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Abstract. Meta programs manipulate structured representations, i.e.,
abstract syntax trees, of programs. The conceptual distance between the
concrete syntax meta-programmers use to reason about programs and
the notation for abstract syntax manipulation provided by general pur-
pose (meta-) programming languages is too great for many applications.
In this paper it is shown how the syntax definition formalism SDF can
be employed to fit any meta-programming language with concrete syn-
tax notation for composing and analyzing object programs. As a case
study, the addition of concrete syntax to the program transformation
language Stratego is presented. The approach is then generalized to ar-
bitrary meta-languages.

1 Introduction

Meta-programs analyze, generate, and transform object programs. In this pro-
cess object programs are structured data. It is common practice to use ab-
stract syntax trees rather than the textual representation of programs [10]. Ab-
stract syntax trees are represented using the data structuring facilities of the
meta-language: records (structs) in imperative languages (C), objects in object-
oriented languages (C++, Java), algebraic data types in functional languages
(ML, Haskell), and terms in term rewriting systems (Stratego).

Such representations allow the full capabilities of the meta-language to be
applied in the implementation of meta-programs. In particular, when working
with high-level languages that support symbolic manipulation by means of pat-
tern matching (e.g., ML, Haskell) it is easy to compose and decompose abstract
syntax trees. For meta-programs such as compilers, programming with abstract
syntax is adequate; only small fragments, i.e., a few constructors per pattern, are
manipulated at a time. Often, object programs are reduced to a core language
that only contains the essential constructs. The abstract syntax can then be used
as an intermediate language, such that multiple languages can be expressed in
it, and meta-programs can be reused for several source languages.

However, there are many applications of meta-programming in which the use
of abstract syntax is not satisfactory since the conceptual distance between the
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concrete programs that we understand and the data structure access operations
used for composition and decomposition of abstract syntax trees is too large.
This is evident in the case of record manipulation in C, where the construction
and deconstruction of patterns of more than a couple of constructors becomes
unreadable. But even in languages that support pattern matching on algebraic
data types, the construction of large code fragments in a program generator can
become painful. For example, even the following tiny program pattern is easier
to read in the concrete variant on the left than the abstract variant on the right.

let ds
in let var x ta := (es1)

in es2 end
end

Let(ds,
[Let([VarDec(x,ta,Seq(es1))],

es2)])

While abstract syntax is manageable for fragments of this size (and sometimes
even more concise!), it becomes unpleasant to use when larger fragments need
to be specified.

Besides the problems of understandability and complexity, there are other
reasons why the use of abstract syntax may be undesirable. Desugaring to a
core language is not always possible. For example, in the renovation of legacy
code the goal is to repair the bugs in a program, but leave it intact otherwise.
This entails that a much larger abstract syntax needs to be dealt with. Another
occasion that calls for the use of concrete syntax is the definition of transforma-
tion or generation rules by users (programmers) rather than by compiler writers
(meta-programmers). For example, [18] describes the extension of Haskell with
pragmas for domain-specific optimization in the form of rewrite rules on program
expressions. Other application areas that require concrete syntax are application
generation and structured document (XML) processing.

Hence, it is desirable to have a meta-programming language that lets us
write object-program fragments in the concrete syntax of the object language.
In general, we would like to write a meta-program in meta-language M that
manipulates a program in object language O, where M and O could be the same,
but need not be in general. This requires the extension of the syntax of M with
the syntax of O such that O expressions are interpreted as data construction and
analysis patterns. This problem is traditionally approached by extending M with
a quotation operator that lets the meta-programmer indicate object language
fragments [1,17,23]. Antiquotation allows the use of meta-programming language
constructs in these object language fragments to splice meta-computed object
code into a fragment. If M equals O then the syntax extension is easy by just
adding quote and antiquote operators to M . For example, MetaML [19], provides
<...> for distinguishing a piece of object code and ˜... to splice computed code
into another piece of code. Several meta-languages, including ASF+SDF [16]
and TXL [12], are designed around the idea of meta-programming with concrete
object syntax, where the object language is user-definable.

Building a meta-language that supports a different object language is a dif-
ficult task with traditional parser technology. Building a meta-language that
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allows the user to define the object language to use and determine the syntax
for quotation and antiquotation operators is even harder. Why is this a difficult
task? Traditional parser generators support only context-free grammars that are
restricted to the LL or LR properties. Since these classes of grammars are not
closed under composition, it is hard to extend one language with another. For
example, combining two YACC grammars will usually lead to many conflicts,
requiring editing the two grammars, probably extensively. The problem is com-
pounded by the fact that lexical syntax is dealt with using a scanner, which
operates separately from the parser. An embedded object language will almost
certainly overlap at the lexical level with the host language (e.g., syntax of iden-
tifiers, literals, keywords). Thus, combining the two regular grammars will also
require extensive editing.

The usual solution is to require a fixed syntax for quotation delimiters and
parse the content of quotations in a separate pass. This requires quite some
infrastructure and makes reporting syntax errors to the programmer difficult.
The technology used to extend a meta-language is usually not portable to other
languages.

In this paper we show how the syntax definition formalism SDF [14,20] can be
employed to fit any existing (meta-) programming language with concrete syntax
notation for object programs. The approach does not require that either the meta-
language or the object-language were designed with this application in mind.
Rather, the syntax definitions of the meta-language and object-language are
combined as they are and wedded by providing appropriate injections from object
language sorts into meta-language sorts. From the combined syntax definition a
parser is generated that parses the entire meta-program including object code
fragments, and thus reports syntactic errors immediately. An explosion algorithm
that can be independent of the object language then maps embedded object
code abstract syntax trees to appropriate meta-language representations. The
approach is based on existing technology that is freely available and can be
applied immediately.

We illustrate the approach by extending the strategic rewriting language
Stratego [21,22] with concrete syntax. In Section 2 we motivate the need for
meta-programming with concrete syntax by means of an example and contrast
it to the use of abstract syntax. In Section 3 we show how meta-programming
with concrete object syntax is implemented in and for Stratego. In Section 4
we outline a framework for extending a programming language to provide meta-
programming with concrete syntax.

2 Abstract Syntax vs. Concrete Syntax

In this section we motivate the need for concrete syntax in meta-programming
by contrasting the use of concrete syntax with the traditional use of abstract
syntax. As an example we consider a simple meta-program for instrumenting
Tiger programs with tracing statements. Tiger [2] is an imperative language
with nested function definitions and statements that can be used in expressions.
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We conclude the section with a discussion of the challenges posed to the meta-
programming system by the use of concrete syntax.

2.1 Syntax Definition

A meta-programming system requires a syntax definition of the object language
and a parser and pretty-printer that transform to and from the abstract syn-
tax of the language used for internal representation. Figure 1 gives a condensed
(i.e., incomplete) definition of the concrete and abstract syntax of Tiger. The
concrete syntax is defined in the syntax definition formalism SDF [14,20]. An
SDF production sym1 ... symn -> sym declares that an expression of sort sym
can be constructed by the concatenation of expressions of sorts sym1 to symn.
SDF supports regular expression operators such as {Exp ";"}*, which denotes
a list of Expressions separated by ; semicolons. Furthermore, SDF integrates the
definition of lexical and context-free syntax in one formalism. The formalism
is modular so that (1) the syntax definition of a language can be divided into
smaller (reusable) modules and (2) syntax definitions for separate languages can
easily be combined. Since SDF definitions are declarative, rather than opera-
tional implementations of parsers, it is possible to generate other artifacts from
syntax definitions such as pretty-printers [9] and signatures.

The abstract syntax is declared as a Stratego signature, which declares a
term constructor for each language construct. The signature abstracts from syn-
tactic details such as keywords and delimiters. Such a signature can be derived
automatically from the syntax definition by using the constructor attributes as
declarations of the constructor name for a language construct.

2.2 Example: Instrumenting Programs

Stratego [21,22] is a language for program transformation based on the paradigm
of rewriting strategies. It supports the definition of basic transformations by
means of rewrite rules. The application of such rules is controlled by program-
mable strategies.

Figure 2 shows the specification in Stratego of a transformation on Tiger
programs that instruments each function f in a program such that it prints
f entry on entry of the function and f exit at the exit. Functions are instru-
mented differently than procedures, since the body of a function is an expression
statement and the return value is the value of the expression. It is not possible to
just glue a print statement or function call at the end of the body. Therefore, a
let expression is introduced, which introduces a temporary variable to which the
body of the function is assigned. The rule IntroducePrinters generates code for
the functions enterfun and exitfun, calls to which are added to functions and
procedures. The transformation strategy instrument uses the generic traversal
strategy topdown to apply the TraceProcedure and TraceFunction rules to all
function definitions in a program, after which the printer functions are added,
thus making sure that these functions are not instrumented themselves.
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module Tiger-Condensed
exports
sorts Exp
context-free syntax
Id -> Var {cons("Var")}
StrConst -> Exp {cons("String")}
Var -> Exp
"(" {Exp ";"}* ")" -> Exp {cons("Seq")}
Var "(" {Exp ","}* ")" -> Exp {cons("Call")}
Exp "+" Exp -> Exp {left,cons("Plus")}
Exp "-" Exp -> Exp {left,cons("Minus")}
Var ":=" Exp -> Exp {cons("Assign")}
"if" Exp "then" Exp "else" Exp -> Exp {cons("If")}
"let" Dec* "in" {Exp ";"}* "end" -> Exp {cons("Let")}
"var" Id TypeAn ":=" Exp -> Dec {cons("VarDec")}
FunDec+ -> Dec {cons("FunctionDec")}
"function" Id "(" {FArg ","}* ")"

TypeAn "=" Exp -> FunDec {cons("FunDec")}
Id TypeAn -> FArg {cons("FArg")}

-> TypeAn {cons("NoTp")}
":" TypeId -> TypeAn {cons("Tp")}

module Tiger-Condensed
signature
constructors
Var : Id -> Var
String : StrConst -> Exp
Seq : List(Exp) -> Exp
Call : Var * List(Exp) -> Exp
Plus : Exp * Exp -> Exp
Minus : Exp * Exp -> Exp
Assign : Var * Exp -> Exp
If : Exp * Exp * Exp -> Exp
Let : List(Dec) * List(Exp) -> Exp
VarDec : Id * TypeAn * Exp -> Dec
FunctionDec : List(FunDec) -> Dec
FunDec : Id * List(FArg) * TypeAn * Exp -> FunDec
FArg : Id * TypeAn -> FArg
NoTp : TypeAn
Tp : TypeId -> TypeAn

Fig. 1. Concrete syntax definition in SDF (top) and corresponding abstract syntax
signature in Stratego (bottom) of Tiger programs (condensed).

The top part of the figure shows the specification in concrete syntax while
the bottom part shows the same specification using abstract syntax. For brevity,
the IntroducePrinters rule is only shown in concrete syntax. Note that the
full lexical syntax for identifiers and literals of the object language is used.
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2.3 Concrete vs. Abstract

The example gives rise to several observations. The concrete syntax version can
be read without knowledge of the abstract syntax. On the other hand, the ab-
stract syntax version makes the tree structure of the expressions explicit. The
abstract syntax version is much more verbose and is harder to read and write. Es-
pecially the definition of large code fragments such as in rule IntroducePrinters
is unattractive in abstract syntax.

The abstract syntax version implements the concrete syntax version. The
concrete syntax version has all properties of the abstract syntax version: pattern
matching, term structure, can be traversed, and so on. In short, the concrete
syntax is just sugar for the abstract syntax.

Extension of the Meta-language. We do not want to use Stratego only for
meta-programming Tiger. Rather we would like to be able to handle arbitrary
object languages. Thus, the object language or object languages that are used
in a module should be a parameter to the compiler. The specification of instru-
mentation is based on the real syntax of Tiger, not on some combinators or infix
expressions. This entails that the syntax of Stratego should be extended with
the syntax of Tiger.

Meta-variables. The patterns in the transformation rules are not just frag-
ments of Tiger programs. Rather some elements of these fragments are consid-
ered as meta-variables. For example in the term [[ function f(xs) = e ]]
the identifiers f, xs, and e are not intended to be Tiger variables, but rather
meta-variables, i.e., variables at the level of the Stratego specification.

Antiquotation. Instead of indicating meta-variables implicitly we could opt
for an antiquotation mechanism that lets us splice in meta-level expressions
into a concrete syntax fragment. For example, using ˜ and ˜* as antiquotation
operators, a variant of rule TraceProcedure becomes:

TraceProcedure :
[[ function ˜f(˜* xs) = ˜e ]] ->
[[ function ˜f(˜* xs) =

(print(˜String(<conc-strings>(f," entry\\n")));
˜e;
print(˜String(<conc-strings>(f," exit\\n")))) ]]

With such antiquotation operators it becomes possible to directly embed meta-
level computations that produce a piece of code within a syntax fragment.

3 Implementation

In the previous section we have seen how the extension of Stratego with concrete
syntax for terms improves the readability of meta-programs. In this section we
describe the techniques used to achieve this extension.
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module Tiger-TraceAll
imports Tiger-Typed lib Tiger-Simplify
strategies

instrument = topdown(try(TraceProcedure + TraceFunction));
IntroducePrinters; simplify

rules
TraceProcedure :

[[ function f(xs) = e ]] ->
[[ function f(xs) = (enterfun(s); e; exitfun(s)) ]]
where !f => s

TraceFunction :
[[ function f(xs) : tid = e ]] ->
[[ function f(xs) : tid =

(enterfun(s);
let var x : tid := nil in x := e; exitfun(s); x end) ]]

where new => x ; !f => s
IntroducePrinters :

e -> [[ let var ind := 0
function enterfun(name : string) = (

ind := +(ind, 1);
for i := 2 to ind do print(" ");
print(name); print(" entry\\n"))

function exitfun(name : string) = (
for i := 2 to ind do print(" ");
ind := -(ind, 1);
print(name); print(" exit\\n"))

in e end ]]

module Tiger-TraceAll
imports Tiger-Typed lib Tiger-Simplify
strategies

instrument = topdown(try(TraceProcedure + TraceFunction));
IntroducePrinters; simplify

rules
TraceProcedure :

FunDec(f, xs, NoTp, e) ->
FunDec(f, xs, NoTp,

Seq([Call(Var("enterfun"),[String(f)]), e,
Call(Var("exitfun"),[String(f)])]))

TraceFunction :
FunDec(f, xs, Tp(tid), e) ->
FunDec(f, xs, Tp(tid),

Seq([Call(Var("enterfun"),[String(f)]),
Let([VarDec(x,Tp(tid),NilExp)],

[Assign(Var(x), e),
Call(Var("exitfun"),[String(f)]),
Var(x)])]))

where new => x
IntroducePrinters :

e -> /* omitted for brevity */

Fig. 2. Instrumenting functions for tracing using concrete syntax and using abstract
syntax.

3.1 Extending the Meta-language

To embed the syntax of an object language in the meta-language, the syntax
definitions of the two languages should be combined and the object language
sorts should be injected into the appropriate meta-language sorts. In the Strat-
ego setting this is achieved as follows. The syntax of a Stratego module M is
declared in the M.syn file, which declares the name of an SDF module. The SDF
module combines the syntax of Stratego and the syntax of the object language(s)
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by importing the appropriate SDF modules. The syntax definition of Stratego is
provided by the compiler. The syntax definitions of the object language(s) are
provided by the user. For example, Figure 3 shows a fragment of the syntax of
Stratego and Figure 4 presents SDF module StrategoTiger, which defines the
extension of Stratego with Tiger as object language. The module illustrates sev-
eral remarkable aspects of the embedding of object languages in meta-languages
using SDF.

A combined syntax definition is created by just importing appropriate syntax
definitions. This is possible since SDF is a modular syntax definition formalism.
This is a rather unique feature of SDF and essential to this kind of language
extension. Since only the full class of context-free grammars, and not any of its
subclasses such as LL or LR, are closed under composition, modularity of syntax
definitions requires support from a generalized parsing technique. SDF2 employs
scannerless generalized-LR parsing [20,8].

The syntax definitions for two languages may partially overlap, e.g., define
the same sorts. SDF2 supports renaming of sorts to avoid name clashes and
ambiguities resulting from them. In Figure 4 several sorts from the Stratego
syntax definition (Id, Var, and StrChar) are renamed since the Tiger definition
also defines these names.

The embedding of object language expressions in the meta-language is im-
plemented by adding appropriate injections to the combined syntax definition.
For example, the production

"[[" Exp "]]" -> Term {cons("ToTerm"),prefer}

declares that a Tiger expression (Exp) between [[ and ]] can be used every-
where where a Stratego Term can be used. Furthermore, abstract syntax expres-
sions (including meta-level computations) can be spliced into concrete syntax
expressions using the ˜ splice operators. To distinguish a term that should be
interpreted as a list from a term that should be interpreted as a list element, the
convention is to use a ˜* operator for splicing a list.

The declaration of these injections can be automated by generating an appro-
priate production for each sort as a transformation on the SDF definition of the
object language. It is, however, useful that the embedding can be programmed
by the meta-programmer to have full control over the selection of the sorts to
be injected, and the syntax used for the injections.

module Stratego
exports
context-free syntax
Int -> Term {cons("Int")}
String -> Term {cons("Str")}
Var -> Term {cons("Var")}
Id "(" {Term ","}* ")" -> Term {cons("Op")}
Term "->" Term -> Rule {cons("RuleNoCond")}
Term "->" Term "where" Strategy -> Rule {cons("Rule")}

Fig. 3. Fragment of the syntax of Stratego
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module StrategoTiger
imports
Tiger Tiger-Sugar Tiger-Variables Tiger-Congruences

imports
Stratego [ Id => StrategoId

Var => StrategoVar
StrChar => StrategoStrChar ]

exports
context-free syntax
"[[" Dec "]]" -> Term {cons("ToTerm"),prefer}
"[[" FunDec "]]" -> Term {cons("ToTerm"),prefer}
"[[" Exp "]]" -> Term {cons("ToTerm"),prefer}
"˜" Term -> Exp {cons("FromTerm"),prefer}
"˜*" Term -> {Exp ","}+ {cons("FromTerm")}
"˜*" Term -> {Exp ";"}+ {cons("FromTerm")}
"˜" Term -> Id {cons("FromTerm")}
"˜*" Term -> {FArg ","}+ {cons("FromTerm")}

Fig. 4. Combination of syntax definitions of Stratego and Tiger

module Tiger-Variables
exports
variables
[s][0-9]* -> StrConst {prefer}
[xyzfgh][0-9]* -> Id {prefer}
[e][0-9]* -> Exp {prefer}
"xs"[0-9]* -> {FArg ","}+ {prefer}
"ds"[0-9]* -> Dec+ {prefer}
"ta"[0-9]* -> TypeAn {prefer}

Fig. 5. Some variable schema declarations for Tiger sorts.

3.2 Meta-variables

Using the injection of meta-language Terms into object language Expressions it
is possible to distinguish meta-variables from object language identifiers. Thus,
in the term [[ var ˜x := ˜e]], the expressions ˜x and ˜e indicate meta-level
terms, and hence x and e are meta-level variables. However, it is attractive to
write object patterns with as few squiggles as possible. This can be achieved using
SDF variable declarations. Figure 5 declares syntax schemata for meta-variables.
According to this declaration x, y, and g10 are meta-variables for identifiers and
e, e1, and e1023 are meta-variables of sort Exp. The prefer attribute ensures
that these identifiers are preferred over normal Tiger identifiers [8].

3.3 Meta-explode

Parsing a module according to the combined syntax and mapping the parse tree
to abstract syntax results in an abstract syntax tree that contains a mixture of
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meta- and object language abstract syntax. Since the meta-language compiler
only deals with meta-language abstract syntax, the embedded object language
abstract syntax needs to be expressed in terms of meta abstract syntax. For
example, parsing the following Stratego rule
[[ x := let ds in ˜* es end ]] -> [[ let ds in x := (˜* es) end ]]

with embedded Tiger expressions, results in the abstract syntax tree
Rule(ToTerm(Assign(Var(meta-var("x")),

Let(meta-var("ds"),FromTerm(Var("es"))))),
ToTerm(Let(meta-var("ds"),

[Assign(Var(meta-var("x")),
Seq(FromTerm(Var("es"))))])))

containing Tiger abstract syntax constructors (e.g., Let, Var, Assign) and meta-
variables (meta-var). The transition from meta-language to object language is
marked by the ToTerm constructor, while the transition from meta-language to
object language is marked by the constructor FromTerm.

Such mixed abstract syntax trees can be normalized by ‘exploding’ all em-
bedded abstract syntax to meta-language abstract syntax. Thus, the above tree
should be exploded to the following pure Stratego abstract syntax:
Rule(Op("Assign",[Op("Var",[Var("x")]),

Op("Let",[Var("ds"),Var("es")])]),
Op("Let",[Var("ds"),

Op("Cons",[Op("Assign",[Op("Var",[Var("x")]),
Op("Seq",[Var("es")])]),

Op("Nil",[])])]))

Observe that in this explosion all embedded constructors have been translated
to the form Op(C,[t1,...,tn]). For example, the Tiger ‘variable’ constructor
Var(_) becomes Op("Var",[_]), while the Stratego meta-variable Var("es")
remains untouched, and meta-vars become Stratego Vars. Also note how the
list in the second argument of the second Let is exploded to a Cons/Nil list.
The resulting term corresponds to the Stratego abstract syntax for the rule

Assign(Var(x),Let(ds,es)) -> Let(ds,[Assign(Var(x),Seq(es))])

written with abstract syntax notations for terms.
The explosion of embedded abstract syntax does not depend on the object

language, but can be expressed generically, provided that embeddings are in-
dicated with the FromTerm constructor. The complete implementation of the
meta-explode transformation on Term abstract syntax trees is presented in Fig-
ure 6. The strategy meta-explode uses the generic strategy alltd to perform
a generic traversal over the abstract syntax tree of a Stratego module. Any-
where in this tree where it finds a ToTerm(_), its argument is exploded using
trm-explode. This latter strategy is composed from a number of rules that rec-
ognize special cases. The general case is handled by TrmOp, which decomposes a
term into its constructor op and arguments ts, and constructs an abstract syntax
term Op(op,ts’), where the ts’ are the exploded arguments. The transforma-
tion str-explode is similar to trm-explode, but transforms embedded abstract
syntax into strategy expressions.
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module meta-explode
imports lib Stratego
strategies
meta-explode =
alltd(?ToTerm(<trm-explode>) + ?ToStrategy(<str-explode>))

trm-explode =
TrmMetaVar <+ TrmStr <+ TrmFromTerm <+ TrmFromStr <+ TrmAnno
<+ TrmConc <+ TrmNil <+ TrmCons <+ TrmOp

TrmOp : op#(ts) -> Op(op, <map(trm-explode)> ts)

TrmMetaVar : meta-var(x) -> Var(x)
TrmStr = is-string; !Str(<id>)
TrmFromTerm = ?FromTerm(<meta-explode>)
TrmFromStr = ?FromStrategy(<meta-explode>)
TrmAnno = Anno(trm-explode, meta-explode)
TrmNil : [] -> Op("Nil", [])
TrmCons : [x | xs] -> Op("Cons",[<trm-explode>x, <trm-explode>xs])
TrmConc : Conc(ts1,ts2) ->

<foldr(!<trm-explode> ts2,
!Op("Cons", [<Fst>, <Snd>]), trm-explode)> ts1

Fig. 6. Generic definition of meta-explode

4 Generalization

In the previous section we described the embedding of concrete syntax for object
languages in Stratego. This approach can be generalized to other meta-languages.
In this section we outline the ingredients needed to make your favorite language
into a meta-language.

Given a (general-purpose) language M to be used as meta-language and
a language O, which may be a data format, a programming language, or a
domain-specific language, as long as it has a formal syntax, we can extend M to
a meta-language for manipulating O programs. Figure 7 depicts the architecture
of this extension and the components that are employed. The large box denotes
the extension of the M compiler m-compile with concrete syntax for O. From
a meta-programmer’s point of view this is a black box that implements the
compiler (dashed arrow) mo-compile, which consumes source meta-programs
and produces executable meta-programs. In the rest of this section we briefly
discuss the components involved.

ATerm Library.

– The communication between the various components is achieved by exchang-
ing ATerms [6], a generic format for exchange of structured data.
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SDF tools.

– pack-sdf: collection of all imported SDF modules;
– sdf2table: parser generator for SDF;
– sglr: scannerless generalized-LR parser reads a parse table (M-O.tbl) and

parses a source file according to it;
– implode-asfix: translation from parse trees to abstract syntax trees;
– Optionally one can use pretty-printer and signature generators.

M as meta-language.

– A syntax definition M.sdf of M
– A model for object program representation in M (e.g., AST represented as

term)
– An API for constructing and analyzing O programs in M (e.g., pattern

instantiation and matching)
– m-explode: An explosion algorithm for transforming O abstract syntax ex-

pressions into M expressions. If the object language program representation
is generic, i.e., does not depend on a specific O, this can be implemented
generically, as was done for Stratego using meta-explode. This is a trans-
formation on M programs.

O as object language.

– A syntax definition O.sdf of O
– A combined syntax definition M-O.sdf, possibly resolving name clashes
– Meta-variable declarations for O
– Injection of O expressions into M expressions

• Selection of O syntactic categories to manipulate (e.g., Exp and Dec)
• Selection of M syntactic categories in which O expressions should be
injected (e.g., Term)

• Quotation syntax (e.g., [[...]])
• Anti quotation syntax (e.g., ˜...)

It is possible to automate this by generating syntax for variables, quotations,
and antiquotations automatically from the syntax definition of O, provided
that there is a standard convention for quotation and antiquotation.

M compiler.

– After m-exploding meta-programs they can be compiled by the usual com-
piler m-compile for M . If the compiler does not have an option to consume
abstract syntax trees, but only text, it is necessary to pretty-print the pro-
gram first.

O meta-programs.

– Finally, we can write a meta-program MetaProg.mo using concrete syntax
and compile it to an executable MetaProg.bin that manipulates O programs.
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Fig. 7. Architecture for meta-programming with concrete object syntax

5 Discussion

5.1 Syntax Definition and Parsing

SDF [14] was originally designed for use as a general syntax definition formalism.
However, through its implementation it was closely tied to the algebraic specifi-
cation formalism ASF+SDF [4,13], which is supported by the ASF+SDF Meta-
Environment [16,7]. Redesign and reimplementation of SDF [20,8] has made SDF
available for use outside the Meta-Environment. SDF is also distributed as part
of the XT bundle of program transformation tools [15].

Syntax definition in SDF is limited to context-free grammars. This is a lim-
itation for languages with context-sensitive syntax such as C (type identifiers)
and Haskell (offside rule). However, in the setting of meta-programming with
concrete object syntax, in which small fragments are used and not all context is
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always available, any parsing technique will have a hard time. This type of prob-
lem made Cameron and Ito [10] suggest that language designers should consider
meta-programming in designing the syntax of a programming language.

5.2 Desugaring Patterns

Some meta-programs first desugar a program before transforming it further. This
reduces the number of constructs and shapes a program can have. For example,
the Tiger binary operators are desugared to prefix form:

DefTimes : [[ e1 * e2 ]] -> [[ *(e1, e2) ]]
DefPlus : [[ e1 + e2 ]] -> [[ +(e1, e2) ]]

or in abstract syntax

DefPlus : Plus(e1, e2) -> BinOp(PLUS, e1, e2)

This makes it easy to write generic transformations for binary operators. How-
ever, all subsequent transformations on binary operators should then be done
on these prefix forms, instead of on the usual infix form. This is the reason why
in Figure 2, the expression -(ind,1) is used instead of (ind - 1). However,
users/meta-programmers think in terms of the infix operators and would like to
write rules such as

Simplify : [[ e + 0 ]] -> [[ e ]]

However, this rule will not match since the term to which it is applied has been
desugared. Thus, it might be desirable to desugar embedded abstract syntax with
the same rules with which programs are desugared. This phenomenon occurs in
many forms ranging from removing parentheses and generalizing binary oper-
ators as above, to decorating abstract syntax trees with information resulting
from static analysis such as type checking.

5.3 User-Definable Syntax

Programming languages with user-definable syntax have been a long standing
goal of programming language research. To a certain extent programming lan-
guages do provide domain-specific or user-definable syntax. The use of infix
syntax for arithmetic and logical operators is such a standard component of
programming language syntax, that it is not considered a syntactic extension.
However, they are clearly domain-specific operations, that could just as well
be expressed using function call syntax. Indeed a number of languages (Prolog,
Haskell, ...) allow the user to introduce new infix operators and define them just
like a normal predicate or function. Other languages, especially in the domain of
algebraic specification and theorem proving, have support for user-defined mix-
fix operators (e.g., OBJ, ELAN, Maude). This approach is taken to its extreme
in the algebraic specification formalism ASF+SDF [4,13] in which all expression
constructors are defined by the user, including the lexical syntax. An ASF+SDF
specification consists of modules defining syntax and conditional equations over
terms induced by this syntax. The equations are interpreted as term rewrite rules.
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The influence of ASF+SDF on the work described in this paper is profound—
Stratego grew out of experience with ASF+SDF.

The architecture of JTS [3] is much like the one described in this paper, but
the goal is the extension of languages with domain-specific constructs. The JTS
tools are based on less powerful (i.e., lex/yacc) parsing technology.

Several experiments have been done with dynamically (parse-time) extensible
syntax [23,11,5]. In these tools the program itself contains declarations of syntax
extensions. This complicates the parsing process considerably. We have chosen
to define the syntax in a separate file. This entails that the syntax for an entire
module is fixed and cannot be extended half way. This is reasonable for meta-
programming since the syntactic domain of meta-programs is usually a fixed
object language or set of object languages. Changing the object language on a
per module basis is fine grained enough.

5.4 Syntax Macros

The problem of concrete object syntax is different from extending a language
with new constructs, for example, extending C with syntax for exception han-
dling. This application known as syntax macros, syntax extensions, or extensible
syntax [23,11,5] can be expressed using the same technology as discussed in this
paper. Indeed, Stratego itself is an example of a language with syntactic exten-
sions that are removed using transformations. For example, the following rules
define several constructs in terms of the more primitive match (?t) and build
(!t) constructs [22].

Desugar :
[[ s => t ]] -> [[ s; ?t ]]

Desugar :
[[ <s> t :S]] -> [[ !t; s ]]

Desugar:
[[ f(as) : t1 -> t2 where s ]] -> [[ f(as) = ?t1; where(s); !t2 ]]

6 Conclusions

Contribution. In this paper we have shown how concrete syntax notation can be
fitted with minimal effort onto any meta-language, which need not be specifically
designed for it. The use of concrete syntax makes meta-programs more readable
than abstract syntax specifications. Due to the scannerless generalized parsing
technology no squiggles are needed for antiquotation of meta-variables leading
to very readable code fragments.

The technical contributions of this paper are the implementation of concrete
syntax in Stratego and a general architecture for adding concrete object syntax to
any (meta-)language. The application of SDF in Stratego is more evidence for the
power of the SDF/SGLR technology. The composition of the SDF components
with the Stratego compiler is a good example of component reuse.
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Future Work. The ability to fit concrete syntax onto a meta-programming lan-
guage opens up a range of applications and research issues for exploration: trans-
formation of various object languages such as Java and XML in Stratego; ad-
dition of concrete syntax to other meta-languages, which might involve map-
ping to a more distant syntax tree API than term matching and construction;
object-language specific desugaring; and finally language extensions instead of
meta-programming extensions.

Availability. The components used in this project, including the ATerm li-
brary, SDF, and Stratego, are freely available and ready to be applied in
other meta-programming projects. The SDF components are available from
http://www.cwi.nl/projects/MetaEnv/pgen/. Bundles of the SDF compo-
nents with other components such as Stratego are available from the Online
Package Base at http://www.program-transformation.org/package-base

Acknowledgments. Joost Visser provided comments on a previous version of
this paper.
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