
Strategic Programming Meets Adaptive Programming

Ralf L&mmel 1, Eelco Visser 2, and Joost Visser s

1 Free University, Amsterdam, The Netherlands, ralf@cs .v'u .nl
2 University Utrecht, The Netherlands, visserecs, uu. nl

3 SIG, Amsterdam, The Netherlands, Joost .visser@software-improvers. nl

ABSTRACT
Strategic programming is a generic programming idiom for pro-
cessing compound data such as terms or object structures. At the
heart of the approach is the separation of two concerns: basic data-
processing computations vs. traversal schemes. Actual traversals
are composed by passing the former as arguments to the latter.
Traversal schemes can be defined by the strategic programmer us-
ing a combinator style that relies on primitives for layered traversal.

In this paper, we take a look at strategic programming from an
aspect-oriented programming perspective. Throughout the paper,
we compare strategic programming with adaptive programming,
which is a well-established aspectual approach to the traversal of
object structures. We start from the observation that aspect-oriented
programming terms, e.g., crosscutting, join point, and advice can
be instantiated for aspectual traversal approaches.

Categories and Subject Descriptors
D.1 .m [Programming Techniques]: Strategic Programming, Adap-
tive Programming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages, Design

Keywords
Generic programming, Traversal, Strategic programming, Adaptive
programming, Aspect-oriented programming, Strategy, Language
design, Program transformation, Program analysis

1. INTRODUCTION
This paper is devoted to the advanced separation of two concerns
in processing compound data such as many-sorted terms, object
structures, XML documents, and others:

• basic computations for data-processing, and

• traversal schemes with rich variation points.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright 2003 ACM 1-58113-660 -9/03/002 ...$5.00.

We will characterise a reference model for the separation of these
concerns, namely the idiom of strategic programming (SP), which
we developed over the last few years. We will compare SP with
another aspectual approach to traversal, namely adaptive program-
ming (AP) as developed by Lieberherr and collaborators [9, 18, 17,
11, 15]. We will work towards a marriage of the ideas underlying
the two aspectual approaches to traversal.

Adaptive programming (AP) at a glance. Quoting [17]:
"An adaptive program can be understood as an object-oriented pro-
gram where the class graph is a parameter, and hence the class
graph may be changed without changing the program Adap-
tive programs consist of traversal specifications and code wrap-
pers?' Traversal specifications realise adaptiveness, say 'structure
shyness' by only mentioning the milestone classes and relation-
ships that are immediately relevant for the specific programming
problem. The execution of an adaptive program applies the class-
specific code wrappers to the objects that are identified by the adap-
tive traversal. AP employs predicates like the following to compose
traversal specifications:

from Identify source nodes.

to Identify target nodes.

through Identify required intermediate nodes.

bypassing Identify disfavoured intermediate nodes.

In Fig. 1, we illustrate adaptive traversal.

!o2:].

~t

The heavy arrows build up a path
through an object structure with
objects Ol or. The classes
in the object structure are de-
noted by A F. The shown
path meets the adaptive traversal
specification from A through B
to F bypassing D. Notice
how some objects on the path are
not mentioned explicitly (cf. o3
and off). The figure also indi-
cates another path which meets
all the requirements except for the
bypassing predicate (cf. 04).

Figure 1: Adaptive traversal of an object structure

Strategic programming (SP) at a glance. SP was initi-
ated in the setting of term rewriting [22, 6], but has been trans-
posed to other programming paradigms, most notably functional

168

One-layer traversal

Below we illustrate two forms of one-layer traversal: all to process
all immediate subcomponents, and one to process the leftmost one for
which the argument strategy succeeds. (Shaded vs. black nodes repre-
sent failure vs. success of processing.)

Deep traversal

Below we illustrate two recursive schemes. The left one corresponds to
all applied at all levels. This results in a full top-down traversal (for
short, full_td). The right one attempts one at all levels from bottom to
top. This results in a single-hit bottom-up traversal (for short, once_bu).

Figure 2: Strategic traversal of a term or a tree

programming [7, 5] and object-oriented programming [21]. The
contribution of SP is to provide the programmer with full control
in designing and implementing traversal functionality on the ba-
sis of programmer-definable traversal schemes. An actual traversal
is synthesised by passing problem-specific basic computations as
arguments to the appropriate traversal scheme. (The basic compu-
tations are like the code wrappers in AP.) The definition of schemes
of traversal relies on traversal primitives that only process the im-
mediate subcomponents of a datum, e.g.:

all Apply an argument strategy to all immediate subcomponents
while preserving the overall shape of the datum.

one Apply an argument strategy to one 'fit' subcomponent while
preserving the overall shape of the datum. Success and fail-
ure behaviour of the argument strategy determines fitness.

reduce Similar to all but the results of processing the immediate
subcomponents are summed up with a given operator.

select Similar t° °he but the successfully pr°cessed immediate sub"
component is returned as the result.

By not anticipating any scheme of recursion, one-layer traversal
can still be completed into deep traversal in different ways using
ordinary recursion. In Fig. 2, we illustrate strategic traversal.

Aspectual traversal. Both adaptive and strategic programming
are aspectual traversal approaches in the sense of aspect-oriented
programming (AOP). The link between AP and AOP is discussed
in [10]. The code wrappers in AP instantiate the AOP notion of ad-
vice. The traversal specifications in AP instantiate the AOP notion
of join points in a somewhat unusual way. Instead of intercept-
ing points along the execution of a given program, we first assume
the execution of a traversal over an object structure. Then, traver-
sal specifications are like join points or even point cuts along this
traversal execution. This implies that AP addresses a form of cross-
cutting in the sense that a traditional implementation of a traversal
results in scattering functionality and traversal control throughout
several classes. This aspect-oriented view on AP carries over to SP,
but SP addresses an additional form of separation of concerns. That
is, one can capture reusable definitions of generic traversal schemes
while exploring various variation points.

Table of c o n t e n t s . In Sec. 2, we will discuss the aspiration of
SP in detail while we compare SP with AP and further related work.
In Sec. 3, we will characterise the key notion used in SP, namely
strategies, and we will provide a guideline suite o f basic strategic
combinators. In See. 4, we will present prime examples of SP-
like traversal schemes, including approximative reconstructions of

adaptive program patterns. In Sec. 5, we will provide an overview
of SP incarnations in term rewriting, functional and object-oriented
programming. In Sec. 6, we will pay special attention to the traver-
sal of object structures since this is at the heart of AP. In Sec. 7, the
paper is concluded.

2. THE CONTRIBUTION OF STRATEGIES
The aspiration.of SP is to provide the programmer with full traver-
sal control. This sets SP apart from all other approaches to traver-
sal including AP. We will first explain the meaning of full traversal
control as opposed to tangling of traversal actions and basic com-
putations. We will then demonstrate the strategic style. We will
also review other traversal approaches.

Full traversal control. We view a traversal as a program that
performs basic data-processing actions on the appropriate data parts
in the right order. Data is meant here in the sense of heteroge-
neously typed data such as many-sorted terms, object structures,
and XML documents. Control can be classified as follows:

i the order of applying the basic actions,

ii the side conditions guarding the basic actions,

iii the propagation of effects caused by the actions, and

iv the traversal over the compound input data.

Control in the sense of (i) ordering, (ii) side conditions, and (iii)
effects is reasonably understood. SP contributes to (iv) traversal
control, and to its interaction with (i)-(iii). The resulting achieve-
ment is called fu l l traversal control. The prime application domain
of SP is program transformation, and indeed, full traversal control
is crucial in this domain to guarantee correctness and termination
of many transformations. The SP idiom is independent of a specific
language or paradigm.

Entangled traversal. Traversals are often implemented in a
way that the traversal logic and basic computations are entangled.
This tangling can be observed in many areas of computing, for ex-
ample, in object-oriented programming with visitors and functional
programming. This is illustrated with a Haskell program in Fig. 3.
The fact that the traversal logic is heavily entangled with the ba-
sic actions is a major problem because the size of the entangled
traversal code is proportional to the number of data constructors
regardless of the specific problem. Also, such entangled traversal
is not robust in the view of changes to the traversed data structure.
Furthermore, the tangling has to be repeated for every new piece of
traversal functionality.

169

The Haskell function implements a simple transformation by a
traversal. It descends into terms representing regular expressions
to perform simplifications according to the first two equations.
The remaining equations serve traversal only.
simplify :: RegExp ~ RegExp
simplify (Alt Epsilon exp) : Opt (simplify exp) --introduce '?'
simplify (Opt (Plus exp)) = Star (simplify exp) --introduce '*'
-- recgse into compound regular expressions

simplify (Star exp) = Star (simplify exp)
simplify (Plus exp) = Plus (simplify exp)
simplify (Opt exp) = Opt (simplify exp)
simplify (Seq expl exp,) = Seq (simplify expl) (simplify exp2)
simplify (Alt expi exp2) = Alt (simplify expl) (simplify exp2)
simplify exp = exp

Figure 3: Tangled traversal in functional programming

The contr ibut ion o f AP. Both AP and SP improve on the
above tangling problem. With AP, the programmer can separate
the traversal code (i.e., traversal specifications) from the basic com-
putations (i.e., code wrappers). One also gains adaptiveness, that
is, a traversal is only centred around the specific milestones of a
traversal over a certain object graph.

The contr ibut ion o f SP. Adaptiveness is also served by SP
as we will demonstrate below. In addition, SP allows the pro-
grammer to capture reusable, potentially generic traversal schemes.
Hence, control patterns for traversal become programmer-definable
abstractions. As a result, both traversal schemes and problem-
specific computations can be reused across applications and their
components.

The strategic method. The SP idiom encompasses both ex-
pressiveness and a method for designing and implementing traver-
sal functionality. The 'strategic' expressiveness is that traversal
strategies can be defined in terms of appropriate strategy combi-
nators (cf. Sec. 3). This expressiveness is sometimes hard, some-
times easy to achieve - - depending on the targeted programming
paradigm, the required strength of typing and programming conve-
nience. The strategic method can be sumrnarised in the following
steps for implementing a piece of strategic traversal functionality:

1. identification of a reusable traversal scheme,

2. definition of the problem-specific ingredients, and

3. synthesis of the traversal by parameter passing.

The traversal schemes are usually generic, that is, problem-specific
ingredients are anticipated via parameters. These problem-specific
ingredients are type-specific actions or generic actions with type-
specific branches. These actions are meant to describe how data of
'interesting' types is processed when encountered during traversal.
The strategic method, although general, is in no way difficult.

A strategic example. The tangling in Fig. 3 is easily eliminated
if we use a strategic traversal scheme to iterate the basic simplifi-
cation rules all over the tree. The disentangled version is shown
in Fig. 4. The function simplify is reconstructed in strategic style
by passing a helper function simplifyStep to the traversal scheme
full_td - - read as 'full top-down'. To be precise, simplifyStep
is wrapped with choice . . . id to make sure that node processing
always succeeds. The function simplifyStep captures the basic
'rewrite steps' for simplifying regular expressions. In the type of
simplifyStep, we use the Maybe type constructor in order to ex-
press whether any simplification rule triggers or not.

simplify = fuU.td (choice simplifyStep id)

simplifyStep :: RegExp ~ Maybe RegE~p
simplifyStep (Alt Epsilon exp) = ,lust (Opt exp)
simplifyStep (Opt (Plus exp)) = ,lust (Star exp)
simplifyStep _ = Nothing

Figure 4: Aspectual variation on Fig. 3

A variation. Although the above definition of simplify is per-
fectly modular, and faithfully reconstructs the original tangled def-
inition, a shortcoming becomes obvious. The definition does not
enforce the exhaustive application of simplifyStep. This is because
full_td applies its argument to the input datum before its immedi-
ate subcomponents were traversed. Here is a variation simplify'
that eliminates this problem because it performs simplifications ac-
cording to the folklore traversal scheme innermost:

simplify' = innermost simplifyStep

The scheme innermost operates bottom-up, and it loops until a
fixpoint is reached. Hence, in this example, innermost is more
appropriate than full_td. In another context, the opposite situation
is possible, for example, if the use of innermost would cause a
nonterminating strategy due to the nature of the given rewrite step.
The schemes full_td and innermost are two beginner's favourites.

Rich variat ion points, sP enables and encourages the pro-
grammer to reflect on the variation points of traversals for each new
problem. This makes it even easier to alter the design of a traver-
sal when compared to the mere achievement of concise traversal
implementations. These are typical variation points for traversals:

• transformation vs. query,

• single vs. cascaded traversal,

• top-down vs. bottom-up traversal,

• depth-first vs. breadth-first traversal,

• left-to-right traversal and vice versa,

• full vs. single-hit vs. cut-off traversal,

• types vs. general predicates as milestones,

• fixpoint by equality test vs. fixpoint by failure,

• local choice vs. full backtracking vs. explicit cut,

• traversal with effects (accumulation, cloning, etc.).

We have experienced these and other variation points in actual ap-
plications. AP and other generic programming idioms do not ad-
dress this rich variety of variation points.

Appl icat ions . References to a few typical applications of SP are
in place. In [1], a transformation system CodeBoost for domain-
specific optimisation of C++ programs in the domain of numeric
programming is described. It was implemented in Stratego making
use of the XT bundle of tools for program transformation which in-
cludes packages for parsing and pretty printing. In [7], the use of
functional strategies for the implementation of program refactor-
ing for Java is demonstrated. The refactorings were implemented
in Haskell using Strafunski. In [3], the program understanding
tool ControlCruiser is described which reconstructs and visualises
Cobol control flow. The JJTraveler I JJForester architecture has
been used for the implementation.

170

Levels of traversal control. We conclude our discussion of
traversal control by placing different styles of programming in a
range of levels to measure the sophistication of traversal control:

Entangled traversal The folklore style of visitor programming or
(non-generic) functional programming is placed at this level.

Disentangled traversal Approaches that separate traversal logic
and the basic computations qualify for this level. The or-
thogonal example is the notion of generalised folds in func-
tional programming [14], which provides a uniform traver-
sal scheme for all datatypes. The basic computations per
constructor can be passed as arguments to the fold combi-
nator. An object-oriented approach to disentangled traversal
is described in [16] (inspired by AP concepts). There, OOP
is enriched with a domain-specific language for specifying
reusable traversals of object structures.

Adaptive traversal If a traversal approach provides some means
to abstract from the traversed data structure, then we call
this an adaptive approach. This is obviously the case for
AP. Polytypic programming [4] can also be used in a way
to perform adaptive traversal. The above-mentioned notion
of generalised folds can be refined to serve adaptiveness by
considering generic, primitive fold algebras that only need
to be updated for the data constructors relevant for a specific
traversal problem [8]. Yet another adaptive approach is term
rewriting with traversal functions [2].

First-class traversal SP inhabits this level. Traversal schemes are
programmer-definable entities. Often, these schemes are com-
pletely generic.

Absent variation points in AP. Generic traversal schemes
that make available various variation points are beyond the aspira-
tion of AP. In fact, the semantics of adaptive programs fixes certain
variation points of traversals, e.g.:

• Adaptive traversals are depth-first traversals.

• Milestones are searched in top-down manner.

• Milestones are constrained by classes.

• Traversal specifications denote all valid paths.

3. THE FOUNDATIONS OF STRATEGIES
Strategic programming is programming with the use of (traversal)
strategies. Depending on the SP incarnation within a certain pro-
gramming paradigm, strategies might correspond to objects, pure
functions, impure functions, and others (cf. Sec. 5). Below, we will
characterise an abstract notion of strategy that is not bound to any
particular programming language or paradigm. We will also define
a guideline suite of basic strategy combinators.

Characteristics of strategies. Strategies in the sense of SP
are data-processing actions with the following characteristics:

Genericity Strategies are generic in the sense that they are appli-
cable to data of any type (say, sort, or class).

Specifidty Though generic, strategies provide access to the actual
data structures by means of type-specific operations.

Composability There are means to express compound, conditional,
and iterated strategy application.

One-layer traversal Strategies enable generic traversal into the
immediate subcomponents of heterogeneous data structures.

Partiality The application of a strategy to a given datum may fail,
and recovery from failure is possible.

First-class Strategies are first-class citizens in the sense that they
can be named, can be passed as arguments, etc.

SP vs. AP. The abstract notion of strategy corresponds to a re-
quirement specification for incarnating strategic programming in a
given programming language or paradigm. It also provides a refer-
ence chart to assess other generic programming approaches. In the
case of adaptive programming, we can pinpoint deviations of adap-
tive programs from our characterisation of strategies, in particular:

• Adaptive programs are not fully generic because their traver-
sal specifications refer to class names and labels to describe
milestones and and the relations between them. Using 'sym-
bolic names' [11] instead of concrete names, traversal speci-
fications become reusable.

• The traversal specifications of adaptive programs do not in-
volve one-layer traversal on immediate subcomponents. AP
favours instead operations on sets of paths.

• Adaptive programs do not involve a designated form of par-
tiality. Traversals are performed by visiting all milestones.
'Around' wrappers control if the rest of the traversal is per-
formed before or after the wrapper, or maybe not at all.

• Adaptive programs are normally not first-class citizens, al-
though recent implementations [15] might admit the poten-
tial for first-class adaptive programs.

A guideline combinator suite. In the following, we specify
a set of strategy combinators that must be supported by an incar-
nation of SP. Actual incarnations of strategic programming may
include further combinators than those proposed below. Here is the
syntax for strategy combinators s:

s ::= id
fail
seq(s, S)
choice(s, s)
adhoc(s, a)
all(s)
on<s)

Identity strategy
Failure strategy

Sequential composition
Left-biased choice

Type-based dispatch for a basic action a
Process all immediate subcomponents
Process one immediate subcomponent

The semantics of the combinators is shown in Fig. 5 while we sug-
gest a semi-formal reading of the figure. The given semantics de-
liberately leaves open how to blend with the expressiveness offered
by the host paradigm of an eventual incarnation. (Think of value se-
mantics vs. reference semantics.) We refer to [22, 6] for the formal
treatment of SP in a term-rewriting setting. We will now discuss
the combinators in detail.

Constants and composition. The strategy id succeeds for any
datum and returns its input without change. Dually, the strategy fail
fails for any datum, indicated by the output T. There are two com-
binators for strategy composition. The sequence combinator seq
applies its two argument strategies in succession. The left-biased
choice combinator first attempts application of its first argument
strategy. If and only if this application fails, the second argument
is attempted. We assume that the definition of new named combi-
nators can involve recursion.

One-layer traversaL The definitions of the combinators all
and one formalise the intuitions from Fig. 2. They both push their
argument strategy one level down into the input datum to process

171

Notation
d ... data
c ... data constructors

... data or failure "T"
a ... type-specific actions
s ... strategies
a@d ... application of a to d
s@d ... application of s to d
d ~ d ... big-step semantics
a : t ... type handled by a
d : t ... type of a datum d
[d] ... indivisible data
c(dl .. •dn) ... compound data

Meaning
id~d ~ d
failed ~ T
seq(s, st)~d :=~ d if s@d =~. d' A stud t ~
seq(s,s/)@d =¢" T i fs~d ::~ T
choice(sl,s2)~d ~ d' i f s l ~ d =~ d'
choice(sl,sz)~d ~ d ifsl~d::::~. ~As2~d=-~d
all(s)Q[~ ~ [4
all(s)@C(dl . . . d ,) ~ c(d~. . .d '~) if s@dl ~ d~ s@dx ~ d'~
all(s)~c(dl...dn) ::::¢" T if 3i. s~di :-~ T

one(s)@c(dl...dn) ~ e(. . .d~. . .) if3i. s@d] ~ T A . . . A s~di-1 ~ T A s~di:=~d~
one(s)~c(dl...dn) ~ T i f s ~ d l ~ T s~dn ::~ T
adhoe(s,a)@d ~ add i f a : t a n d d : t
adhoc(s,a)~d ~ sQd i f a : t A d : t l A t ~ t '

Figure 5: Semant i c s o f the s t ra tegy c o m b i n a t o r s

all immediate components, or just the leftmost one for which the
argument strategy succeeds, respectively. We use dedicated nota-
tion to differentiate between indivisible data and compound data.
Note that all and one preserve the shape of the input datum because
the constructor c reappears in the result. We say that this kind of
strategies is type-preserving, or that they perform a transformation.
We omit the discussion of dual combinators that perform a query or
an analysis with a fixed result type regardless of the input datum's
type. (Recall select and reduce from the introduction.) To illustrate
the definition of recursive traversal schemes in terms of one-layer
combinators, we define full_td for full top-down traversal in terms
of all. The following definition means that full_td(s) applies its ar-
gument strategy s at the root of the incoming datum, and then (cf.
seq) it applies itself to all immediate components of the datum:

full_td(s) = seq(s , all(flzll_td(s)))

Lift ing type-speci f ic actions. In Fig. 5, we distinguish type-
specific actions vs. generic data-processing actions - - the latter be-
ing called strategies. There are means to mediate between the two
categories. Obviously, a generic action s can be applied immedi-
ately to a datum d of any type. (The application ope ra to r . . . @d is
overloaded for type-specific and generic actions.) Notably, a type-
specific action can also be turned into a generic action by what
we call ' type-based dispatch' or simply ' lifting'. This is neces-
sary in order to enable the application of type-specific actions to
subcomponents of different sorts in the course of traversal. Ex-
plicit lifting is accomplished by the adhoc combinator, which con-
structs a new strategy from a generic default s and a type-specific
action a. That is, the strategy adhoc(s , a) behaves like s except for
data of a ' s input type; here it dispatches to a. An incarnation of
strategic programming can omit the adhoc combinator, and favour
implicit lifting instead. Then, a type-specific action a is viewed
as adhoc(fail, a). We illustrate lifting by adding an application of
adhoc to the strategic Haskell snippet from Fig. 4:

simplify = full_td (choice (adhoc fail simplifyStep) id)

We use fail as default. We could have used id as well because
we recover from failure anyway via choice . . . id. Defaults other
than id and fail are also sensible. One could, for example, consider
recursive descent as default which is only meant to happen if the
type of the basic action and the type of the given datum do not fit.

Adapt ive traversal primit ives. Let us clarify what it means
that AP does not cater for access to immediate subcomponents of
compound data. We recall that traversal specifications are com-
posed in terms of the predicates from, to, through, and bypassing

as sketched in the introduction. The semantics of AP usually refers
to other primitives [18] that make clear that traversal specifications
denote sets of paths in a graph with classes as nodes, and edges
for subclassing and subobjects. These are the most fundamental
primitives to compose traversal specifications S:

• [A, t3] - - the set o f paths from class A to class B; this form
corresponds to f rom A to/3.

• S1 • $2 - - the concatenation of the sets of paths S1 and
$2 where the target class in $1 must coincide with the source
class in $2; through predicates can be modelled via this form.

• $1 + $2 - - the union of sets of paths where Sx and $2 must
agree on the source and target classes; merging traversals can
be modelled via this form.

There are further forms of composition, e.g., for intersection, and
acyclic paths [11, 12]. The bypassing predicate can be viewed as a
combination of a complement operation and intersection.

Other forms of strategies. The term strategy or related terms
like tactics and tacticals are also used in other contexts of comput-
ing. Usually some sort of 'control ' is associated to this use, but not
the means to cater for generic access to components of heteroge-
neous data structures. For example, strategies are used to describe
proof tactics and tacticals or programmable evaluation strategies in
term rewriting [19]. In the newer AP literature, the term (traversal)
strategy is also used as a generalisation o f the 'traversal specifi-
cations' in the earlier literature. The generalisation concerns the
way how traversal specifications are viewed. An AP-like strategy
is viewed as a function on graphs preparing the actual traversal of
milestones. At the programming level, still the same predicates
from, to, etc. are used,

4. T R A V E R S A L S C H E M E S
The power of our strategy combinators can best be demonstrated
with a few examples. Fig. 6 shows a list of combinators defined
in terms of the basic ones. The first two control patterns t ry and
repeat do not involve traversal whereas the remaining combinators
define different traversal schemes. In fact, these are all general-
purpose traversal schemes. We omit a discussion of domain-specific
schemes, e,g., schemes for language processing. We will first ex-
plain all the schemes from the figure. Eventually, we will clarify
how the adaptive style meets our strategic style.

Non- traversa l control. The combinator trdd turns its argument
strategy into an always succeeding strategy: t ry (s) attempts s but

172

tw(s)
repeat(s)
full_td(s)
fult_bu(s)
once_td(s)
once_bu(s)
stop_td(s)

naive_innermost(s)
innerraost (s)

= choice(s, id)
= t w (~ e q (s , repeat(a)))
= seq(s, all(full:td(s)))
= seq(all(full_bu(s)), s)
= choice(s,one(once_td(s)))
: choice(one(once_bu(s)), s)
= choice(s, all(stop_td(s)))
= repeat(onee_bu(s))
: seq(all(innerraost(s)),try(seq(s, innermost(s))))

full . td stop_td onee_td once_bu

/ \ /\.

Figure 6: Some defined strategy combinators

resorts to id if s fails. The repeat combinator serves for fixpoint
computation: repeat(s) applies s repeatedly until s fails. This con-
trol pattern is useful in the definition of traversal schemes like in-
nermost where traversal involves exhaustive application of actions.

Traversal schemes. The combinators full . td and full.bu
model a full top-down or bottom-up traversal, respectively. They
apply their argument strategy at the root of the incoming datum,
and at all its immediate and non-immediate components. The com-
binators once_td and once_bu are variations that apply the argu-
ment strategy only to the first component at which it succeeds.
The combinator stop_td attempts the application of the argument
strategy to components along all branches, and it stops in a given
branch when an application succeeds. The naive_innermost and
innermost combinators both implement the leftmost innermost
evaluation strategy, but the second is more efficient than the first.

SP meets AP. We are now in the position to reconstruct adaptive
program patterns as strategy combinators. This reconstruction is
based on the following ideas:

Milestones as strategies Adaptive traversal specifications refer to
class names as milestones. In SP, we call this a type guard - -
a strategy that succeeds if and only if faced with data of a
given type. Hence, the combinator for an AP pattern receives
strategy arguments for milestone identification.

Code wrappers as strategy combinators An 'around' wrapper in
AP dictates how to superimpose the wrapper's functionality
onto the traversal steps (with 'before' and 'after' as special
cases). In SP, we model code wrappers as strategy combina-
tors that take the 'rest of the traversal' as a strategy argument.

Predicates as traversal schemes The predicates used in the traver-
sal specifications of AP are mapped to appropriate strate-
gic traversal schemes. A traversal specification with several
predicates maps then to a cascaded traversal strategy.

We start with the most simple example of a traversal specification,
namely from A to B with associated code wrappers WA and WB
for the two milestones. We define a strategy combinatorfrom_to

for this pattern with arguments for A, /3 , WA, and WB:

from_to(A,B, W A , W B) = seq(A, WA(tO(B, WB)))
to(B, WB) = all(stop_td(seq(B, try(WB))))

For short, it is the stop_td scheme which does all the work. We
first test for A to enforce that we are faced with a datum of type
A. Then, we invoke the wrapper WA and pass the rest of the
traversal to it as an argument. The rest is defined by a helper com-
binator to. The outermost all implies descending one level, and
the stop_td(seq(B,. . .)) means following all branches but stop-
ping for B. When we found B, we invoke the wrapper WB. This
wrapper strategy takes no arguments because there is no remaining
traversal. We enforce success via try. As a general remark regard-
ing the above reconstruction: the semantics of SP implies that the
reconstruction is more greedy than prescribed by the semantics of
AP. That is, even subcomponents the types of which rule out nested
Bs are traversed. This concern will be addressed in Sec. 6. We
continue with a combinator that includes a through predicate:

from.through_to(A, [~, B, WA, ~] , WB) =
from_to(A, T, WA, WT(to(B, WB)))

We boxed the added parameters T for the through milestone, and
the associated wrapper WT. We first go from source nodes (cf.
A) to intermediate nodes (cf. T) via the from_to combinator. The
wrapper WT for the intermediate nodes receives the appropriate
rest of the traversal, which is meant to eventually reach all target
nodes (cf. B) via the to combinator. This idea works for any num-
ber of through predicates. Each new milestone is found by a stop_td
traversal. We can also cope with bypassing predicates:

from_to_bypassing(A, B, [] , WA, WB) =
from_to(A, choice(N, B), W A , choice(N, WB))

So we stop the from_to traversal at both target nodes (cf. B) as well
as bypassing nodes (cf. N), and we make sure that the wrapper WB
is only applied in case we are faced with a proper target node.

5. IMPLEMENTING STRATEGIES
The strategic programming idiom has been realised within several
programming paradigms. There are fully worked-out and tool-
supported incarnations for term rewriting based on Stratego [22,

173

Concept per paradigm I[Term rewriting Functional programming OO programming
Datum many-sorted term term of an algebraic datatype object graph
Immediate component subterm subterm referenced object
Basic action rewrite rule monomorphic function specific visit method
Strategy term rewriting strategy 'strategically' polymorphic function generic visitor object
Strategy application dedicated operator function application visit method invocation
Strategy combinators strategy definitions higher-order functions visitor classes
Type-based dispatch implicit type-safe cast RTrI, dynamic binding

liberal checks rank-2 types, constrained ' ~ ' subtype polymorphism Types
Partiality built-in
Host idioms 'DSL-like' extensions

monadic effect exceptions
monadic effects graphs, side effects

Figure 7: Overview of strategic programming incarnations

20], for functional programming in Haskell based on Strafunski [7,
5], and for object-oriented programming in Java based on JJTrav-
eler / JJForester [21]. Stratego is a language that is devoted to the
strategic programming idiom. The functional and object-oriented
incarnations take a different road: they aim at making the SP idiom
available in general-purpose programming languages. We will not
revisit the incarnations in detail. Instead, we will discuss how to
incarnate, in general, strategic programming. Furthermore, we will
compare the incarnations at a higher level of abstraction. Imple-
mentational models for AP will also be sketched.

Incarnation process. An incarnation is designed by mapping
the abstract notion of strategy onto the host paradigm. This involves
the identification of an abstraction form for modelling strategies.
In the case of functional programming, for example, strategies are
modelled as a specific kind of polymorphic functions. One also has
to instantiate subsidiary concepts such as type-specific action, da-
tum, component, partiality. The incarnation process culminates in
the implementation of the guideline set of basic strategy combina-
tors id, fail, seq, choice, all, and one. In Fig. 7, we compare strate-
gic programming in three paradigms based on the instantiation of
the relevant concepts. The incarnations exhibit different trade-offs
as we will pinpoint below. The incarnation process involves certain
challenges. One is that all programming idioms that are 'native' to
the host paradigm should remain available to the programmer when
using strategies. In object-oriented programming, strategies should
blend with reference semantics, and side-effects. Functional strate-
gies should have value semantics, allow monadic effects, and be
strict or lazy depending on the host language. Another challenge
is the typing of strategies. In a strongly typed setting, a kind of
'strategic polymorphism' is needed [5]. This necessitates second-
order polymorphism, and goes beyond parametric polymorphism
and ad-hoc polymorphism.

Term rewriting strategies• The Stratego [22, 20] encoding of
the running example is shown in Fig. 8. As one can see, basic
computations are represented as ordinary (though labelled) rewrite
rules• We use Stratego's left-biased choice combinator <+ to com-
bine the rewrite rules [S1] and [$2] into the helper strategy simpli-
fyStep. Stratego uses implicit lifting, and hence, the schemefull_td
is directly applied to the type-specific strategy simplifyStep. Strat-
ego as of today only performs liberal type checks, namely a kind
of arity checking for term constructors and strategy combinators.
The well-formedness of terms according to a given signature can
be checked at run-time.

Stratego--a DSL fo r program transformation. In the de-
sign of Stratego, the prime issue was to effectively support the

signature

constructors

Alt : RegExp * RegExp -> RegExp

Opt : RegExp -> RegExp

rules
S1 : Alt(Epsilon,exp) -> Opt(exp)

S2 : Opt(Plus(exp)) -> Star(exp)

strategies
simplify = full_td(simplifyStep <+ id)

simplifyStep = S1 <+ $2

Figure 8: Stratego representation of Fig. 4

development of program transformation systems. Hence, Strat-
ego can be viewed as a domain-specific language (DSL). In fact,
a number of domain-specific constructs are available in Stratego,
e.g., the hygienic generation of fresh names as needed in trans-
formations, and scoped dynamic rewrite rules to compute rules at
run-time. Stratego's DSL character is also reflected by other pro-
visions. The language implementation performs specific traversal-
aware optimisations. It further uses a designated run-time term rep-
resentation that allows for sharing, constant time equality test, and
hidden transportation of comments and layout.

Functional strategic programming. By modelling strate-
gies as functions [7, 5], the first-class requirement for strategies
can be met without further ado. All other incarnations of strategic
programming are more problematic in this respect. We have inves-
tigated a variety of models for functional strategies. They differ
regarding the selection of strategy primitives, and subtle details of
typing and representation. The original expressiveness of strategies
can be captured in just two special function combinators:

* The adhoc combinator as defined earlier.

• A highly parameterised one-layer traversal combinator.

The two special combinators can be made available in three ways:

• The programmer instantiates them for each new datatype.

• A generative tool supplies the datatype-specific code.

• A language extension covers the combinators.

The generic programming bundle Strafunski supports several mod-
els via a generative tool component.

Object-oriented strategic programming. This incarnation
uses generalised visitor objects to model strategies [21]. A number
of ideas are needed to make folklore visitors fit for SP, that is, to
meet all defining characteristics of strategies:

174

class Seq implements visitor {

visitor vl, v2;

public Seq(Visitor vl, Visitor v2) {
this.vl = vl; this.v2 = v2;

)

public visitable visit(Visitable x) {
return v2.visit(vl.visit(x));

)
}

public class FuliTD extends Seq {
public FullTD(Visitor v) {

super(v,null);
v2 = new All(this);

}

l

Figure 9: Strategy combinators as visitor combinators

• While standard visitors are specific to a class hierarchy, strate-
gic programming additionally necessitates completely generic
visitors. These visitors implement a single visit method.

• To enable one-layer traversal, we need to cater for generic
access to the immediate subobjects of objects. This is accom-
plished by a Visitable interface to get and set all 'children'.

• To cover partiality for visitors, failure is encoded by throwing
a VisitFailure exception, and left-biased choice recovers from
failure via exception handling.

• The double-dispatch protocol of ordinary visitors is com-
plemented by a visitor combinator that forwards any class-
specific visit method to a generic visit method. By subclass-
ing a forwarding visitor, one achieves the effect of adhoc.

• While ordinary visitors are 'void' visitors, 'returning' visi-
tors are preferred in the SP setting. That is, v.visit(z) al-
ways returns an object - - normally z. This makes it easier to
replace objects by new ones (possibly of different subtypes).

• A combinator style for first-class visitors relies on param-
eterised constructors for visitors. Using the generic visitor
interface, one can define generic visitor combinators. This is
demonstrated for seq and full_td in Fig. 9.

The 'strategies as visitors' approach is naturally supported via a
generative tool (JJForester in our case). This concerns the afore-
mentioned Visitable interface to be introduced into a given class
hierarchy, and the derivation of the ordinary visitor class, as well as
the forwarding visitor combinator. The current typing model neces-
sitates some casting. This problem can be remedied with generics.

AP language implementation. Previous approaches to the
implementation of adaptive programs normally relied on compi-
lation. In [18], an adaptive program is compiled into an object-
oriented program where the class hierarchy contains a method for
each adaptive traversal. The generated method definitions recurse
into subobjects, and they invoke the code wrappers. A problem
with this approach is that the generated code could be invoked in-
correctly without starting at a proper source node. In [17], a more
general compilation technique is described with several methods
per traversal. The idea is here that the search through the object
graph can be modelled as a (deterministic) finite automaton where
the states are modelled by methods. In [11], a generic approach to
the generation of traversal methods is described. In this approach,
traversal specifications are compiled into road-maps that are used
by the traversal methods at run-time. The main idea is to maintain
a traversal graphs with tokens that represent the traversal history.

In [15], an implementational model for AP is described which is
reflection-based, that is, no preprocessing or compilation is needed.

6. TRAVERSING OBJECT STRUCTURES
While the notion of strategies was initiated in the declarative pro-
gramming setting of term rewriting (i.e., referential transparency,
no cycles in data structures, many-sorted data, no side effects),
strategies are perfectly sound in other settings, too. The Strat-
ego incarnation demonstrates how to cope with side effects. The
object-oriented incarnation provides the prime platform for traver-
sal strategies on mutable graphs, i.e., object structures. Since adap-
tive programming focuses on traversing object structures, we will
investigate the issues that come up in this context.

Mutable structures. There are two overall options to deal with
mutable structures, say, object structures, in SP:

1. Strategies mutate the (traversed) objects to compute a result-
ing object structure.

2. Strategies perform (deep or shallow) cloning, in particular
the one-layer traversal combinators.

In our implementations, we adhere to the first option because the
preservation of the original object structure is normally not required.
Deep cloning can still be triggered explicitly by the programmer.
This attitude is well in line with AP where the code wrappers are
immediately executed whenever milestones are encountered in the
course of a traversal, without even waiting for a proper target node
to be reached [18]. These code wrappers typically accumulate some
result, or they mutate the milestone objects, or both. In principle,
they could also perform cloning. However, searching through the
object structure by itself does not involve any cloning.

Generaltopologies. In the primary application domain of SP - -
program transformation - - , strategies are predominantly applied to
tree-shaped data. Even in the object-oriented setting, the object
structures normally resemble the context-free grammar of the lan-
guage subject to program transformation and analysis. We have
certainly encountered situations where other topologies need to be
covered, e.g., the traversal of control-flow graphs [3]. There are
the following issues regarding the potential of different topologies
such as trees, directed acyclic graphs (DAG), or even cyclic graphs:

• If cyclic structures are traversed, we have to make sure that
the traversal will always terminate.

• If objects can be referenced several times, we have to decide
if the traversal should differentiate between these references.

Creating awareness of the different references to an object as in
a DAG is just a refinement of cycle detection as discussed below.
These are the possible attacks for coping with cycles:

1. We restrict ourselves to tree-shaped object structures for strate-
gic traversal. A corresponding check can be automated.

2. We make sure that a traversal only sees tree-shaped slices of
object structures. This can be done via bypassing conditions.

3. We keep track of traversed objects, and we let the traversal
fail for the second encounter of a given object.

In Fig. 10, we list a visitor combinator Faill]visited that can be
used as a guard in strategic programs to detect a cycle in the sense
of (3.) above. One can prefix node processors by FaillfVisited so
that a traversal will not descend into an object for a second time.
As an orthogonal example, here is a full top-down traversal that
merely tests for tree-shape:

175

public class FailIfvisited extends Visitor {

Set visited = new HashSet();

public FailIfVisited() {}

public Visitable visit(Visitable x)
throws VisitFailure

{
if visited.contains(x) {

throw new VisitFailure();
} else {

visited.add(x); return x;
}

}
}

Figure 10: A provision for cycle detection

public class IsTree extends FuliTD {
public IsTree() {

super (new FailIfVisited()) ;
}

)

Again, this approach is well in line with AR In [1 I], a similar tech-
nique for invoking traversal methods is described to cut off traversal
whenever an object is encountered for the second time. In [12], a
predicate for traversal specifications is considered that specifically
rules out cyclic paths. In fact, cyclic structures are otherwise not
too much of an issue in the AP literature. Instead of using a com-
binator like FaillJVisited and a collection of visited objects, one
might also think of other means that could be served by a native SP
implementation, e.g., marking objects with visit flags.

C o m p a t i b i l i t y . In [18], compatibility is described as a desirable
property for AP. Given a traversal specification and a concrete class
graph, compatibility means that all the milestones of the traversal
can be possibly established for some object graph. This is illus-
trated in Fig. 11. Note that one can not guarantee the reachability
of the milestones for all possible object graphs. (Think of NIL
references, and non-instantiated subclasses.) Compatibility can be
transposed to SP as follows:

• Compatibility of a strategy s, a root class c, and a class graph
9 means that each type-specific branch in s should be possi-
bly encountered for some object graph rooted by an object of
class c. This deviation reflects that strategies are not centred
around the idea of milestones but we rather assume that type-
specific computations interact with the concrete data struc-
ture (recall explicit lifting via adhoc or implicit lifting).

• Compatibility checking in AP can be reduced to a graph-
theoretical reachability analysis. Compatibility in SP is, in
general, undecidable. This is because all ingredients of a
strategic program are defined in the same Turing-complete
language as opposed to the separation of traversal specifica-
tions and code wrappers in AP.

• Compatibility is biased towards adaptive traversal. In SP,
we also consider completely generic traversal schemes. One
might also want to check these schemes for properties, e.g.,
if a traversal scheme can succeed at all, if it might tend to
fail too often, or if it might succeed too easily with a trivial
result. Here are examples of problematic strategies:

- ffull_td (adhoc fail . . .) - - will fail too often

- once_td (adhoc id . . .) - - will succeed too easily

We consider the study of such properties as a topic for future work.

W

Properties of traversal specifications:

• from A through E to C is compatible with the class graph.
• from A through C to E is not compatible with the class graph.

To see this, one can observe:

• A C object is reachable from an E object for some object graphs.
• An E object is not reachable from a C object for any object graph.

Class graph legend

< ~ abstract class

[~ concrete class

• ,,,,~lp,.- subclassing edge

construction edge

Figure 11: Compatibi l i ty of adaptive programs

Premature termination. The semantics of adaptive programs
employs static meta-information on the class graph to limit the
traversal to those branches in the given object graph that can pos-
sibly lead to a target node [13]. Intuitively, a reachability analysis
as in the case of compatibility determines the optimised traversal
sequences which cut off hopeless branches. Recall Fig. 11:

Traversing an object graph according to "'from A
throu9h E to C" , traversal ends prematurely when
we hit on a t3 node before we saw an E node because
E is not reachable from B in the class graph.

The benefit of premature termination is foremost efficiency since
less nodes need to be visited. In addition, code wrappers for through
nodes will not be executed unnecessarily if a target node cannot be
reached anyway. If the cut-off analyses in AP are done at compile-
time, then a closed-world assumption is necessary (i.e., no further
subclassing). The reflection-based approach in [15] avoids this
problem. Premature termination of strategies in SP on the basis
of static analyses has not been an issue so far. We consider the
transposition of the AP techniques as a prime topic for future work
on SP, and as the crucial element of a completed marriage of SP
and AP. Note that cutting off branches in a strategic traversal can
be very well achieved with stop conditions. This is common prac-
tice in SP - - not necessarily related to efficiency, but often also to
correctness, just as for bypassing predicates.

S u r p r i s i n g p a t h s . The structure shyness in AP is sometimes
considered harmful [16]. The problem is that traversal strategies
might go along surprising paths especially when the class hierar-
chy changes. One can call this a robustness issue. This under-
specification problem is perceived differently in the SP context. In
the application context of programming transformation and anal-
ysis, the programmer is usually very well aware of the given lan-
guage syntax - - so few surprises are to be expected. Adaptive-
ness is mainly employed for conciseness. In fact, languages do not
change so dramatically as arbitrary object models.

7. CONCLUSION
Traversal programming in SP and AP are prime examples of general-
purpose aspect-oriented programming techniques. Strategic and
adaptive programming share several benefits: conciseness of traver-
sal specification, support for reuse of basic computations, and iso-

176

lation from changes in the data structures. Both idioms are well
founded and well supported by corresponding tools and program-
ming environments. We will conclude the paper by highlighting
the respective strengths and weaknesses of AP and SP.

Adaptive programming

+ Use of static meta-information to optimise traversals.

+ Compatibility checking oftraversal specifications and class graphs.

+ Clear separation of traversal specifications and code wrappers.

- Absence of a number of variation points for traversal.

- Bias towards object-oriented programming.

Strategic programming

+ Programmer-definable, reusable, generic traversal schemes.

+ Access to the full range of variation points for traversal.

+ Language-independent generic programming idiom.

- Premature termination of traversals not automated.

- Freewheeling combinator style blurs focus.

The ultimate, unified aspectual traversal approach shall combine
the strengths to dissolve the weaknesses. To us, this seems feasible.

Acknowledgement. We are grateful for the helpful comments
and suggestions by the anonymous AOSD 2003 referees. We also
appreciate the feedback from the Demeter team, in particular, Karl
Lieberherr, Doug Orleans, Yi Qian, Therapon Skotiniotis.

Availability. The rewriting, the functional and the object-oriented
incarnations of SP are supported by corresponding programming
environments Stratego/XT, Strafunski, JJForester/JJTraveler. These
software bundles together with documentation, and related research
papers are freely available from the following locations:

• http://www.stratego-language.org/

• http://www.cs.vu.nl/Strafunski/

• http://www, j j forester.org/

8. REFERENCES
[1] O. S. Bagge, M. Haveraaen, and E. Visser. CodeBoost: A

Framework for the Transformation of C++ Programs.
Technical Report UU-CS-2001-32, Institute of Information
and Computing Sciences, Utrecht University, 2001.

[2] M. Brand, P. Klint, and J. Vinju. Term rewriting with
traversal functions. Technical Report SEN-R0121, CWI, July
2001.

[3] A. v. Deursen and J. Visser. Building Program
Understanding Tools using Visitor Combinators. In Proc. of
lOth Int. Workshop on Program Comprehension, IWPC
2002. IEEE Computer Society, 2002.

[4] J. Jeuring and P. Jansson. Polytypic programming. In
J. Launchbury, E. Meijer, and T. Sheard, editors, 2nd Int.
School on Advanced Functional Programming, Olympia,
WA, USA, 26-30 Aug 1996, volume 1129 of LNCS, pages
68-114. Springer-Verlag, 1996.

[5] R. L~mmel. The Sketch of a Polymorphic Symphony. In
B. Gramlich and S. Lucas, editors, Proc. oflnter. Workshop
on Reduction Strategies in Rewriting and Programming
(WRS 2002), volume 70 of ENTCS. Elsevier Science, 2002.
21 pages.

[6] R. L~immel. Typed Generic Traversal With Term Rewriting
Strategies. Journal of Logic and Algebraic Programming,
54:1---64, September 2002.

[7] R. L~iro_mel and J. Visser. Typed Combinators for Generic
Traversal. In S. Krishnamurthi and C. Ramakrishnan, editors,
Proc. of PADL 2002, Portland, OR, USA, volume 2257 of
LNCS. Springer-Verlag, Jan. 2002.

[8] R. L~immel, J. Visser, and J. Kort. Dealing with Large
Bananas. In J. Jeufing, editor, Proc. of WGP'2000, Technical
Report, Universiteit Utrecht, pages 46-59, July 2000.

[9] K. Lieberherr. Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS
Publishing Company, Boston, 1996.

[10] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods. CACM, 44(10):39--41,
Oct. 2001.

[11] K. Lieberherr and B. Patt-Sharnir. Traversals of Object
Structures: Specification and Efficient Implementation.
Technical Report NU-CCS-97-15, Northeastern University,
Boston, 1997.

[12] K. Lieberherr, B. Patt-Shamir, and S. Pradhan. An Efficient
Compiler for Adaptive Programs. Technical Report
NU-CCS-97-03, Northeastern University, Boston, 1997.

[13] K. Lieberherr and M. Wand. Navigating through Object
Graphs Using Local Meta-Information. Submitted for
publication, June 2002.

[14] E. Meijer, M. Fokkinga, and R. Paterson. Functional
Programming with Bananas, Lenses, Envelopes, and Barbed
Wire. In Proc. of FPCA'91, volume 523 of LNCS.
Springer-Verlag, 1991.

[15] D. Orleans and K. Lieberherr. DJ: Dynamic Adaptive
Programming in Java. In A. Yonezawa and S. Matsuoka,
editors, Reflection 2001: Meta-level Architectures and
Separation of Crosscutting Concerns, volume 2192 of LNCS,
pages 73-80, Kyoto, Japan, Sept. 2001. Springer-Verlag.

[16] J. Ovlinger and M. Wand. A Language for Specifying
Recursive Traversals of Object Structures. In Proc. of the
1999 ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA "99), pages 70-81, 1999.

[17] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A new
approach to compiling adaptive programs. Science of
Computer Programming, 29(3):303-326, Sept. 1997.

[18] J. Palsberg, C. Xiao, and K. J. Lieberherr. Efficient
implementation of adaptive software. ACM Trans. Prog.
Lang. Syst., 17(2):264--292, Mar. 1995.

[19] L. Paulson. A Higher-Order Implementation of Rewriting.
Science of Computer Programming, 3(2): 119-149, Aug.
1983.

[20] E. Visser. Stratego: A Language for Program Transformation
based on Rewriting Strategies. System Description of
Stratego 0.5. In A. Middeldorp, editor, Rewriting Techniques
and Applications (RTA "01), volume 2051 of LNCS, pages
357-361. Springer-Verlag, May 2001.

[21] J. Visser. Visitor combination and traversal control. ACM
S1GPLAN Notices, OOPSLA 2001 Conf. Proc.,
36(1 I):270-282, Nov. 2001.

[22] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building
program optimizers with rewriting strategies. In Proc. of the
3rd ACM SIGPLAN Inter Conf. on Functional Programming
(ICFP'98), pages 13-26. ACM Press, Sept. 1998.

177

