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Abstract

Program transformation is the mechanical manipulation of a program in order to improve it
relative to some cost function and is understood broadly as the domain of computation where
programs are the data. The natural basic building blocks of the domain of program transformation
are transformation rulesexpressing a ‘one-step’ transformation on a fragment of a program.
The ultimate perspective of research in this area is a high-level, language parametric, rule-based
program transformation system, which supports a wide range of transformations, admitting efficient
implementations that scale to large programs. Thissituation has not yet been reached, as trade-offs
between different goals need to be made. This survey gives an overview of issues in rule-based
program transformation systems, focusing on the expressivity of rule-based program transformation
systems and in particular on transformationstrategiesavailable in various approaches. The survey
covers term rewriting, extensions of basic term rewriting, tree parsing strategies, systems with
programmable strategies,traversal strategies, and context-sensitive rules.
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1. Introduction

Program transformationis the mechanical manipulation of a program in order to
improve it relative to some cost functionC suchthat C(P) > C(tr(P)), i.e., the cost
decreases as a result of applying the transformation. The cost of a program can be
measured in different dimensions such as performance, memory usage, understandability,
flexibility, maintainability, portability, correctness, and satisfaction of requirements. In
general, transformations should preserve the semantics of the program according to
some appropriate definition of semantics (Pettorossi and Proietti, 1996a; Paige, 1996;
Cousot and Cousot, 2002). However, in some applications, such as program evolution, the
goal of a transformation may be to deliberatelychangethe semantics of the program.
Furthermore, a strict interpretation of program transformations restricts the term to
rephrasings, i.e., transformations of a program to another program in the same language.
Here we also considertranslationsto programs in another language. Such translations can
be seen as rephrasings in a language that is the union of the source and target languages.
While transformationscan be achieved by manual manipulation of programs, in general,
the aim of program transformation is to increase programmer productivity byautomating
programming tasks, thus enabling programming at a higher level of abstraction, and
increasing maintainability and reusability of programs.

Thus, program transformation is understood here broadly as the domain of computation
where programs are the data. In practice, the area is divided into many different schools
corresponding to application areas and implementation techniques. Many transformation
systems are built for a particular object language, a particular type of transformation, and
for use in a particular environment. The implementation uses specific data structures and
involves complex algorithms in order to achieve maximal performance, e.g., for use in
optimizing compilers. The resulting ad hoc monolithic transformation systems are difficult
to understand, maintain, and reuse.

The aim of a broad consideration of the field is the reuse of results from subfields
to arrive at a unified high-level approach to the implementation of transformation
systems. The ultimate goal of this endeavor is a component-based approach to program
transformation in which basic transformation components can be reused in many different
compositions. The natural ‘basic components’ of the domain of program transformation are
transformation rulesexpressing a ‘one-step’ transformation on a fragment of a program.
Rule-basedprogram transformation systems support formulation of basic transformation
rules and arrange their automatic application. Thus, the ultimate perspective of research in
this area is a high-level, language parametric, rule-based program transformation system,
which supports a wide range of transformations, admitting efficient implementations that
scale to large programs.

This goal has not yet been reached, as trade-offs between different goals need to
be made. The suitability of a rule-based transformation system for the implementation
of a certain type of transformation depends on the expressivity in the formulation
of rules, on the strategies available for their control, and on the quality of their
implementation. A highly generic system may allow concise specification of many
different transformations, but not with the speed of a hand-written optimization component.
On the other hand, a dedicated tool with a restricted type of rule may be able to generate
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highly optimized transformers, but may not be applicable to a slightly different type of
transformation.

A special concern in rule-based systems is the definition ofstrategiesfor the application
of rules. The combination of rules into complete transformations requires control over
the application of rules. While rule-based systems traditionally apply rulesautomatically
according to astandard control strategy, it turns out that program transformation usually
requires more careful control. Thus, rule-based transformation systems tend to adopt
mechanisms for controlling the application of rules.

To summarize, research in the area of rule-based program transformation systems is
concerned with:

• Formulation of rule-based solutions to a wide range of transformation problems.
• Concise and reusable specification of rules and strategies.
• Generation of efficient implementations for rule-based specifications (e.g., by adopting

implementation techniques from transformation systems for more specific domains).

This survey gives an overview of issues regarding rule-based program transformation
systems, focusing on the second item above, i.e., the expressivity of rule-based program
transformation systems, and in particular on transformationstrategiesavailable in various
approaches.

To set thescene the next section describes the wide range of applications of program
transformation.Section 3then describesterm rewritingas the basis for rule-based program
transformation. At some appropriate level of abstraction all program transformations can
be modeled as the consecutive application of rewrites, even though this model may not
always be visible in the actual implementation where rules and strategies are blended into
a monolithic implementation for efficiency and other reasons. The basic approach to term
rewriting with standard rewriting strategies such as innermost and outermost has a number
of limitations for application in transformation systems. The remaining sections discuss
extensions to the basic approach.

Section 4discusses various ways of expressing properties of the syntax and semantics
of the programming language in rewrite rules. Examples include the extension of term
rewriting with concrete syntax, equational matching, bound object variables, default rules,
andstrategy annotations. Section 5discusses approaches based ontreeparsing in which
tree grammar rulesdefine actions to be performed on tree nodes. A tree traversal schedule
is computedbased on the dependencies between rules.

Section 6 considers the development of interactive systems for the assistance of
transformational programming, in which the need arose to automate reoccurring sequences
of transformations. This gave rise to systems with programmable transformation strategies.
A particular concern in the specification of strategies is the traversal of program structures.
Section 7gives an overview of the various solutions developed in this area.

Another shortcoming of rewrite rules is their context-free nature. That is, rules only
have access to the information in the term they apply to.Section 8presents solutions to this
problem, which include information propagating strategies and the dynamic generation of
rewrite rules.

Finally, there are many other issues that play a role in program transformation systems
and other approaches that are beyond the scope of this article.
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2. Applications of program transformation

Program transformations can be classified according to various criteria such as amount
of automation, improvement achieved, and subject language (Feather, 1987; Partsch,
1990; Smaragdakis and Batory, 2000). When considered along the lines of research
communities, roughly two main schools can be distinguished, i.e., those concerned with
the developmentof new programs and those concerned with theevolution of existing
programs.

2.1. Program development

Program development is concerned with the transformation from requirements via
specification to implementation. Usually the initial parts of the process involve intervention
from a programmer or even a software architect, while later stages in the process are
completely automated. In the course of the last fifty years the boundary of automation has
shifted considerably;formula translation was considered an innovative automation in the
1950s, while arithmetic expressions are the assembly language (lowest level of abstraction)
for today’s programmers.

Transformational programming(Partsch, 1986; Feather, 1987) is a methodology for
formal development of implementations from specifications and is on the boundary of
automation, i.e.,formal means that it can be mechanized (but not necessarily automated),
developmententails traceability. In the course of development, design information is traded
for increased efficiency. Feather (Feather, 1987) distinguishesmeta-programming, i.e., the
interactive transformation of a specification into an implementation;extended compilation,
i.e., completely automatic compilation for a language with high-level constructs with
advice from the programmer to the compiler about a specific program; andprogram
synthesis or refinement(Smith, 1990) make transformation as automatic as possible
without limiting the specification language in any way.

Compilersprovide completely automatic transformation from a high-level language
to a low-level language (Aho et al., 1986; Appel, 1998; Muchnick, 1997). This
translation is usually achieved in several phases. Typically, a high-level language
is first translated into a target machine independent intermediate representation.
Instruction selection then translates the intermediate representation into machine
instructions. Intransformation-based compilerssuchas GHC (Peyton Jones and Santos,
1998) a large part of thecompilation process is implemented as the application
of small transformation steps. GHC even allows the programmer to specify
additional rules for application in the compiler (Peyton et al., 2001). Application
generators (Smaragdakis and Batory, 2000) are compilers for domain-specific languages.
Examples are parser and pretty-printer generation from context-free grammars (Aho et al.,
1986; van den Brand andVisser, 1996). A program optimization(Appel, 1998; Muchnick,
1997) is a transformation that improves the run-time and/or space performance of a
program. Example optimizations are fusion,inlining, constant propagation, constant
folding, common-subexpression elimination, dead code elimination, and partial evaluation
(Jones et al., 1993).
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2.2. Program evolution

Program evolution is concerned with the understanding and maintenance of existing
legacyprograms.

Reverse engineering(Chikofski and Cross, 1990; van den Brand et al., 1997) is the
inverse of compilation, i.e. the goal is to extract from a low-level program a high-level
program or specification, or at least some higher-level aspects. Reverse engineering raises
the level of abstraction and is the dual of synthesis. Examples of reverse engineering
are decompilation in which an object program istranslated into a high-level program,
architecture extraction in which the design of a program is derived, documentation
generation, and software visualization in which some aspect of a program is depicted in an
abstract way.

In software renovationthe extensional behavior of a program is changed in order to
repair an error or to bring itup to date with respect to changed requirements. Examples
are repairing a Y2K bug, or converting a program to deal with the Euro.Refactoring
(Fowler, 1999) is renovation aimed at improving the design of a program by restructuring
it such that it becomes easier to understand while preserving its functionality.Obfuscation
(Collberg et al., 1998) is a transformation that makes a programharder to understand by
renaming variables, inserting dead code, etc. Obfuscation is done to hide the business rules
embedded in software by making it harder to reverse engineer the program.

In migration a program is transformed to another language at the same level of
abstraction. This can be a translation between dialects, for example, transforming a
Fortran77 program to an equivalent Fortran90 program or a translation from one language
to another, e.g., porting a Pascal program to C.

3. Term rewriting

A complex program transformation is achieved through a number of consecutive
modifications of a program. At least at the level of design, it is useful to distinguish
transformation rules from transformation strategies. Arule defines a basic step in the
transformation of a program. Astrategyis a plan for achieving a complex transformation
using a set of rules.

This section first examines the conceptual notion of transformation rules and strategies,
then considers the issue of representation of programs, and finally describes the
implementation of transformation by means of term rewriting and its limitations.

3.1. Transformation rules and strategies

Rules are based on the semantics of the language. A rule generally preserves the
semantics of theprogram. That is, before and after the application of a rule the program has
the same meaning. Usually theobservable behavior of the program is preserved, but some
other aspect is changed. Optimizations, for example, try to decrease the time or space
resource usage of a program. Applying constant propagation can decrease the need for
registers, for instance. Extracting a function during refactoring can improve the readability
of the program.



836 E. Visser / Journal of Symbolic Computation 40 (2005) 831–873

rules
InlineF :

[[ let f (xs) = e in e′[ f (es)] ]] → [[ let f (xs) = e in e′[e[xs := es]] ]]
InlineV :

[[ let x = e in e′[x] ]] → [[ let x = e in e′[e] ]]
Dead :

[[ let x = e in e′ ]] → [[ e′ ]] where x �∈ e′
Extract( f ,xs) :

[[ e ]] → [[ let f (xs) = e in f (xs) ]]
Hoist :

[[ let x = e1 in let f (xs) = e2 in e3 ]] →
[[ let f (xs) = e2 in let x = e1 in e3 ]]
where x �∈ free-vars(e2)

Fig. 1. Some example transformation rules.

A rule involves recognizing a program fragment to transform and constructing a new
program fragment to replace the old one. Recognition involves matching the structure of
the program and possibly verifying some semantic conditions. The replacement in a rule
can consist of a simple term pattern, a function that constructs a new tree or graph, or a
semantic action with arbitrary side-effects.

Consider the transformation rules inFig. 1. TheInline rules defineinlining of function
and variable definitions. TheDead rule eliminates an unused variable definition. The
Extract rule abstracts an expression into a function. TheHoist rule defines lifting a
function definition out of a variable definition if the variable is not used in the function.
Using this set of rules different transformations can be achieved. For example, a constant
propagation strategy in an optimizer could use theInlineV andDead rules to eliminate
constant variable definitions:

let x = 3 in x + y → let x = 3 in 3 + y → 3 + y

On the other hand, a function extraction strategy in a refactoring browser could use the
Extract and Hoist rules to abstract addition withy into a new function and lift it to
top-level.

let x = 3 in x + y
→ let x = 3 in let addy(z) = z + y in addy(x)
→ let addy(z) = z + y in let x = 3 in addy(x)

A set of transformation rules for a programming language induces a rewrite relation on
programs (Dershowitzand Jouannaud, 1990). If the relation is confluent and terminating,
there is aunique normal form for every program. In that case it is a matter of applying
the rules in the most efficient way to reach the normal form. However, in program
transformation this is usually not the case. As illustrated inFig. 2, a set of transformation
rules can give riseto infinite branches (e.g., by inlining a recursive function), inverses in
which a transformation is undone (e.g., by distribution or commutativity rules), and non-
confluence in which a program can be transformed into two different programs.
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Fig. 2. Phenomena in composition of transformation rules: infinite branches, inverses, confluence, non-
confluence.

Depending on the goal of a transformation task, a path should be chosen in the rewrite
relation. For a specific program it is always possible to find the shortest path to the optimal
solution for a specific transformation task. However, for most transformation tasks the
process of finding a path needs to be automated and optimal solutions might only be
approximated. In this light, a strategy isan algorithm for choosing a path in the rewrite
relation. Given one set of rules, there can be many strategies, each achieving a different
goal. On the other hand, a general strategy can beapplicable to many different sets of rules.

3.2. Program representation

Before examining in more detail how rules and strategies can be defined, we need to
consider how the programs they manipulate are represented. Design decisions made at the
level of representation influence the design decisions that can be made in the definition of
rules and strategies.

Although some systems work directly on text, in general a textual representation is not
adequate for performing complex transformations. Therefore, a structured representation
is used by most systems, and only such systems are studied in this survey. Since programs
are written as text by programmers, parsers are needed to convert from text to structure
and unparsers are needed to convert structure to text. Since such tools are well covered
elsewhere (Aho et al., 1986), they are notexamined in this survey.

3.2.1. Parse trees or abstract syntax trees
A parse tree is a direct representation of the derivation of a string (the program text)

according to the rules of a grammar. Parse trees contain syntactic information such as
layout (white space and comments), and parentheses and extra nodes introduced by dis-
ambiguating grammar transformations. Since this information is often irrelevant for trans-
formation, parse trees are usually transformed into abstract syntax trees that do not con-
tain such information. However, for some applications (such as software renovation and
refactoring) it is necessary to restore as much as possible the original layout of the pro-
gram after transformation. This requires that layout is stored in the tree and preserved
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throughout transformation. A similar issue is the storage of source locations (line and col-
umn numbers) in order to provide useful error messages. The preservation of layout and
position information is especially problematic; it is not clear in a generic manner where to
insert comments in a transformed fragment of a program. Possible solutions to this prob-
lem include origin tracking (van Deursen et al., 1993) in whicha subtree in the transformed
program is related to the subtree it ‘originates’ from in the original tree; parse-tree annota-
tions (Kort and Lämmel, 2003) that carry their own methods for propagation; and compar-
ing the transformed program to the original to infer where comments can be inserted.

For otherapplications, e.g., certain optimizations and compilation, it is necessary to
carry type information in the tree. This requires the extension of the tree format to store
type information and to preserve consistency of types throughout transformation.

3.2.2. Trees or graphs
Program structure can be represented by means of trees, directed acyclic graphs (DAGs),

or full fledged graphs with cycles.
Using pure trees is costly because copying of a tree (e.g.,by using a variable twice

when constructing a new tree) requires creating a complete copy. Therefore, most systems
use DAGs. When copying a tree, only a pointer to the tree gets copied; thus subtrees
are shared by multiple contexts. The advantage of sharing is reduced memory usage.
In the ATerm library (van den Brand et al., 2000a) this approach is taken to the extreme
by only constructing one instance for each subtree that is constructed, thus achieving
maximal sharing and minimal memory usage. Furthermore, testing the equality of two
terms becomes an O(1) operation.

Sharing saves memory, makes copying cheap, and, in the case of maximal sharing,
testing for equality is cheap as well. However, the downside of sharing is that performing
a transformation of a tree requires rebuilding the context in which the transformed tree is
used. It would be more attractive to overwrite the root node of the subtree that is changed
with the newtree, thus updating all contexts in which the old tree was used. However, this
is not valid in general. Two occurrences of a shared tree that are syntactically the same
can have a completely different meaning depending on their context. Even if they have the
samemeaning, it is not always desirable to change both occurrences.

The same problem of occurrence arises when associating information with nodes. When
sharing is based on syntactic equivalence alone, annotations become associated with all
occurrences of the tree. Consider the examples of position information in parse trees and
type annotations in abstract syntax trees to conclude that this is usually not desirable. On
the other hand, if annotation of a tree node results in a new tree, then equivalence becomes
equivalence with annotations, and equivalence modulo annotations is no longer a constant
operation.

Finally, full fledged graphs can be useful for representing backlinks in the tree to
represent, for example, loops in a control-flow graph (Appel, 1998; Lacey and de Moor,
2001; Muchnick, 1997), or links to declarations (Czarnecki and Eisenecker, 2000).
Updateable graphs make it easy to attach new information to nodes, for example results
of analysis. The problem of destructive update versus copying while doing transformation
is even more problematic in graphs. Since a subgraph can have links to the entire graph,
it may be required to reconstruct the entire graph after a transformation if it is necessary
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to keep the original graph as well. For very specific purposes such as lazy evaluation of
functional programs, it is possible to make such graph updates transparent.

3.3. Term rewriting

Term rewriting is a good starting point for the study of program transformation systems.
Term rewriting is a simple formalism modeling modification of trees (terms) through
a sequence of rewrite rule applications. Thus, providing a general model for program
transformation. Any specific transformation canbe modeled as a sequence of rewrites on
the program tree. This does not necessarily mean that such a sequence can always be seen
as the normalizing application of a set of rewrite rules according to a standard strategy. That
is, term rewriting interpreted asexhaustive application of a set of rulesis not an adequate
technique for all applications of program transformation. The rest of this section describes
term rewriting and its limitations for use in program transformation. The description is
limited to the basics of term rewriting; introductions to the vast literature on rewrite systems
includeDershowitzand Jouannaud(1990), Klop (1992), Baader and Nipkow(1998) and
Terese(2003).

A term rewriting systemis a collection of rewrite rules defining one-step
transformations of terms. Terms are symbolic representations for the structure to be
transformed. We first consider basic term rewriting with first-order terms representing trees
or DAGs. More complex term structures will be discussed in the next section.

3.3.1. Terms
An algebraic signaturedefines a family of sorted first-order terms through a set of

constructor declarationsas follows: IfC : S1 ∗ · · · ∗ Sn → S0 is a constructor declaration
in the signature andt1 is a term of sortS1, . . . , tn a term of sortSn, thenC(t1, . . . , tn) is a
term ofsortS0. Note thatC : S is shorthand forC :→ S.

First-order terms canbe used to describe the abstract syntax trees of programs. There is
aone-to-one correspondence between first-order terms and trees with constructors as node
labels and an ordered set of directed edges to the trees corresponding to the subterms.
Directed acyclic graphs can be used to efficiently represent sharing in terms.Fig. 3
illustrates this with a signature for the languageof propositional formulae. For instance, the
formula p ∧ ¬q is represented by the termAnd(Atom("p"), Not(Atom("q"))). Note
that the sortString is used to represent the set of allcharacter strings. Another syntactic
extension of first-order terms that are indispensable in program transformation are lists
of the form[t1,...,tn] which abbreviate terms of the form[t1|[t2|...[tn|[]]]], i.e.
termsover the signature

[] : List(a)
[_|_] : a * List(a) -> List(a)

3.3.2. Rewrite rules
A rewrite rule is a pair of term patterns written asp1 -> p2. A term patternis a term

with variables. A labeledrewrite rule is a named rule of the formL : p1 -> p2. A rule
defines a transformation of an expression of the formp1 to an expression of the formp2.
For example, the rule
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signature
sorts Prop
constructors

False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And : Prop * Prop -> Prop
Or : Prop * Prop -> Prop

rules
DAOL : And(Or(x, y), z) -> Or(And(x, z), And(y, z))
DAOR : And(z, Or(x, y)) -> Or(And(z, x), And(z, y))
DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
DOAR : Or(z, And(x, y)) -> And(Or(z, x), Or(z, y))
DN : Not(Not(x)) -> x
DMA : Not(And(x, y)) -> Or(Not(x), Not(y))
DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

Fig. 3. Signature and rewrite rules for propositional formulae.

AA : And(And(x, y), z) -> And(x, And(y, z))

associates conjunction to the right. Rewrite rules can be used to express basic
transformation rules and can be considered asoperationalizations ofthe algebraic laws of
the language. For example, the rewrite rules inFig. 3 express basic laws of propositional
logic, i.e., the distribution rules, the rule of double negation, and the De Morgan rules.

3.3.3. Reduction
A rule L : p1 -> p2 reducesa termt to t ′, if t matchesp1 with a substitutionσ , i.e.,

t = σ(p1), andt ′ = σ(p2). We saythat t is theredex(reducible expression), andt ′ is the
reduct. Thus, with ruleAA we have the reduction

And(And(Var("a"), False), Var("b"))
-> And(Var("a"), And(False, Var("b")))

since the substitution[x := Var("a"), y := False, z := Var("b")] defines a match for
the left-hand sideAnd(And(x, y), z) of the rule, and instantiates the right-hand side
And(x, And(y, z)) to the reduct.

A set of rewrite rulesR induces aone-step rewrite relationon terms. Ift reduces tot ′
with oneof the rules inR then we havet →R t ′. In this relation reductions take place at
the root of terms. The relation can be extended to the relation⇒R which relates two terms
with a reduction under the root. The relation is formally defined as follows:

t1 →R t2
t1 ⇒R t2

ti ⇒R t ′i (1 ≤ i ≤ n)

c(t1, ..., ti , ..., tn) ⇒R c(t1, ..., t ′i , ..., tn)
.

For example, with rule A : P(Z, x) -> x the termP(P(Z,S(Z)), S(Z)) reduces to
P(S(Z), S(Z)) by reducing the first argument of the outermostP.

A term t rewrites to a termt ′ with respect to a set of rewrite rulesR if there is a finite
sequence of termst = t1, . . . , tn = t ′ such that eachti reduces (under the root) toti+1.
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This is formalized by the rewrite relation⇒∗
R, defined by the following rules:

t ⇒∗
R t

t1 →R t2
t1 ⇒∗

R t2

t1 ⇒∗
R t2 t2 ⇒∗

R t3
t1 ⇒∗

R t3

ti ⇒∗
R t ′i (1 ≤ i ≤ n)

c(t1, . . . , ti , . . . , tn) ⇒∗
R c(t1, . . . , t ′i , . . . , tn)

.

That is, the reflexive, transitive and congruent closure of→R.
A term t is in normal formwith respect to a set of rewrite rulesR, if thereis no termt ′

not equal tot suchthatt ⇒∗
R t ′. If the rules inR are unconditional, this is the case if there

is no subterm oft that matches with one of the left-hand sides of a rule inR.

3.3.4. Rewriting strategies
The reduction relation induced by a set of rewrite rules is a tool for mechanizing

the transformation of programs. Given a set of rewrite rules, correctaccording to some
criterion, a program can be transformed by applying the rules in the order needed for the
specific transformation. Thus, rewriting can be used tomodelany specific transformation.
However, this does not provide us with a procedure for performing such transformations
automatically; the reduction relation does notimpose any order on the application of rules.

A rewriting strategy is an algorithm for applying rules to achieve a certain goal.
Typically the goal is tonormalizea term with respect to a set of rules, that is, exhaustively
apply rules to the term until it is in normal form. One popular strategy for normalization is
innermostnormalization, as defined by the relation⇒im

R :

t1 ⇒im
R t ′1 . . . tn ⇒im

R t ′n c(t ′1, . . . , t ′n) ⇒red
R t

c(t1, . . . , tn) ⇒im
R t

t1 →R t2 t2 ⇒im
R t3

t1 ⇒red
R t3

¬∃t2 : t1 →R t2
t1 ⇒red

R t1
.

This strategy states that before applying a rule to a term, first all its subterms are
normalized. Theoutermoststrategy, in contrast, first reduces redices closest to the root,
as defined by the relation⇒om

R :

t1 ⇒rom
R t2

t1 ⇒om
R t2

t1 ⇒R tom
2 t2 ⇒om

R t3
t1 ⇒om

R t3

t1 →R t2
t1 ⇒rom

R t2

¬∃t ′ : c(t1, . . . , ti , . . . tn) →R t ′ ti ⇒rom
R t ′i (1 ≤ i ≤ n)

c(t1, . . . , ti , . . . , tn) ⇒rom
R c(t1, . . . , t ′i , . . . , tn)

.

This strategy is the transitive closure of the relation⇒rom
R , whichdefines the reduction of

a single outermost redex.
Normalization of terms with respect to a set of rewrite rules is applicable in areas

such as algebraic simplification of expressions, and is provided by many rewriting
engines, including OBJ (Goguen et al., 2000), ASF+SDF (van Deursen et al., 1996),
ELAN (Borovanský et al., 1996), Maude (Clavelet al., 2002), Stratego (Visser, 2004) and
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many others. An overview of rewriting-based languages is presented inHeering and Klint
(2003). Most of these systems also support extensions of the basic rewriting paradigm.

3.4. Limitations of term rewriting

The advantage of term rewriting is that all that is needed for the implementation of a
transformation is the specification of a set of rewrite rules. The rewriting engine takes care
of traversing the program tree in order to find reducible expressions. In other words, term
rewriting separates rules and strategy. Due tothis property the size of the specification
corresponds to the size of the problem to be solved, and is independent of the complexity
of the language, i.e., the size of the signature.

However, the complete normalization approach of rewriting turns out not to be adequate
for program transformation, because rewrite systems for programming languages will often
be non-terminating and/or non-confluent. In general, it is not desirable to apply all rules at
the same time or to apply all rules under all circumstances. As an example, consider again
the set of rewrite rules inFig. 3. This rewrite system is non-terminating because rulesDAOL
andDAOR enable rulesDOAL andDOAR, andvice versa. If we want to define a transformation
to normalize formulae to disjunctive normal form we could discard rulesDOAL andDOAR.
However, if in another part of the transformation a conjunctive normal form is required
we need a different rewrite system. It is notpossible to combine these rules in one rewrite
system. Another example is the following perfectly valid rule

Unroll : While(e1, e2) -> If(e1, Seq(e2, While(e1, e2)))

defining the unrolling of a loop in an imperative language. Applying such a rule
exhaustively directly leads to non-termination. It is not even possible to create a terminating
system by leavingout other rules.

Thus, the basic approach of normalizing a program tree with respect to a set of
transformation rules is not sufficient sinceno control over the application of rules is
provided. To provide users with more control, various solutions have been adopted in
transformation systems, ranging from alternative automatic strategies to completely user-
definable strategies. We can distinguish the following approaches:

• Fixed application order. The engine applies rules exhaustively according to a built-in
strategy. Examples are innermost and outermost reduction.

• Automatic dependency analysis. The engine determines a strategy based on an analysis
of the rules. Examples are strictness and laziness analysis.

• Goal driven. The engine finds out how to apply rules to achieve a user-defined goal.
• Strategy menu. A strategy can be selected from a small set. For example, choose

between innermost and outermost reduction or annotate constructors with laziness
information.

• Programmable. The strategy to apply rules can be programmed in a strategy language.

In addition, there are a number of other shortcomings of basic term rewriting:

• Term syntax is not easy to read and write whenterms (program fragments) become
large. This may seem a minor issue, but it is relevant in program transformation.
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• Basic term pattern matching is not very expressive and cannot cope with properties of
constructors such as associativity and commutativity.

• Object variables are treated as normal termsand require careful handling to avoid name
capture.

• Transformation rules often need side conditions to test the applicability of the
transformation.

• Generic rule-based solutions do not always provide the required performance needed
for application in, say, production compilers.

• Rewrite rules are context-free, i.e., can only access information through pattern
matching the term to which the rule is applied. Often context information is needed
for transformations.

For these reasons many extensions and variations on the basic paradigm of rewriting
have been developed for the application in program transformation systems. Also program
transformation systems are built using non-rewrite systems, in which the same issues play
a role. The rest of this survey examines the solutions for these problems employed in a
variety of transformation systems. Although the emphasis is on control issues, the other
problems mentioned above are discussed as well since they are recurring problems in
transformation systems and solutions may interfere with solutions for the control problem.

4. Extensions of term rewriting

In this section we consider several extensions to basic term rewriting that make the
formalism more expressive.

4.1. Concrete syntax

Related to the internal representation of programs is the representation of program
fragmentsin the specificationof transformation rules. While abstract syntax provides a
good model for program transformation, the direct manipulation of abstract syntax trees
may not be appropriate. Abstract syntax trees are represented using the data structuring
facilities of the transformation language: records (structs) in imperative languages (C),
objects in object-oriented languages (C++, Java), algebraic data types in functional
languages (ML, Haskell), and terms in term rewriting systems.

Such representations allow the full capabilities of the transformation language to be
applied in the implementation of transformations. In particular, when working with high-
level languages that support symbolic manipulation by means of pattern matching (e.g.,
ML, Haskell) it is easy to compose and decompose abstract syntax trees. For transformation
systems such as compilers, programming with abstract syntax is adequate; only small
fragments, i.e., a few constructors per pattern, are manipulated at a time. Often, object
programs are reduced to a core language that only contains the essential constructs. The
abstract syntax can then be used as an intermediate language, such that multiple languages
can be expressed in it, and transformations can be reused for several source languages.

However, there are many applications of program transformation in which the use
of abstract syntax is not satisfactory sincethe conceptual distance between the concrete
programs that we understand and the data structure access operations used for composition
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and decomposition of abstract syntax trees is too large. This is evident in the case of record
manipulation in C, where the construction anddeconstruction of patterns of more than
a couple of constructors becomes unreadable. But even in languages that support pattern
matching on algebraic data types, the construction of large code fragments in a program
generator can become painful.

Transformation languages supportingconcrete object syntaxlet theprogrammer define
transformations using the concrete syntax of the object language, while internally using
abstract syntax trees. For example, in Stratego the loop unrolling rule from the previous
section can be written as

Unroll :
|[ while e1 do e2 ]| -> |[ if e1 then (e2; while e1 do e2) ]|

where the|[...]| delimiters are used to embed fragments of the object language
as terms in rewrite rules. This approach was developed in the algebraic specification
community. Using the correspondence between a context-free grammar and an
algebraic signature (Hatcher and Rus, 1976; Goguen et al., 1977; Futatsugi et al., 1985),
a constructor can be declared asmixfixoperator, e.g.,if e1 then e2 else e3 instead
of If(e1,e2,e3). Although available in systems such as OBJ, ELAN, and Maude, the
approach is taken to its extreme in ASF+SDF (Heering et al., 1989; van Deursen et al.,
1996), where an actual syntax definition of theobject language is used to describe terms
(rather than just mixfix operators). The approach is further generalized inVisser(2002),
Fischer and Visser(2004) andBravenboer and Visser(2004), where a general scheme for
extending a meta-language with concrete object syntax is outlined.

Another line of work is that of meta-programming languages such as MetaML
(Taha and Sheard, 2000) and Template Haskell (Sheard and Peyton Jones, 2002) where
fragments of a program can be transformed or generatedin the language itself. These
fragments can be written in concrete syntax rather than abstract syntax, but a fall back to
abstract syntax is available when necessary.

4.2. Extensions of pattern matching

When using a tree or term representationterm pattern matchingcan be used. First-order
term patterns are used to decompose terms by simultaneously recognizing a structure and
binding variables to subterms, which would otherwise be expressed by nested conditional
expressions that test tags and select subterms. However, first-order patterns are not treated
as first-class citizens and their use poses limitations on modularity and reuse: no abstraction
over patterns is provided because they may occur only in the left-hand side of a rewrite rule,
the arms of a case, or the heads of clauses; pattern matching is at odds with abstract data
types because it exposes the data representation; a first-order pattern can only span a fixed
distance from the root of the pattern to its leaves, which makes it necessary to define recur-
sive traversals of a data structure separately from the pattern to get all needed information.

For these reasons, enhancements of the basic pattern matching features have been
implemented or considered for several languages. For example,list matching in
ASF+SDF (van Deursen et al., 1996) is used to divide a list into multiple sublists pos-
sibly separated by element patterns.Associative–commutative (AC) matchingin Maude
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(Clavelet al., 2002) andELAN (Borovanský et al., 1996) supports the treatment of lists as
multisets. Languages for XML transformation such as CDuce (Benzaken et al., 2003) pro-
vide recursive patternsandregular expression patternsto match complex subdocuments.
Higher-order unificationin λProlog (Nadathur and Miller, 1988; Pfenning and Elliot,
1988) allows higher-order matching of subterms in an arbitrary context (Felty, 1992;
Heering, 1992), which in turn allows matching of subterms at arbitrarily deep levels using
higher-order variables without explicit traversal of the structure involved. The MAG trans-
formation system (deMoor and Sittampalam, 2001) supports a restricted form of higher-
order matching to specify generic fusion rules.Viewsfor Haskell, as proposed in (Wadler,
1987), provide a way to view a data structure using different patterns than are used to
represent them.Overlaysin Stratego (Visser, 1999) are pseudo-constructors that abstract
from an underlying representation using actual constructors. Thecontextualandrecursive
patternsof Stratego (Visser, 1999) are in fact strategiesfor tree traversal. Thus, pattern
matching and strategic control overlap.

4.3. Object variables

A particularproblem of program transformation is the handling of variables and variable
bindings. In the common approach, variables and variable bindings in an abstract syntax
tree are treated just like any other construct and the transformation system has no special
knowledge of them. This requires the implementation of operations to rename bound
variables, substitution, etc. Transformations need to be aware of variables by means of
extra conditions to avoid problems such as free variable capture during substitution and
lifting variable occurrences out of bindings.

Transparent handling of variable bindings is desirable. In the use of De Bruijn
terms (de Bruijn, 1980), bound variablenamesare replaced with indices pointing to
the binding construct. This has the nice property that equivalence modulo renaming
becomes syntactic equivalence. However, the scheme is hard to understand when reading
program fragments. Furthermore, when transforming De Bruijn terms, the indices need
to be recomputed. Higher-order abstract syntax (HOAS) (deMoor and Sittampalam, 2001;
Huet and Lang, 1978; Pfenning and Elliot, 1988) gives a solution to such problems by
encoding variable bindings as lambda abstractions. In addition to dealing with the problem
of variable capture,HOAS provides higher-order matching which synthesizes new functions
for higher-order variables. One of the problems of higher-order matching is that there
can be many matches for a pattern, requiring a mechanism for choosing between them.
FreshML (Pitts and Gabbay, 2000) provides a weaker mechanism for dealing with variable
bindings that transparently refreshes variable names, thus solving the capture problem.
Substitution for variables has to be dealt with explicitly. BothHOAS and FreshML require
some amount of encoding for the syntactic structure to fit the lambda abstraction binding
scheme. This can become rather far removed from the structure described by the grammar
for more complex binding schemes. Furthermore, implicit variable binding may be in
conflict with the ease of performing transformations, for instance, the possibility of
performing traversals over syntax trees.

Experience with variable renaming in GHC, the transformation-based Glasgow Haskell
Compiler (Peyton Jones and Marlow, 2002), shows that transparent treatment of variable
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bindings would help only in a few places in the compiler. A problem encountered there
was to minimize the amount of variable renaming done during transformation. Rather than
using a global fresh variable store, fresh names are generated with respect to thein scope
variablesonly.

In applications such as refactoring and renovation it is required that the transformed
code is as close as possible to the original code. Approaches to dealing with object variables
by renaming, are in conflict with this requirement.

A problem that is not addressed by the approaches discussed above is associating
declaration information, e.g., type declarations, with usage. This usually requires
maintaining a symbol table during transformation, or distributing the information over the
tree, annotating usage occurrences of a symbol with the information in the declarations.
Either way, the information needs to be kept consistent during transformations.

4.4. Default rules

A term rewrite system consists of aset of rewrite rules. This means that there is
no inherent ordering of rules. Hence, an implementation can apply rules in any order.
Although an implementation needs to choosean order, the programmer is not supposed
to use this ordering since that violates the declarative nature of the rules. For example, the
following rules

Mem1 : Member(x, []) -> False
Mem2 : Member(x, [x | xs]) -> True
Mem3 : Member(x, [y | xs]) -> Member(x, xs)

rewrite applications of theMember function by first testing with the nonlinear ruleMem2
whether the first element of the list is equal to the element looked for. TheMem3 rule
rewrites the application to a search in the tail of the listassumingthat the match with the
previous rule has failed. However, ruleMem3 is not valid by itself. A rewrite engine may
change the order of applying the rules, leading to unanticipated results.

A solution to the problem of implicitly ordering rewrite rules, which has been adopted
in some systems such as ASF+SDF (van Deursen et al., 1996), is the declaration ofdefault
rules. A default rule is tried in a match only after all other (non-default) rules have been
tried at the current term. Thus, the rewrite rules above can be ordered by declaring rule
Mem3 as a default rule:

Mem3 : Member(x, [y | xs]) -> Member(x, xs) (default)

Note that this declaration splits the set of rules intotwosets. Default rules and non-default
rules.Priority rewriting (Baeten et al., 1989) is ageneralization of rewriting with default
rules in which a partial order on rules is imposed.

4.5. Functional programming with rewrite rules

A common solution to the problem of control over the application of rules is the
adoption of a functional programming style of rewriting. This is not so much an extension
as a style of implementing transformation systems with rewrite rules. The method works
by introducing additional constructors that achieve normalization under a restricted set of
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signature
constructors

dnf : Prop -> Prop
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF1 : dnf(True) -> True
DNF2 : dnf(False) -> False
DNF3 : dnf(Atom(x)) -> Atom(x)
DNF4 : dnf(Not(x)) -> not(dnf(x))
DNF5 : dnf(And(x,y)) -> and(dnf(x),dnf(y))
DNF6 : dnf(Or(x,y)) -> Or(dnf(x),dnf(y))

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 4. Functionalized rewrite system for disjunctive normal form.

rules. Such constructorsare calledfunctionsand are supposed to be completely eliminated
by the rewrite rules.

The approach is illustrated inFig. 4, which shows how the rewrite system ofFig. 3can
be turnedinto a terminating rewrite system that defines the normalization to disjunctive
normal form (DNF). To normalize a formula to DNF the functiondnf should be applied
to it. Normalization to conjunctive normal form requires a similar definition. Thednf
function mimics the innermost normalization strategy by recursively traversing terms.
The auxiliary functionsnot and and are used to apply the distribution rules and the
negation rules. In functional programming such auxiliary functions are known assmart
constructors(Elliot et al., 2000). In the definition of the rules forand andnot it is assumed
that the arguments of these functions are already in disjunctive normal form. For example,
if none of the arguments ofand is anOr term, the term itself is considered to be in DNF.

In the solution in Fig. 4, the original rules have been completely intertwined with
the dnf transformation. The rules for negation cannot be reused in the definition of
normalization to conjunctive normal form. For each new transformation a new traversal
function and new smart constructors have to be defined. Many additional rules had to be
added to traverse the term to find the places to apply the rules. Instead of 5 rules, a total of
13 rules were needed. RulesAND3 andNOT4 are default rules that only apply if the other
rules do not apply. Without this mechanism even more rules would have had to be used to
handle the cases were the real transformation rules do not apply.

The kind of problem illustrated in the example above occurs frequently in all kinds
of transformations. In general, trying to overcome the problems of non-termination and
non-confluence leads to encoding of control in terms of additional rewrite rules (which is
at variance with our goal to separate rules from strategies as much as possible). This usually
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imports integers
signature

sorts Int
constructors

Fac : Int -> Int
If : Bool * Int * Int -> Int

rules
Fac : Fac(x) -> If(Eq(x,0), 1, Mul(x,Fac(Sub(x,1))))
IfT : If(True, x, y) -> x
IfF : If(False, x, y) -> y

Fig. 5. Rewrite system with non-terminating reduction path.

leads to a functional programming style of rewriting, overhead in the form of traversal rules
for each constructor in the signature, intertwining of rules and function definitions, all of
which makes reuse of rules impossible, and leads to specifications that are much harder to
understand.

4.6. Conditional term rewriting

Transformation rules often need more information than is provided by the match of
the left-hand side to decide whether the rule is applicable. Thus, side conditions can be
attached for checking additional properties. Such conditions may entail computations in
a different paradigm than the transformation rules are implemented in. For example, in
Sittampalam et al.(2004) regular path expressionschecking data-flow properties of the
program statement to be performed are attached to transformation rules (seeSection 8).

In conditional term rewriting (Dershowitzand Jouannaud, 1990), however, the
rewriting mechanism itself is used to evaluate conditions. Conditions areequationsover
terms, and a conditional rewrite rule has the form

t -> t ′ where t1 = t ′1 .... tn = t ′n.

When applying such a rule the equations are instantiated according to the substitution
obtained from the match of the left-hand side. The pairs of terms are then compared for
equalityafter rewriting them to normal form with the same set of rules.

In a variation on this concept, one side of a condition may use variables not occurring
in the left-hand side of the rule. This termis then used to match the normal form of the
other side of the equation against. The resulting variable bindings can be used in further
conditions and the right-hand side of the rule.

4.7. Term rewriting with strategy annotations

One problem in term rewriting is that of terms with infinite reduction paths that cannot
be resolved by removing unnecessary rules. For example, the specification inFig. 5defines
the computation of the factorial function using the conditionalIf. Using apure innermost
rewriting strategy, a termFac(3) does not terminate, since the arguments ofIf are
evaluated before rulesIfF or IfT are applied. While using an outermost strategy might
solve termination problemslike these, the cost of finding the next redex is much lower
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signature
sorts Nat List(*)
constructors

Z : Nat
S : Nat -> Nat
Cons : a * List(a) -> List(a) {strat: (1 0)}
Inf : Nat -> List(Nat)
Nth : List(a) -> a

rules
Inf(x) -> Cons(x, Inf(S(x)))

Nth(Z, Cons(x, l)) -> x
Nth(S(x), Cons(y, l)) -> Nth(x, l)

Fig. 6. Specification with strategy annotations (Ogata and Futatsugi, 1997).

in innermost rewriting (van de Pol, 2001). Therefore, several systems extend innermost
rewriting with strategy annotationsto delay the evaluation of arguments.

4.7.1. Just-in-time
The strategy annotations invan de Pol(2001) are designed to delay the evaluation of

arguments, but guarantee that the term reached after evaluation is a normal form with
respect to the rewrite system, i.e., contains no redices.

A strategy annotation for a constructor is a list of argument positions and rule
names. The argument positions indicate the next argument to evaluate and the rule
names indicate a rule to apply. The innermost strategy corresponds to an annotation
strat(C) = [1,2,3,...,R1,R2,R3,...] for a constructorC and indicates that first
all its arguments should be evaluated and then the rulesRi should be applied. By requiring
that all argument positions and all rules for a constructor are mentioned in the annotation, it
can be guaranteed that a normal form is reached. The just-in-time strategy is a permutation
of argument positions and rules in which rules are applied as early as possible.

Using these annotations the non-termination for the rewrite system inFig. 5 is solved
by means of the annotation

strat(If) = [1,IfT,IfF,2,3]

that declares that only the first argument should be evaluated before applying rulesIfT and
IfF.

4.7.2. E-Strategy
The just-in-time strategy cannot deal with rewrite systems that do not have normal forms

for some terms. For example, consider the rules inFig. 6. Terms ofthe formInf(n), for
some natural numbern, donot have a normal form.

The evaluation strategyof the OBJ family of systems (Ogata andFutatsugi, 1997;
Goguen et al., 2000) uses an extended form of strategy annotations in which not all
arguments need to be evaluated. In this style a strategy annotation is a list of argument
positions and the root position (0). The annotation declares the order of evaluation of the
arguments. The root position0 indicates the evaluation of the term at the root. Not all
argument positions need to be declared. An undeclared argument is not evaluated.
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rules
Inf(x) -> Cons(x, Thunk(L, Vec1(x)))

Nth(Z, Cons(x, l)) -> x
Nth(S(x), Cons(y, l)) -> Nth(x, Inst(l))

Inst(Thunk(L, Vec1(x))) -> Inf(S(X))
Inst(x) -> x

Fig. 7. Result of translating specification with laziness annotations to eager specification (Fokkink et al., 2000).

For example, the non-termination inFig. 6 is solved by the strategy annotation
(1 0), which indicates that first the first argument ofCons should be evaluated and
then the constructor itself (0). The second argument is never evaluated. The E-normal
form of Nth(S(Z),Inf(Z)) is S(Z). Also the termInf(Z) has a normal form, i.e.,
Cons(Z,Inf(S(Z))).

4.7.3. Laziness annotations
The strategy annotations discussed above are interpreted by the rewrite engine. In

Fokkink et al. (2000) it is shown how rewrite systems with laziness annotations can be
compiled into rewrite systems that can be evaluated using an innermost strategy.

A laziness annotation indicates for an argument of a constructor that it is lazy, i.e.,
that no reductions should be performed for subterms of that argument, unless needed
for matching. For example, for the rewrite system inFig. 6 the laziness annotation
Lazy(Cons,2) achieves the delay of the evaluation of the second argument ofCons.

A rewrite system with laziness annotations can be translated to an eager rewrite system
using thunks. A thunk is an auxiliary data structure that stores the structure of the term.
For example, the termrewrite system (TRS) inFig. 6 is transformed to the eager TRS in
Fig. 7. Note thatThunk is a generic constructor for representing thunks,L is a constructor
for indicating the thunked pattern, andVec1 is a constructor for denoting a vector of
length 1.

Note that annotations depend on the application in which they are used. For example,
without theInf constructor there is no reason for annotating the second argument ofCons
as lazy.

5. Tree parsing strategies

Tree parsing is an alternative approach to transformation developed in the area of
code generation. In this approach rules are written astree grammar rulesthat are used
to parsea tree, i.e., cover the tree with applicable rules and execute corresponding actions.
This requires deriving from the specification of the rules atree traversal schedule. This
section discusses three approaches to tree parsing. Simple tree parsing is used to generate
single-pass traversals. Bottom-up tree parsers are used in code generators and employ a
dynamic programming approach to compute all possible rewrites in parallel. Finally, in
attribute grammarsrules assign attribute values to tree nodes; attribute evaluation involves
scheduling of the order of evaluation based on dependencies.
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5.1. Tree parsing

Tree parsing is analogous to string parsing; instead of finding structure in a string, the
goal is to find structure in a tree by covering the tree with patterns. The tree parser generator
for theANTLR language processing system (Parr etal., 2003) generates tree walkers from
tree grammars. A tree grammar is aBNF-like notation for the definition of tree structures.
For example, the grammar

exp : #(PLUS exp exp)
| INT

describes expression trees composed from integers and addition.
Tree translations and transformations are achieved by associating actions with the

grammar productions. Translations to textual output are achieved by printing actions. For
example, the following grammar prints expressions using infix notation.

exp : #(PLUS exp <<printf("+");>> exp)
| i:INT <<printf("%d", i);>>

Tree transformations are achieved by reconstructing trees and returning them as results.
For example, the following grammar transforms expressions by swapping the arguments
of thePLUS operator.

exp :! #(PLUS l:exp r:exp) <<#exp = #(PLUS r l);>>
| INT

Grammar non-terminals can have arguments that can be used in the actions in productions.
Non-terminals can also return results. A tree grammar gives rise to a set of mutually
recursive functions, one for each non-terminal, that together define a one-pass traversal
over a tree. Patterns can be nested and can use regular tree expressions with optionals,
alternatives and lists.

Transformation rules in tree grammars are embedded in grammar productions.
Separation of rules and strategies and generic tree traversals are not supported inANTLR.

5.2. Bottom-up tree parsing

If a tree grammar is ambiguous, multiple parses of a tree are possible. The parser
needs to decide which parse to take. By associating costs with each production, the
disambiguation can be based on the accumulated cost of a tree. Dynamic programming
techniques can be used to compute all possible parses in one traversal.

BURG (Fraser et al., 1992a,b; Proebsting, 1995) is a system for code generation from
intermediate representation (IR) expression trees. A mapping fromIR trees to machine
instructions is defined by means of a tree grammar. A production of the formn -> t
(c) defines a mapping of tree patternt to non-terminaln at costc. Associated with each
production is an action to take when the production is selected. For example, (Proebsting,
1995) gives the example grammar in Fig. 8. According to this grammar, the term
Fetch(Fetch(Plus(Reg,Int))) has two coverings corresponding to the derivations
4(4(6(5(2,3)))) and4(4(8(2))) with costs 7 and 4, respectively.
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[1] goal -> reg (0) [5] reg -> Plus(reg, reg) (2)
[2] reg -> Reg (0) [6] addr -> reg (0)
[3] reg -> Int (1) [7] addr -> Int (0)
[4] reg -> Fetch(addr) (2) [8] addr -> Plus(reg, Int) (0)

Fig. 8. Example BURG specification.

As illustrated by this example, more than one covering of a tree is possible,
corresponding to different ways to generate code. Each node can have several different
parses because of overlapping patterns and chain rules. The costs associated with the
productions express the cost of executing the associated machine instruction. The goal
of a code generator is to find the lowest cost covering (i.e., lowest execution time) of an
intermediate representation expression tree.

According to bottom-up rewriting theory (BURS) an IR tree can be translated to a
sequence of instructions using the following strategy. In a bottom-up traversal all lowest-
cost patterns that match each node are computed and associated with the node. This
involves matching the right-hand sides ofthe productions to the tree, taking into account
earlier matches for subtrees. Instructions are then selected in a top-down traversal that is
driven by the goal non-terminal for the root of the tree.

This restricted form of rewriting can also be applied (Proebsting, 1995) for simple type
inference problems, for checking tree formats, and for tree simplifications. However, the
scope of this paradigm is restricted to one-to-one translations in which the structure of the
target is closely related to the structure ofthe source program, which is typically the case
in instruction selection.

5.3. Attribute grammars

Attribute grammars (Knuth, 1968; Aho et al., 1986) provide a more general form of
tree parsing. Instead of associating actions with a fixed tree traversal, an attribute grammar
defines the computation ofattribute valuesassociated with tree nodes. Typically, the values
of an attribute can be defined in terms of the values of other attributes. Thus tree traversal
is implicit, i.e., inferred from the attribute definition rules.

As an example, consider the following set of rulesdefining the computation of the set
of free variables of a lambda expression with variables (Var), lambda abstraction (Abs),
and application (App):

e@Var(x) : e.free := [x]
e0@Abs(x, e1) : e0.free := <diff>(e1.free, [x])
e0@App(e1, e2) : e0.free := <union>(e1.free, e2.free)

The grammar consists of productions associating attribute evaluation rules with tree
constructors. The rules refer to the current node or its direct subnodes via identifiers. The
example grammar defines the attributefree, which evaluates to the set of free variables
of an expression. These attributes are so-calledsynthesizedattributes, since the attribute
value of a node is defined in terms of the attribute values of the subnodes. This example
illustrates how attribute grammars can be used foranalysis.
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Higher-orderattribute grammars (Vogt, 1989) can also be used fortransformationby
computing new trees as part of attribute evaluation. The following example illustrates this
in a grammar for renaming bound variables in lambda expressions:

e@Var(x) : e.rn := Var(<lookup>(x, e.env))
e0@Abs(x, e1) : e0.rn := Abs(y, e1.rn)

e1.env := [(x,y) | e0.env]
y := <first> e0.ifresh
e1.ifresh := <next> e0.ifresh
e0.sfresh := e1.sfresh

e0@App(e1, e2) : e0.rn := App(e1.rn, e2.rn)
e1.env := e0.env
e2.env := e0.env
e1.ifresh := e0.ifresh
e2.ifresh := e1.sfresh
e0.sfresh := e2.sfresh

This grammar defines the synthesized attributee.rn, which evaluates to the renaming of
the lambda expressione. Two auxiliary attributes are used in the definition. The attribute
e.env is an inheritedattribute, which is passed to subnodes and maintains the mapping
from variables totheir new name. The attributee.ifresh is also an inherited attribute
providing a supply of fresh names. The synthesized attributee.sfresh evaluates to the
state of the name supply after computing the renaming ofe. This is used tothread the
name supply through the computation.

Attribute evaluation requires dependency analysis in order to determine a traversal
schedule. Such a schedule may involve multiple traversals over the tree when an inherited
attribute depends on a synthesized attribute, which should thus be computed in an
earlier traversal. Attribute grammars are used in various systems such as the Synthesizer
Generator (Reps and Teitelbaum, 1988) and LRC (Saraiva and Kuiper, 1998). In the
intentional programming project (Czarnecki and Eisenecker, 2000) attribute grammars are
used for the definition of language extensions. Attribute grammars have been especially
successful inincrementalcomputation of attribute values, enabling rapid feedback in
an interactive environment (Reps and Teitelbaum, 1988). Explicit scheduling of attribute
evaluation is not necessary when implementing attribute grammars in a lazy functional
language (Johnsson, 1987). Scheduling is achieved by the evaluation mechanism of the
host language. This is exploited in systems such as Elegant (Augusteijn, 1993) and
UUAG (Saraiva and Swierstra, 1999).

The example above illustrates that attribute propagation requires numerous administra-
tive rules. In extensions of the basic formalism, reoccurring patterns such asbroadcasting,
threading, andcollectingvalues are provided through declarations. In the proposal forfirst-
class attribute grammarsin de Moor et al.(2000), such patterns areprogrammable.

6. Programmable strategies

Systems with fixed strategies are developed for application in specific domains such
as instruction selection, but are not sufficient as general purpose transformation systems.
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The inappropriateness of the standard strategy to a specific application, invariably leads to
encoding of control in rules. In previous sections we saw various extensions to rule-based
systems that allowedadaptationsof the standard strategy; however, no completely different
strategies are allowed in such settings. In the areas of transformational programming and
theorem proving the tediousness of the interactive application of rules required more
automation, while retaining control. This led to the extension of rule-based systems with
tactics, i.e., specific algorithms for applying rules. These systems influenced the design of
program transformation systems withprogrammable strategies, i.e., providing a basic set
of combinators from which complex strategies can be composed. This section sketches the
development from interactive program transformation systems to systems for automatic
program transformation with programmable strategies. The next section then focuses on a
particular aspect of such strategies, namely the specification ofterm traversal.

6.1. Interactive program transformation

The transformationalapproach to software development is based on the paradigm of
top-down stepwise refinement(Dijkstra, 1968) in which a high-level specification of a
problem is gradually refined to an efficient implementation solving that problem. The aim
is to achieve orders of magnitude improvement in programmer productivity (Paige, 1994).
By only applyingcorrectness-preservingtransformations, the resulting program iscorrect
by construction. Transformation from high-level specification to low-level implementation
gives rise to wide spectrum languagescontaining constructs for very high-level
specification (e.g., non-executable logic formulae) as well as low-level implementation
(e.g., assembly language instructions). Thus, all transformations are performed on the same
language. An alternative approach, pioneered in the Draco system (Neighbors, 1984), is to
definedomain-specific languagesthat only cover a specific application domain and level
of abstraction, thus limiting the complexity of transformations.

First of all the approachrequired the development of theories for program
transformation (Burstall and Darlington, 1977; Bird and Meertens, 1987) consisting of
basic rules such asfold and unfold and strategies such ascomposition, generalization,
and tupling applying these rules in a certain combination (Pettorossi and Proietti,
1996b). Using such a theory, programs can be derived mechanically from specifications.
Since manual application of rules is tedious and error-prone, automation was a
logical course. Thus, over the last 30 years many systems have been developed
to support some variation on the transformational approach. Examples include
ZAP (Feather, 1982), Programmer’s Apprentice (Waters, 1982; Rich and Waters, 1990),
Draco (Neighbors, 1984), KIDS (Smith, 1990), CIP (Partsch, 1990), APTS (Paige, 1994),
Map (Pettorossi and Proietti, 1996b), and Ultra (Partsch et al., 1999; Guttmann et al.,
2003). Although the systems differ in the details of their implementation, the kinds
of transformation they apply, and the languages that are transformed, they have many
commonalities. First of all the systems are usually specific for a programming language.
On the basis of the semantics of this language a library of valid and usually generic
transformation rules is developed. Since the declarative nature of the specifications allows
many design choices, the systems are interactive and let the user select the rules to apply
and the order in which to apply them. Thus, a basic transformation assistant is an aid to
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do the bookkeeping for applying rules. Since the complete development of a program may
require the application of hundreds or thousands of rules, assistance in applying single
rules is not sufficient, and various mechanisms (tactics) for automatically applying certain
combinations of rules were added. Thus, instead of a fixed (exhaustive) strategy, these
systems allow theprogrammer tochoosethe strategy to apply certain rules with.

The transformational programming approach has reincarnated in a different guise in the
area of software maintenance.Refactoringaims at cleaning up the design of the code rather
than producing a performance improvement (Fowler, 1999). Refactoring editors such as
the Smalltalk Refactoring Browser (Roberts et al., 1997) are the modern incarnation of the
programmer’s assistant. That is, they are interactive tools that allow the programmer to
apply specific transformation rules to selected parts of the program. Typically, however,
refactoring rules are more coarse grained than single-fold/unfold rules. Work so far
concentrates on the implementation of specific refactorings. If this line of work turns out
to be successful, refactoring editors will be extended with scripting capabilities in order to
combine refactorings into more complex refactorings.

6.2. Staging

In transformational programming a transformation is geared to the transformation of
one specific program, possibly employing reusable transformation tactics. Inautomatic
program transformation used in compilers, for example, programmer intervention is not
desirable since it is not reproducible and costs a lot of time. As argued before, pure rewrit-
ing is not applicable because of interference between rewrite rules. A step towards pro-
grammer control over rules is the mechanism ofsequence of canonical formsadopted in the
TAMPR — Transformation Assisted Multiple Program Realization — system (Boyle, 1989;
Boyle et al., 1997), aiming to derive implementations for different computer architectures
from the same specification, in particular in the domain of numerical programming.

A TAMPR specification consists of a series of rewrite rules. TheTAMPR rewrite
engine applies rewrite rules exhaustively to reach a canonical form. The problem of non-
termination caused by rules that are each others’ inverses is solved by organizing a large
transformation into a sequence of consecutivereductions to canonical forms under different
sets of rewrite rules. Typically such a sequence starts with several preparatory steps that
bring the program into the right form, and these are followed by the pivotal step which
achieves the actual transformation, followed in turn by some post-processing.

As an example consider the transformation of nested function calls to flat lists of
function calls as part of a compiler from a functional program to an imperative program
(inspired by an example inBoyle (1989)). The following pair of program fragments
illustrates the transformation:

let var x := foo(bar(a, b))
in ... end

⇒
let var y := bar(a, b)

in let var x := foo(y)
in ... end

end

In the canonical form that is reached by the transformation, each function call is directly
assigned to a variable and has no nested function calls. The transformation is achieved
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rules
IntroduceTemp :

|[ f(a*) ]| -> |[ let var x := f(a*) in x end ]|
where new => x

LetFromApp :
|[ f(a1*, let var x := e1 in e2 end, a3*) ]| ->
|[ let var x := e1 in f(a1*, e2, a3*) end ]|

LetVarInLetVar :
|[ let var y := let var x := e1 in x end in e2 end ]| ->
|[ let var y := e1 in e2 end ]|

LetFromLet :
|[ let var y := let var x := e1 in e2 end in e3 end ]| ->
|[ let var x := e1 in let var y := e2 in e3 end end ]|
where <not(eq)>(|[ x ]|, |[ e2 ]|)

strategies
lift-nested-calls =

one-shot(IntroduceTemp)
; transform*({LetFromApp, LetVarInLetVar, LetFromLet})

Fig. 9. Rewrite rules and strategyfor lifting nested function calls.

by a number of simple rewrite rules (Fig. 9) that first assign each function call to a fresh
variable by introducing a new let binding. Then these bindings are lifted by distribution
rules pushing function applications and let bindings inside the body of the nested let
binding. Since ruleIntroduceTemp is anon-terminating rule, some mechanism is needed
to control its application. TheTAMPR approach is to organize a transformation as a
sequence of exhaustive normalizations and one-shot rule applications. Thus, the call lifting
transformation is defined by the strategylift-nested-calls, which first tries to apply
rule IntroduceTemp exactly once to all nodes in the program, and then exhaustively
applies the other rules.

In Fitzpatrick et al.(1995) the authors state that:A major issue still to be addressed
in transformation systems is the control of the derivation process; i.e., the specification
of strategiesto achieve some goal.The division of a rewrite systems into separate sets
of rules which are applied exhaustively in sequence does solve some of the termination
and confluence problems of rewriting, and it nicely preserves the declarative nature of
individual rewrite rules. However, many problems need to be addressed by other means
within a single traversal. For such cases, theTAMPR approach still requires the use of
functional rewriting.

6.3. Strategy combinators

Taking the approach ofTAMPR further requires more expressive specification of
strategies to control rule application, while preserving the separation of rules and strategies.
The algebraic specification languageELAN (Borovanský et al., 2000, 1996, 2002, 1998)
introduced support foruser-definablestrategies using a language of combinators for
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strategies
try(s) = s <+ id
repeat(s) = try(s; repeat(s))
while(c, s) = try(c; s; while(c, s))
do-while(s, c) = s; try(c; do-while(s, c))
while-not(c, s) = c <+ s; while-not(c, s)
for(i, c, s) = i; while-not(c, s)

Fig. 10. Iteration strategies defined using strategy combinators.

composing strategies. The approach was also adopted in the design of the program
transformation language Stratego (Visser et al., 1998; Visser, 2004). Despite differences
in syntax and the sets of combinators, the basic ideas underlying the strategy combinators
of ELAN and Stratego are the same. Here the ideasof the approach are explained using the
Stratego syntax. Where there are real differences, these will be pointed out explicitly.

In thestrategic rewritingapproach, a specification consists of a set oflabeled rewrite
rules and a set ofstrategydefinitions. Strategies are programs that attempt to transform
terms into terms, at which they may succeed or fail. In the case of success the result
of such an attempt is a transformed term. Inthe case of failure there is no result of the
transformation. Theatomicstrategies are the labels of rewrite rules, theidentitystrategy
id, which leaves the subject term unchanged and always succeeds, and thefailure strategy
fail, which always fails. These atomic strategies can be combined into more complex
strategiesby means of a set of strategycombinators. Thesequential compositions1 ; s2
of strategiess1 ands2 first attempts to applys1 to the subject term and, if that succeeds,
appliess2 to the result. Thenon-deterministic choices1 + s2 of strategiess1 ands2
attempts to apply eithers1 or s2. It succeeds if either succeeds and it fails if both fail;
the order in whichs1 ands2 are tried is unspecified. Thedeterministic choices1 <+ s2
of strategiess1 ands2 attempts to apply eithers1 or s2, in that order. Note that ; has
higher precedence than+ and<+. Theteststrategytest(s) tries to apply the strategys.
It succeeds ifs succeeds, and reverts the subject term to the original term. It fails ifs fails.
The negationnot(s) succeeds (with the identity transformation) ifs fails and fails if s
succeeds. A recursive strategy can be defined using a recursive definition.

As an example of the versatility of these basic combinators,Fig. 10defines a number of
derived control combinators, corresponding to various iteration schemes. To illustrate the
use of these strategies consider again the rules for evaluation of theMember function:

rules
Mem1 : Member(x, []) -> False
Mem2 : Member(x, [x | xs]) -> True
Mem3 : Member(x, [y | xs]) -> Member(x, xs)

strategies
member = repeat(Mem1 <+ Mem2 <+ Mem3)

In Section 4.4, theorder of the application of these rules was enforced by makingMem3, a
defaultrule. Usingthe strategy combinators introduced above, the priority between rules
can be explicitly stated. Thus, themember strategyrepeatedly applies rulesMem1, Mem2,
andMem3 in thatorder.
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Note that labeled rules apply at the root of the term to which they are applied. Further-
more, the combinators introduced above also apply to the root and do not descend into the
term. This makes it impossible to apply rules below the root. InELAN this is remedied by
means of two devices. First, using so-calledcongruence operatorstraversals over a tree
can be defined. This device will be further discussed in the next section. Second the spe-
cial strategynormalize(L1, . . . , Ln) normalizes a term withrespect to rulesL1, . . . , Ln.
Thus, the normalizing bit of the call lifting strategy can be defined as

normalize(LetFromApp,LetVarInLetVar,LetFromLet)

The one-shot strategy requires a special traversal, which will be discussed in the next
section.

Another difference betweenELAN and Stratego is thebacktrackingmodel. The choice
operators+ and<+ of Stratego providelocal backtracking. This means that the choice is
committed after a successful alternative has been applied. Thus in the strategy(x + y); z
if x is tried first and succeeds the choice is committed andz is applied. Ifz fails the entire
strategy fails instead of backtracking toy, which might potentially succeed and makez
succeed as well. Thus,(x + y); z is not equal to(x; z + y; z).

In ELAN there are several choice operators each with different backtracking properties.
The failure/success model is based onsets of results, i.e., a strategy returns a set of possible
results, which can be implemented usingglobal backtracking. That is, ata successful
choice, the remaining choices are stored in case a continuation strategy fails. The operator
dk(e1,...,en) (don’t know) returns all results from all strategiesei. The operator
dc(e1,...,en) (don’t care) returns the results from one of its argument strategies as
long as it does not fail. The operatorfirst(e1,...,en) returns the results of the firstei
thatdoes not fail. The operatorsdc_one(e1, ..., en) andfirst_one(e1, ..., en)
return only one result. The operatoriterate*(e) (respectively,iterate+(e)) returns
all possible results from iterating the strategye zero (respectively, one) or more times.
The operatorrepeat*(e) (repeat+(e)) returns the last set of results from repeatedly
applyinge until it fails.

Finally, ELAN also has unlabeled rewrite rules, which are always applied using a
fixed innermost strategy, i.e., not under the control of a strategy. Another feature of
ELAN (Borovanský et al., 1996) is thereflective rewriting of strategies with rewrite rules,
which ispossible since the strategy language is interpreted. ELAN does not support generic
term traversal, a feature to be discussed in thenext section.

7. Traversal strategies

A special concern in any implementation of program transformation is the definition of
traversalsthat determine the order in which the nodes of an abstract syntax tree are visited.
In the pure rewriting approach traversal is implicit in the strategy. However, we saw in
Section 4.5that rewriting often degrades to functional programming with a steep penalty
for thedefinition of traversals. This penalty is especially large in program transformation,
where languages with tens to hundreds of constructors are common. Definition of a
traversal foreachtransformation to be defined leads to very large specifications. There
are several approaches to solving this problem, which will be discussed in this section.
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signature
constructors

dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)}
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF4 : dnf(Not(x)) -> not(x)
DNF5 : dnf(And(x,y)) -> and(x,y)

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 11. Disjunctive normal form with traversal function (Version 1).

7.1. Traversal functions

In ASF+SDF controlling the application of transformation rules has been recognized as
a problem for a long time. For the specification of transformations for large languages such
asCOBOL the overhead of defining traversals was seen as an especially problematic factor.
First this was solved by the generation of default traversal rules (van den Brand and Visser,
1996; van den Brand et al., 2000b) that could be overridden by normal rules. In this
approach typically only a few rewrite rules have to be specified, corresponding to the non-
default behavior of the traversal. However, the number of generated rules still proves to be
a source of overhead, albeit for the compiler, not the programmer. Furthermore, providing
a newtraversal scheme requires the addition of a new generator.

In a recent approach (van den Brand et al., 2003), traversal functions are supported
directly by the rewriting engine, avoiding the compile-time overhead of generated rules.
The transformation language TXL (Cordy et al., 1995) provides a similar approach.Fig. 11
illustrates the approach applied to the problem of normalization to disjunctive normal form.
The specification is the same as that inFig. 4, but thednf function has been declared
a traversal function in the signature. The attributetraversal(trafo, bottom-up,
continue) declares thatdnf performs a bottom-up traversal over its argument. This
means that the function is first applied to the direct subterms (and, thus, recursively to
all subterms) before it is applied at the term itself. Rules need to be declared only for those
constructs that are transformed. The default behavior is to reconstruct the term with the
original constructor. In the example this reduces the specification of the traversal from six
to two rules. In general, for a signature withn constructors onlym of which need to be
handled in a special way, this savesn − m rules.

There is still some overhead in the specification inFig. 11in the form of thedispatching
from the traversal function to the smart constructors and the default rules for the smart
constructors. A more concise specification is the one inFig. 12 in which no smart
constructors are used. In this style only one rule is needed for each original rule. However,
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signature
constructors

dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)}
rules

AND1 : dnf(And(Or(x,y),z) -> dnf(Or(And(x,z)),And(y,z))
AND2 : dnf(And(z,Or(x,y)) -> dnf(Or(And(z,x)),And(z,y))

NOT1 : dnf(Not(Not(x)) -> x
NOT2 : dnf(Not(And(x,y)) -> dnf(Or(Not(x),Not(y)))
NOT3 : dnf(Not(Or(x,y)) -> dnf(And(Not(x),Not(y)))

Fig. 12. Disjunctive normal form with traversal function (Version 2).

the problem with this style is that the recursive calls in the right-hand sides of the rules
will completely retraverse the tree (the arguments of which are already normalized) before
applying one of the rules.

The traversal strategy of a traversal function is based on choices in several aspects of a
traversal. First of all a traversal can be atransformation(trafo) that changes the shape of
a tree and/or aaccumulator (accu) that collects information during the traversal. Secondly
thenode visiting orderof a traversal can be eithertop-down andbottom-up. Finally, the
traversal can stop as soon as a rule has been applied successfully (break), or can continue
(continue).

The advantage of traversal functions is that default traversal behavior does not need to
be implemented manually. This is similar to the case of default visitors in object-oriented
programming or folds with updatable fold algebras in functional programming. However,
the approach has a number of limitations.

First of all, there is no separation of rules from strategies. A rule is bound to one specific
traversal via the traversal function. It is not possible to reuse rules in different traversals,
for example, to normalize under different rule sets. Furthermore, rules are intertwined with
strategies, making it hard to distinguish the basic transformation rules from the traversal
code.

Secondly, although it is possible to implement a wide range of traversals, this
requires gluing together the basic traversals in an ad hoc manner. That is, traversal
schemata are not first-class citizens of ASF+SDF. It is not possible in the language
to give further abstractions for alternative or composite traversal schemata, or for more
elaborate functionality involving traversals. That would require extending the rewriting
engine interpreter and compiler. Such extensibility is desirable for building libraries
with language independent strategies. For example, defining substitution without variable
capture is similar for many languages, given the shape of variables and variable bindings.
Extrapolating the traversal function approach, more and more such abstractions will be
captured as additional primitives in the rewrite engine. At some point it will make sense to
extend the language with a mechanism for specifying such abstractions generically.

7.2. Folds

Foldsor catamorphismsin functional languages are an approach to traversal that does
admit reuse and definition of new traversal schemes. Instead of redefining the traversal
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for each transformation, a higher-order definition of a traversal is defined, which can be
instantiated for different applications. For example, the fold for lists is defined as

foldr(n, c) : [] -> n
foldr(n, c) : [x | xs] -> <n>(x, <foldr(n, c)> xs)

and can be used for the definition of themap function, which applies a functionf to each
element of the list:

map(f) = foldr([], \ (x, xs) -> [<f>x | xs] )

Thus, a fold performs a bottom-up traversal applying to the result of traversing the
subnodes, a function corresponding to the original constructor.

This idea can be generalized to arbitrary data types. For example, the fold for lambda
expressions is defined as

foldexp(var, app, abs) :
Var(x) -> <var> x

foldexp(var, app, abs) :
App(e1, e2) -> <app>(<foldexp(var, app, abs)> e1,

<foldexp(var, app, abs)> e2)
foldexp(var, app, abs) :

Abs(x, e) -> <abs>(x, <foldexp(var, app, abs)> e)

This function can be used in the definition of free variable extraction, for example

free-vars =
foldexp(id, union, \ (x,xs) -> <diff>(xs, x))

However, it is not usable for bound variable renaming, since no information is passed down
the tree.

There are other shortcomings as well. Folds and similar traversals define a full traversal
over the tree. Itis not always appropriate to apply a transformation uniformly to theentire
tree. Furthermore, the function is parameterized with a functionfor eachconstructor. This
not feasible for realistic abstract syntax trees with tens or hundreds of constructors, since it
requires the specification of replacement functions for each constructor in the signature of
the data type. Updatable fold algebras (Lämmel et al., 2000) are an attempt at mitigating
the number of parameters by storingthe constructor functions in a record.

7.3. Traversal with congruence operators

Congruenceoperators, introduced inELAN and adopted by Stratego, provide more fine
grained primitives for composing traversals. For eachn-ary constructorC a congruence
strategyoperator of the formC(s1,...,sn) is available. It applies to terms of the form
C(t1,...,tn), applying eachsi to the correspondingti. An exampleof the use of
congruences is the operatormap(s)

map(s) = [] + [s | map(s)]

which applies a strategys to each element of a list.
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Congruence operators are very useful for defining traversals that arespecific for a
language. This is used for example in the definition of a traversal that follows the control
flow in an interpreter (Dolstra and Visser, 2002). For example, given rulesBeta for beta-
reduction, andSubsVar, SubsApp, andSubsAbs for substitution, the strategy

eager-eval = rec e(
try(App(e, e) + Let(id, e, e))
; try((Beta + SubsVar + SubsApp + SubsAbs); e)

)

defines eager evaluation for lambda expressions, i.e., that in which inner redices are
reduced first, but where no reduction under lambdas is performed. A variation on this
strategy is

lazy-eval = rec e(
try(App(e, id) + Let(id, id, e))
; try((Beta + SubsVar + SubsApp + SubsAbs); e)

)

which defines lazy evaluation, i.e., where no reductions of functionarguments
are performed. This approach is also used in the specification of data-flow
optimizations (Olmos and Visser, 2002) andpartial evaluation (Olmos and Visser, 2003).

Another application of congruenceoperators is in the definition offormat checkers,
used to check syntactic properties of terms. For instance, the following definitions

conj(s) = And(conj(s),conj(s)) <+ s
disj(s) = Or(disj(s),disj(s)) <+ s
dnf = disj(conj(Atom(id) + Not(Atom(id))))

define the strategydnf, which checks that a propositional formula is in disjunctive normal
form (Visser, 1999).

The difference between folds and congruence operators is that the former define a
complete recursive traversal over a tree, whereas the latter define only a one level descent
into the subtrees. This entails that different traversals can be composed from the same
basic building blocks. Similarly to the folds case, however, it is still necessary to use the
congruence operators for all constructors which should be traversed.

7.4. Generic traversal strategies

The approaches to traversal discussed previously in this section all improve some aspect
of traversal specification, but have shortcomings as well. Traversal functions are generic
in the tree structure, but they are whole tree traversals and do not admit definitions of new
traversal schemata. Folds are parametric, but not generic in the tree structure and define
whole tree traversals. Congruence operators are fine grained, i.e., partial tree traversals,
but are not generic in the tree structure, hence only reusable for a specific language. The
solution to traversal introduced in Stratego (Luttik and Visser, 1997; Visser et al., 1998;
Visser, 2004) combines the advantages of these approaches. The key to this solution is
the notion of agenericone-level traversal operator, whichcan be used to freely compose
many differentgeneric traversal strategies(Luttik and Visser, 1997).



E. Visser / Journal of Symbolic Computation 40 (2005) 831–873 863

strategies
topdown(s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s
downup(s) = s; all(downup(s)); s
downup2(s1,s2) = s1; all(downup2(s1,s2)); s2
oncetd(s) = s <+ one(oncetd(s))
onecbu(s) = one(oncebu(s)) <+ s
alltd(s) = s <+ all(alltd(s))
sometd(s) = s <+ some(sometd(s))
somebu(s) = some(somebu(s)) <+ s
innermost(s) = bottomup(try(s; innermost(s)))

Fig. 13. Generic traversal strategies.

A generic one-level traversal operator is similar to a congruence operator, which applies
strategies to the immediate subterms of a term. The difference is that generic traversal
operators are indifferent to the constructor of the term and uniformly apply a strategy to
one or more of the subterms. For example, the traversal operatorall(s) appliess to all
direct subtermsof a constructor applicationC(t1,...,tn). The application succeeds with
a new termC(t1’,...,tn’) constructed using the same constructor and the results of
transforming the subterms with the strategys, if those transformations succeed. Otherwise,
the application fails. Similar one-level traversal operators areone andsome. The strategy
one(s) appliess to onedirect subterm of a constructor applicationC(t1,...,tn). The
strategysome(s) appliess to some of the direct subterms of a constructor application
C(t1,...,tn), i.e., to at least one and as many as possible.

The genericity and fine granularity of these operators makes it possible to define a wide
range of generic full traversals. For example, consider the traversal definitions inFig. 13.
The strategytopdown(s) defines a pre-order traversal visiting terms before descending
to its subterms. The strategybottomup(s) defines a post-order traversal, visiting a term
after visiting its subterms. The strategydownup(s) visits subterms on the way down and
on the way up. The strategyoncetd(s) tries to findoneapplication ofs somewhere in the
term starting at the root working its way down;s <+ one(oncetd(s)) first attempts to
applys, and ifthat fails an application ofs is (recursively) attempted at one of the children
of the subject term. If no application is found the traversal fails. The traversalalltd(s)
findsall outermost applications ofs and never fails.

These generic traversal strategies are parameterized with the actual transformation to
be applied to the subterms.Fig. 14 gives several examples of uses of the strategies of
Fig. 13. The strategiesdisj-nf and conj-nf define normalizations to disjunctive and
conjunctive normal form, respectively, using the rules fromFig. 3. The eval strategy
performs constant folding on propositional formulae using the standard truth rulesT (not
shown here). The strategiesdesugar andimpl-nf define two desugarings of propositional
formulae, i.e., elimination of implication and equivalence, and desugaring to implicative
normal form using standard elimination rules (not shown here). These definitions illustrate
how rules from the same collection can be reused in different transformations, and
likewise, a generic strategy such asinnermost can be instantiated to compose different
transformations.
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rules
T : And(True, x) -> x ...
T : Or(True, x) -> False ...
DefI : Impl(x, y) -> Or(Not(x), y) ...

strategies
disj-nf = innermost(DAOL + DAOR + DN + DMA + DMO)
conj-nf = innermost(DOAL + DOAR + DN + DMA + DMO)
eval = bottomup(repeat(T))
desugar = topdown(try(DefI + DefE))
impl-nf = topdown(repeat(DefN + DefA2 + DefO1 + DefE))

Fig. 14. Various transformations on propositional formulae.

Using strategy combinators with one-level traversal operators, highly generic strategies
can be defined. The Stratego library defines a wide range of generic strategies including
the traversal strategies inFig. 13. In addition the library defines a number of higher-
level language-independent operations such as free variable collection, bound variable
renaming, capture-free substitution, syntactic unification, and computing the spanning tree
of a graph. These operations are parameterized with the relevant language constructs, but
work generically otherwise (Visser, 2000).

Traversalscan be combined in any way necessary. For example, the nested function call
lifting strategy fromSection 6.2is defined as

lift-nested-calls =
bottomup(try(IntroduceTemp))
; innermost(LetFromApp <+ LetVarInLetVar <+ LetFromLet)

where the one-shot strategy corresponds to a one-pass bottom-up traversal and
normalization to canonical form is implemented withinnermost.

A problem of some generic strategies is that they lack knowledge of the computations in
their argument strategies, which may cause overhead. For example, the innermost strategy
in Fig. 13 renormalizes arguments of left-hand sides of rules when they are used in the
right-hand side. InJohann and Visser(2001) it is shownhow this can be repaired by fusing
the generic innermost strategy with its arguments.

The approach of generic traversal based on one-level descent operators has been
adopted in Prolog (Lämmel and Riedewald, 2001), Haskell (Lämmel and Visser, 2002;
Lämmel and Peyton Jones, 2003), and Java (Visser, 2001). An overview of thestrategic
programming approach is described inLämmel et al. (2002). A comparison of this
approach withadaptive programmingis given in Lämmel et al.(2003). Static typing is
an issue in a language with generic traversal. Solutions to this problem are explored in
Lämmel(2003) for the setting of rewriting strategies, and inLämmel and Visser(2002)
for functional programming.

8. Context-sensitive rules

Another problem of rewriting is the context-free nature of rewrite rules. A rule has only
knowledge of the construct it is transforming. However, transformation problems are often
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context-sensitive. For example, when inlining a function at a call site, the call is replaced
by the body of the function in which the actual parameters have been substituted for the
formal parameters. This requires that theformal parameters and the body of the function
are known at the call site, but these are only available higher up in the syntax tree. There
are many similar problems in program transformation, such as bound variable renaming,
typechecking, constant and copy propagation, and dead code elimination. Although the
basic transformations in all these applications can be expressed by means of rewrite rules,
they need contextual information. This section explores solutions in this area.

8.1. Parameterized strategies

The usual solution to this problem is to extend the traversal over the tree (be it hand-
written or generic) such that it distributes the data needed by transformation rules. For
example, traversal functions in ASF+SDF (van den Brand et al., 2003) can be declared to
have an accumulation parameter in which data can be collected. Language independent
definitions of operations such as bound variable renaming in Stratego (Visser, 2000) cap-
ture a generic tree traversal schema that takes care of distributing an environment through
a tree. The disadvantage of these solutions is thatthe traversal strategy becomes data heavy
instead of just handling control flow. That is, all traversal functions become infected with
additional parameters carrying context information. Generic solutions break down when
multiple environments are needed, to handle multiple name spaces, for instance.

8.2. Contextual rules

Another solution is the use of contextual rules (Appel and Jim, 1997; Visser et al.,
1998). A contextual rule containscontext variablesof the form e1[e2] indicating an
expressione1 containingan occurrence of another expressione2. This allows replacing
terms deeply nested in a term structure. For example, the rule

InlineVar :
|[ let var x := e1 in e2[x] end ]| ->
|[ let var x := e1 in e2[e1] end ]|

expresses the substitution of an occurrence ine2 of a let-bound variablex with its value
e1.

Contextual rules combine the context and the local transformation in one rule by using
a local traversal that applies a rule that reuses information from the context. Indeed, in
Stratego contextual rules aredesugared to rules with a local traversal. Thus, the rule above
corresponds to the non-contextual rule

InlineVar :
|[ let var x := e1 in e2 end ]| ->
|[ let var x := e1 in e2’ end ]|
where <oncetd((|[ x ]| -> |[ e1 ]|))> e2 => e2’

The problem with this approach is that it performs an extra traversal over the abstract
syntax tree, leading to quadratic complexity in the case the contextual rule is applied as
part of a traversal over the same tree that the context accesses.
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DeclareFun =
?|[ function f(xs) : t = e ]|;
rules(

InlineFun :
|[ f(es) ]| -> |[ let ds in e end ]|
where <zip(BindVar)> (xs, es) => ds

)
BindVar :

(|[ x : t ]|, e) -> |[ var x : t = e ]|

Fig. 15. Dynamic definition of a function inlining rule.

8.3. Dynamic rules

In Visser(2001a) theextension of rewriting strategies withscoped dynamic rewrite rules
was introduced. A dynamic rule is a normal rewrite rule that is defined at run-time and that
can access information from its definition context. For example, to define an inliner, a rule
that inlines function calls for a specific function can be defined at the point where the
function is declared, and used at call sites of the function, as illustrated inFig. 15. The
DeclareFun strategy matches a function declaration and thendefinesa ruleInlineFun,
which inherits from its context the formal parametersxs, and the body of the function
definition e. Thus, when applying theInlineFun rule to a call of the specific function
f for which the rule was defined it is replacedwith a let expression binding the actual
parameters (es) to the formal parameters (xs) in the body of the functione.

Dynamic rules are first class. Their application is under control of a normal strategy.
Thus dynamic rules can be applied as part of a global tree traversal. Rules can override
the definition of previously defined rules. Torestrict the application of a dynamic rule to
a certain part of the tree, the live range of a rule can be determined by rule scopes. A rule
temporarily overridden in a scope becomes visible again at the end of that scope. To hide
rules defined in outer scopes, rules can be undefined. Rules from outer scopes can also be
permanently overridden.

Dynamic rules turn out to be a very expressive extension of programmable
rewriting strategies and has many applications. InBravenboer and Visser(2002) it
is shown how the combination of user-definable, generic traversals in combination
with dynamic rules can be used to define the instruction selection strategies provided
by BURG. In Olmos and Visser(2002) it is shown how dynamic rules can be
used to define data-flow sensitive transformations on imperative programs. Other
applications include interpretation (Dolstra and Visser, 2002), type checking, and partial
evaluation (Olmos and Visser, 2003)

8.4. Regular path expressions

Another approach to context-sensitive rules is the use ofregular path expressionsas
conditions in rewrite rules (Sittampalam et al., 2004). For example, the following rule
expresses constant propagation:

ConstProp :
|[ y := e[x] ]| -> |[ y := e[c] ]|
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where fromentry({}*;
{?|[ x := c ]|; <const> c};
{not(def(x))}*;
{use(x)})

by defining a rewrite on an assignment with an occurrence of a variable which is assigned
a constant. This fact is expressed by the path expression in the condition of the rule, which
states that there is a path from entry to the current node with an assignment assigningc to
x and no redefinition ofx in any node in between.

The applicability of such rewrite rules depends on an analysis of the entire procedure in
which the assignment is embedded. In the approach described inSittampalam et al.(2004)
this is done automatically by the transformation system while traversing the tree. On every
application of a rule the analysis needs to be recomputed. To make this feasible the analysis
is performed incrementally, by maintainingfor each node in the tree the partial matches
to the regular expression. Thus, the reanalysis needs only to be performed on the path to
the root of the tree. For this purpose the generic traversal strategies use the zipper data
structure (Huet, 1997) for the tree representation to allow flexible navigation through the
tree.

9. Discussion

9.1. Related work

Program transformation is a large research area with a long history. This survey gives
an overview from the perspective of strategies in rule-based program transformation
systems. In this overview many related aspects have been touched on. For each
of these aspects more thorough surveys exist. Introductions to term rewriting in
general includeDershowitzand Jouannaud(1990), Baader and Nipkow(1998) and
Terese (2003). A survey of rewriting-based languages and systems is given in
Heering and Klint (2003). The use of equations and rewriting for transformation is
discussed in Field et al. (1998). There are special surveys for application areas of
program transformation such as transformational programming (Feather, 1987; Partsch,
1990), reverse engineering (Chikofski and Cross, 1990; van den Brand et al., 1997),
and application generation (Smaragdakis and Batory, 2000). Partsch and Steinbrüggen
(1983) is a survey of early transformation systems. The 1999 Workshop on Software
Transformation Systems (Sant’Anna et al., 1999) contains a series of articles reflecting
on past experience with transformation systems. The Program Transformation Wiki
(Visser et al., 2004) gives an overview of many types of program transformations, a
list of transformation systems, andhas elaborate special sections ondecompilation and
reverse engineering(van Deursen and Visser, 2002). Then there are areas that are not
discussed in this survey, including graph transformation systems, abstract interpretation,
reflective and generative approaches, and typing and correctness of transformation rules
and strategies. Finally, this survey has concentrated onmechanismsfor transformation
not on specific transformations. An earlier version of this survey appeared as
Visser(2001b).
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9.2. Conclusion

Rule-based program transformation is going in the right direction. With recent
developments in transformation languages more types of transformations can be expressed
in rule-based formalisms. Recent additions such as dynamic rules and regular path queries
drastically extend the expressiveness. Thus, an increasing number of transformation
problems can be expressed concisely in a rule-based setting. Specification of control over
rules while maintaining separation of rules and strategy is crucial. This does not mean
that these solutions can always be used in production compilers, say, since dedicated
implementations are still much faster. However, with the improvement of implementation
techniques, but also just with the increase in computing power available, the size of
problems that can be addressed by rule-based solutions increases. The main challenge
for research in rule-based program transformation is the further expansion of the types
of transformations that can be addressed in a natural way by accumulating the right
abstractions.
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