construction of a term into its constructor and lists of
arguments. In the left-hand side of the CollectSplit rule, a term is
deconstructed into its constructor c and arguments as. In the condition
of the rule a new term is composed from the same constructor c and the
transformed list of arguments bs.

Dynamic rules Another limitation of term rewriting that was not
mentioned above is the fact that rewrite rules are context-free. That
is, when matching the left-hand side of a rule, only the information
present in the subject node and its subterms can provide information
about the applicability of the rule. For some problems such as inlining
and bound variable renaming, information from the context of a term
is needed. In conventional settings this problem is solved by threading
information along the traversal over the tree by means of additional
parameters of the traversal function. This affects all control functions
that are called along the way. Stratego provides scoped dynamic rewrite
rules [66], which allows a traversal to generate a new rewrite rule at
the point where context information is available and apply it at a later
stage, without explicitly threading the information.

The application of dynamic rules is illustrated by the conversion from
BNF to EBNF in Figure 12. The ebnf-sugar strategy recognizes pro-
ductions that define optionals or lists and transforms their bodies accord-
ingly. For example, X ::= eps | A X is translated to X ::= A*. Next
we would like occurrences of X to be replaced by the regular expression
A*, i.e., we would like to inline the definition of X.

With static rewrite rules this cannot be achieved, unless we know
at specification-time which non-terminals to replace with which bod-
ies. By means of dynamic rewrite rules this can be achieved. The
DeclareProduction strategy in Figure 12 matches a production and
dynamically generates a rewrite rule Inline mapping the defined non-
terminal to the defining regular expression of the production. A rule
defined within the rules(_) construct inherits the bindings to any pat-
tern variables from the context.

The inline(pred) strategy traverses a grammar, declaring each pro-
duction it encounters provided the predicate pred succeeds for it. Sub-
sequently the grammar is traversed again to apply the Inline rule. In
the bnf-to-ebnf strategy the inline strategy is instantiated such that
only non-terminals defining iteration operators are inlined.
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module bnf-to-ebnf

imports EBNF lib ebnf-simplify

strategies

bnf-to-ebnf =

iowrap(

dnf; ebnf-sugar;

inline(Prod(id, Star(id) + Plus(id) + Opt(id));

not(recursive-prod))

)

module ebnf-inline

imports EBNF dynamic-rules

strategies

inline(pred) =

{| Inline :

topdown(try(pred; DeclareProduction));

topdown(try(Inline)) |}

DeclareProduction =

?Prod(x, e);

rules( Inline : N(x) -> e )

recursive-prod =

Prod(?x, oncetd(?N(x)))

Figure 12. Replacing recursive productions by regulare expression combinators

4. Functional Programming
The functional programming paradigm meets a few requirements for

strategic programming in a natural way. One is used to programming
with combinators, e.g., functional composition or monadic binding (re-
call sequential composition of strategies via _;_). Moreover, effects like
success and failure are straightforward to handle with monads (recall the
ingredient of partiality). Parametric polymorphism allows us to write
functions which can be applied to all possible types (recall the ingredient
genericity). One is also used to the use of recursion schemes, especially
for lists—think of foldl and foldr. Those are related to traversal.
However, generic term traversal is not straightforward to achieve. Also,
the idea of mixing polymorphic and monomorphic functions as suggested
by the basic combinator adhoc is alien. Before we remedy these prob-
lems, we review some less generic approaches to traversal. Then, we will
spell out the functional incarnation of strategic programming based on
the simple formula “strategies as functions”. We will also pay attention
to challenges imposed on a type system if we want to model functional
strategies.

We will give our examples in Haskell throughout this section, although
functional strategies also make perfect sense for other functional lan-
guages. The model we discuss in the sequel relies on a few extensions
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module Ebnf where

type Grammar = (NonTerminal, [Prod])

type Prod = (NonTerminal, RegExp)

data RegExp = Terminal Terminal

| NonTerminal NonTerminal

| Empty

| Star RegExp

| Plus RegExp

| Opt RegExp

| Seq RegExp RegExp

| Alt RegExp RegExp

type Terminal = String

type NonTerminal = String

Figure 13. Abstract syntax of EBNF as Haskell datatypes.

on Haskell 98 [23] which will be pointed out on the way. We will use
the EBNF grammar from the previous section (see Figure 3) and cor-
responding grammar-engineering examples for illustrative purposes. In
Figure 13, the grammar is shown after its transposition to a Haskell
system of datatypes.

4.1. Tangled Traversal
Let us investigate the standard style of traversal programming in the

functional paradigm. It turns out that term traversal is usually spelled
out in ordinary recursive functions using pattern matching. We call this
style “tangled traversal” because it defines functions specific to certain
datatypes in a way that a traversal scheme is encoded exhaustively for
the datatypes, and the traversal scheme is not separated from truly
problem-specific functionality. To give a simple example, let us consider
the problem of determining all used nonterminals in an EBNF grammar.
To this end, we need a family of functions to descend into EBNF terms
and to collect nonterminals all over the place. Such tangled functions
are shown in Figure 14.

We encounter basically the same problems as in the term-rewriting
context when a functionalized style with additional constructors was
employed. In functional programming, a traversal is encoded by pattern
matching to cover all constructors of a type, and by a family of functions
to cover all types involved in the traversed data structures. In the ex-
ample, we need to descend down to regular expressions. In addition, we
also descend into compound regular expressions to collect the contribut-
ing sets (in fact, for simplicity: lists) of used nonterminals. Generic and
specific functionality is obviously intertwined in the functions. If any of
these two parts of the traversal would have to be revised, a new exhaus-
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used :: Grammar -> [NonTerminal]

used = concat . map usedInProd . snd

where

usedInProd :: Prod -> [NonTerminal]

usedInProd = usedInRE . snd

usedInRE :: RegExp -> [NonTerminal]

usedInRE (NonTerminal no) = [no]

usedInRE (Star sy) = usedInRE sy

usedInRE (Plus sy) = usedInRE sy

usedInRE (Opt sy) = usedInRE sy

usedInRE (Seq sy1 sy2) = (usedInRE sy1) ++ (usedInRE sy2)

usedInRE (Alt sy1 sy2) = (usedInRE sy1) ++ (usedInRE sy2)

usedInRE _ = []

Figure 14. Used nonterminals in an EBNF in tangled traversal style.

tive family of traversal functions is due. Also, encoding the traversal
scheme becomes cumbersome when more complex systems of datatypes
as pointed out for term-rewriting incarnation.

4.2. Traversal by Generalized Folds
Let us look for improvements over tangled traversal. It is folklore

that all algebraic datatypes admit a concept of generalized folds—in
fact, there are quite a few different variations such as catamorphic and
paramorphic folds, non-monadic and different kinds of monadic folds
[53]. This concept indeed suggests to separate out the traversal scheme of
folding into a fold function, and then to use a fold algebra to collectively
represent all the functionality “replacing” the various constructors. In
Figure 15, we show a (paramorphic and monadic) fold-algebra type, and
part of the corresponding family of fold functions for our sample system
dealing with the abstract syntax of EBNF. The fold algebra type is
parameterized by the result types of folding for the various datatypes in
the EBNF system. The fold function for RegExp is given as an instance
of a corresponding Fold class where we perform a case discrimination
over forms of regular expressions, and we recurse into terms via the
overloaded fold function. In a given equation (e.g., for sy@(Star sy’)),
the fold function is recursively called for the subcomponents (sy’ in the
example). The results are passed to the corresponding algebra member
(i.e., star). The member is looked up via record-component selection
(cf. star alg ...). In fact, since we are using paramorphic folds [51],
we also pass the original term sy to the fold member.

The fold-algebra type and the fold function can be reused. In fact,
they can also be generated. Generalized folds support separation of
concerns, and reuse of the traversal scheme.
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data Monad m => FoldAlg gr pr re st m = FoldAlg

{ grammar :: Grammar -> (st,[pr]) -> m gr,

prod :: Prod -> (st,re) -> m pr,

terminal :: RegExp -> st -> m re,

nonterminal :: RegExp -> st -> m re,

empty :: RegExp -> m re,

star :: RegExp -> re -> m re,

plus :: RegExp -> re -> m re,

opt :: RegExp -> re -> m re,

seq :: RegExp -> re -> re -> m re,

alt :: RegExp -> re -> re -> m re,

string :: String -> m st

}

class Fold alg x y | alg x -> y where

fold :: alg -> x -> y

instance Monad m => Fold (FoldAlg gr pr re st m) RegExp (m re) where

fold alg sy@(Terminal st) = fold alg st >>= terminal alg sy

fold alg sy@(NonTerminal st) = fold alg st >>= nonterminal alg sy

fold alg sy@Empty = empty alg sy

fold alg sy@(Star sy’) = fold alg sy’ >>= star alg sy

fold alg sy@(Plus sy’) = fold alg sy’ >>= plus alg sy

fold alg sy@(Opt sy’) = fold alg sy’ >>= opt alg sy

fold alg sy@(Seq sy1 sy2) = fold alg sy1 >>= \sy1’ ->

fold alg sy2 >>= \sy2’ ->

seq alg sy sy1’ sy2’

fold alg sy@(Alt sy1 sy2) = fold alg sy1 >>= \sy1’ ->

fold alg sy2 >>= \sy2’ ->

alt alg sy sy1’ sy2’

Figure 15. The fold-algebra type for EBNF and folding over regular expressions.

Updatable fold algebras The mere separation of fold functions and
fold algebras is not sufficient for truly generic programming. In [45], we
observed that the key requirement for scalable traversal technology is
that one can easily mix genericity and specificity, that is, one can refine
suitable generic fold algebras so that only problem-specific members of
the algebra need to be touched. This is the key to reuse and genericity.
One can, for example, think of a completely generic fold algebra for
collecting entities via a traversal. A corresponding fold algebra crush
is shown in Figure 16. We use the mappend operation of a Monoid to
combine intermediate values. The empty collection corresponds to the
other operation mempty of a Monoid. Such generic fold algebras can
again be generated from a given system of datatypes.

Generic programming can now commence by updating generic fold
algebras for those constructors which require specific functionality. In
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crush :: (Monad m, Monoid u) => FoldAlg u u u u m

crush = FoldAlg {

grammar = \_ -> \(no,ps) -> return (no ‘mappend‘

(foldl mappend mempty ps)),

prod = \_ -> \(no,sy) -> return (no ‘mappend‘ sy),

terminal = \_ -> \st -> return st,

nonterminal = \_ -> \st -> return st,

empty = \_ -> return mempty,

star = \_ -> \re -> return re,

plus = \_ -> \re -> return re,

opt = \_ -> \re -> return re,

seq = \_ -> \re1 -> \re2 -> return (re1 ‘mappend‘ re2),

alt = \_ -> \re1 -> \re2 -> return (re1 ‘mappend‘ re2),

string = \_ -> return mempty

}

Figure 16. A fold algebra for collection.

Haskell, record-update notation is appropriate since fold algebras are
just records. We can encode our earlier example to collect all used
nonterminals in a much more concise manner (when compared to tangled
traversal, or exhaustive construction of a fold algebra). The following
one-liner implements the traversal problem:

used = fold crush{nonterminal = \(Nonterminal st) -> \_ -> Just [st]}

The resulting style of “updatable generic fold algebras” [45] addresses
traversal genericity in the same sense as strategic programming. How-
ever, strategies obviously go beyond generalized folds since traversal
schemes can be composed from basic combinators like all and one. It
is important to note that strategic traversal combinators do not recurse
by themselves. Recursion is rather expressed explicitly by means of (re-
cursive) strategy definitions. In fact, updatable fold algebras suffer from
the same problem as the traversal-function approach in term rewriting
when only a fixed set of traversal schemata is considered.

4.3. Strategies as functions
Since strategies are meant to admit a concept of application, that is,

they can be applied to a concrete datum, the desired functional model
of strategies suggestes itsself: We want strategies to correspond to func-
tions. Since strategies are required to be generic, we obviously need
polymorphic functions. In fact, we favour monadic polymorphic func-
tions since we want to use monads [68] to deal with effects like partiality,
state and others. In a first approximation, we can think of strategies as
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id = return

fail = const mzero

seq = \f g x -> f x >>= g

choice = \f g x -> (f x) ‘mplus‘ (g x)

Figure 17. Strategy combinators as polymorphic function combinators.

functions of the following type:

∀x m.Monad m ⇒ x→ m x

Here, we assume that strategies preserve the input type, that is, the
resulting datum is of the same type as the input datum. We will later
explore another type scheme but let us stick to type preservation for the
moment.

Strategy combinators If strategies are polymorphic functions, then
strategy combinators are polymorphic function combinators. In Fig-
ure 17, we show the first few implementations of strategy combinators
in Haskell. In this stage, we leave out the traversal combinators all and
one, and also the adhoc combinator because their treatment requires
more effort. All these combinators involve Monad or even MonadPlus op-
erations. The combinator id is defined as the monadic identity function
in terms of the monad member return. The combinator fail is defined
as a constant function (i.e., a function ignoring its argument) which
always returns the failure element mzero (of an accordingly extended
monad). The combinator seq denotes monadic function composition.
The combinator choice models left-biased choice again using an opera-
tion of an extended monad which copes with addition (i.e., MonadPlus
in Haskell). To deal with partiality or different kinds of choice, we only
have to select a suitable monad instance, e.g., the list monad, or a more
sophisticated monad with other forms of backtracking [26]. We refrain
from giving the types of the function combinators in this stage because
those deserve some proper discussion.

Basic traversal combinators The encoding of the traversal combi-
nators can receive inspiration from the fold-algebra approach. Traversal
combinators like all and one can be encoded (in Haskell) in a way
similar to the fold function, that is, per class-overloading to provide
a definition of the traversal combinator via an instance per term type,
and per pattern matching to exhaust all possible constructors via an
equation per constructor. Along the way, we might need to go beyond
Haskell 98 because multi-parameter classes and functional dependencies
are convenient [33]. In Figure 18, we show the completely systematic
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all (Terminal st) f = f st >>= return . Terminal

all (NonTerminal st) f = f st >>= return . Nonterminal

all Empty f = return Empty

all (Star re) f = f re >>= return . Star

all (Plus re) f = f re >>= return . Plus

all (Opt re) f = f re >>= return . Opt

all (Seq re1 re2) f = f re1 >>= \re1’ ->

f re2 >>= \re2’ ->

return (Seq re1’ re2’)

all (Alt re1 re2) f = f re1 >>= \re1’ ->

f re2 >>= \re2’ ->

return (Alt re1’ re2’)

Figure 18. Instance of all for regular expressions.

code for the all instance for RegExp. Traversal combinators are, of
course, not parameterized by fold algebras as in the case of fold but by
strategies (say, functions). Also the traversal combinators do not recurse
by themselves, but they only apply argument strategies to children.

Strategy update There is one combinator left which needs to be in-
tegrated with functional programming to enable the strategic program-
ming idiom, namely the combinator adhoc for updating a polymorphic
function according to a monomorphic special case. This expressiveness
is not available in widely used functional languages. However, it can
be simulated via an encoding technique. Let us sketch the underlying
notion of intensional type analysis or intensional polymorphism [22]. In-
tensional type analysis allows one to define a polymorphic function by
type case on its type parameter. The prime application of this concept
was to be able to compile (parametric) polymorphism in an efficient
manner, that is, to allow different code depending on the actual param-
eter type. Type case is, like the standard case form of expression, about
case discrimination. However, the patterns are not constructor patterns
but type patterns, and the case expression is not an expression but a
type. Suppose, α is the term type covered by the update upd in an ap-
plication of adhoc, and β is the type of the term passed to the updated
strategy, then we can encode the combinator adhoc in terms of type case
as follows:

adhoc s upd = typecase β of
α → upd ;
→ apply s

Type case can be simulated by Haskell type classes as employed for
the traversal combinators, too. The somewhat involved encoding is de-
scribed at length in [39].
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To summarize the Haskell incarnation, the strategy combinators can
be encoded either directly as plain functions, or we have to resort to
Haskell classes to provide the definitions via overloading for all possible
term types. In fact, there a several models conceivable to provide func-
tional strategies, and we will come back to this issue in the subsection
on typeful strategies.

4.4. Functional strategic programming
Given all the basic combinators, strategic functional programming

can commence. Strategy definitions are simply function definitions. All
the library definitions given earlier in Figure 2 carry over modulo some
notational variations. Before we work out an example of a functional
strategic program, we slightly enrich our incarnation to allow for different
kinds of strategies than indicated in the definition section.

Type-unifying strategies The combinator id is inherently type-
preserving because it preserves the very input term. Also, the way we
explained the combinators all and one in the definition section, they
are type-preserving by definition since they preserve the outermost con-
structor, and this can only be faithful if the types of all children are
preserved as well. For some other combinators type preservation is not
implied. To give an example, we can very well compose functions with
different (although suitably related) types via seq. In previous work
we have shown [45, 38, 44] that there is one more prime type scheme
for strategies in addition to type preservation, namely type unification.
That is, a strategy application always returns a result of a fixed (say,
unified) type regardless of the type of the input datum. In fact, the kind
of traversal which we need for the earlier example to collect all used
nonterminals will ultimately rely on a type-unifying strategy.

In Figure 19, we define two strategy combinators which specifically
deal with type-unifying strategies. The nullary combinator build con-
structs a strategy from a value to always return the given value. One
could also say that build embodies the monadic constant function con-
structor. The binary combinator pass allows us to compose two func-
tions which share the input but where the result of the first application

build = const . return

pass = \f g x -> f x >>= \y -> g y x

comb = \o s s’ -> s ‘pass‘ \u -> s’ ‘pass‘ \u’ -> build (o u u’)

crush = \s -> comb mappend s (allTU (crush s))

Figure 19. Some type-unifying combinators.
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is sent as additional input to the second. We illustrate this simple type-
unifying combinator via the defined strategy comb. It lifts a binary
combinator from the value to the function level. Finally, we define the
scheme crush for collection of entities via a traversal. To this end, we
assume a type-unifying variant allTU of the basic strategy combinator
all. In this variant, we do not preserve the outermost constructor but
we rather reduce all the intermediate results obtained by the application
of the argument strategy to the children. Reduction is performed via
Monoid operations. The important property of the strategy definition
crush is that it is derived from more basic strategy combinators using
just the ordinary scheme of function definition. Recall that crush was
primitive in the more restricted setting of fold algebras.

We can now easily reconstruct the example to collect all used non-
terminals in an EBNF. We have to apply the scheme crush to a strat-
egy which is capable of identifying nonterminals. The latter strategy
identify is constructed from a monomorphic function which deals with
Symbols.

used = adhoc crush identify

where

identify (Nonterminal st) = Just [st]

identify _ = Just []

Higher-order style A by-product of a truly functional model is that
we immediately can deal with strategies in higher-order style. In fact,
the higher-order character of functional strategies is already relevant for
the encoding of the functional strategy combinators. Also, the higher-
order style is in turn a prerequisite for the monadic style of programming.
Monads allow us to deal with certain effects along the performance of a
strategy. We use monads in a pervasive manner to enable the partiality
ingredient of strategies. In fact, the use of a MonadPlus for this purpose
compensates for modelling potential failure in any other manner that
would possible require a language extension. Ultimately, all kinds of
monads would be appropriate, e.g., for reflective purposes to keep track
of number of failures, depth of the term and others, or a state monad
to keep track of certain codes assigned in a strategy. The monadic style
(and hence, higher-order style) of strategic programming is illustrated
in the sequel.

In Figure 20, we show a code snippet dealing with yaccification [46]
of EBNFs, that is, removal of extended BNF expressiveness to obtain
a grammar which only uses BNF (say, YACC) forms. We only indicate
one elimination rule, namely removal of stars. The interesting bit in
the definition is the way how auxiliary grammar rules arising from the
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A type-preserving strategy for yaccification

yaccify t = unState ((bottomup (adhoc id yaccify’)) t) (1,[])

where

yaccify’ :: RegExp -> State New RegExp

yaccify’ (Star sy) =

next >>= \i -> let no = show i in

extend [(no,Alt Empty (Seq sy (NonTerminal no)))] >>= \() ->

return (NonTerminal no)

yaccify’ sy = return sy

State monad used for accumulation of new rules and generation of nonterminals

newtype State s a = State (s -> (s,a))

unState (State f) = f

type New = (Int,[Prod])

Operations of state monad

next :: State New Int

next = State (\(i,eb) -> ((i+1,eb),i))

extend :: [Prod] -> State New ()

extend ps = State (\(i,ps’) -> ((i,ps’++ps),()))

Figure 20. Functional strategy for Yaccification.

yaccification are synthesized and accumulated. To this end, we use a
State monad. The state type YState for yaccification encapsulates two
values; firstly a kind of maximum counter to generate fresh nonterminal
names, secondly a set of rules accumulated along the yaccification. By
using a state monad, we can simply describe yaccification as a type-
preserving strategy while the emerging set of auxiliary rules and the
maximum counter do not need to be entangled in the strategy. There
is a monad operation next to supply the next legal integer from which
a nonterminal can be constructed. There is another monad operation
extend to register some more auxiliary rules. These rules together with
the transformed EBNF amount to the final yaccified grammar. Note
that it is important that we use a bottom-up traversal because only in
this case a single traversal is sufficient to eliminate all EBNF expressive-
ness. We could further elaborate the use of the state monad to perform
cashing. This would avoid the repeated generation of auxiliary rules for
a given EBNF form.

Let us use the above examples to briefly point out a few differences
between the term-rewriting and the functional incarnation. In Stratego,
the aspect of generating fresh symbols was enabled by the new primitive,
whereas we use monadic programming for this purpose. Note that our
state is more complex in that we also hold auxiliary generated rules.



The Essence of Strategic Programming 33

Too liberal rank-1 types with implicit top-level quantification

id :: Monad m => x -> m x

fail :: MonadPlus m => x -> m x

seq :: Monad m => (x -> m x) -> (x -> m x) -> x -> m x

choice :: MonadPlus m => (x -> m x) -> (x -> m x) -> x -> m x

Rank-2 types with explicit universal quantification

id :: forall m x. Monad m => x -> m x

fail :: forall m x. MonadPlus m => x -> m x

seq :: forall m. Monad m =>

(forall x. (x -> m x)) ->

(forall x. (x -> m x)) ->

(forall x. (x -> m x))

choice :: forall m. MonadPlus m =>

(forall x. (x -> m x)) ->

(forall x. (x -> m x)) ->

(forall x. (x -> m x))

Figure 21. Rank-1 vs. Rank-2 types for strategy combinators.

Recall that these auxiliary rules were first stored in the regular expres-
sions themselves in the Stratego example, and then a separate step was
needed to separate them out. The first example dealing with the col-
lection of used nonterminals is also enlightening for a comparison. In
Stratego, a type-unifying traversal is usually implemented by means of
the combinator _#(_) for generic term deconstruction and subsequent
list-processing. Such an approach could not be typed in the functional
setting. Hence, we assumed a dedicated traversal combinator allTU to
perform the pairwise reduction without exposure of a list to the strategic
programmer.

4.5. Typeful strategies
Let us elaborate on the “Strategies as functions” idea. So far we

did not spot any major problems in giving types to the strategy combi-
nators, or to strategies themselves. We only pointed out that strategies
are polymorphic and monadic functions, and that the traversal combina-
tors and the adhoc combinators require some encoding effort to support
these combinator on a per-type basis. This explanation was driven by
our interest to inhabit strategies in Haskell. Let us now analyse pos-
sible models of functional strategies, and the implications for a typeful
treatment at a more conceptual level.
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Rank-2 types We start with the observation that simple polymorphic
type schemes are not sufficient. We need rank-2 types since strategy
combinators are combinators on necessarily polymorphic functions. In
Figure 21, we illustrate this important difference via the types for some
basic strategy combinators. For simplicity, we restrict ourselves to the
type-preserving scheme in the figure. Consider, for example, sequen-
tial composition. In the rank-1 case, the type variable x is implicitly
quantified at the top-level. Hence, the combinator could also be used
to compose monomorphic functions (resulting in a monomorphic func-
tion) once the type parameter x was supplied. This case must be ruled
out because we need to compose polymorphic functions for the sake of
genericity of strategies. The rank-2 version obviously insists on poly-
morphic functions for the argument and result types of the combinators.
Yet another reason why we need to insist on rank-2 types relates to the
traversal combinators. For short, the strategy constructed via a traver-
sal combinator like in all(s) must be quantified over a different type
variable than s itself simply because s will be applied to various children
of a term which all(s) is applied to. All the terms are potentially of
different types. Hence, the type of the argument strategy of a traversal
combinator needs to be explicitly quantified.

Trade-offs Rank-2 types are not part of Haskell 98, but they are sup-
ported, for example, in the GHC implementation of Haskell. Using rank-
2 types implies a certain trade-off because type inference is not decidable,
and the types, in general, get more complicated. Conceptually, rank-2
types are however in place. In the discussion below we will see that we
can use other type system extensions instead of rank-2 types although
this usually implies some encoding obligations. All these extensions have
their trade-offs, and they indicate that strategic programming imposes
challenges on a type system.

Kinds of polymorphism Let us now investigate in some detail with
what kind of polymorphism we are faced anyway. The standard reading
of the types in Figure 21 suggests parametric polymorphism (especially,
in Haskell). It turns out however that parametric polymorphism [12] and
other well-established kinds of polymorphism are not immediately suit-
able in our context. Strategies goes beyond parametric polymorphism
for two reasons. Firstly, the adhoc combinator allows us to enforce spe-
cific behaviour for a given type. Secondly, one can also easily check that
generic traversal functions do not meet parametricity [67, 50, 2]. To
give a simple example, all(fail) succeeds for constant constructors,
and it fails for any term with at least one child. Hence, we can ob-
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serve the values corresponding to the type parameter. The issue about
adhoc suggests to consider ad-hoc polymorphism [12] but this form on
its own is again not sufficient because it does not allow us to write suf-
ficiently generic functions which are applicable to all (term) types, but
still expose uniform behaviour for most types. We mentioned intensional
polymorphism [22, 13] to provide the concept underlying adhoc but it
is not sufficient on its own because it does not cover the traversal part
of our setting. The same is true for dynamic typing [3]. Finally, we
might consider polytypism but again it misses some important ingre-
dient, namely it lacks the type-case expressiveness needed for adhoc.
A simple conclusion is hence that only a combination of some of these
forms of polymorphism can be appropriate.

Models of strategies Despite these complications, a number of mod-
els of functional strategies can be identified. Some of these models can
be qualified as implementation models because they imply some genera-
tive support for the traversal combinators and/or adhoc. Others can be
worked out as proper language extensions so that even the definition of
all, one, and adhoc can be given in a generic manner. We give a brief
overview with appropriate pointers to further reading.

The discussion so far suggests to consider strategies as rank-2 poly-
morphic functions with dedicated support for type case and generic
traversal. This support might be delivered by a generative tool ap-
proach as covered by the RSF variant of Strafunski (see http://www.
cs.vu.nl/Strafunski/), or it can be integrated as a language extension
with a functional language as described in [39]. Other related proposals
for language extensions are discussed in [38, 18].

A kind of rank-2 polymorphism was suggested for Haskell under the
name first-class polymorphism [32]. It is an extension of Haskell 98.
It restricts explicit quantifiers to be placed on components of datatype
constructors. Decidability of type inference is recovered this way, and
most of the resulting encoding can be hidden from the strategic pro-
grammer. This option is studied in [39]. Since this is a Haskell-centric
approach, the expressiveness for traversal and strategy update requires
generative support. The corresponding functionality can be captured by
a Haskell-class. In this setting, the type of (type-preserving) strategies
is defined as a datatype as follows:

data TP m = TP (∀α. Nonparametricity α ⇒ α → m α)

This type makes ultimately clear that we go beyond parametric poly-
morphism due to the class constraint on the universally quantified con-
structor component of TP .

http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/Strafunski/
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A very much different model is discussed in [44]. There, we encode
strategies as functions on a universal representation type. The use of
the universal representation is completely hidden from the programmer.
Such strategies are not directly applied on terms of algebraic datatypes
but a dedicated combinator for function application makes sure that
explosion to and implosion from the universal representation type is
hiddenly performed. The very convenient feature of this model is that
it is very easily supported via a generative approach, and in fact, the
current distribution of Strafunski is based on this model. The definition
of traversal combinators on a universal representation type is trivial.
The definition of new traversal combinators can be easily investigated
in this manner. As for the implementation of adhoc we resort to a
dynamic typing discipline [3] (again entirely hidden from the strategic
programmer). The generative support for dynamic typing is well in line
with the universal representation idea.

To summarize, a typeful approach to strategies most naturally em-
ploys rank-2 types, some simple form of intensional polymorphism as
for adhoc, also a simple form of polytypism to provide generic traversal
for all term types. In [39], we argue that this combination is economic
when compared to other designs of generic programming. It is shown
that the required language extension to allow functional strategies can
be reduced to two simple combinators. The alternative to a language
extension is to use an existing functional language with additional gener-
ative support as in the current distribution of Strafunski for Haskell. The
functional incarnation is particularly appropriate to investigate strong
typing for strategies, It also turns strategies into first-class citizens since
functions are first-class.

5. Object-Oriented Programming
In this section we will explain how an incarnation of the strategic pro-

gramming idiom can be provided in the object-oriented paradigm. In
particular, we will explain the implementation of strategies as generic
visitor combinators [65] in the class-based language Java. The challenges
to be met by this incarnation include blending strategies with reference
semantics, encapsulation, inheritance, side-effects, and subtype polymor-
phism. We will first explain how evaluation and traversal concerns are
usually implemented in tangled fashion.

5.1. Encapsulation of data and operations
Objects encapsulate data together with methods that operate on them.

The data of an object are stored in its fields (instance variables). Each
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resolve(Table t) {
     def = t.get(this)

Figure 22. Class hierarchy for the EBNF syntax.

field can hold either a value of a basic type (e.g., integers, strings,
booleans), or a reference to another object. All access to an object’s
fields is done via its methods, which are invoked by other objects via
references to this object. In class-based languages, the types of objects
are classes that can be related to each other via inheritance. A system
of object types is a class hierarchy. During execution, the objects and
their references to each other form an object graph, which instantiates
the class hierarchy.

For example, Figure 22 shows the UML diagram of a class hierar-
chy to represent EBNF grammars. In this hierarchy, the context-free
non-terminals Grammar, Prod, and RegExp are represented by classes.
RegExp is an abstract class with concrete subclasses for each of its var-
ious alternative productions. The lexical non-terminals NonTerminal
and Terminal are also represented by concrete classes. Note that with
respect to the grammar, there is an additional reference def from N to
Prod. We will use this reference below.

Behaviour can be added to a class hierarchy by adding methods to
its constituent classes. In our EBNF hierarchy, a series of methods are
shown that implement resolution of the def-use relation between rules
and non-terminal symbols. Note that resolve methods have been added
to almost every class in the hierarchy. Most of these simply call the
resolve methods of the classes to which they hold a reference. Only
the resolve methods of Grammar and NonTerminal are more interest-
ing. The former builds a rule-lookup table and passes it to the resolve
methods of each of its constituent rules. The latter looks up its corre-
sponding rule in the lookup table and initializes its def reference with
this rule (as indicated by a note in the figure).
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RegExp TopDownProd

accept(Visitor)

Hierarchy

OperationsInterfaces
VisitorVisitable

Resolve

visitN(N n) {

Table t

  n.setDef(t.get(n)); }
...

. . .

visitA
visitRegExp

Figure 23. The Visitor pattern

Thus, in the object-oriented paradigm, structured data is represented
by object graphs, and, typically, strong coupling exists between such
data and the operations on it.

5.2. Tangling of Concerns
The encapsulation of data with methods provides an important inno-

vation over procedural imperative programming, where global variables
are a source of confusion and error. On the other hand, such encap-
sulation has distinct disadvantages for the implementation of concerns
that are in some sense ‘orthogonal’ to the data (cross-cutting), such as
evaluation and traversal strategies. Strict enforcement of the encap-
sulation maxims prohibits separation of control or traversal code from
data-specific operations; both are entangled in the methods throughout
the class hierarchy.

Such tangling is borne out in several ways by our def-use resolution
example. Firstly, grammar representation and grammar resolution can
be seen as distinct concerns, because other EBNF applications might
use the same representation, but implement different behaviour. These
concerns are now implemented as bits of resolution behaviour smeared
out across the entire hierarchy, where each bit of behaviour is strongly
coupled with a single class. Secondly, within the resolution concern, we
can distinguish traversal as one distinct subconcern, and building and
using the lookup table as a second subconcern. The implementation of
these subconcerns is tangled in the sense that the traversal code can not
be used independently of the lookup code, or vice versa.

5.3. The Visitor Pattern
Several design patterns have been proposed to combat tangling of

concerns in object-oriented systems. In particular, the Visitor design
pattern is used to separate behaviour from the class hierarchy on which
it operates [20]. The essentials of the Visitor pattern are depicted in
Figure 23. To make a hierarchy of classes visitable, one introduces two
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interfaces: Visitable and Visitor. The Visitor interface introduces
a visitX method for each class X in the hierarchy. The Visitable in-
terface introduces an accept which takes a Visitor as argument. Each
class X implements Visitable’s accept method by invoking the corre-
sponding visitX method of the argument visitor. Operations on the
class hierarchy can now be constructed by providing implementations of
the Visitor interface.

Though it is no essential part of the Visitor pattern, visitors typically
perform some kind of traversal over the object graph that accepts them.
For this reason, visitor implementations are usually built by extending
a default visitor that implements as fixed traversal scheme. Figure 23
shows a default TopDown visitor.

Following the visitor pattern, the resolution of the def-use relation
between non-terminals and productions can now be implemented as a
visitor Resolve which extends TopDown. This is shown in the figure. In a
sense, the resolve methods have been extracted from the hierarcy, and
turned into visit methods of these visitors. The resolve methods that
perform traversal only have gone to TopDown, while the more interesting
resolve methods have gone to Resolve. The lookup table is no longer
passed as an argument, but encapsulated together with the visit methods
inside the Resolve visitor.

Unfortunately, the visitor pattern succeeds only partially in untan-
gling the various concerns involved in the resolution problem. The
TopDown visitor can be reused independently from the Resolve visi-
tor, but not vice versa. Also, redefinition of visit methods in Resolve
must explicitly restart the traversal on subcomponents, if traversal is to
continue. Thus, while cleanly separating behaviour from data, the visi-
tor pattern still tangles traveral and computational behaviour. In fact,
the visitor pattern suffers from limitations similar to those of traversal
functions in term rewriting (Section 3) and of folds in functional pro-
gramming (Section 4). The basic actions implemented in an extension
of the default visitor can not be reused with visitors that provide dif-
ferent default traversal behaviour. Also, the range of traversal schemes
is limited. Providing new ones requires substantial programming effort,
or, if default visitors are generated, extension of the generation tool.

5.4. Visitor Combinators
More generally speaking, the following limitations of the Visitor pat-

tern can be idenitified. Firstly, visitors resist composition. When sepa-
rate visitors have been developed to implement various basic operations,
they can not be composed to create more complex visitors. Secondly,
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Figure 24. Visitor Combinators

traversal and control are still tangled in the visit methods. As a result,
traversal and evaluation strategies can not be easily adapted or reused.
Thirdly, though separated from the class-hierarchy, visitors are strongly
dependent on it. As a result, they are brittle with respect to changes in
the hierarchy, and they can not be reused across hierarchies.

These limitations can be remedied with generic visitor combinators [65].
Visitor combinators are small, reusable classes capturing basic function-
ality that can be composed in different constellations to obtain new func-
tionality. As will become clear, they are the object-oriented incarnation
of strategy combinators.

The essence of visitor combinators is conveyed in Figure 24. Note the
following differences with respect to the plain visitor pattern:

Generic interfaces The hierarchy-specific Visitor and Visitable
interfaces have spawned supertypes (with the same names, but in differ-
ent packages). These additional interfaces are generic, i.e., independent
of the class hierarchy. The generic Visitor interface contains a sin-
gle visit method that takes and returns an object of the generic type
Visitable. The Visitable interface contains three methods that allow
generic access to an object’s subcomponents (children).

Forward combinator The visitor TopDown has been replaced by the
visitor combinator Forward as default implementation of the hierarchy-
specific Visitor interface. Forward is a combinator, because it takes a
generic visitor as argument, which is modeled by a reference v initialized
at construction time. Each of the visit methods of Forward is imple-
mented by forwarding to this argument, i.e., by calling v’s generic visit
method. (The implementation of Forward will be detailed below.)
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Library Implementations of the generic Visitor interface are col-
lected in a library of visitor combinators. Among these is TopDown.
In contrast to the default visitor of Figure 23, this TopDown (i) is sup-
plied with node actions, not through specialzation, but via an argument
visitor, (ii) is defined, not by type-specific access to subcomponents, but
via the generic term interface of vistiable. A more detailed treatment
of the content of the library follows below.

The generic interfaces Visitable and Visitor form a framework that
is independent of any class hierarchy. A class-hierarchy instantiates the
framework via the hierarchy-specific Visitable, Visitor, and Forward.
By instantiating the framework for a given hierarchy, the library of
generic visitor combinators is made available for operating on the hi-
erarchy. Operations on the hierarchy can then be constructed by (i)
passing a default visitor to Forward, (ii) specializing Forward, (iii) pass-
ing specialized visitors to generic visitor combinators.

Support is available for both the framework and its instantation. JJ-
Traveler [65, 16] provides a combined visitor combinator framework and
library for Java. Its library contains a range of reusable generic combi-
nators. JJForester [36] is a visitor and parser generator that automates
instantiation of JJTraveler’s framework. It takes a grammar as input and
generates a class-hierarchy that instantiates the framework, as indicated
in Figure 24.

5.5. Visitors as Strategies
We will now detail the correspondance between generic visitor com-

binators and strategic programming. Along the way, we will explain
how the notions of datum, basic action, strategy, failure, type case, type
specialization, strategy application etc. are inhabited.

Typing strategies As strategies are data-processing actions, some
kind of method may seem to be the obvious candidate to inhabit the no-
tion of strategy in the object-oriented world. However, methods (unlike
functions in functional programming) are not first-class citizens, and
thus we cannot use them directly as strategies. We must encapsulate
them inside (first-class) objects to be able to pass them around, name
them, return them, etc. Generic visitor objects can be used to fulfill this
role.

The generic Visitor interface of the visitor combinator framework
declares a single, fully generic visit method, which takes a Visitable
as argument and returns a Visitable as a result:

.visit( ) : Visitor× Visitable→ Visitable
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The type of its visit method allows the Visitor interface to inhabit the
type π of strategies, while the Visitable interface is the supertype of
all data that can be processed strategically. Accordingly, strategy appli-
cation (without type specialization) is performed by invoking a visitor’s
visit method with a visitable as argument.

π ≡ Visitor
@ ≡ .visit( )

This typing of strategies is somewhat imprecise, because the generic
visit method’s type does not guarantee that the concrete type of its ar-
gument is preserved in the result. To strengthen the type of strategies,
parameterized types could be used, as available in e.g., Eiffel. The inter-
face Visitor would then be parameterized with respect to Visitable.

Type specialization The basic actions of the object-oriented paradigm
are methods. As stated, these are not first class. The specific visit meth-
ods encapsulated in a hierarchy-specific visitor, however, will be viewed
as basic actions.

The strategy combinator [ ] of type π×τ→ατ turns a strategy into a
basic action on data of a specific type τ . In the object-oriented incar-
nation, [ ] is modeled by a combination of subtype polymorphism and
explicit type coercion.

v[X] ≡ X visitX(X x) { return (X) v.visit(x); }

Here, the input datum x of type X is implicitly cast to its supertype
Visitable when it is supplied as actual argument to visit. The result
of the method invocation is explicitly cast back down from Visitable
to X. Again, if parameterized types had been used, typing would be more
precise, and these casts would be redundant.

Basic combinators As the type π of strategies is modeled by the
Visitor interface, so can strategies themselves be modeled with imple-
mentations of this interface. Figure 25 shows six such implementations
(in Java) that correspond exactly to the basic strategy combinators of
Figure 1 (page 5).

The Identity combinator is implemented to immediately return its
argument Visitable. This definition already implies a deviation in se-
mantics from the previous incarnations due to Java’s reference semantics.
If visitable would be cloned before being returned, one would stay closer
to the other incarnations. The Fail combinator is implemented to throw
a VisitFailure exception whenever it is invoked. Thus, we use the ex-
ception mechanism to model strategy success and failure. The Sequence
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class Identity implements Visitor {

public Visitable visit(Visitable x) { return x; }

}

class Fail implements Visitor {

public Visitable visit(Visitable x) {

throw new VisitFailure();

} }

class VisitFailure extends Exception {}

class Sequence implements Visitor {

public Sequence(Visitor v1, Visitor v2) {

this.v1 = v1; this.v2 = v2;

}

Visitor v1, v2;

public Visitable visit(Visitable x) {

return v2.visit(v1.visit(x));

} }

public class IfThenElse implements Visitor {

public IfThenElse(Visitor c, Visitor t, Visitor f) {

condition = c; trueCase = t; falseCase = f;

}

Visitor condition, trueCase, falseCase;

public Visitable visit(Visitable x) throws VisitFailure {

Visitable y;

try { y = condition.visit(x); }

catch (VisitFailure vf) { return falseCase.visit(x); }

return trueCase.visit(y);

} }

class All implements Visitor {

public All(Visitor v) { this.v = v; }

Visitor v;

public Visitable visit(Visitable x) {

Visitable result = x;

for (int i=0; i<x.getChildCount(); i++) {

result = result.setChildAt(i,v.visit(result.getChildAt(i)));

}

return result;

} }

public class One implements Visitor {

public One(Visitor v) { this.v = v; }

protected Visitor v;

public Visitable visit(Visitable x) throws VisitFailure {

for (int i = 0; i < x.getChildCount(); i++) {

try { return x.setChildAt(i,v.visit(x.getChildAt(i))); }

catch(VisitFailure f) { }

}

throw new VisitFailure();

} }

Figure 25. Implementation of basic combinators in Java.
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public class Not extends IfThenElse {

public Not(Visitor s) {

super(s,new Fail(),new Identity());

} }

public class TopDown extends Sequence {

public TopDown(Visitor v) {

super(v,null);

v2 = new All(this);

} }

Figure 26. Implementation of defined combinators in Java.

combinator is the first combinator that actually has strategy arguments.
These arguments are modeled by instance variables v1 and v2. At cre-
ation time, the variables are initialized by the constructor method. The
visit method of Sequence simply applies its two argument visitor in
sequence, where the result of the first is passed as an argument to the
second. The IfThenElse combinator has three strategy arguments, that
are modeled similarly as in the case of Sequence. The visit method is
implemented to first attempt application of the condition visitor inside
a try-catch clause. If no VisitFailure is raised, the trueCase visitor is
applied to the intermediate result. If failure does occur, the falseCase
visitor is applied to the original visitable instead. The All and One
combinators both make use of the term interface offered by Visitable.
In their visit methods, they loop over all children of the visitable x.
All applies its argument visitor to one child at each iteration. One at-
tempt application within a catch-try clause, and exits from the iteration
at the first successful application. If no applications are successful, a
VisitFailure exception is thrown after iteration.

Defined strategies Apart from visitor combinators that represent ba-
sic strategy combinators, we can provide implementation of the Visitor
interface that represent defined combinators. Definitions of not and
topdown are shown in Figure 26. The Not visitor is defined by ex-
tending the IfThenElse visitor, while TopDown is defined by extending
Sequence. In general, defined strategy combinators are implemented by
extending the visitor combinator that implements the outermost symbol
of their definiens. In the case of Not, the implementation is completed
by a constructor method that invokes the constructor method of the su-
per class (super) with the proper arguments. In the case of TopDown, a
complication arises, because topdown is defined recursively, and in Java,
this can only be used after super has been called. For this reason,
super is given a null reference as second argument, and the corre-
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sponding instance variable v2 is set to its proper value (which references
this) by a separate assignment.

Following these simple guidelines, all defined combinators of Figure 2
(page 7) can be implemented as generic visitor combinators, and added
to the visitor combinator library of Figure 24.

Strategy update The forwarding combinator Forward allows the con-
struction of hierarchy specific visitors, by reusing and specializing the
behaviour of a generic visitor. Schematically:

class MyVisitor extends Forward {

public MyVisitor() { super(new Identity()); }

public X visitX(X x) {

...

} }

Here, the behaviour of Identity serves as default, while the behaviour
for objects of type X is specialized by redefining Forward’s visitX method.
Any visitor can be supplied as default.

Thus, the Forward combinator fulfulls the role of the adhoc strategy
combinator of type π×ατ→π. Recall that Visitor stands for π. The
type X → X of Forward.visitX( ) stands for ατ . Thus, the visitor ar-
gument of Forward corresponds to the first argument of adhoc, and the
visit method redefinition stands for the second argument. Of course, the
Forward combinator may contain several visit method refinements, while
the adhoc combinator needs to be applied repeatedly if adhoc behaviour
is to be specified for several types.

To understand exactly how Forward implements the type case be-
haviour of adhoc, we must inspect the implementation of the generic
visit method in the definition of Forward. This definition is given in
Figure 27. Note that the condition of the if statement uses run-time
type information (RTTI) to test whether the incoming visitable belongs
to the given class-hierarchy. If so, the overloaded accept method is
used to dispatch to the particular visitX method of this instance of
Forward. By default, this visitX method will invoke the argument vis-
itor v (relying on type casts to model type specialization, see above).
If the visitable x falls outside the given class hierarchy, the argument
visitor v will also be invoked.

5.6. Object-oriented strategic programming
In this section we will walk through a number of examples of strategic

programming with visitor combinators. We start of with a new imple-
mentation of the resolution problem.
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public class Forward implements hierarchy.Visitor, generic.Visitor {

public Forward(generic.Visitor v) {

this.v = v;

}

generic.Visitor v;

public generic.Visitable visit(generic.Visitable x) {

if (x instanceof hierarchy.Visitable) {

return ((hierarchy.Visitable) x).accept(this);

} else {

return v.visit(x);

} }

...

public A visitA(A a) { return (A) v.visit(a); }

...

}

Figure 27. Implementation of a Forward combinator.

public class Resolve extends Forward {

public Resolve() { super(new Identity()); }

Hashtable table = new Hashtable();

public Grammar visit_Grammar(Grammar grammar) {

Iterator prods = grammar.getProdList().iterator();

while (prods.hasNext()) {

Prod p = (Prod) prods.next();

table.put(p.getNonTerminal(),p);

}

return grammar;

}

public NonTerminal visit_NonTerminal(NonTerminal nonTerminal) {

if (table.containsKey(nonTerminal)) {

nonTerminal.setDefinedBy(table.get(nonTerminal));

}

return nonTerminal;

} }

Figure 28. A visitor combinator for resolution.

Resolution Using visitor combinators, the traversal concern and the
concern of building and using the lookup table can be separated cleanly.
The former concern is captured by the combinator TopDown (Figure 26).
The latter concern is captured by the combinator Resolve shown in
Figure 28. Note that the visit methods of Resolve need not restart
the visitor on the children of a visitable to keep the traversal going.
The resolution problem is now solved by simply applying the TopDown
combinator to the Resolve combinator as follows:

(new TopDown(new Resolve())).visit(grammar);
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public class Visited implements Visitor {

Set visited = new HashSet();

public Vistable voidVisit(Visitable x) throws VisitFailure {

if (!visited.contains(x)) {

visited.add(x);

throw new VisitFailure();

} else {

return x;

} } }

Figure 29. The combinator Visited remembers where it has been.

Reachability Once the def-use relation between non-terminals and
productions has been resolved, we can use the EBNF object graph to
answer reachability questions, such as whether a given non-terminal can
be reached from another. Such reachability problems play a major role
in the area of program analysis [59].

Since the object graph after resolution is no longer tree-shaped, we
need to take care not to let our traversals run into cycles. For this
purpose we will use the combinator Visited shown in Figure 29. This
combinator maintains a set of visitables to remember where it has been.
When it encounters a new visitable it adds it to its set, and throws an
exception to signal this.

Our reachability problem can be solved correctly using the onceTD
combinator. It is wiser, however, to use a breadth-first traversal since
fewer nodes are likely to be visited before the target node is reached.
A combinator OnceBreadthFirst is shown in Figure 30. This combi-
nator uses a queue of pending visitables to schedule application of its
argument strategies. At each node, the argument v1 is applied first. If
successful, the traversal is done, otherwise, v2 is applied. If v2 succeeds,
its children are added to the queue of pending visitables. Finally, the
traversal is continued with the head of the queue. If the queue is emp-
tied before successful application of v1 has occured, the overall traversal
ends with failure.

Finally, a visitor is needed to identify a given visitable. Such a visitor
is shown in Figure 31. The Equals visitor takes a visitable y as argument,
which it stores in an instance variable. The visit method employs the
equals method to test for success.

Using Visited, OnceBreadhtFirst, and Equals, the reachability prob-
lem can be solved as indicated by the following code snippet, where
start and target are visitables:

(new OnceBreadthFirst(new Equals(target),

new Not(new Visited())).visit(start);
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public class OnceBreadthFirst {

public OnceBreadthFirst(Visitor v1, Visitor v2) {

this.v1 = v1;

this.v2 = v2

}

LinkedList pending = new LinkedList();

Visitor v1;

Visitor v2;

public Visitable visit(Visitable x) throws VisitFailure {

Visitable result = x;

try { return v1.visit(result);} catch (VisitFailure vf) {}

try {

result = v2.visit(result);

for (int i = 0; i < result.getChildCount(); i++) {

pending.addLast(result.getChildAt(i));

}

} catch (VisitFailure vf) {}

if (pending.size() != 0) {

Visitable next = (Visitable) pending.removeFirst();

next = this.visit(next);

} else {

throw new VisitFailure();

}

return result;

} }

Figure 30. Breadth-first traversal. Traversals stops upon first successful application
of v1. Traversal is cut off below nodes where v2 fails.

class Equals implements Visitor {

public Equals(Visitable y) { this.y = y; }

Visitable y;

public Visitable visit(Visitable x) throws VisitFailure {

if (x.equals(y)) return x;

else throw new VisitFailure();

} }

Figure 31. A visitor that tests for equality to a given visitable.

Thus, a breadth-first traversal is initiated at the start visitable. At each
node, the Equals visitor is applied to determine whether the target has
been reached, and the negated Visited is applied to determine whether
the traversal must be cut off. The traversal terminates successfully, if
and only if target is reachable from start.

6. Related Work
Strategic programming as a generic programming idiom has emerged

from numerous approaches that contain some of its ingredients. In the
foregoing sections, we already gave many pointers, and more can be
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found in our previous work underlying the incarnations we described. In
this section, we will not repeat these references or attempt to complete
the list (which seems quite impossible). Rather we will discuss related
approaches that are of special interest in light of our view that strategic
programming requires all ingredients enumerated in Section 2. The
synergy of strategic programming is gone if any ingredient is not present.

Non-strategic programming in XSLT As an(other) example of
a non-incarnation, let us consider XSLT [70]. This is the mainstream
language for document processing. It certainly allows for generic pro-
gramming because traversal over the complete document is regulated
by the document processing model of XSLT based on template rules.
In Figure 32, we show a default rule to descend into all elements (cf.
<xsl:apply-templates select= ...) and to apply all templates all
over the place. To start with, this approach lacks concision (recall the
concise strategic definitions of top-down and bottom-up traversals). At
least two ingredients of strategic programming are truly missing. There
is no notion of partiality. Templates simply apply or not. Any kind of
backtracking model is not available. More seriously, XSLT templates
are not first-class. As discussed for basic rewriting and tangled traver-
sal in functional programming, this leads to tangling traversal control
and computation. In fact, XSLT even lacks appropriate type-specific
operations since one cannot even easily pattern match on elements of
a certain structure. This was observed in [28]. The resulting inappro-
priateness of XSLT for intentionally generic document transformation is
discussed and illustrated in [41]. Besides, an XSLT-like language design
is hardly accessible for typeful (generic) transformations, although there
are some theoretical results on typing essential fragments of the XSLT
expressiveness [54].

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http:...">

<xsl:template match=

"*|@*|comment()|processing-instruction()|text()">

<xsl:copy>

<xsl:apply-templates select=

"*|@*|comment()|processing-instruction()|text()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 32. XSLT template to perform deep traversal by default.
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topdown(G,X,Z) :- call(G,X,Y), all(topdown(G),Y,Z).

all(G,X,Y) :- X =.. [F|Xs], map(G,Xs,Ys), Y =.. [F|Ys].

map(_,[],[]).

map(G,[X|Xs],[Y|Ys]) :- call(G,X,Y), map(G,Xs,Ys).

Figure 33. Indication of a Prolog instance.

Strategic programming in Prolog The list of incarnations we have
covered is by no means complete. The abstract characterization of
strategic programming can also be instantiated in other contexts. It
turns out that logic programming as a paradigm is also easily made fit
for strategic programming. In fact, we restrict ourselves to Prolog in the
sequel. There are a few features of Prolog which make it easy to incar-
nate strategic programming. Firstly, Prolog’s prime support for term
representation allows us to construct and destruct terms even generi-
cally without any problems. The key concept is here the so-called univ
operator (recall “=..”) very similar to _#(_) in Stratego. Secondly,
the higher-orderness of strategy combinators and strategy definitions is
easily handled via the meta-programming facilities in Prolog (see, for ex-
ample, higher-order style in [56]). Thirdly, Prolog is basically untyped
so that we are initially not hampered as for the definition of challenging
combinators like all and one. In Figure 33, we show a snippet of a
Prolog incarnation of strategic programming. At the top, the topdown
scheme from Figure 2 is rehashed. Sequential composition is encoded
this time as conjunction of Prolog. Strategy application is issued by the
meta-predicate call. As we see in the first parameter position of all,
strategy expressions are passed around as incomplete Prolog goals. The
actual implementation of the all combinator indeed simply destructs
the term at hand, maps over the list of children, and then constructs a
term of the same shape. The map predicate by itself is in no way original,
not even in logic programming. This incarnation is considered in more
detail in [42] including issues of typing. A Prolog incarnation of strate-
gic programming is interesting on its own because one might study the
additional benefits of logical unification in this context. In fact, the def-
inition of map given above will not cope with noninstantiated variables
but this is trivially repaired by a guarding literal not var(X).

RhoStratego RhoStratego [18] is a language experiment in which ele-
ments from strategic programming are combined with higher-order func-
tional programming. Instead of forging strategic programming onto an
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existing language as done for Haskell in Section 4, a new language is
designed with strategic programming capabilities.

The main observation underlying RhoStratego is that the case con-
struct in conventional functional programming languages is too restric-
tive. Instead of combining the choice between several cases via pattern
matching into one construct, the case alternatives are made into first-
class entities corresponding to rules in a rewriting system. Pattern match
failure is also separated from the case construct and attached to indi-
vidual rules, i.e., if the pattern of a rule does not match, the rule fails.
Any expression involving application of a rule can thus fail. The choice
between alternatives (the | in ML) is made into a combinator for dealing
with pattern match failure.

Another restriction of pattern matching in case constructs is the fact
that a pattern should have a constructor at the left end of the application
spine. By allowing a variable at the constructor position it becomes
possible to write a function that traverses the arguments of a constructor
one by one. Thus it is possible to define the primitive traversals all and
one as functions.

Polytypic programming The goals of polytypic programming [52,
29, 4] are very close to our’s. Let us first compare the intentions. In
polytypic programming, the notion of genericity is very much driven
by the idea of mathematical program construction, and it is geared to-
wards notions of polymorphic functional programming, type systems,
and categorical semantics. By contrast, strategic programming arose
from certain, sometimes pragmatic needs in language processing, pro-
gram transformation and related application areas. These needs include
scalability, flexibility, writeability, readability, and a simple implemen-
tation. At the technical level, in terms of expressiveness, there are
important differences, too. To this end, let us consider typical repre-
sentatives of polytypic language designs, namely PolyP [29] and Generic
Haskell [24, 25, 27]. In PolyP, only single datatypes are considered. This
immediately documents that polytypic programming was initially not
concerned with heterogeneous data. Meanwhile, systems of datatypes
are enabled in Generic Haskell, and different proposals even address the
refinement of initially constructor-free definitions by ad-hoc cases for
specific types. But even then, generic function update (say, strategy
update) is not possible. To enable this essential ingredient of strategic
programming would require a concept like type case [22]. Also, it is inter-
esting to notice that rank-2 polytypic definitions were not considered to
be an issue so far, although such type schemes are immediately relevant
when being faced with the combinator style of strategic programming.
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Otherwise, we should point out that the type systems which form the
basis of polytypic definitions go beyond our so-far covered incarnations.
In Generic Haskell, one can for example, even perform induction on type
constructors of a first-order kind.

Aspect-oriented and adaptive programming Aspect-oriented pro-
gramming [35, 1] (AOP) aims at separation of concerns by allowing
features that cross-cut a given system’s primary modularization to be
factored out. Clearly, strategic programming qualifies as an instance of
aspect-oriented programming. We briefly discuss differences with other
instances of AOP, such as adaptive programming and AspectJ.

In adaptive programming, and its implementation by the Demeter
system [48], a notion is present of traversal strategies for object struc-
tures. Demeter’s strategies are high-level descriptions of paths through
object graphs in terms of source node, target node, intermediate nodes,
and predicates on nodes and edges. These high level descriptions are
translated (at compile time) into ‘dynamic roadmaps’: methods that
upon invocation traverse the object structure along a path that satisfies
the description. During traversal, a visitor can be applied.

To complement Demeter’s declarative strategies, a domain-specific
language (DSL) has been proposed to express recursive traversals at a
lower, more explicit level [57]. This traversal DSL sacrifices some com-
pactness and adaptiveness in order to gain more control over propagation
and computation of results, and to prevent unexpected traversal paths
due to underspecification of traversals.

Neither this traversal DSL, not Demeter’s strategies provide a full
incarnation of strategic programming. For instance, Demeter’s strategies
are not first-class, not fully generic, and provide very limited means of
(traversal) control. The DSL provides more contol, but at the further
expense of genericity.

AspectJ [34] is a general purpose aspect-oriented extension of Java.
It complements classes with aspects: modular units that capture cross-
cutting concerns. Aspects employ name-based or property-based point-
cut designators to pinpoint where in the execution flow the aspect’s code
should be activated. Aspects and strategies differ in many ways. Most
notably, aspects are defined and applied to base functionality that is
unaware of the aspects. By contrast, strategy combinators are param-
eterized building blocks, whose functionality is only activated through
composition.
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7. Summary
Contribution We have given a programming paradigm-independent
characterisation of strategic programming – a generic programming idiom
where programs are constructed using strategies. The kind of genericity
enabled by strategies is geared towards processing heterogeneous data,
such as parse trees and documents. Crucial ingredients of this genericity
are means to traverse into compound data, and to customize generic
functionality for a given specific type. We have shown this idiom can
be incarnated in different programming paradigms, in particular in the
rewriting, functional, and object-oriented paradigms. Only a few well-
chosen combinators are required to realize such incarnations. Also, we
have demonstrated that to achieve type-safety, the genericity of strate-
gies can be naturally combined with various forms of typing. Figure 34
provides a comparative overview of the various strategic programming
incarnations discussed in this paper.

Applications We have used the application domain of grammar en-
gineering throughout this paper. Strategic programming have been ap-
plied by us and others to a range of other applications. We will briefly
provide pointers to a few:
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Figure 34. Overview of incarnations.
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SSL [61]: The Stratego language has been used to design a library
for language definition and implementation, including algorithms
for free variable collection, substitution, and unification. These are
defined in a generic, i.e. language-independent manner by suitably
parameterised traversals.

XT [14]: a bundle of tools for program transformation. This bundle
is based on Stratego, but uses a number of further packages to
cover all aspects of transformation systems, especially packages
for parsing and pretty printing.

Strafunski [44]: A Haskell-based generic programming bundle, in-
cluding a strategy library, and a pre-compiler. It has been used to
specify Java refactorings. An even more generic refactoring frame-
work is spelled out in [40], where specifications of program refac-
torings can be reused for rather different languages. Especially for
the latter work the higher-orderness and the strong typing in the
functional incarnation proved to be essential.

ControlCruiser [16]: a program understanding tool that recon-
structs and visualizes COBOL control flow. The JJForester/JJTraveler
architecture has been used for the implementation.

HSX [31]: an implementation in Stratego of the warm fusion algo-
rithm for deforestation of lazy functional programs.

CodeBoost [5]: a transformation system implemented in Stratego
for domain-specific optimization of C++ programs in the domain
of numeric programming.

CobolX [69]: an environment based on XT for implementing COBOL
program transformations. It addresses a few important pragmatic
issues of transformation systems, e.g. the preservation of layout
during transformation.

Availability The rewriting, the functional and the object-oriented in-
carnations are supported by corresponding programming environments.
You can download the software from the following locations:

http://www.stratego-language.org

http://www.cs.vu.nl/Strafunski

http://www.jjforester.org

These sites also provide documentation, and further information on ap-
plications and related research.

http://www.stratego-language.org
http://www.cs.vu.nl/Strafunski
http://www.jjforester.org
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