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ABSTRACT 
Strategic programming is a generic programming idiom for pro- 
cessing compound data such as terms or object structures. At the 
heart of the approach is the separation of two concerns: basic data- 
processing computations vs. traversal schemes. Actual traversals 
are composed by passing the former as arguments to the latter. 
Traversal schemes can be defined by the strategic programmer us- 
ing a combinator style that relies on primitives for layered traversal. 

In this paper, we take a look at strategic programming from an 
aspect-oriented programming perspective. Throughout the paper, 
we compare strategic programming with adaptive programming, 
which is a well-established aspectual approach to the traversal of  
object structures. We start from the observation that aspect-oriented 
programming terms, e.g., crosscutting, join point, and advice can 
be instantiated for aspectual traversal approaches. 

Categories and Subject Descriptors 
D.1 .m [Programming Techniques]: Strategic Programming, Adap- 
tive Programming; D.3.3 [Programming Languages]: Language 
Constructs and Features 

General Terms 
Languages, Design 

Keywords 
Generic programming, Traversal, Strategic programming, Adaptive 
programming, Aspect-oriented programming, Strategy, Language 
design, Program transformation, Program analysis 

1. INTRODUCTION 
This paper is devoted to the advanced separation of  two concerns 
in processing compound data such as many-sorted terms, object 
structures, XML documents, and others: 

• basic computations for data-processing, and 

• traversal schemes with rich variation points. 
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We will characterise a reference model for the separation of these 
concerns, namely the idiom of  strategic programming (SP), which 
we developed over the last few years. We will compare SP with 
another aspectual approach to traversal, namely adaptive program- 
ming (AP) as developed by Lieberherr and collaborators [9, 18, 17, 
11, 15]. We will work towards a marriage of  the ideas underlying 
the two aspectual approaches to traversal. 

Adaptive programming (AP) at a glance. Quoting [17]: 
"An adaptive program can be understood as an object-oriented pro- 
gram where the class graph is a parameter, and hence the class 
graph may be changed without changing the program . . . .  Adap- 
tive programs consist of  traversal specifications and code wrap- 
pers?' Traversal specifications realise adaptiveness, say 'structure 
shyness' by only mentioning the milestone classes and relation- 
ships that are immediately relevant for the specific programming 
problem. The execution of  an adaptive program applies the class- 
specific code wrappers to the objects that are identified by the adap- 
tive traversal. AP employs predicates like the following to compose 
traversal specifications: 

from Identify source nodes. 

to Identify target nodes. 

through Identify required intermediate nodes. 

bypassing Identify disfavoured intermediate nodes. 

In Fig. 1, we illustrate adaptive traversal. 
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The heavy arrows build up a path 
through an object structure with 
objects Ol . . . . .  or. The classes 
in the object structure are de- 
noted by A . . . . .  F.  The shown 
path meets the adaptive traversal 
specification from A through B 
to F bypassing D. Notice 
how some objects on the path are 
not mentioned explicitly (cf. o3 
and off). The figure also indi- 
cates another path which meets 
all the requirements except for the 
bypassing predicate (cf. 04). 

Figure 1: Adaptive traversal of an object structure 

Strategic programming (SP) at a glance. SP was initi- 
ated in the setting of  term rewriting [22, 6], but has been trans- 
posed to other programming paradigms, most notably functional 
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One-layer traversal 

Below we illustrate two forms of one-layer traversal: all to process 
all immediate subcomponents, and one  to process the leftmost one for 
which the argument strategy succeeds. (Shaded vs. black nodes repre- 
sent failure vs. success of processing.) 

Deep traversal 

Below we illustrate two recursive schemes. The left one corresponds to 
all applied at all levels. This results in a full top-down traversal (for 
short, full_td). The right one attempts one  at all levels from bottom to 
top. This results in a single-hit bottom-up traversal (for short, once_bu). 

Figure 2: Strategic traversal  of  a term or  a tree 

programming [7, 5] and object-oriented programming [21]. The 
contribution of  SP is to provide the programmer with full control 
in designing and implementing traversal functionality on the ba- 
sis of programmer-definable traversal schemes. An actual traversal 
is synthesised by passing problem-specific basic computations as 
arguments to the appropriate traversal scheme. (The basic compu- 
tations are like the code wrappers in AP.) The definition of schemes 
of traversal relies on traversal primitives that only process the im- 
mediate subcomponents of  a datum, e.g.: 

all Apply an argument strategy to all immediate subcomponents 
while preserving the overall shape of  the datum. 

one Apply an argument strategy to one 'fit' subcomponent while 
preserving the overall shape of  the datum. Success and fail- 
ure behaviour of  the argument strategy determines fitness. 

reduce Similar to all but the results of processing the immediate 
subcomponents are summed up with a given operator. 

select Similar t° °he  but the successfully pr°cessed immediate sub" 
component is returned as the result. 

By not anticipating any scheme of  recursion, one-layer traversal 
can still be completed into deep traversal in different ways using 
ordinary recursion. In Fig. 2, we illustrate strategic traversal. 

Aspectual traversal. Both adaptive and strategic programming 
are aspectual traversal approaches in the sense of  aspect-oriented 
programming (AOP). The link between AP and AOP is discussed 
in [ 10]. The code wrappers in AP instantiate the AOP notion of  ad- 
vice. The traversal specifications in AP instantiate the AOP notion 
of  join  points in a somewhat unusual way. Instead of intercept- 
ing points along the execution of  a given program, we first assume 
the execution of a traversal over an object structure. Then, traver- 
sal specifications are like join points or even point cuts along this 
traversal execution. This implies that AP addresses a form of  cross- 
cutting in the sense that a traditional implementation of a traversal 
results in scattering functionality and traversal control throughout 
several classes. This aspect-oriented view on AP carries over to SP, 
but SP addresses an additional form of  separation of  concerns. That 
is, one can capture reusable definitions of  generic traversal schemes 
while exploring various variation points. 

Table of c o n t e n t s .  In Sec. 2, we will discuss the aspiration of  
SP in detail while we compare SP with AP and further related work. 
In Sec. 3, we will characterise the key notion used in SP, namely 
strategies, and we will provide a guideline suite o f  basic strategic 
combinators. In See. 4, we will present prime examples of SP- 
like traversal schemes, including approximative reconstructions of  

adaptive program patterns. In Sec. 5, we will provide an overview 
of  SP incarnations in term rewriting, functional and object-oriented 
programming. In Sec. 6, we will pay special attention to the traver- 
sal of  object structures since this is at the heart of AP. In Sec. 7, the 
paper is concluded. 

2. THE CONTRIBUTION OF STRATEGIES 
The aspiration.of SP is to provide the programmer with full traver- 
sal control. This sets SP apart from all other approaches to traver- 
sal including AP. We will first explain the meaning of full traversal 
control as opposed to tangling of  traversal actions and basic com- 
putations. We will then demonstrate the strategic style. We will 
also review other traversal approaches. 

Full traversal control. We view a traversal as a program that 
performs basic data-processing actions on the appropriate data parts 
in the right order. Data is meant here in the sense of heteroge- 
neously typed data such as many-sorted terms, object structures, 
and XML documents. Control can be classified as follows: 

i the order of  applying the basic actions, 

ii the side conditions guarding the basic actions, 

iii the propagation of effects caused by the actions, and 

iv the traversal over the compound input data. 

Control in the sense of  (i) ordering, (ii) side conditions, and (iii) 
effects is reasonably understood. SP contributes to (iv) traversal 
control, and to its interaction with (i)-(iii). The resulting achieve- 
ment is called fu l l  traversal control. The prime application domain 
of SP is program transformation, and indeed, full traversal control 
is crucial in this domain to guarantee correctness and termination 
of  many transformations. The SP idiom is independent of  a specific 
language or paradigm. 

Entangled traversal. Traversals are often implemented in a 
way that the traversal logic and basic computations are entangled. 
This tangling can be observed in many areas of  computing, for ex- 
ample, in object-oriented programming with visitors and functional 
programming. This is illustrated with a Haskell program in Fig. 3. 
The fact that the traversal logic is heavily entangled with the ba- 
sic actions is a major problem because the size of  the entangled 
traversal code is proportional to the number of  data constructors 
regardless of  the specific problem. Also, such entangled traversal 
is not robust in the view of  changes to the traversed data structure. 
Furthermore, the tangling has to be repeated for every new piece of  
traversal functionality. 
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The Haskell function implements a simple transformation by a 
traversal. It descends into terms representing regular expressions 
to perform simplifications according to the first two equations. 
The remaining equations serve traversal only. 
simplify :: RegExp ~ RegExp 
simplify (Alt Epsilon exp) : Opt (simplify exp) --introduce '?' 
simplify (Opt (Plus exp) ) = Star (simplify exp ) --introduce '*' 
-- recgse into compound regular expressions 

simplify (Star exp) = Star (simplify exp) 
simplify (Plus exp ) = Plus (simplify exp ) 
simplify (Opt exp) = Opt (simplify exp) 
simplify (Seq expl exp,) = Seq (simplify expl) (simplify exp2) 
simplify (Alt expi exp2) = Alt (simplify expl) (simplify exp2) 
simplify exp = exp 

Figure 3: Tangled traversal in functional programming 

The contr ibut ion o f  AP.  Both AP and SP improve on the 
above tangling problem. With AP, the programmer can separate 
the traversal code (i.e., traversal specifications) from the basic com- 
putations (i.e., code wrappers). One also gains adaptiveness, that 
is, a traversal is only centred around the specific milestones of  a 
traversal over a certain object graph. 

The contr ibut ion o f  SP. Adaptiveness is also served by SP 
as we will demonstrate below. In addition, SP allows the pro- 
grammer to capture reusable, potentially generic traversal schemes. 
Hence, control patterns for traversal become programmer-definable 
abstractions. As a result, both traversal schemes and problem- 
specific computations can be reused across applications and their 
components. 

The strategic method.  The SP idiom encompasses both ex- 
pressiveness and a method for designing and implementing traver- 
sal functionality. The 'strategic' expressiveness is that traversal 
strategies can be defined in terms of appropriate strategy combi- 
nators (cf. Sec. 3). This expressiveness is sometimes hard, some- 
times easy to achieve - -  depending on the targeted programming 
paradigm, the required strength of  typing and programming conve- 
nience. The strategic method can be sumrnarised in the following 
steps for implementing a piece of strategic traversal functionality: 

1. identification of  a reusable traversal scheme, 

2. definition of  the problem-specific ingredients, and 

3. synthesis of the traversal by parameter passing. 

The traversal schemes are usually generic, that is, problem-specific 
ingredients are anticipated via parameters. These problem-specific 
ingredients are type-specific actions or generic actions with type- 
specific branches. These actions are meant to describe how data of 
'interesting' types is processed when encountered during traversal. 
The strategic method, although general, is in no way difficult. 

A strategic example.  The tangling in Fig. 3 is easily eliminated 
if we use a strategic traversal scheme to iterate the basic simplifi- 
cation rules all over the tree. The disentangled version is shown 
in Fig. 4. The function simplify is reconstructed in strategic style 
by passing a helper function simplifyStep to the traversal scheme 
full_td - -  read as 'full top-down'. To be precise, simplifyStep 
is wrapped with choice . . .  id to make sure that node processing 
always succeeds. The function simplifyStep captures the basic 
'rewrite steps' for simplifying regular expressions. In the type of  
simplifyStep, we use the Maybe type constructor in order to ex- 
press whether any simplification rule triggers or not. 

simplify = fuU.td (choice simplifyStep id) 

simplifyStep :: RegExp ~ Maybe RegE~p 
simplifyStep ( Alt Epsilon exp) = ,lust (Opt exp) 
simplifyStep (Opt (Plus exp)) = ,lust (Star exp) 
simplifyStep _ = Nothing 

Figure 4: Aspectual variation on Fig. 3 

A variation. Although the above definition of simplify is per- 
fectly modular, and faithfully reconstructs the original tangled def- 
inition, a shortcoming becomes obvious. The definition does not 
enforce the exhaustive application of  simplifyStep. This is because 
full_td applies its argument to the input datum before its immedi- 
ate subcomponents were traversed. Here is a variation simplify' 
that eliminates this problem because it performs simplifications ac- 
cording to the folklore traversal scheme innermost: 

simplify' = innermost simplifyStep 

The scheme innermost operates bottom-up, and it loops until a 
fixpoint is reached. Hence, in this example, innermost is more 
appropriate than full_td. In another context, the opposite situation 
is possible, for example, if the use of  innermost would cause a 
nonterminating strategy due to the nature of  the given rewrite step. 
The schemes full_td and innermost are two beginner's favourites. 

Rich  variat ion points,  sP  enables and encourages the pro- 
grammer to reflect on the variation points of  traversals for each new 
problem. This makes it even easier to alter the design of a traver- 
sal when compared to the mere achievement of  concise traversal 
implementations. These are typical variation points for traversals: 

• transformation vs. query, 

• single vs. cascaded traversal, 

• top-down vs. bottom-up traversal, 

• depth-first vs. breadth-first traversal, 

• left-to-right traversal and vice versa, 

• full vs. single-hit vs. cut-off traversal, 

• types vs. general predicates as milestones, 

• fixpoint by equality test vs. fixpoint by failure, 

• local choice vs. full backtracking vs. explicit cut, 

• traversal with effects (accumulation, cloning, etc.). 

We have experienced these and other variation points in actual ap- 
plications. AP and other generic programming idioms do not ad- 
dress this rich variety of  variation points. 

Appl icat ions .  References to a few typical applications of  SP are 
in place. In [1], a transformation system CodeBoost for domain- 
specific optimisation of C++ programs in the domain of numeric 
programming is described. It was implemented in Stratego making 
use of  the XT bundle of  tools for program transformation which in- 
cludes packages for parsing and pretty printing. In [7], the use of  
functional strategies for the implementation of  program refactor- 
ing for Java is demonstrated. The refactorings were implemented 
in Haskell using Strafunski. In [3], the program understanding 
tool ControlCruiser is described which reconstructs and visualises 
Cobol control flow. The JJTraveler I JJForester architecture has 
been used for the implementation. 
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Levels of  traversal control. We conclude our discussion of 
traversal control by placing different styles of programming in a 
range of levels to measure the sophistication of traversal control: 

Entangled traversal The folklore style of visitor programming or 
(non-generic) functional programming is placed at this level. 

Disentangled traversal Approaches that separate traversal logic 
and the basic computations qualify for this level. The or- 
thogonal example is the notion of generalised folds in func- 
tional programming [14], which provides a uniform traver- 
sal scheme for all datatypes. The basic computations per 
constructor can be passed as arguments to the fold combi- 
nator. An object-oriented approach to disentangled traversal 
is described in [16] (inspired by AP concepts). There, OOP 
is enriched with a domain-specific language for specifying 
reusable traversals of object structures. 

Adaptive traversal If a traversal approach provides some means 
to abstract from the traversed data structure, then we call 
this an adaptive approach. This is obviously the case for 
AP. Polytypic programming [4] can also be used in a way 
to perform adaptive traversal. The above-mentioned notion 
of generalised folds can be refined to serve adaptiveness by 
considering generic, primitive fold algebras that only need 
to be updated for the data constructors relevant for a specific 
traversal problem [8]. Yet another adaptive approach is term 
rewriting with traversal functions [2]. 

First-class traversal SP inhabits this level. Traversal schemes are 
programmer-definable entities. Often, these schemes are com- 
pletely generic. 

Absent variation points in AP. Generic traversal schemes 
that make available various variation points are beyond the aspira- 
tion of AP. In fact, the semantics of adaptive programs fixes certain 
variation points of traversals, e.g.: 

• Adaptive traversals are depth-first traversals. 

• Milestones are searched in top-down manner. 

• Milestones are constrained by classes. 

• Traversal specifications denote all valid paths. 

3. THE FOUNDATIONS OF STRATEGIES 
Strategic programming is programming with the use of (traversal) 
strategies. Depending on the SP incarnation within a certain pro- 
gramming paradigm, strategies might correspond to objects, pure 
functions, impure functions, and others (cf. Sec. 5). Below, we will 
characterise an abstract notion of strategy that is not bound to any 
particular programming language or paradigm. We will also define 
a guideline suite of basic strategy combinators. 

Characteristics of  strategies. Strategies in the sense of SP 
are data-processing actions with the following characteristics: 

Genericity Strategies are generic in the sense that they are appli- 
cable to data of any type (say, sort, or class). 

Specifidty Though generic, strategies provide access to the actual 
data structures by means of type-specific operations. 

Composability There are means to express compound, conditional, 
and iterated strategy application. 

One-layer traversal Strategies enable generic traversal into the 
immediate subcomponents of heterogeneous data structures. 

Partiality The application of a strategy to a given datum may fail, 
and recovery from failure is possible. 

First-class Strategies are first-class citizens in the sense that they 
can be named, can be passed as arguments, etc. 

SP vs. AP. The abstract notion of strategy corresponds to a re- 
quirement specification for incarnating strategic programming in a 
given programming language or paradigm. It also provides a refer- 
ence chart to assess other generic programming approaches. In the 
case of adaptive programming, we can pinpoint deviations of adap- 
tive programs from our characterisation of strategies, in particular: 

• Adaptive programs are not fully generic because their traver- 
sal specifications refer to class names and labels to describe 
milestones and and the relations between them. Using 'sym- 
bolic names' [11] instead of concrete names, traversal speci- 
fications become reusable. 

• The traversal specifications of adaptive programs do not in- 
volve one-layer traversal on immediate subcomponents. AP 
favours instead operations on sets of paths. 

• Adaptive programs do not involve a designated form of par- 
tiality. Traversals are performed by visiting all milestones. 
'Around' wrappers control if the rest of the traversal is per- 
formed before or after the wrapper, or maybe not at all. 

• Adaptive programs are normally not first-class citizens, al- 
though recent implementations [15] might admit the poten- 
tial for first-class adaptive programs. 

A guideline combinator suite. In the following, we specify 
a set of strategy combinators that must be supported by an incar- 
nation of SP. Actual incarnations of strategic programming may 
include further combinators than those proposed below. Here is the 
syntax for strategy combinators s: 

s ::= id 
fail 
seq(s, S) 
choice(s, s) 
adhoc(s, a) 
all(s) 
on<s) 

Identity strategy 
Failure strategy 

Sequential composition 
Left-biased choice 

Type-based dispatch for a basic action a 
Process all immediate subcomponents 
Process one immediate subcomponent 

The semantics of the combinators is shown in Fig. 5 while we sug- 
gest a semi-formal reading of the figure. The given semantics de- 
liberately leaves open how to blend with the expressiveness offered 
by the host paradigm of an eventual incarnation. (Think of value se- 
mantics vs. reference semantics.) We refer to [22, 6] for the formal 
treatment of SP in a term-rewriting setting. We will now discuss 
the combinators in detail. 

Constants and composition. The strategy id succeeds for any 
datum and returns its input without change. Dually, the strategy fail 
fails for any datum, indicated by the output T. There are two com- 
binators for strategy composition. The sequence combinator seq 
applies its two argument strategies in succession. The left-biased 
choice combinator first attempts application of its first argument 
strategy. If and only if this application fails, the second argument 
is attempted. We assume that the definition of new named combi- 
nators can involve recursion. 

One-layer traversaL The definitions of the combinators all 
and one formalise the intuitions from Fig. 2. They both push their 
argument strategy one level down into the input datum to process 
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Notation 
d ... data 
c ... data constructors 

... data or failure "T" 
a ... type-specific actions 
s ... strategies 
a@d ... application of a to d 
s@d ... application of s to d 
d ~ d ... big-step semantics 
a : t ... type handled by a 
d : t ... type of a datum d 
[d] ... indivisible data 
c( dl .. •dn) ... compound data 

Meaning 
id~d ~ d 
failed ~ T 
seq(s, st)~d :=~ d if s@d =~. d' A stud t ~ 
seq(s,s/)@d =¢" T i fs~d ::~ T 
choice(sl,s2)~d ~ d' i f s l ~ d  =~ d' 
choice(sl,sz)~d ~ d ifsl~d::::~. ~As2~d=-~d 
all(s)Q[~ ~ [4 
all(s)@C(dl . . . d , )  ~ c(d~. . .d '~)  if s@dl ~ d~ ..... s@dx ~ d'~ 
all(s)~c(dl...dn) ::::¢" T if 3i. s~di :-~ T 

one(s)@c(dl...dn) ~ e( . . .d~. . . )  if3i.  s@d] ~ T  A . . . A  s~di-1 ~ T  A s~di:=~d~ 
one(s)~c(dl...dn) ~ T i f s ~ d l  ~ T . . . . .  s~dn ::~ T 
adhoe(s,a)@d ~ add i f a : t a n d d : t  
adhoc(s,a)~d ~ sQd i f a : t A d : t l  A t ~ t  ' 

Figure  5: Semant i c s  o f  the  s t ra tegy  c o m b i n a t o r s  

all immediate components,  or just  the leftmost one for which the 
argument strategy succeeds, respectively. We use dedicated nota- 
tion to differentiate between indivisible data and compound data. 
Note that all and one preserve the shape of  the input datum because 
the constructor c reappears in the result. We say that this kind of  
strategies is type-preserving, or that they perform a transformation. 
We omit the discussion of  dual combinators that perform a query or 
an analysis with a fixed result type regardless of  the input datum's  
type. (Recall select and reduce from the introduction.) To illustrate 
the definition of  recursive traversal schemes in terms of  one-layer 
combinators, we define full_td for full top-down traversal in terms 
of all. The following definition means that full_td(s) applies its ar- 
gument  strategy s at the root of  the incoming datum, and then (cf. 
seq) it applies itself to all immediate components of  the datum: 

full_td(s) = seq(s ,  all(flzll_td(s))) 

Lift ing type-speci f ic  actions. In Fig. 5, we distinguish type- 
specific actions vs. generic data-processing actions - -  the latter be- 
ing called strategies. There are means  to mediate between the two 
categories. Obviously, a generic action s can be applied immedi- 
ately to a datum d of any type. (The application ope ra to r . . .  @d is 
overloaded for type-specific and generic actions.) Notably, a type- 
specific action can also be turned into a generic action by what 
we call ' type-based dispatch' or simply ' lifting'.  This is neces- 
sary in order to enable the application of type-specific actions to 
subcomponents of  different sorts in the course of traversal. Ex- 
plicit lifting is accomplished by the adhoc combinator, which con- 
structs a new strategy from a generic default s and a type-specific 
action a. That is, the strategy adhoc(s ,  a) behaves like s except for 
data of  a ' s  input type; here it dispatches to a. An incarnation of  
strategic programming can omit the adhoc combinator, and favour 
implicit lifting instead. Then, a type-specific action a is viewed 
as adhoc(fail,  a). We illustrate lifting by adding an application of  
adhoc to the strategic Haskell snippet from Fig. 4: 

simplify = full_td (choice (adhoc fail simplifyStep) id) 

We use fail as default. We could have used id as well because 
we recover from failure anyway via choice . . .  id. Defaults other 
than id and fail are also sensible. One could, for example, consider 
recursive descent as default which is only meant to happen if the 
type of the basic action and the type of the given datum do not fit. 

Adapt ive  traversal  primit ives.  Let us clarify what it means  
that AP does not cater for access to immediate subcomponents of  
compound data. We recall that traversal specifications are com- 
posed in terms of the predicates from, to, through, and bypassing 

as sketched in the introduction. The semantics of  AP usually refers 
to other primitives [18] that make clear that traversal specifications 
denote sets of paths in a graph with classes as nodes, and edges 
for subclassing and subobjects. These are the most  fundamental  
primitives to compose traversal specifications S: 

• [A, t3] - -  the set o f  paths from class A to class B;  this form 
corresponds to f rom A to/3. 

• S1 • $2 - -  the concatenation of  the sets of  paths S1 and 
$2 where the target class in $1 must  coincide with the source 
class in $2; through predicates can be modelled via this form. 

• $1 + $2 - -  the union of  sets of  paths where Sx and $2 must  
agree on the source and target classes; merging traversals can 
be modelled via this form. 

There are further forms of  composition, e.g., for intersection, and 
acyclic paths [11, 12]. The bypassing predicate can be viewed as a 
combination of  a complement  operation and intersection. 

Other forms of strategies. The term strategy or related terms 
like tactics and tacticals are also used in other contexts of  comput- 
ing. Usually some sort of  'control '  is associated to this use, but not 
the means  to cater for generic access to components  of  heteroge- 
neous data structures. For example, strategies are used to describe 
proof tactics and tacticals or programmable evaluation strategies in 
term rewriting [19]. In the newer AP literature, the term (traversal) 
strategy is also used as a generalisation o f  the 'traversal specifi- 
cations'  in the earlier literature. The generalisation concerns the 
way how traversal specifications are viewed. An AP-like strategy 
is viewed as a function on graphs preparing the actual traversal of  
milestones. At the programming level, still the same predicates 
from, to, etc. are used, 

4. T R A V E R S A L  S C H E M E S  
The power of  our strategy combinators can best be demonstrated 
with a few examples. Fig. 6 shows a list of  combinators defined 
in terms of  the basic ones. The first two control patterns t ry  and 
repeat do not involve traversal whereas the remaining combinators 
define different traversal schemes. In fact, these are all general- 
purpose traversal schemes. We omit a discussion of  domain-specific 
schemes, e,g., schemes for language processing. We will first ex- 
plain all the schemes from the figure. Eventually, we will clarify 
how the adaptive style meets our strategic style. 

Non- traversa l  control. The combinator trdd turns its argument 
strategy into an always succeeding strategy: t ry ( s )  attempts s but 
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tw(s) 
repeat(s) 
full_td(s) 
fult_bu(s) 
once_td( s ) 
once_bu(s) 
stop_td(s) 

naive_innermost(s) 
innerraost ( s ) 

= choice(s, id) 
= t w ( ~ e q ( s ,  repeat(a))) 
= seq(s, all(full:td(s))) 
= seq(all(full_bu(s)), s) 
= choice(s,one(once_td(s))) 
: choice(one(once_bu(s)), s) 
= choice(s, all(stop_td(s))) 
= repeat(onee_bu(s)) 
: seq(all(innerraost(s)),try(seq(s, innermost(s)))) 

full . td stop_td onee_td once_bu 

/ \  /\. 

Figure 6: Some defined strategy combinators 

resorts to id if s fails. The repeat combinator serves for fixpoint 
computation: repeat(s) applies s repeatedly until s fails. This con- 
trol pattern is useful in the definition of traversal schemes like in- 
nermost where traversal involves exhaustive application of  actions. 

Traversal  schemes.  The combinators full . td and full.bu 
model a full top-down or bottom-up traversal, respectively. They 
apply their argument strategy at the root of the incoming datum, 
and at all its immediate and non-immediate components. The com- 
binators once_td and once_bu are variations that apply the argu- 
ment strategy only to the first component at which it succeeds. 
The combinator stop_td attempts the application of the argument 
strategy to components along all branches, and it stops in a given 
branch when an application succeeds. The naive_innermost and 
innermost combinators both implement the leftmost innermost 
evaluation strategy, but the second is more efficient than the first. 

SP meets  AP.  We are now in the position to reconstruct adaptive 
program patterns as strategy combinators. This reconstruction is 
based on the following ideas: 

Milestones as strategies Adaptive traversal specifications refer to 
class names as milestones. In SP, we call this a type guard - -  
a strategy that succeeds if and only if faced with data of a 
given type. Hence, the combinator for an AP pattern receives 
strategy arguments for milestone identification. 

Code wrappers as strategy combinators  An 'around' wrapper in 
AP dictates how to superimpose the wrapper's functionality 
onto the traversal steps (with 'before' and 'after' as special 
cases). In SP, we model code wrappers as strategy combina- 
tors that take the 'rest of  the traversal' as a strategy argument. 

Predicates as traversal schemes The predicates used in the traver- 
sal specifications of  AP are mapped to appropriate strate- 
gic traversal schemes. A traversal specification with several 
predicates maps then to a cascaded traversal strategy. 

We start with the most simple example of  a traversal specification, 
namely from A to B with associated code wrappers WA and WB 
for the two milestones. We define a strategy combinatorfrom_to 

for this pattern with arguments for A, /3 ,  WA, and WB: 

from_to(A,B,  W A , W B )  = seq(A, WA(tO(B, WB))) 
to(B, WB) = all(stop_td(seq(B, try(WB))))  

For short, it is the stop_td scheme which does all the work. We 
first test for A to enforce that we are faced with a datum of type 
A. Then, we invoke the wrapper WA and pass the rest of  the 
traversal to it as an argument. The rest is defined by a helper com- 
binator to. The outermost all implies descending one level, and 
the stop_td(seq(B,. . .))  means following all branches but stop- 
ping for B. When we found B, we invoke the wrapper WB. This 
wrapper strategy takes no arguments because there is no remaining 
traversal. We enforce success via try. As a general remark regard- 
ing the above reconstruction: the semantics of  SP implies that the 
reconstruction is more greedy than prescribed by the semantics of  
AP. That is, even subcomponents the types of  which rule out nested 
Bs  are traversed. This concern will be addressed in Sec. 6. We 
continue with a combinator that includes a through predicate: 

from.through_to(A, [~, B, WA, ~ ] ,  WB) = 
from_to(A, T, WA, WT(to(B,  WB))) 

We boxed the added parameters T for the through milestone, and 
the associated wrapper WT. We first go from source nodes (cf. 
A) to intermediate nodes (cf. T) via the from_to combinator. The 
wrapper WT for the intermediate nodes receives the appropriate 
rest of  the traversal, which is meant to eventually reach all target 
nodes (cf. B)  via the to combinator. This idea works for any num- 
ber of through predicates. Each new milestone is found by a stop_td 
traversal. We can also cope with bypassing predicates: 

from_to_bypassing(A, B,  [ ] ,  WA, WB ) = 
from_to(A, choice(N, B ), W A , choice(N, WB ) ) 

So we stop the from_to traversal at both target nodes (cf. B) as well 
as bypassing nodes (cf. N),  and we make sure that the wrapper WB 
is only applied in case we are faced with a proper target node. 

5. IMPLEMENTING STRATEGIES 
The strategic programming idiom has been realised within several 
programming paradigms. There are fully worked-out and tool- 
supported incarnations for term rewriting based on Stratego [22, 

173 



Concept per paradigm I[ Term rewriting Functional programming OO programming 
Datum many-sorted term term of an algebraic datatype object graph 
Immediate component subterm subterm referenced object 
Basic action rewrite rule monomorphic function specific visit method 
Strategy term rewriting strategy 'strategically' polymorphic function generic visitor object 
Strategy application dedicated operator function application visit method invocation 
Strategy combinators strategy definitions higher-order functions visitor classes 
Type-based dispatch implicit type-safe cast RTrI, dynamic binding 

liberal checks rank-2 types, constrained ' ~ '  subtype polymorphism Types 
Partiality built-in 
Host idioms 'DSL-like' extensions 

monadic effect exceptions 
monadic effects graphs, side effects 

Figure 7: Overview of strategic programming incarnations 

20], for functional programming in Haskell based on Strafunski [7, 
5], and for object-oriented programming in Java based on JJTrav- 
eler / JJForester [21]. Stratego is a language that is devoted to the 
strategic programming idiom. The functional and object-oriented 
incarnations take a different road: they aim at making the SP idiom 
available in general-purpose programming languages. We will not 
revisit the incarnations in detail. Instead, we will discuss how to 
incarnate, in general, strategic programming. Furthermore, we will 
compare the incarnations at a higher level of abstraction. Imple- 
mentational models for AP will also be sketched. 

Incarnation process. An incarnation is designed by mapping 
the abstract notion of strategy onto the host paradigm. This involves 
the identification of an abstraction form for modelling strategies. 
In the case of functional programming, for example, strategies are 
modelled as a specific kind of polymorphic functions. One also has 
to instantiate subsidiary concepts such as type-specific action, da- 
tum, component, partiality. The incarnation process culminates in 
the implementation of the guideline set of basic strategy combina- 
tors id, fail, seq, choice, all, and one. In Fig. 7, we compare strate- 
gic programming in three paradigms based on the instantiation of 
the relevant concepts. The incarnations exhibit different trade-offs 
as we will pinpoint below. The incarnation process involves certain 
challenges. One is that all programming idioms that are 'native' to 
the host paradigm should remain available to the programmer when 
using strategies. In object-oriented programming, strategies should 
blend with reference semantics, and side-effects. Functional strate- 
gies should have value semantics, allow monadic effects, and be 
strict or lazy depending on the host language. Another challenge 
is the typing of strategies. In a strongly typed setting, a kind of 
'strategic polymorphism' is needed [5]. This necessitates second- 
order polymorphism, and goes beyond parametric polymorphism 
and ad-hoc polymorphism. 

Term rewriting strategies• The Stratego [22, 20] encoding of 
the running example is shown in Fig. 8. As one can see, basic 
computations are represented as ordinary (though labelled) rewrite 
rules• We use Stratego's left-biased choice combinator <+ to com- 
bine the rewrite rules [S1] and [$2] into the helper strategy simpli- 
fyStep. Stratego uses implicit lifting, and hence, the schemefull_td 
is directly applied to the type-specific strategy simplifyStep. Strat- 
ego as of today only performs liberal type checks, namely a kind 
of arity checking for term constructors and strategy combinators. 
The well-formedness of terms according to a given signature can 
be checked at run-time. 

Stratego--a DSL fo r  program transformation. In the de- 
sign of Stratego, the prime issue was to effectively support the 

signature 

constructors 

Alt : RegExp * RegExp -> RegExp 

Opt : RegExp -> RegExp 

rules 
S1 : Alt(Epsilon,exp) -> Opt(exp) 

S2 : Opt(Plus(exp)) -> Star(exp) 

strategies 
simplify = full_td(simplifyStep <+ id) 

simplifyStep = S1 <+ $2 

Figure 8: Stratego representation of Fig. 4 

development of program transformation systems. Hence, Strat- 
ego can be viewed as a domain-specific language (DSL). In fact, 
a number of domain-specific constructs are available in Stratego, 
e.g., the hygienic generation of fresh names as needed in trans- 
formations, and scoped dynamic rewrite rules to compute rules at 
run-time. Stratego's DSL character is also reflected by other pro- 
visions. The language implementation performs specific traversal- 
aware optimisations. It further uses a designated run-time term rep- 
resentation that allows for sharing, constant time equality test, and 
hidden transportation of comments and layout. 

Functional strategic programming. By modelling strate- 
gies as functions [7, 5], the first-class requirement for strategies 
can be met without further ado. All other incarnations of strategic 
programming are more problematic in this respect. We have inves- 
tigated a variety of models for functional strategies. They differ 
regarding the selection of strategy primitives, and subtle details of 
typing and representation. The original expressiveness of strategies 
can be captured in just two special function combinators: 

* The adhoc combinator as defined earlier. 

• A highly parameterised one-layer traversal combinator. 

The two special combinators can be made available in three ways: 

• The programmer instantiates them for each new datatype. 

• A generative tool supplies the datatype-specific code. 

• A language extension covers the combinators. 

The generic programming bundle Strafunski supports several mod- 
els via a generative tool component. 

Object-oriented strategic programming. This incarnation 
uses generalised visitor objects to model strategies [21]. A number 
of ideas are needed to make folklore visitors fit for SP, that is, to 
meet all defining characteristics of strategies: 
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class Seq implements visitor { 

visitor vl, v2; 

public Seq(Visitor vl, Visitor v2) { 
this.vl = vl; this.v2 = v2; 

) 

public visitable visit(Visitable x) { 
return v2.visit(vl.visit(x)); 

) 
} 

public class FuliTD extends Seq { 
public FullTD(Visitor v) { 

super(v,null); 
v2 = new All(this); 

} 

l 

Figure 9: Strategy combinators as visitor combinators 

• While standard visitors are specific to a class hierarchy, strate- 
gic programming additionally necessitates completely generic 
visitors. These visitors implement a single visit method. 

• To enable one-layer traversal, we need to cater for generic 
access to the immediate subobjects of objects. This is accom- 
plished by a Visitable interface to get and set all 'children'. 

• To cover partiality for visitors, failure is encoded by throwing 
a VisitFailure exception, and left-biased choice recovers from 
failure via exception handling. 

• The double-dispatch protocol of  ordinary visitors is com- 
plemented by a visitor combinator that forwards any class- 
specific visit method to a generic visit method. By subclass- 
ing a forwarding visitor, one achieves the effect of adhoc. 

• While ordinary visitors are 'void' visitors, 'returning' visi- 
tors are preferred in the SP setting. That is, v.visit(z) al- 
ways returns an object - -  normally z. This makes it easier to 
replace objects by new ones (possibly of  different subtypes). 

• A combinator style for first-class visitors relies on param- 
eterised constructors for visitors. Using the generic visitor 
interface, one can define generic visitor combinators. This is 
demonstrated for seq and full_td in Fig. 9. 

The 'strategies as visitors' approach is naturally supported via a 
generative tool (JJForester in our case). This concerns the afore- 
mentioned Visitable interface to be introduced into a given class 
hierarchy, and the derivation of  the ordinary visitor class, as well as 
the forwarding visitor combinator. The current typing model neces- 
sitates some casting. This problem can be remedied with generics. 

AP language implementation. Previous approaches to the 
implementation of adaptive programs normally relied on compi- 
lation. In [18], an adaptive program is compiled into an object- 
oriented program where the class hierarchy contains a method for 
each adaptive traversal. The generated method definitions recurse 
into subobjects, and they invoke the code wrappers. A problem 
with this approach is that the generated code could be invoked in- 
correctly without starting at a proper source node. In [17], a more 
general compilation technique is described with several methods 
per traversal. The idea is here that the search through the object 
graph can be modelled as a (deterministic) finite automaton where 
the states are modelled by methods. In [11], a generic approach to 
the generation of  traversal methods is described. In this approach, 
traversal specifications are compiled into road-maps that are used 
by the traversal methods at run-time. The main idea is to maintain 
a traversal graphs with tokens that represent the traversal history. 

In [15], an implementational model for AP is described which is 
reflection-based, that is, no preprocessing or compilation is needed. 

6. TRAVERSING OBJECT STRUCTURES 
While the notion of  strategies was initiated in the declarative pro- 
gramming setting of  term rewriting (i.e., referential transparency, 
no cycles in data structures, many-sorted data, no side effects), 
strategies are perfectly sound in other settings, too. The Strat- 
ego incarnation demonstrates how to cope with side effects. The 
object-oriented incarnation provides the prime platform for traver- 
sal strategies on mutable graphs, i.e., object structures. Since adap- 
tive programming focuses on traversing object structures, we will 
investigate the issues that come up in this context. 

Mutable structures. There are two overall options to deal with 
mutable structures, say, object structures, in SP: 

1. Strategies mutate the (traversed) objects to compute a result- 
ing object structure. 

2. Strategies perform (deep or shallow) cloning, in particular 
the one-layer traversal combinators. 

In our implementations, we adhere to the first option because the 
preservation of  the original object structure is normally not required. 
Deep cloning can still be triggered explicitly by the programmer. 
This attitude is well in line with AP where the code wrappers are 
immediately executed whenever milestones are encountered in the 
course of  a traversal, without even waiting for a proper target node 
to be reached [ 18]. These code wrappers typically accumulate some 
result, or they mutate the milestone objects, or both. In principle, 
they could also perform cloning. However, searching through the 
object structure by itself does not involve any cloning. 

Generaltopologies. In the primary application domain of  SP - -  
program transformation - - ,  strategies are predominantly applied to 
tree-shaped data. Even in the object-oriented setting, the object 
structures normally resemble the context-free grammar of  the lan- 
guage subject to program transformation and analysis. We have 
certainly encountered situations where other topologies need to be 
covered, e.g., the traversal of  control-flow graphs [3]. There are 
the following issues regarding the potential of  different topologies 
such as trees, directed acyclic graphs (DAG), or even cyclic graphs: 

• If cyclic structures are traversed, we have to make sure that 
the traversal will always terminate. 

• If objects can be referenced several times, we have to decide 
if the traversal should differentiate between these references. 

Creating awareness of  the different references to an object as in 
a DAG is just a refinement of  cycle detection as discussed below. 
These are the possible attacks for coping with cycles: 

1. We restrict ourselves to tree-shaped object structures for strate- 
gic traversal. A corresponding check can be automated. 

2. We make sure that a traversal only sees tree-shaped slices of  
object structures. This can be done via bypassing conditions. 

3. We keep track of  traversed objects, and we let the traversal 
fail for the second encounter of  a given object. 

In Fig. 10, we list a visitor combinator Faill]visited that can be 
used as a guard in strategic programs to detect a cycle in the sense 
of  (3.) above. One can prefix node processors by FaillfVisited so 
that a traversal will not descend into an object for a second time. 
As an orthogonal example, here is a full top-down traversal that 
merely tests for tree-shape: 
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public class FailIfvisited extends Visitor { 

Set visited = new HashSet(); 

public FailIfVisited() {} 

public Visitable visit(Visitable x) 
throws VisitFailure 

{ 
if visited.contains(x) { 

throw new VisitFailure(); 
} else { 

visited.add(x); return x; 
} 

} 
} 

Figure 10: A provision for cycle detection 

public class IsTree extends FuliTD { 
public IsTree() { 

super (new FailIfVisited()) ; 
} 

) 

Again, this approach is well in line with AR In [1 I], a similar tech- 
nique for invoking traversal methods is described to cut off traversal 
whenever an object is encountered for the second time. In [12], a 
predicate for traversal specifications is considered that specifically 
rules out cyclic paths. In fact, cyclic structures are otherwise not 
too much of  an issue in the AP literature. Instead of using a com- 
binator like FaillJVisited and a collection of  visited objects, one 
might also think of  other means that could be served by a native SP 
implementation, e.g., marking objects with visit flags. 

C o m p a t i b i l i t y .  In [ 18], compatibility is described as a desirable 
property for AP. Given a traversal specification and a concrete class 
graph, compatibility means that all the milestones of the traversal 
can be possibly established for some object graph. This is illus- 
trated in Fig. 11. Note that one can not guarantee the reachability 
of the milestones for all possible object graphs. (Think of NIL 
references, and non-instantiated subclasses.) Compatibility can be 
transposed to SP as follows: 

• Compatibility of  a strategy s, a root class c, and a class graph 
9 means that each type-specific branch in s should be possi- 
bly encountered for some object graph rooted by an object of  
class c. This deviation reflects that strategies are not centred 
around the idea of  milestones but we rather assume that type- 
specific computations interact with the concrete data struc- 
ture (recall explicit lifting via adhoc or implicit lifting). 

• Compatibility checking in AP can be reduced to a graph- 
theoretical reachability analysis. Compatibility in SP is, in 
general, undecidable. This is because all ingredients of a 
strategic program are defined in the same Turing-complete 
language as opposed to the separation of  traversal specifica- 
tions and code wrappers in AP. 

• Compatibility is biased towards adaptive traversal. In SP, 
we also consider completely generic traversal schemes. One 
might also want to check these schemes for properties, e.g., 
if a traversal scheme can succeed at all, if it might tend to 
fail too often, or if it might succeed too easily with a trivial 
result. Here are examples of problematic strategies: 

- ffull_td (adhoc fail . . . )  - -  will fail too often 

- once_td (adhoc id . . . )  - -  will succeed too easily 

We consider the study of  such properties as a topic for future work. 

W 

Properties of traversal specifications: 

• from A through E to C is compatible with the class graph. 
• from A through C to E is not compatible with the class graph. 

To see this, one can observe: 

• A C object is reachable from an E object for some object graphs. 
• An E object is not reachable from a C object for any object graph. 

Class graph legend 

< ~  abstract class 

[ ~  concrete class 

• ,,,,~lp,.- subclassing edge 

construction edge 

Figure 11: Compatibi l i ty of  adaptive programs 

Premature termination. The semantics of adaptive programs 
employs static meta-information on the class graph to limit the 
traversal to those branches in the given object graph that can pos- 
sibly lead to a target node [ 13]. Intuitively, a reachability analysis 
as in the case of  compatibility determines the optimised traversal 
sequences which cut off hopeless branches. Recall Fig. 11: 

Traversing an object graph according to "'from A 
throu9h E to C" ,  traversal ends prematurely when 
we hit on a t3 node before we saw an E node because 
E is not reachable from B in the class graph. 

The benefit of premature termination is foremost efficiency since 
less nodes need to be visited. In addition, code wrappers for through 
nodes will not be executed unnecessarily if a target node cannot be 
reached anyway. If the cut-off analyses in AP are done at compile- 
time, then a closed-world assumption is necessary (i.e., no further 
subclassing). The reflection-based approach in [15] avoids this 
problem. Premature termination of  strategies in SP on the basis 
of  static analyses has not been an issue so far. We consider the 
transposition of the AP techniques as a prime topic for future work 
on SP, and as the crucial element of  a completed marriage of  SP 
and AP. Note that cutting off branches in a strategic traversal can 
be very well achieved with stop conditions. This is common prac- 
tice in SP - -  not necessarily related to efficiency, but often also to 
correctness, just as for bypassing predicates. 

S u r p r i s i n g  p a t h s .  The structure shyness in AP is sometimes 
considered harmful [16]. The problem is that traversal strategies 
might go along surprising paths especially when the class hierar- 
chy changes. One can call this a robustness issue. This under- 
specification problem is perceived differently in the SP context. In 
the application context of  programming transformation and anal- 
ysis, the programmer is usually very well aware of  the given lan- 
guage syntax - -  so few surprises are to be expected. Adaptive- 
ness is mainly employed for conciseness. In fact, languages do not 
change so dramatically as arbitrary object models. 

7. CONCLUSION 
Traversal programming in SP and AP are prime examples of  general- 
purpose aspect-oriented programming techniques. Strategic and 
adaptive programming share several benefits: conciseness of  traver- 
sal specification, support for reuse of  basic computations, and iso- 
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lation from changes in the data structures. Both idioms are well 
founded and well supported by corresponding tools and program- 
ming environments. We will conclude the paper by highlighting 
the respective strengths and weaknesses of AP and SP. 

Adaptive programming 

+ Use of static meta-information to optimise traversals. 

+ Compatibility checking oftraversal specifications and class graphs. 

+ Clear separation of traversal specifications and code wrappers. 

- Absence of a number of variation points for traversal. 

- Bias towards object-oriented programming. 

Strategic programming 

+ Programmer-definable, reusable, generic traversal schemes. 

+ Access to the full range of variation points for traversal. 

+ Language-independent generic programming idiom. 

- Premature termination of traversals not automated. 

- Freewheeling combinator style blurs focus. 

The ultimate, unified aspectual traversal approach shall combine 
the strengths to dissolve the weaknesses. To us, this seems feasible. 
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Availability. The rewriting, the functional and the object-oriented 
incarnations of SP are supported by corresponding programming 
environments Stratego/XT, Strafunski, JJForester/JJTraveler. These 
software bundles together with documentation, and related research 
papers are freely available from the following locations: 

• http://www.stratego-language.org/ 

• http://www.cs.vu.nl/Strafunski/ 

• http://www, j j forester.org/ 
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