
Nix: A Safe and Policy-Free System
for Software Deployment

Eelco Dolstra, Merijn de Jonge, and Eelco Visser – Utrecht University

ABSTRACT

Existing systems for software deployment are neither safe nor sufficiently flexible. Primary
safety issues are the inability to enforce reliable specification of component dependencies, and the
lack of support for multiple versions or variants of a component. This renders deployment
operations such as upgrading or deleting components dangerous and unpredictable. A deployment
system must also be flexible (i.e., policy-free) enough to support both centralised and local
package management, and to allow a variety of mechanisms for transferring components. In this
paper we present Nix, a deployment system that addresses these issues through a simple technique
of using cryptographic hashes to compute unique paths for component instances.

Introduction

Software deployment is the act of transferring
software to the environment where it is to be used.
This is a deceivingly hard problem: a number of
requirements make effective software deployment dif-
ficult in practice, as most current systems fail to be
sufficiently safe and flexible.

The main safety issue that a software deployment
system must address is consistency: no deployment
action should bring the set of installed software com-
ponents into an inconsistent state. For instance, an
installed component should never be able to refer to
any component not present in the system; and upgrad-
ing or removing components should not break other
components or running programs [15], e.g., by over-
writing the files of those components. In particular, it
should be possible to have multiple versions and vari-
ants of a component installed at the same time. No
duplicate components should be installed: if two com-
ponents have a shared dependency, that dependency
should be stored exactly once.

Deployment systems must be flexible. They
should support both centralised and local package
management: it should be possible for both site admin-
istrators and local users to install applications, for
instance, to be able to use different versions and vari-
ants of components. Finally, it must not be difficult to
support deployment both in source and binary form, or
to define a variety of mechanisms for transferring
components. In other words, a deployment system
should provide flexible mechanisms, not rigid policies.

Despite much research in this area, proper solu-
tions have not yet been found. For instance, a sum-
mary of twelve years of research in this field indicates,
amongst others, that many existing tools ignore the
problem of interference between components and that
end-user customisation has only been slightly exam-
ined [6]. Consequently, there are still many hard out-
standing deployment problems (see the first section),

and there seems to be no general deployment system
available that satisfies all the above requirements.
Most existing tools only consider a small subset of
these requirements and ignore the others.

In this paper we present Nix, a safe and flexible
deployment system providing mechanisms that can be
used to define a great variety of deployment policies.
The primary features of Nix are:

• Concurrent installation of multiple versions and
variants

• Atomic upgrades and downgrades
• Multiple user environments
• Safe dependencies
• Complete deployment
• Transparent binary deployment as an optimisa-

tion of source deployment
• Safe garbage collection
• Multi-level package management (i.e., different

levels of centralised and local package manage-
ment)

• Portability

These features follow from the fairly simple
technique of using cryptographic hashes to compute
unique paths for component instances.

Motivation

In this section we take a close look at the issues
that a system for software deployment must be able to
deal with.

Dependencies For safe software deployment, it
is essential that the dependencies of a component are
correctly identified. For correct deployment of a com-
ponent, it is necessary not only to install the compo-
nent itself, but also all components which it may need.
If the identification of dependencies is incomplete,
then the component may or may not work, depending
on whether the omitted dependencies are already
present on the target system. In this case, deployment
is said to be incomplete.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 79

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

As a running example for this paper we will use
the Subversion version management system (http://
subversion.tigris.org/). It has several (optional) depen-
dencies, such as on the Berkeley DB database library.
When we package the Subversion component for
deployment, we must take this into account and ensure
that the Berkeley DB component is also present on
each target system. But it is easy to forget this! This is
because such dependencies are often picked up
‘‘ s i l e n t l y.’’ For instance, Subversion’s configure script
will detect and use Berkeley DB automatically if
present on the build system. If it is present on the tar-
get system, Subversion will happen to work; but if it is
not, it won’t: an incomplete deployment. Some exist-
ing deployment systems use various tricks to automate
dependency identification, e.g., RPM [11] can use the
ldd tool at packaging time to scan for shared library
dependencies. However, such approaches are either
not general enough or not portable.

Variability Components may exist in many vari-
ants. Variants occur when different versions exist (i.e.,
almost always), and when a component has optional
features that can be selected at build time. This is
known as variability [24]. The Subversion component
has several optional features, such as whether we want
support for OpenSSL encryption and authentication,
whether only a Subversion client should be built, and
whether an Apache server module should be built so
that Subversion can act as a WebDAV server. Of
course, there also exist many different versions of
Subversion, which we sometimes want to use in paral-
lel (for instance, to test a new version before promot-
ing it to production use on a server). A flexible
deployment system should support the presence of
multiple variants of a component on the same system.
For instance, on a multi-user system different users
may have different requirements and therefore need
different variants; on a server system we may want to
test a new component before upgrading critical server
software to use it; or other components may have con-
flicting requirements on some component.

Consistency Unfortunately, most package man-
agement disciplines do not support variants very well.
Deployment operations (such as installing, upgrading,
or renaming a component) are typically destructive:
files are copied to certain locations within the file sys-
tem, possibly overwriting what was already there. This
can destroy the consistency among components: if we
upgrade or delete some component, then another com-
ponent that depends on it may cease to work properly.
Also, it makes it hard to have multiple variants of a
component installed concurrently, that is, different ver-
sions of the component, or a version built with differ-
ent parameters. For instance, the RPM packages for
Subversion contain files such as /usr/bin/svn, making it
impossible to have two versions installed at the same
time. Worse, we might encounter unsatisfiable require-
ments, e.g., if two applications both require mutually
incompatible versions of some library.

Atomicity Component upgrades in conventional
systems are not atomic. That is, while a component is
being overwritten with a newer version, the compo-
nent is in an inconsistent state and may well not work
correctly. This lack of atomicity extends beyond the
level of individual components. When upgrading an
entire system, for instance, it may be necessary to
upgrade shared components such as shared libraries
first. If they are not backwards compatible, then there
will be a timing window in which components that use
them fail to work properly.

Identification Variants make identification of
dependencies surprisingly hard. We may say that a
component depends on glibc-2.3.2, but what are the
exact semantics of such a statement? For instance, it
does not identify the build parameters with which glibc
has been built, nor is there any guarantee that the iden-
tifier glibc-2.3.2 always refers to the same entity in all
circumstances. Indeed, versions of Red Hat Linux and
SuSE Linux both have RPM packages called glibc-2.3.2,
but these are not the same, not even at the source level
(they have vendor-specific patches applied).

Source/binary deployment We must often cre-
ate both ‘‘source’’ and ‘‘binary’’ packages for a com-
ponent. Creating the latter manually is unfortunate,
since binary deployment can be considered an optimisa-
tion of source deployment because it uses fewer
resources on the target system. Ideally, the creation of
binary packages would happen automatically and trans-
parently, but in practice, the creation and dissemination
of binary packages requires explicit effort. This is par-
ticularly the case if multiple variants are required (which
variants do we build, and how do users select them?).

The source/binary dichotomy complicates depen-
dency specification, since a component can have dif-
ferent dependencies at build time and at run time that
must be carefully identified. This is tricky, since a
build time dependency can become a run time depen-
dency if the construction process stores a reference to
its dependencies in the build result – a retained depen-
dency. For instance, various libraries such as
OpenSSL are inputs to the Subversion build process.
If they are shared libraries, then their full paths (e.g.,
/usr/lib/libssl.so.0.9.6) will be stored in the resulting
Subversion executables, causing these build time
dependencies to become run time dependencies. How-
ever, if they are statically linked (which is a build time
option of Subversion), then this does not occur. Thus,
there is a subtle interaction between variant selection
and dependencies.

Centralised vs. local package management To
make software deployment efficient, system adminis-
trators should not have to install each and every appli-
cation separately on every computer on a network.
Rather, software installation should be managed cen-
trally. On the other hand, computers or individual
users may have individual software requirements. This

80 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

requires local package management. Software deploy-
ment should cater for both local and centralised pack-
age management. It should not be hard to define
machine-local policies.

Overview

The Nix software deployment system is designed
to overcome the problems of deployment described in
the previous section. The main ingredients of the Nix1

system are the Nix store for storing isolated installa-
tions of components; user environments, providing a
user view of a selection of components in the store;
Nix expressions, specifying the construction of a com-
ponent from its sources; and a generic means of shar-
ing build results between machines. These ingredients
provide mechanisms for implementing a wide variety
of deployment policies. In this section we give a high-
level overview of these ingredients from the perspec-
tive of users of the system. In the next section their
implementation is described.

Nix Store

The fundamental problem of current approaches
to software deployment is the confusion of user space
and installation space. An end-user interacts with the
applications installed on a computer through a certain
interface. This may be the start menu on Windows and
other desktop environments, or the PATH environment
variable in command-line interfaces on Unix-like sys-
tems. These interfaces form what we call the user
space. Deployment is concerned with making applica-
tions available through such interfaces by installing all
files necessary for their operation in the file system,
i.e., in the installation space.

Mainly due to historical reasons – deployment
was often done manually – user space and installation
space are commonly identified. For instance, to keep
the list of directories in the PATH manageable, applica-
tions are installed in a few fixed locations such as
/usr/bin. Thus, management of the end-user interface
to applications is equal to physical manipulation of
installation space, entailing all the problems discussed
in the previous section.

In Nix, user space and installation space are sep-
arated. User space is a view of installation space.
Applications and all programs and libraries used to
implement them are installed in the Nix store. Each
component is installed in a separate directory in the
store. Directory names in the store are chosen so as to
uniquely identify revisions and variants of compo-
nents. This identification scheme goes beyond simple
name+version schemes, since these cannot cope with
variants of the same version of a component. Thus,
multiple versions of a component can coexist in the
store without interference.

1The name Nix is derived from the Dutch word niks, mean-
ing nothing; build actions do not see anything that has not
been explicitly declared as an input.

Nix Expressions
Installation of components in the store is driven

by Nix expressions. These are declarative specifica-
tions that describe all aspects of the construction of a
component, i.e., obtaining the sources of the compo-
nent, building it from those sources, the components
on which it depends, and the constraints imposed on
those dependencies. Rather than having specific built-
in language constructs for these notions, the language
of Nix expressions is a simple functional language for
computing with sets of attributes. Figure 1 shows a
Nix function that returns variants of the Subversion
system, based on certain parameters; it features most
typical constructs of the language. Figure 2 shows a
call to this function. We will use these examples to
explain the elements of the language.

{ clientOnly, apacheModule, sslSupport
, stdenv, fetchurl, openssl, httpd
, db4 }:

assert !clientOnly -> db4 != null;
assert apacheModule -> !clientOnly;
assert sslSupport -> (openssl != null
&& (apacheModule ->

httpd.openssl == openssl));

derivation {
name = "subversion-0.32.1";
system = stdenv.system;

builder = ./builder.sh;
src = fetchurl {
url =
http://.../subversion-0.32.1.tgz;

md5 = "b06717a8ef50db4b...";
};

Pass these to the builder.
inherit clientOnly apacheModule

sslSupport;
stdenv openssl httpd db4;

}

Figure 1: Subversion component (subversion.nix).

stdenv = import ...;
openssl = import ...;
... # other component definitions

subversion = (import subversion.nix) {
clientOnly = false;
apacheModule = false;
sslSupport = true;
inherit stdenv fetchurl openssl

httpd db4 expat;
};

Figure 2: Subversion composition (pkgs.nix).

Derivation The body of the expression is formed
by calling the primitive function derivation with an
attribute set {key=value;...}. The set contains two
attributes required by the derivation function: the builder
attribute indicates a script that builds the component,
while the system attribute specifies the target platform

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 81

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

on which the build is to be performed. The other
attributes define values for use in the build process
(such as dependencies) and are passed to the build script
as environment variables. The name attribute is a sym-
bolic identifier for use in the high-level user interface; it
does not necessarily uniquely identify the component.

Parameters In order to describe variants of a
component, an expression can be parameterised, i.e.,
turned into a function from Nix expressions to Nix
expressions. The syntax for functions is {k1, ..., kn}:
body, which defines a function that expects to be called
with an attribute set containing attributes with names
k1 to kn. Thus, the Subversion expression is parame-
terised with expressions describing the components on
which it depends (e.g., openssl, httpd, stdenv), options
that select features (e.g., clientOnly, sslSupport), and a
utility (fetchurl). The stdenv component provides all the
basic tools that one would expect in a Unix-like envi-
ronment, e.g., a C compiler, linker, and standard Unix
utilities. Parameters are instantiated in a function appli-
cation. For example, the expression in Figure 2 instan-
tiates the Subversion expression by assigning values to
its parameters.

A subtle but important difference with most
component formalisms is that in Nix we explicitly
describe not just components but also compositions of
components. For instance, an RPM spec file specifies
how to build a component, but not its dependencies. It
merely states fairly weak conditions on the expected
build environment (‘‘a package called glibc-2.3.2
should be present’’). Thus, a spec file is always
incomplete, so there is no way to uniquely specify
concrete components. The Subversion Nix expression
in Figure 1 is similarly incomplete, but the composi-
tion in Figure 2 provides the whole picture – informa-
tion on how to build not just Subversion, but also all
of its dependencies.

The value of the src attribute is another example
of functional computation. Its value is the result of a
call to the function fetchurl (passed in as an argument
of the Subversion function) that downloads the source
from a specific URL and verifies that it has the right
MD5 checksum.

Assertions In order to restrict the values that can
be passed as parameters, a function can state asser-
tions over the parameters. For example, the db4 data-
base is needed only when a local server is imple-
mented. Also, consistency between components can be
enforced. For instance, if both SSL and Apache sup-
port are enabled, then Apache must link against the
same OpenSSL library as Subversion, since at runtime
the Subversion code will be linked against Apache. If
this were not enforced, link errors could result.

Build When a derivation is built, the build script
indicated by the builder attribute is invoked. As stated
above, attributes of the derivation are passed through
environment variables to the builder. In the case of

attributes that refer to other derivations (i.e., depen-
dencies), the corresponding environment variables
contain the paths at which they are stored. Nix ensures
that such dependencies are built prior to the invocation
of the builder, so the build script can assume that they
are present. The special variable out conveys to the
builder where it should store the build result. Figure 3
shows the build script for Subversion. The largest part
of the script is used to compute the configuration flags
based on the features selected for the Subversion
instance. By using a user-definable script for imple-
menting the build of a component, rather than building
in a specific build sequence, no requirements have to
be made on the build interface of source distributions.

buildInputs="$openssl $db4 $httpd"
Bring in GCC etc., set up environment.
. $stdenv/setup

if ! test $clientOnly; then
extraFlags="--with-berkeley-db=$db4 \
$extraFlags"

fi

if test $sslSupport; then
extraFlags="--with-ssl \
--with-libs=$openssl $extraFlags"

fi

...
tar xvfz $src
cd subversion-*
./configure --prefix=$out $extraFlags
make
make install

Figure 3: Subversion build script (builder.sh).

User Environments
A Nix user environment consists of a selection of

applications from the store currently relevant to a user.
‘‘Users’’ can be human users, but also system users
such as daemons and servers that need a specific
selection to be visible. This selection may be imple-
mented in various ways, depending on the interface
used by the user. In the case of the PATH interface, a
user environment is implemented as a single directory
– the counterpart of /usr/bin – containing symbolic
links (or wrapper scripts on systems that do not sup-
port them) to the selected applications. Thus, manipu-
lation of the user environment consists of manipula-
tion of this collection of symbolic links, rather than
directories in the store. Installation of an application in
user space entails adding a symbolic link to a file in
the store and uninstallation entails removing this sym-
bolic link instead of physically removing the corre-
sponding file from the file system.

While other approaches (e.g., [4]) also use a
directory with symbolic links, these are composed
manually and/or are only provided in a single location.
In Nix an environment is a component in the store.
Thus, any number of environments can coexist and
variant environments can be composed with tools.

82 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

This separation of user space and installation space
allows the realization of many different deployment
scenarios. The following are some typical examples:

• A user environment may be prescribed by a
system administrator, or may be adapted by
individual users.

• Different users on the same system can com-
pose different user environments, or can share a
common environment.

• A single user can maintain multiple ‘profiles’
for use in different working situations.

• A user can experiment with a new version of a
component while keeping the old (stable) ver-
sion around for regular tasks.

• Upgrading to a new version or rolling back to
an old one is a matter of switching environ-
ments.

• Removal of unused applications can be
achieved by automatic garbage collection, tak-
ing the applications in user environments as
roots.

For instance, to add the Subversion component
in Figure 2 to the current user environment, we do:
$ nix-env -f pkgs.nix -i subversion

where pkgs.nix is the file containing the definition in Fig-
ure 2. This will build Subversion and create a new user
environment, based on the old one, to which Subversion
has been added. If an expression for a new Subversion
release comes along, we can upgrade as follows:
$ nix-env -f pkgs.nix -u subversion

which likewise creates a new user environment, based
on the old one, in which the old Subversion compo-
nent has been replaced by the new one. However, the
old user environment and the components included in
it are retained, so it is possible to return to the old situ-
ation if necessary:
$ nix-env --rollback

There is no operation to physically remove compo-
nents from the system. They can only be removed
from a user environment, e.g.,
$ nix-env -e subversion

creates a new user environment from which the links
to Subversion have been removed. However, storage
space can be reclaimed by periodically running a
garbage collector:
$ nix-collect-garbage

which removes any component not reachable from any
user environment. (Therefore it is necessary to period-
ically prune old user environments, e.g., once we find
that we do not need to roll back to old ones). Garbage
collection is safe because we know the full depen-
dency graph between components.

Sharing Component Builds

The unique identification of a component in the
store is based on all the inputs to the build process,

thus capturing all special configurations of the particu-
lar variant being built. Thus, components can be iden-
tified exactly and deterministically. Consequently a
component can be shared by all components that
depend on it. Indeed we even get maximal sharing: if
two components are the same, then they will occupy
the same location in the store. This means that builds
can be shared by users on the same machine.

Since the identification only depends on the
inputs to the build process and the location of the
store, store identifiers are even globally unique. That
is, a component build can be safely copied to a Nix
store on another machine. For this purpose, Nix pro-
vides support for transparently maintaining a collec-
tion of pre-built components on some shared medium
such as an FTP site or an installation CD-ROM. After
building a component in the store it can be pushed to
the shared medium.

For instance, the installation and upgrade opera-
tions above perform an installation from source. This
is generally not desirable since it is slow. However, it
is possible to safely and transparently re-use pre-built
components from a shared resource such as a network
repository. For instance, a component distributor or
system administrator can pre-build components, then
push (upload) them to a server using PUT requests:
$ nix-push http://example.org/cache \

pkgs.nix subversion

This will build Subversion (if necessary) and upload it
and all its dependencies to the indicated site. A user
can then make Nix aware of these:
$ nix-pull http://example.org/cache

Subsequent invocations of nix-env -i / -u will automati-
cally use these if they are exactly equal to what the
user is requesting to be installed. That is, if the user
changes any sources, flags, and so on, the pre-built
components will not be used, and Nix will revert to
building the components itself. Thus, Nix is both a
source and binary-based deployment system; deploy-
ment of binaries is achieved transparently, as an opti-
misation of a source-based deployment process.

Policies

Nix is policy-free. That is, the ingredients intro-
duced above are mechanisms for implementing soft-
ware deployment. A wide variety of policies can be
based on these mechanisms.

For instance, depending on the type of organisa-
tion it may or it may not be desirable or possible that
users install applications. In an organisation where
homogeneity of workspaces is important, the selection
and installation of applications can be restricted to sys-
tem administration. This can be achieved by restricting
all the operations on the store, and the composition of
user environments to system administration. They may
compose several prefab user environments for differ-
ent classes of users. On the other hand, for instance in

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 83

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

a research environment, where individual users have
very specific needs, it is desirable that users are capa-
ble of installing and upgrading applications them-
selves. In this situation environment operations and
the underlying store operations can be made available
to ordinary users as well. Similarly, Nix enables
deployment at different levels of granularity, from a
single machine, a cluster of machines in a local net-
work, to a large number of machines on separate sites.

Many other policies are possible; some are dis-
cussed later.

Implementation

In this section we discuss the implementation of the
Nix system. We provide an overview of the main com-
ponents of the system, which we then discuss in detail.

The Store
The two main design goals of the Nix system are

to support concurrent variants, and to ensure complete
dependency information which is necessary to support
completeness (the deployment process should transmit
all dependencies necessary for the correct operation of
a component). It turns out that the solutions to these
goals are closely related. Other design goals are porta-
bility (we should not fundamentally rely on operating
system specific features or extensions) and storage
efficiency (identical components should not be stored
more than once).

The first problem is dealing with variability, i.e.,
concurrent variants. As we hinted in the previous sec-
tion, we support this by storing each variant of a com-
ponent in a global store, where they have unique
names and are isolated from each other. For instance,
one version or variant of Subversion might be stored
in /nix/store/eeeeaf42e56b-subversion-0.32.1,2 while another
might end up in /nix/store/3c7c39a10ef3-subversion-0.34 .
To ensure uniqueness, these names are computed by
hashing all inputs involved in building the component.

Thus, each object in the store has a unique name,
so that variants can co-exist. These names are called
store paths. In Autoconf [1] terminology, each compo-
nent has a unique prefix. The file system content refer-
enced by a store path is called a store object. Note that
a given store path uniquely determines the store object.
This is because two store objects can only differ if the
inputs to the derivations that built them differ, in which
case the store path would also differ due to the hashing
scheme used to compute it. Also, a store object can
never be changed after it has been built.

Figure 4 shows a number of derivates in the
store. The tree structure simply denotes the directory
hierarchy. The arrows denote dependencies, i.e., that
the file at the start of the arrow contains the path name
of the file at the end of the arrow, e.g., the program svn

2The actual names use 32 hexadecimal digits (from a
128-bit cryptographic hash), but they have been shortened
here to preserve space.

depends on the library libc.so.6, because it lists the file
/nix/store/8d013ea878d0-glibc-2.3.2/lib/libc.so.6 as one of
the shared libraries against which it links at runtime.

Figure 4: The Store.

The use of these names also provides a solution
for the dependency problem. First, it prevents unde-
clared dependencies. While it is easy for hard-coded
paths (such as /usr/bin/perl) to end up in component
source, thereby causing a dependency that is easily
forgotten while preparing for deployment, no devel-
oper would manually write down these paths in the
source (indeed, being the hash of all build inputs, they
are much too ‘‘fragile’’ to be included). Second, we
can now actually scan for dependencies. For instance,
if the string 3c7c39... appears in a component, we
know that it has a dependency on a specific variant of
Subversion 0.34. This in particular solves the problem
of retained dependencies (discussed in the first sec-
tion): it is not necessary to declare explicitly those
build time dependencies that, through retention,
become run time dependencies, since we can find
them automatically.

With precise dependency information, we can
achieve the goal of complete deployment. The idea is
to always deploy component closures: if we deploy a
component, then we must also deploy its dependen-
cies, their dependencies, and so on. That is, we must
always deploy a set of components that is closed under
the ‘‘depends on’’ relation. Since closures are self-
contained, they are the units of complete software
deployment. After all, if a set of components is not
closed, it is not safe to deploy, since using them might
cause other components to be referenced that are miss-
ing on the target system.

Building Components

So how do we build components from Nix
expressions? This could be expressed directly in terms
of Nix expressions, but there are several reasons why
this is a bad idea. First, the language of Nix expressions
is fairly high-level, and as the primary interface for

84 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

developers, subject to evolution; i.e., the language
changes to accommodate new features. However, this
means that we would have to be able to deal with vari-
ability in the Nix expression language itself: several
versions of the language would need to be able to co-
exist in the store. Second, the richness of the language
is nice for users but complicates the sorts of operations
that we want to perform (e.g., building and deploy-
ment). Third, Nix expressions cannot easily be identi-
fied uniquely. Since Nix expressions can import other
expressions scattered all over the file system, it is not
so straightforward to generate an identifier (such as a
cryptographic hash) that uniquely identifies the
expression. Finally, a monolithic architecture makes it
hard to use different component specification for-
malisms on top of the Nix system (e.g., we could
retarget Makefiles to use Nix as a backend).

For these reasons Nix expressions are translated
into the much simpler language of store expressions,
just as compilers generally do the bulk of their work
on simpler intermediate representations of the code
being compiled, rather than on a full-blown language
with all its complexities. Store expressions describe
how to build one or more store paths. Realisation of a
store expressions means making sure that all those
paths are present in the store.

Derivation store expressions describe the build-
ing of a single store component. They describe all
inputs to the build process: other store expressions that
must be realised first (build time dependencies), the
build platform, the build script (which is one of the
dependencies), and environment variable bindings.
These are computed from calls to the derivation func-
tion in the Nix expression language by recursively
translating all input derivations to derivation store
expressions, copying source files to the store, and
adding all attributes as environment variable bindings.

To perform the build action described by a
derivation, the following steps are taken:

1. Locks are acquired on the output path (the store
path of the component being built) to ensure cor-
rectness in case of parallel invocations of Nix.

2. Input store expressions are realised. This
ensures that all file system inputs are present.

3. The environment is cleared and initialised to
the bindings specified in the derivation.

4. The builder is executed.
5. If the builder was executed successfully, we

build a closure store expression that describes
the resulting closure, i.e., the output path and
all store paths directly or indirectly referenced
by it. We do this by scanning every file in the
output path for occurrences of the crypto-
graphic hashes in the input store paths. For
instance, when we build Subversion, the path
/nix/store/a17fb5a...-openssl-0.9.7c is passed as an
input. After the build, we find that the string
a17fb5a... occurs in the file libsvn_ra_dav.so (as
shown in Figure 4). Thus, we find that

Subversion has a retained dependency on
OpenSSL. Build time dependencies carried
over to runtime are detected automatically in
this way. (This approach is discussed in more
detail in [9]).

6. The closure expression is written to the store.

The command nix-instantiate translates a Nix
expression to a store expression:
$ nix-instantiate pkgs.nix
/nix/store/ce87...-subversion.store

The command nix-store --realise realises a derivation
store expression, returning the resulting closure store
expression:
$ nix-store --realise \
/nix/store/ce87...-subversion.store

/nix/store/ab1f...77ef.store

Nix users do not generally have to deal with
store expressions. For instance, the nix-env command
hides them entirely – the user interacts only with high-
level Nix expressions, which is really just a fancy
wrapper around the two commands above. However,
store expressions are important when implementing
deployment policies. Their relevance is that they give
us a way to uniquely identify a component both in
source and binary form, through the derivation and
closure store expression, respectively. This can be
used to implement a variety of deployment policies.

A crucial operation for deployment is to query
the set of store paths referenced by a store expression.
This is the set of paths that must be copied to another
system to ensure that it can realised there. For
instance, for the derivation above we get:
$ nix-store --qR \
/nix/store/ce87...-subversion.store

/nix/store/ce87...-subversion.store
/nix/store/d1bc...0aa1-builder.sh
/nix/store/f184...3ed7-gcc.store
/nix/store/f199...0719-bash.store
...

That is, this set includes the derivation store expres-
sions for building Subversion itself and its direct and
indirect dependencies, a closure store expression for
the builder, and so on.

On the other hand, for the closure we get:
$ nix-store --qR \

/nix/store/ab1f...77ef.store
/nix/store/ab1f...77ef.store
/nix/store/eeee...e56b-subversion-0.32.1
/nix/store/a17f...c48f-openssl-0.9.7c
/nix/store/8d01...78d0-glibc-2.3.2
...

This set only includes the closure store expression
itself and the component store paths it references.

Substitutes

With just the mechanisms described above, Nix
would be a source-based deployment system (like the

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 85

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

FreeBSD Ports collection [2], or Gentoo Linux [3]),
since all target systems would have to do a full build
of all derivations involved in a component installation.
This has the advantage of flexibility. Advanced users
or system administrators can adapt Nix expressions to
build a variant specifically tailored to their needs. For
instance, required functionality disabled by default can
be enabled, unnecessary functionality can be disabled,
or the components can be built with specific optimisa-
tion parameters for the target environment. The result-
ing derivates may be smaller, faster, easier to support
(e.g., due to reduced functionality), and so on. On the
other hand, the obvious disadvantages are that source-
based deployment requires substantial resources on
the target system, and that it is unsuitable for the
deployment of closed-source products.

The Nix solution is to allow source-based deploy-
ment to change transparently into binary-based deploy-
ment through the mechanism of substitutes. For any
store path, a substitute expression can be registered,
which is also just a store derivation expression. Then,
whenever Nix is asked to realise a closure that con-
tains path p, and p does not yet exist, it will first try to
build its substitute if available. The idea is that the
substitute performs the same build as the original
expression, but with fewer resources. Typically, this is
done by fetching the pre-built contents of the output
path of the derivation from the network, or from
installation media such as a CD-ROM. This mecha-
nism is generic (policy-free), because it does not force
any specific deployment policy onto Nix. Specific
policies are discussed later.

Deployment Policies

A useful aspect of Nix is that while it is concep-
tually a source-based deployment system, it can trans-
parently support binary deployment through the sub-
stitute mechanism. Thus, efficient deployment consists
of two aspects:

• Source level: Nix expressions are deployed to the
target system, where they are translated to store
expressions and built (e.g., through nix-env).

• Binary level: Pre-built derivates are made avail-
able, and substitute expressions are registered
on the target system. This latter step is largely
transparent to the users. There is no apparent
difference between a ‘‘source’’ and a ‘‘binary’’
installation.

Source level deployment is unproblematic, since
Nix expressions tend to be small. Typical deployment
policies are to obtain sets of Nix expressions packaged
into a single file for easier distribution, or to fetch them
from a version management system. The latter is useful
as it can easily allow automatic upgrades of a system.
For instance, we can periodically (e.g., from a cron job)
update the Nix expressions and build the derivations
described by them. Note that any subexpressions that
have not changed do not need to be rebuilt.

Binary level deployment presents more interest-
ing challenges, since even small Nix expressions can,
depending on the variability present in the expres-
sions, yield an exponentially large set of possible store
objects. Also, these store objects are large and may
take a long time to build. Thus, we have to decide
which variants are pre-built, who builds them, and
where they are stored.

Let us first look at the most simple deployment
policy: a fixed selection of variants are pre-built,
pushed onto a HTTP server, from where they can then
be pulled by clients. To push a derivation, all elements
in the resulting closure are packaged (e.g., by placing
them into a .tar.gz archive). All of this is entirely auto-
matic: to push the derivations of some expression
foo.nix the distributor merely has to issue the command
nix-push foo.nix.

The client issues the command nix-pull to obtain a
list of available pre-built components available from a
pre-configured URL (i.e., the HTTP server). For each
derivation available on the server, substitute expres-
sions are registered that (when built) will fetch,
decompress, and unpack the packaged output path
from the server. Note that nix-pull is lazy: it will not
fetch the packages themselves, just some information
about them.

subversion = {apacheModule, stdenv}:
(import ./subversion.nix)
{ clientOnly = false
, sslSupport = true
, apacheModule = apacheModule
, stdenv = stdenv, ... };

subversion’ = {stdenv}:
[(subversion {apacheModule = true})
(subversion {apacheModule = false})];

subversion’’ =
[(subversion’

{stdenv = stdenv-Linux})
(subversion’

{stdenv = stdenv-FreeBSD})];

Figure 5: Variant selection.

The issue of which variants to pre-build requires
the distributor to determine the set of variants that are
most likely to be useful. For instance, for the Subver-
sion component, it may never be useful to not have
SSL support, but it may certainly be useful to leave out
Apache server support, since that feature introduces a
dependency on Apache, which might be undesirable
(e.g., due to space concerns). Also, the platform for
which to build must be selected. Figure 10 shows how
four variants of Subversion can be built. The function
subversion supplies all arguments of the expression in
Figure 1, except apacheModule and stdenv (which deter-
mines the build tools, and thus the target platform).
The function subversion’ uses this to produce two vari-
ants, given a stdenv: one with Apache server support,

86 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

and one without. This function is in turn used by the
variable subversion,’’ which calls it twice, with a stdenv
for Linux and FreeBSD respectively. Hence, this eval-
uates to 2 × 2 = 4 variants.

Pre-building and pushing to a shared network
site merely optimises deployment of common variant
selections; it does not preclude the use of variants that
are not pre-built. If a user selects a variant for which
no substitute exists, the variant will be built locally
from source. Also, input components such as compil-
ers that are exclusively build time dependencies (that
is, they appear in the derivation value but not in the
closure value) will only be fetched or built when the
variant must be built locally.

The tools nix-pull and nix-push are not part of the
Nix system as such; they are applications of the under-
lying technology. Indeed, they are just short Perl
scripts, and can easily be adapted to support different
deployment policies. For instance, an entirely different
policy is lazy construction, where clients push
derivates onto a server if they are not already present
there. This is useful if it is not known in advance
which derivates will be needed. An example is mass
installation of components in a heterogeneous net-
work. In a peer-to-peer architecture each client makes
its derivates available to all other clients (that is, it
pushes onto itself, and pulls from all other clients). In
this case there is no server, and thus, no need to pro-
vide central storage scaling in the number of clients.

User Environment Policies

The use of cryptographic hashes in store paths
gives us reliable identification of dependencies and
non-interference between components, but we can
hardly expect users to type, e.g., /nix/store/eeeeaf42e56b-
subversion-0.32.1/bin/svn when they want to start a pro-
gram! Clearly, we should hide these implementation
details from users.

We solve this problem by synthesising user envi-
ronments. A user environment is the set of applica-
tions or programs available to the user through normal
interaction mechanisms, which in a Unix setting
means that they appear in a directory in the user’s
PATH environment variable. The user has in her PATH
variable the path /nix/links/current/bin. /nix/links/current is
a symbolic link (symlink) that points to the current
user environment generation. Generations are sym-
links to the actual user environment. They are needed
to implement atomic upgrades and rollbacks: when a
derivation is added or removed through nix-env, we
build the new environment, and then create a genera-
tion symlink to it with a number one higher than the
previous generation. User environments are just sets
of symlinks to programs of activated components
(similar to, e.g., GNU Stow [4]), and are themselves
computed using derivations.

This is illustrated in Figure 6 (dotted lines denote
symlinks), where the current symlink points to

generation 42, which is in turn a symlink to a user
environment in the store. The user environment is sim-
ply a tree of symlinks to activated components. Hence,
the path /nix/links/current/bin/svn indirectly refers to
/nix/eeee...-subversion-0.31.1/bin/svn .

Figure 6 also shows what happens when we
upgrade Subversion, and add Mozilla in a single
atomic action. A new environment is constructed in
the store based on the current generation (42), the new
generation (43) is made to point to it, and finally the
current link is switched to point at generation 43. The
semantics of the POSIX rename() system call ensures
that this is an atomic operation. That is, users and pro-
grams always see the old set of activated programs, or
the new set, but never neither, both, or a mix. Since
old generations are retained, we can atomically down-
grade to them in the same manner.

Figure 6: User environments.

The generation links are the only external links
into the store. This means that the only reachable store
paths are those in the closure of the targets of the gen-
eration links. The closure can be found using the clo-
sure values computed earlier. Since all store paths not
in this closure are unreachable, they can be deleted at
will. This allows Nix to do automatic garbage collec-
tion of installed components. Nix has no explicit oper-
ation to delete a store path – that would be unsafe,
since it breaks the integrity of closures containing that
path. Rather, it provides operations to remove deriva-
tions from the user environment, and to garbage col-
lect unreachable store paths. Store paths reachable
only from old generations can be garbage collected by
removing the generation links.

This scheme, where a user environment is cre-
ated for the entire system, is just the simplest user
environment policy. The creation of a user environ-
ment is itself a normal derivation, and the command

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 87

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

nix-env used in the second section is a simple wrapper
that automatically creates a derivation, builds it, and
switches the current generation to the resulting output
path. The build script used by nix-env for environment
creation is a fairly trivial Perl script that creates sym-
links to the files in its input closures. A simple modifica-
tion is to allow profiles – environments for specific users
or situations. This can be done by specifying a different
link directory (e.g., /home/joe/.nixlinks). Also, multiple
versions of the same program in an environment can be
accommodated through renaming (e.g., a symlink
svn-0.34), which is a policy decision that can be imple-
mented by modifying the user environment build script.

derivation {
name = "site-env";
builder = ./create-symlinks.pl;
inputs = [
((import ./subversion.nix) { ... })
((import ./mozilla.nix) { ... })
...];

}

Figure 7: A Nix expression to build a site-wide user
environment (site-wide.nix).

A more interesting extension is stacked user envi-
ronments, where one environment links to the pro-
grams in another environment. This is easily accom-
modated: just as the inputs to the construction of an
environment can be concrete components (such as
Subversion), they can be other environments. The
result is another indirection in the chain of symlinks. A
typical scenario is a 2-level scheme consisting of a site-
wide environment specified by the site system admin-
istrators, with user-specific environments that augment
or override the site-wide environment. Concretely, the
site administrator makes a Nix expression as in Figure
7 (slightly simplified) and makes it available on the
local network. Locally, a user can then link this site-
wide environment into her own environment by doing
nix-env -f site-wide.nix -i site-env

where site-wide.nix refers to the Nix expression. This
will replace any previously installed derivation with
the symbolic name site-env. To ensure that changes to
the site-wide environment are automatically propa-
gated, these commands can be run periodically (e.g.,
from a cron job), or initiated centrally (by having the
administrator remotely execute them on every
machine and/or for every user).

Should components in the local environment
override those in the site-wide environment? Again,
this is a policy decision, and either possibility is just a
matter of adapting the builder for the local user envi-
ronment, for instance to give precedence to deriva-
tions called site-env.

Server configurations User environments (con-
trary to what the term implies) can not only be used to
specify environments for specific users, but also for
specific tasks or processes. In particular, they can be

used to specify complete server configurations, which
includes not only the software components constitut-
ing some server, but also its configuration and other
auxiliary files. Consider, for instance, an Apache/Sub-
version server (the Subversion server runs as a module
on top of Apache). It consists of several components
that are rather picky about specific dependencies, e.g.,
Apache, Subversion, ViewCVS, Python, and Perl, but
also our repository management CGI scripts, static
HTML documents and images, the Apache httpd.conf
configuration file, SSL private keys, and so on. Since
these are also components (just not necessarily exe-
cutable components) they can be managed using Nix.

Figure 8 shows a (simplified) Nix expression for
an Apache/Subversion server. It takes a single argu-
ment that specifies whether a test or production server
is to be built. The builder produces a component con-
sisting of an Apache configuration file, and a control
script to start and stop the server. The builder gener-
ates these by substituting values such as the desired
port number and the paths to the Apache and Subver-
sion components into the given source files.

{productionServer}:
derivation {
builder = ./builder.sh;
configuration = ./httpd.conf.in;
controller = ./ctl.sh.in;
portNumber = if productionServer

then 80 else 8080;
inherit (import ...) httpd subversion;

}

Figure 8: A Nix expression to build a Subversion
server.

Now, given a simple script upgrade-server (not
shown here) that uses nix-env -u to build the new server
configuration, stop the server running in the old genera-
tion, and start the new one, we can easily instantiate
new server configurations by editing source files such
as httpd.conf.in, and calling upgrade-server. For instance,
the command upgrade-server test instantiates the Nix
expression by calling it with a false argument, thus pro-
ducing a test server. If this is found to work properly,
we can issue upgrade-server production to upgrade the
production server. nix-env --rollback can be used to go
back to the previous generation, if necessary.

The server is started using the script controller.sh
which is part of the server configuration component. It
initialises PATH to point to a specific set of compo-
nents. This means that the server configuration is self-
contained: it does not depend on anything not explic-
itly specified in the Nix expression. Such a configura-
tion is therefore pretty much immune to external con-
figuration changes, and can be relatively easily trans-
ferred to another machine.

The only thing not under Nix control here is state
– things that are modified by the server, e.g., the actual
Subversion repositories and user account databases.

88 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

Thus, Nix can be used for the deployment of not
just software components, but also complete system
configurations – the domain of tools such as Cfengine
[7]. Note that Cfengine declaratively specifies destruc-
tive changes to be performed to realise a desired con-
figuration. This makes it hard to easily run several
configurations in parallel on the same machine, or to
switch back and forth between configurations. Also,
Cfengine is typically not used to manage the software
components on a machine (although this is possible,
e.g., by installing the appropriate packages in an
Cfengine action [20]).

Experience

We have applied Nix to a number of problem
domains.

Software deployment We have ‘‘nixified’’ 180
or so existing Unix packages, including large ones
such as Mozilla Firefox with all its dependencies
(which includes the C compiler, basic Unix tools, X11,
etc.). They are prebuilt for Linux and made available
through the push/pull mechanism.

The fundamental limitation to Nix’s dependency
checking is that it will not prevent undeclared depen-
dencies on components outside of the store. For
instance, if a builder calls /bin/sh, we have no way to
detect this. To minimise the probability of such unde-
clared dependencies, we use patched versions of gcc,
ld, and glibc that refuse to use header files and libraries
outside of the Nix store. In our experience this works
quite well. For instance, the prebuilt Nix packages
work on a variety of Linux distributions – evidence
that no (major) external components are used. A com-
mon problem with these distributions is that they often
differ in subtle ways that cause packages built on one
system to fail on another, e.g., because of C library
incompatibilities. However, our Nix components are
completely boot-strapped, that is, they are built using
only build tools, libraries, etc., that have themselves
been built using Nix, and do not rely on components
outside of the Nix store (other than the running ker-
nel). Using our reliable dependency analysis, any
required libraries and other components are deployed
also. Thus, they just ‘‘work.’’

The ability to very rapidly perform rollbacks is
often a life-saver. For instance, it happens quite fre-
quently that we attempt to upgrade some bleeding-
edge software package, only to discover that it doesn’t
work quite as well as the previous version (or not at
all!). A simple nix-env --rollback saves the day. In most
package managers, recovery would be much harder,
since we would have to know exactly what the previ-
ous configuration was, and we would have to have a
way to re-obtain the old versions of the packages that
were just upgraded.

Service deployment As described later, Nix can
be used for the deployment of not just software com-
ponents, but also complete configurations of system

services. For instance, our department’s Subversion
server is managed in this way. The main advantages
are that it is very easy to run multiple instances of a
service (e.g., for testing – and the test server will in no
way interfere with the production server!), that it is
easy to move a service to another machine since we
have full dependency information, and again that we
can rollback to earlier versions.

Build farms It is a good software engineering
practice to build software systems continuously during
the development process [13]. In addition, if software
is to be portable, it should be built on a variety of
machines and configurations. This requires a build
farm – a set of machines that sit in a loop building the
latest version obtained from the version management
system. Build farms are also important for release
management – the production of software releases –
which must be an automatic process to ensure repro-
ducibility of releases, which is in turn important for
software maintenance and support.

The management of a build farm is often highly
time-consuming. For instance, if the component being
built in the build farm requires (say) Automake 1.7,
we must install that version of Automake on each
machine in the build farm. If at some point we need a
newer version of Automake, we again must go to each
machine to perform the upgrade. So maintaining a
build farm scales badly. Worse, there may be conflict-
ing dependencies (e.g., some other component in the
build farm may only work with Automake 1.6).

Such management of dependencies is exactly
what Nix is good at, so we have implemented a build
farm on top of Nix. The main advantages over other
build farms (e.g., [12]) are:

• The Nix expression language makes it easy to
describe the build tasks, along with their depen-
dencies.

• Nix ensures that the dependencies are installed
on each machine in the build farm.

• The hashing scheme ensures that identical
builds (e.g., of dependencies) are performed
only once.

• In Nix, each derivation has a system attribute
that specifies on what kind of platform the
derivation is to be performed (e.g., i686-linux).
If the attribute does not match the type of the
platform on which Nix is run, Nix can automat-
ically distribute the derivation to a different
machine of the intended platform type, if one
exists. All inputs to the derivation are copied to
the store of the remote machine, Nix is run on
the remote machine, and the result is copied
back to the local store. Thus, dealing with
multi-platform builds is fairly transparent: we
can write a Nix expression specifying deriva-
tions on a variety of platforms and run it on a
arbitrary machine. There is no need to schedule
the build separately on each machine.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 89

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

• The resulting builds can be used immediately
by other developers since they are made avail-
able through nix-push.

A downside to a Nix-based build farm is that
installing a package through Nix differs from the
‘‘native’’ way of installing a package on existing plat-
forms (e.g., by installing an RPM on a Red Hat
machine). Thus it is difficult for a Nix build farm to
verify whether a package works when built from
source in the native way. However, on Linux systems,
we can in fact build native packages (such as RPMs)
without affecting the host system by using User-Mode
Linux [5] in Nix derivations. In fact, this fits in quite
well. For instance, the synthesis of the UML disk
images for the various platforms for which we build
packages is just a normal Nix derivation that creates
an Ext2 file system from an arbitrary set of RPMs
constituting a Linux distribution.

Related Work

Centralised and local package management
Package management should be centralised but each
machine must be adaptable to specific needs [26].
Local package management is often ignored in favour
of centralised package management [19, 17]. In our
approach, central configurations can easily be shared
and local additions can be made. Any user can be
allowed to deviate from a central configuration. Soft-
ware installation by arbitrary users is discussed in
[21]. In [25] policies are introduced that define which
installation tasks are permitted. This might be a chal-
lenging extension to Nix. Modules [14] makes soft-
ware deployment more transparent by abstracting
from the details of software deployment. Application-
specific deployment details are captured in ‘‘module-
files,’’ which can be shared between large-scale dis-
tributed networks, similar to Nix expressions. Mod-
ules lack the safety properties of Nix. As a result, cor-
rect operation of typical deployment tasks, as dis-
cussed initially, cannot be guaranteed.

Non-interference Software packages should not
interfere with each other. Typical interference is
caused by attempting to have multiple versions of a
component installed. It is important that multiple ver-
sions can coexist [21], but this is difficult to achieve
with current technology [6]. A common approach is to
install software packages in separate directories,
sometimes called collections [26]. In [18], a directory
naming scheme is used that restricts the number of
concurrent versions and variants of a package. Sharing
is in most deployment systems either unsafe due to
implicit references, or not supported at all because
every application is made completely self-contained
[17, 19]. Sharing of data across platforms using a
directory structure that separates platform specific
from platform independent data is discussed in [17],
which is concerned with diversity in platform, not
diversity in feature sets. As a consequence however,

exchange and sharing of packages is not truly safe, as
is the case for Nix.

Safe upgrading Many systems ignore this issue
[26]. Automatic rollback on failures is discussed in
[19]. This turned out to be undesirable in practice
because it increased installation time and did not
increase consistency. RPM [11] has a notion of trans-
actions: if the installation of a set of packages failed,
the entire installation is undone. This is not atomic, so
the packages being upgraded are in an inconsistent
state during the upgrade. The approach discussed in
[18] uses shortcuts to default package versions, e.g.,
emacs pointing to emacs-20.2. This is unsafe because
programs may now use emacs which initially corre-
sponds to emacs-20.2, but after an upgrade points to,
e.g., emacs-20.3. Separation of production and devel-
opment software via directories is discussed in [17].
Once an application has been fully tested under the
development tree it is turned into production. This
requires recompilation because path names will
change and may cause errors. Consequently, the
approach is not really safe.

Garbage collection In [21] an approach for
removing old software is discussed. Basically, after
software is ‘‘removed’’ by making the directory
unreadable, one verifies whether other software fails
by running it. If so, the deletion is rolled back by mak-
ing the directory readable again. This is unsafe
because the test executions may not reveal every
dependency, and because a time window is introduced
during which some components do not work.

Dependency analysis However, the same paper
also describes a pointer scanning mechanism similar
to ours: component directories are scanned for the
names of other component directories (e.g., tk-3.3).
However, such names are not very unique (contrary to
cryptographic hashes) and may lead to many false
positives. Also, component dependencies are scanned
for after the component has been made unreadable,
not before. In [23] a dependency analysis tool for
dynamic libraries is discussed. In Nix this information
is already available when an application is installed,
and Nix is not restricted to detecting dependencies on
shared libraries only. Vesta [16] is a system for config-
uration management that supports automatic depen-
dency detection. Like Nix, it detects only dependen-
cies that are actually needed, and dependencies are
complete, i.e., every aspect of the computing environ-
ment is described and controlled by Vesta.

Safety In [25] common wrong assumptions of
package managers are explained, including: i) package
installation steps always operate correctly; ii) all soft-
ware system configuration updates are the result of
package installation. In Nix, software gets installed
safely, without affecting the environment. Thus, in con-
trast to many other systems, Nix will never bring a sys-
tem in an unstable state. Unless a system administrator

90 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Dolstra, de Jonge, and Visser Nix: A Safe and Policy-Free System for Software Deployment

really wants to mess things up, all upgrades to the Nix
store are the result of package installation. Safe testing
of applications outside production environments is dis-
cussed in [21, 17]. In [15] it is confirmed that software
should be installed in private locations to prevent inter-
ference between software packages. Interference turns
out to be a very common cause of installation problems.
In Nix, such packages can safely coexist.

Packaging In [22] a generic packaging tool for
building bundles (i.e., collections of products that may
be installed as a unit) is discussed. Source tree compo-
sition [8] is an alternative technique for automatically
producing bundles from source code components.
However, these bundling approaches do not cater for
sharing of components across bundles.

Conclusion

Seemingly simple tasks such as installing or
upgrading an application often turn out to be much
harder than they should be. Unexpected failures and
the inability to perform certain actions affect users of
all levels of computing expertise. In this paper we
have pinpointed a number of causes of the deployment
malady, and described the Nix system that addresses
these by using cryptographic hashes to enforce
uniqueness and isolation between components. It is
successfully used to deploy software components to
several different operating systems, to manage server
configurations, and to support a build farm.

There are a number of interesting issues remain-
ing. Of particular interest is our expectation that Nix
will permit sharing of derivations between users. That
is, if user A has built some derivation, and user B
attempts to build the same derivation, B can transpar-
ently reuse A’s result. Clearly, using code built by oth-
ers is not safe in general, since A may have tampered
with the result. However, our use of cryptographic
hashes can make this safe, since the hash includes all
build inputs, and therefore completely characterises
the result.

The problems of dependency identification and
dealing with variants also plague build managers such
as Make [10]. We believe that (with some extensions)
Nix can be used to replace these more low-level soft-
ware configuration management tools as well.

Availability

Nix is free software and is available online at
http://www.cs.uu.nl/groups/ST/Trace/Nix .

Acknowledgements

We wish to thank Martin Bravenboer and Armijn
Hemel for helping in the development of the Nix sys-
tem, and Martin Bravenboer and our LISA shepherd
Rudi van Drunen for commenting on this paper. This
research was supported by CIBIT|Serc and the NWO
Jacquard program.

Author Information

Eelco Dolstra is a Ph.D. student in the Software
Technology group at Utrecht University, where he also
obtained his Master’s degree on the integration of
functional and strategic term-rewriting languages. His
research focuses on dealing with variability in soft-
ware systems and configuration management, in par-
ticular software deployment.

Merijn de Jonge obtained his Ph.D. degree from
the University of Amsterdam in the area of software
reuse. After a postdoc position at Eindhoven Univer-
sity, he currently works as a postdoc at Utrecht Uni-
versity. His research interests include software reuse,
configuration and build management, software vari-
ability, generative programming, component-based
software development, program transformation, and
language-centered software engineering.

Eelco Visser studied computer science at the
University of Amsterdam where he obtained Master’s
and Ph.D. degrees in the area of syntax definition and
language processing. As a postdoc at the Oregon
Graduate Institute in Portland he laid the foundation
for the Stratego program transformation language. He
is currently an assistant professor in the Software
Technology group at Utrecht University where he
leads research projects into program transformation
and software configuration and deployment.

References

[1] Autoconf, http://www.gnu.org/software/autoconf/ .
[2] FreeBSD Ports Collection, http://www.freebsd.org/

ports/ .
[3] Gentoo Linux, http://www.gentoo.org/ .
[4] GNU Stow, http://www.gnu.org/software/stow/ .
[5] User Mode Linux, http://user-mode-linux.source

forge.net/ .
[6] Anderson, E. and D. Patterson, ‘‘A Retrospective

on Twelve Years of LISA Proceedings,’’ Pro-
ceedings of the 13th Systems Administration
Conference (LISA ’99), pp. 95-107, November
1999.

[7] Burgess, Mark, ‘‘Cfengine: A Site Configuration
Engine,’’ USENIX Computing systems, 8(3),
1995.

[8] de Jonge, Merijn, ‘‘Source Tree Composition,’’
Seventh International Conference on Software
Reuse, Num. 2319, Lecture Notes in Computer
Science, Springer-Verlag, 2002.

[9] Dolstra, E., E. Visser, and M. de Jonge, ‘‘Impos-
ing a Memory Management Discipline on Soft-
ware Deployment,’’ Proceedings of the 26th
International Conference on Software Engineer-
ing (ICSE 2004), pages 583-592, IEEE Com-
puter Society, May 2004.

[10] Feldman, Stuart I., ‘‘Make – A Program for
Maintaining Computer Programs,’’ Software –

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 91

Nix: A Safe and Policy-Free System for Software Deployment Dolstra, de Jonge, and Visser

Practice and Experience, Vol. 9, Num. 4, pp.
255-265, 1979.

[11] Foster-Johnson, Eric, Red Hat RPM Guide, John
Wiley and Sons, 2003.

[12] Mozilla Foundation, Ti n d e r b o x, http://www.
mozilla.org/tinderbox.html .

[13] Fowler, Martin, Continuous Integration, http://
www.martinfowler.com/articles/ continuousInte-
gration.html .

[14] Furlani, J. L. and P. W. Osel, ‘‘Abstract Yourself
with Modules,’’ Proceedings of the Tenth Sys-
tems Administration Conference (LISA ’96), pp.
193-204, September 1996.

[15] Hart, John and Jeffrey D’Amelia, ‘‘An Analysis
of RPM Validation Drift,’’ Proceedings of the
16th Systems Administration Conference (LISA
’02), pp. 155-166, USENIX Association,
November 2002.

[16] Heydon, Allan, Roy Levin, Timothy Mann, and
Yuan Yu, The Vesta Approach to Software Con-
figuration Management, Technical Report
Research Report 168, Compaq Systems Research
Center, March 2001.

[17] Manheimer, K., B. A. Warsaw, S. N. Clark, and
W. Rowe, ‘‘The Depot: A Framework for Shar-
ing Software Installation Across Organizational
and UNIX Platform Boundaries,’’ Proceedings
of the Fourth Systems Administration Conference
(LISA ’90), pp. 37-46, October 1990.

[18] Oetiker, T., ‘‘SEPP: Software Installation and
Sharing System,’’ Proceedings of the 12th Sys-
tems Administration Conference (LISA ’98),
pages 253-259, December 1998.

[19] Oppenheim, K. and P. McCormick, ‘‘Deployme:
Tellme’s Package Management and Deployment
System,’’ Proceedings of the 14th Systems
Administration Conference (LISA 2000), pages
187-196, December 2000.

[20] Ressman, D. and J. Valdés, ‘‘Use of Cfengine for
Automated, Multi-platform Software and Patch
Distribution,’’ Proceedings of the 14th Systems
Administration Conference (LISA 2000), pp.
207-218, December 2000.

[21] Rouillard, J. P. and R. B. Martin, ‘‘Depot-lite: A
Mechanism for Managing Software,’’ Proceed-
ings of the Eighth Systems Administration Con-
ference (LISA ’94), pages 83-91, 1994.

[22] Staelin, C., ‘‘mkpkg: A Software Packaging
Tool,’’ Proceedings of the 12&th Systems Admin-
istration Conference (LISA ’98), pp. 243-252,
December 1998.

[23] Sun, Y. and A. L. Couch, ‘‘Global Impact Analy-
sis of Dynamic Library Dependencies,’’ Pro-
ceedings of the 15th Systems Administration
Conference (LISA 2001), pp. 145-150, November
2001.

[24] van Gurp, Jilles, Jan Bosch, and Mikael Svahn-
berg, ‘‘On the Notion of Variability in Software

Product Lines,’’ Proceedings of WICSA 2001,
August 2001.

[25] Venkatakrishnan, V., N. R. Sekar, T. Kamat, S.
Tsipa, and Z. Liang, ‘‘An Approach for Secure
Software Installation,’’ Proceedings of the 16th
Systems Administration Conference (LISA ’02),
USENIX Association, pp. 219-226, November
2002.

[26] Wong, W. C., ‘‘Local Disk Depot: Customizing
the Software Environment,’’ Proceedings of the
Seventh Systems Administration Conference
(LISA ’93), pages 49-53, November 1993.

92 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

