Fundamenta Informaticae 69 (2006) 123-178 123
10S Press

Program Transformation with Scoped Dynamic Rewrite Rules

Martin Bravenboer, Arthur van Dam, Karina Olmos and Eelco Vi ssef
Department of Information and Computing Sciences

Universiteit Utrecht, P.O. Box 80089, 3508 TB Utrecht

The Netherlands

visser@acm.org

Abstract. The applicability of term rewriting to program transfornaet is limited by the lack of
control over rule application and by the context-free rnatofr rewrite rules. The first problem is
addressed by languages supporting user-definable reyvstintegies. The second problem is ad-
dressed by the extension of rewriting strategies with sgapymamic rewrite rules. Dynamic rules
are defined at run-time and can access variables availaniefreir definition context. Rules defined
within a rule scope are automatically retracted at the enthaif scope. In this paper, we explore
the design space of dynamic rules, and their applicatiorattsformation problems. The technique
is formally defined by extending the operational semantrcdeunlying the program transformation
language Stratego, and illustrated by means of severatamoggansformations in Stratego, includ-
ing constant propagation, bound variable renaming, dedd etimination, function inlining, and
function specialization.

1. Introduction

Program transformations the mechanical manipulation of a program in order to inagrib relative to
some cost functio” such thatC'(P) > C(¢r(P)), i.e. the cost decreases as a result of applying the
transformation [30, 29, 11]. The cost of a program can be oredsin different dimensions such as
performance, memory usage, understandability, flexjbilitaintainability, portability, correctness, or
satisfaction of requirements. Related to these goals,ranodransformations are applied in different
settings; e.g. compiler optimizations improve performaf4] and refactoring tools aim at improving
understandability [28, 14]. While transformations can beieved by manual manipulation of programs,
in general, the aim of program transformation is to incrgasgmrammer productivity byautomating

*Address for correspondence: Department of InformationGaomputing Sciences, Universiteit Utrecht, P.O. Box 80588
TB Utrecht, The Netherlands

124 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

programming tasks, thus enabling programming at a highatlof abstraction, and increasing main-
tainability and re-usability of programs. Automatic applion of program transformations requires
their implementation in a programming language. In ordantke the implementation of transforma-
tions productive such a programming language should stgstractions for the domain of program
transformation.

Term rewriting[35] is an attractive formalism for expressing basic progteansformations. A re-
write rule p; — po expresses that a program fragment matching the left-haled pstternp; can be
replaced by the instantiation of the right-hand side paiter For instance, the rewrite rule

L <+ 351 -> I k 1l where <add>(z,5) => k

expressesonstant foldingor addition, i.e. replacing an addition of two constantstgir sum. Simi-
larly, the rule

[if O then el else e2 1 -> I[e2 1l

definesunreachable code eliminatidoy reducing a conditional statement to its right branchesthe left
branch can never be executed. Thus, rewrite rules can lglieeqiress laws derived from the semantics
of the programming language, making the verification ofrtiserrectness straightforward. A correct
rule can be safely applied anywhere in a program. A set ofiteviules can be directly operationalized
by rewriting to normal form, i.e. exhaustive applicationtio¢ rules to a term representing a program. If
the rules are confluent and terminating, the order in whiely tire applied is irrelevant.

However, there are two problems associated with the apilicaf standard term rewriting tech-
nigues to program transformation: the need to intertwiresrand strategies in order to control the
application of rewrite rules and the context-free natureeufrite rules.

Exhaustive Application of Rules Exhaustive application of all rules to the entire abstrgotax tree
of a program is not adequate for most transformation proslehine system of rewrite rules expressing
basic transformations is often non-confluent and/or nomiteating. An ad hoc solution that is often
used is to encode control over the application of rules inorules themselves by introducing additional
function symbols. This intertwining of rules and stratsgadscures the underlying program equalities,
incurs a programming penalty in the form of rules that defitraeersal through the abstract syntax tree,
and disables the reuse of rules in different transformation

The paradigm of programmable rewriting strategies solvegtoblem of control over the application
of rules while maintaining the separation of rules and sgi@s. A strategy is a little program that
makes a selection from the available rules and defines thex artl position in the tree for applying
the rules. Thus rules remain pure, are not intertwined vti¢ghdtrategy, and can be reused in multiple
transformations. Support for strategies is provided by mber of transformation systems in various
forms. In TAMPR [5] a transformation is organized as a seqaef canonical forms. For each canonical
form a tree is normalized with respect to a subset of the rinl¢ise specification. ELAN [4] provides
non-deterministic sequential strategies. Stratego [8443] provides generic basic traversal operators
that can be used to compose a wide range of generic treesahsshemas. See [42] for a survey of
strategies in rule-based program transformation systems.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 125

Context-free Nature of Rewrite Rules The second problem of rewriting is the context-free natdre o
rewrite rules. A rule has access only to the term it is tramsiiog. However, transformation problems
are often context-sensitive. For example, when inliningracfion at a call site, the call is replaced by
the body of the function in which the actual parameters haenlsubstituted for the formal parameters.
This requires that the formal parameters and the body ofuhetibn are known at the call site, but
these are only available higher-up in the syntax tree. Theesemany similar problems in program
transformation, including bound variable renaming, tymeking, data flow transformations such as
constant propagation, common-subexpression eliminatod dead code elimination. Although the
basic transformations in all these applications can beesgad by means of rewrite rules, these require
contextual information.

One solution to this problem is the use of contextual rule8¥3 44]. A contextual rule solves the
context problem by applying the transformation at the cdnyvel instead of at the location where the
actual transformation takes place. A context expressgiga’] matches or replaces an expression
occurring withine . For instance, the following contextual rule defines thaing of a (unary) function
definition at a function call site:

UnfoldCall :
Il let function f(=z) el in e2[f(e3)] end 1 ->
Il let function f(z) = el in e2[let var ¢ := e3 in el end] end]|

The rule is applied to an abstract syntax tree that contaitisthe function definition and its uses. Since
function calls can be nested deeply in the body ofltee expression, a local traversal is needed to find
them. When such a rule is applied as part of a complete travever a program, e.g., to perform inlining
for all function definitions, the extra local traversal lead quadratic complexity.

To avoid this complexity, the more common solution to thiskpem is to extend the traversal over
the tree (be it hand-written or generic) such that it distkls the data needed by transformation rules.
For example, traversal functions in ASF+SDF [7] can be dedldo have an accumulation parameter
in which data can be collected. Language independent defigibf operations such as bound vari-
able renaming in Stratego [38] capture a generic tree tsalechema that takes care of distributing an
environment through a tree.

The disadvantage of such solutions is that the rewritingineabf the solution is lost. Instead of
a rewrite rule performing a transformation, the traversaties along a data structure that stores the
context information. The traversal code manages this datatsre in order to add information at the
appropriate places and retrieve it in other places. Foamnt, an inlining algorithm needs to maintain
a table, mapping function names to their definitions. Thes@a dtructures and operations are often
complicated by the fact that the context information is goed by the scope and the data flow of the
object program. Further complications arise when multlpheds of context information need to be
carried along. Many variations of such data structures seel in transformation systems, e.g. symbol
tables in type checking, and hash tables in value numbe?ifiy Representation of such data structures
as terms within term rewriting has the disadvantage of thmgtmal complexity of list manipulation
and inspection.

Dynamic Rules This article shows how context-sensitive rewriting can tieieved without the added
complexity of local traversals and without complex datadtures, by the extension of rewriting strate-
gies with scoped dynamic rewrite rulesDynamic rules are otherwise normal rewrite rules that are

126 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

defined at run-timexnd thatinherit information from their definition contextAs an example, consider
the following strategy definition as part of an inlining tshormation:

DefineUnfoldCall =
?7|[function f(z) = el]l
; rules(UnfoldCall : |L f(e2) 1| -> I[let var = := e2 in el end])

The strategpef ineUnfoldCall matches a function definition and defines the rewriteUnlg1dCall,
which rewrites a call to thepecificfunction f, as encountered in the definition, td.at expression
binding the formal parametar to the actual parametet in the body of the functiorez. Note that the
variablesf, z, ande1 are boundn the definition contextf UnfoldCall. TheUnfoldCall rule thus
definedat the function definition site, can lusedat all function call sites. The storage and retrieval of
the context information is handled transparently by theatilyihg language implementation and is of no
concern to the programmer.

The concept of defining rules dynamically is enriched withuenber of additional concepts:

e Multiple ruleswith the same name can be defined at the same time Yafp1dCall rules for
multiple functions).

¢ Rules can beedefined(e.g. a new definition dinfoldCall for a function after its definition has
been transformed).

¢ Rules can beindefinede.g.UnfoldCall is undefined for recursive functions).

e Thescopen which a rule is applicable can be limited (e.g. a specifitniteon of UnfoldCall can
only be used in that part of the abstract syntax tree in whietcbrresponding function definition
is in scope).

e Scope labelprovide fine-grained control over the scope in which a ruléefined (e.g. the spe-
cializations of a function should be added to the scope dfftimetion).

¢ Rules can be extended to rewrite to multiple right-handss{éey. in partial evaluation a function
definition can be rewritten to multiple specializations).

¢ Rule sets can be forked and later joined again with inteisedr union operations, which also
have fixed point variants. These operations can be used telrfm#ting and joining in the data
flow of a program (e.g. after constant propagation in the ditas of an if-then-else statement
the continuation of the statement should use the intemedf the propagation facts from the
branches).

These concepts are combined in a natural extension of thetireyparadigm that does not require

transformation programmers to learn fundamentally newcepts. Dynamic rules are implemented in
an extension of the Stratego language where they providagéeshigh-level abstraction for dealing

with context information in a wide range of program transiations. Dynamic rules have already been
proven useful in a wide range of transformations, includitige substitution in bound variable renam-
ing [39]; the call replacement in function inlining [39];¢memoval of declarations in dead code elimina-
tion [39]; the binding of variables in interpretation [1#je representation of data flow facts in data flow

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 127

optimizations, e.g. the mapping from variables to theiugalin constant propagation [26, 27] or the
mapping from expressions to variables in common subexprestmination; the specialization of func-
tions in partial evaluation; the representation of typaegasaents in typechecking; and the memoization
of instruction selections in code generation [9]. The laggiconstructs have been carefully designed to
provide a natural fit in the rewriting setting, while at thengatime making an efficient implementation
of the various operations possible, for instance, using) katdes for fast storage and retrieval of data.

Contribution Dynamic rules provide a small and coherent language extetisat captures many spe-
cialized data structures such as symbol tables and tabiesdfaepresentation of data flow facts. This
high-level abstraction for program transformation is ijpeledent of any object language or kind of trans-
formation and supports concise specification of data flowaher transformations. This in turn enables
implementations of compilers and other transformationesys in significantly fewer lines of code, with
all the associated benefits for productivity, understaititigtand maintainability. A particular contribu-
tion of the use of dynamic rules is the combination of progearalysis and program transformation in a
single traversal, making it possible to achieve betterltesinan with separate analysis and transforma-
tion stages, since the effects of transformations can ke insmnalysis immediately.

With respect to the earlier paper [39] that introduced dyicamles by example, this article con-
tributes the following. New concepts are the extension ofadhyic rules with multiple right-hand sides,
the application of dynamic rules only once, the scope labalisimprove and generalize the earlier ‘over-
ride’ feature, and the intersection and union operatorstivalel data flow splits in a transparent manner.
The syntax of the various operations has been simplified aademrthogonal. In addition, this article
presents a formal operational semantics of Stratego witluiyc rules. The implementation of dynamic
rules is described in the technical report version of thiglar[8]. Finally, we illustrate the various
concepts with actual Stratego code (possible due to theésamass of the language) including several
as yet unpublished applications such as common subexpnesignination, dead code elimination, and
function specialization.

Outline We have aimed this article to be self contained. Thereftre fitst two sections review the
basics of program transformation with rewriting strategiSection 2 reviews the representation of pro-
grams as terms, the Tiger language that will be used in exan@rm rewriting, and its use in program
transformation. Section 3 reviews the basics of rewrititigtegies in Stratego and defines the syntax
and operational semantics of the language as basis for fimitide of the extension with dynamic rules.
Sections 4 through 7 introduce the concepts of dynamic.ritesh section uses example transfor-
mations to motivate the concepts before giving a formal ajg@nal semantics. As a running example
an implementation of constant propagation is graduallgreéd. Section 4 starts with the definition of
dynamic rules, the shadowing of earlier definitions, anduthé@efinition of rules. These ideas are illus-
trated with constant propagation in basic blocks. Sectimtrbduces constructs for the restriction of the
scope of dynamic rules and locally shadowing of earlier @efirules, which is illustrated with bound
variable renaming and inlining. Scopes are further refingl labels enabling definition or redefinition
of rules in earlier scopes. This is illustrated with intreqedural constant propagation and dead func-
tion and variable declaration elimination. Section 6 edtedynamic rules with multiple right-hand sides
and limited application. This is illustrated with commorbsxpression elimination. Section 7 describes
the operations for intersection and union of rule sets tdempnt flow-sensitive data flow transforma-

128 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

tions. The operations are illustrated with flow-sensitigaditional constant propagation and dead code
elimination. Section 8 describes a strategy for onlineiglagt/aluation as a larger example.

Section 9 discusses related work and Section 10 concludggerflix A provides the definition of
free variables of a Stratego expression. The design of dignartes as described in this paper reflects
the implementation of dynamic rules in Stratego/XT ver€idt¥ [46].

2. Program Transformation by Term Rewriting

In this section we review standard term rewriting and itsliagpon to program transformation, which
requires the representation of programs, or rather thairatt syntax trees, as terms. Throughout this
paper we use Tiger, the example language in the compiletroatison textbook of Appel [2], to illustrate
all aspects of program transformation with rewriting stgg¢s and dynamic rules. Therefore, we start
with a brief overview of Tiger.

2.1. The Tiger Language

Tiger is an imperative, first-order language with nestedfions. Figure 1 presents the syntax of Tiger
programs in BNE. In Tiger, data is composed using arrays and records fropgéms and strings, but in
this paper we ignore arrays and records. Integer valuesracegsed using the standard built-in arith-
metic and relational operators. Boolean values are repiedd®y integers as in C, thogepresents false
and all other integers represent true. Control flow is detethusing theif-then-else, if-then,
while andfor constructs. As an inheritance from functional languagestetis no syntactic distinc-
tion between expressions (yielding a value) and staterm{prsiucing a side effect). This entails that
assignments and loops can be used within ‘expressions] uk& sequence construct. A sequence of
expressionges ;. . . ;e,) corresponds to the sequential composition of the expnessioto e,,. When
used as an ‘expression’, the last expression of the sequeaseproduce a value. Thus, := a + (y

:= x + 1; y) is avalid assignment statement. Variables and functiorisger are introduced in the
let construct. A variable or function is visible in all subseguéeclarations and in the body of thet.
Function definitions can be nested and can refer to all fanstand variables in scope. The program in
Figure 2 illustrates the essential aspects of the language.

Subsets of Tiger To avoid complexity that is not relevant for explaining attea of the transformation
language, many of the presented transformations areatestio a specific subset of the Tiger language.
We distinguishbasic blocksfunction bodiesand programs witlpure expressionsA basic blockis a
sequence of simple statements without control flow, i.e. x@mession of the form(z; := e1; ...;

ZTn = ep). An example basic block i$x := a + b + 42; y := x + y; a := x + 3). Intra-
proceduraltransformations work on function bodies with local vareldeclarations in let bindings, but
without nested functions. Such expressions can be coesiaeéth or without control flow. For example,
the expression

let var x :=a +b +42; vary :=x+y in a:=x+3; x+y end

Y In actual Stratego/XT transformations, syntax definition§SDF2 are used, mostly. The full syntax definition of Tiger i
SDF2 consists of some 300 lines of code and its details arefriaterest to this article.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 129

d = VarDec: var z ta := e variable declaration
FunDecs: fd;...fd, function definitions
fd u= FunDec: function f(fargi,...,farg,) ta = e function definition
farg == FArg: zta function argument
ta = Tp: :tp type declaration
NoTp: € no type declaration
e = Var: =z variable
Str,Int: str|i string, integer constant
BinOp: e; + ex|e; - ex|er * ea] ... arithmetic
Rellp: e < ex|e; > exer = ea] ... relational
And,Or: e; & exler | ey Boolean
Assign: x :=e assignment
Call: f(ep,...,epn) function call
Seq: (er;...;en) sequence
If: if e; then e, else ej conditional
IfThen: if e; then e» conditional
While: while e; do ey while loop
For: for z := e; to ey do e3 for loop
Let: let d;..d, in e;;...;e,, end let binding
Figure 1. Abstract syntax of a subset of Tiger.
let var maxnbr := -1 var count := 0
function nextnumber() : int =
let var number := readint()
function setmax(number : int) = if number > maxnbr then maxnbr := number
in count := count + 1; setmax(number); number < 0 end
in while(nextnumber()) do ();
print ("umber of values: "); printint(count);
print("maximum: "); printint(maxnbr) end

Figure 2. Example Tiger program.

is a basic block with local variables, but no control flow. Taek of separation between statements and
expressions, allowing expressions such as

y := (if x < y then (a := x + 1; a) else x + y)

can complicate transformations. Programs can be transfbaatomatically to a form in which expres-
sions arepure, i.e. side effect free and separate from statements, lnygliéixpressions with side effects
to the statement level. Thus, the assignment expressioreaam be transformed to

if x < y then (a :=x +1; y :=a) elsey :=x +y

For some transformations we will assume programs to pave expressionsNote that theif-then-
else operator can be used in pure expressions as long as all exg@ssions are pure. Naturally the

130 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

tu= str = str() string constant
i =10 integer constant
¢ =cO nullary constructor application
c(ty,...,ty) n-ary constructor application > 0
(t15.-.5tn) =Tuple(ti,...,ty) n-ary tuplen > 0
[ti,...,t,] =Cons(t1,...,Cons(t,,Nil())) list

Figure 3. The Annotated Term (ATerm) Format.

simplified forms of Tiger programs can be achieved usingstiamations, but we will not discuss those
transformations in this article.

2.2. Representing Programs as Terms

A context-free grammar for a programming language indudesesstructure for programs [1, 2], which
can be used as a structured representation to transformapmeg The trees induced by a context-free
grammar are isomorphic to first-order terms, which are tha denipulated in term rewriting. Arst-
order termis essentially a constructerapplied to a, possibly empty, list of first-order terms..t,, as
defined by the following grammar:

tu= c(ty,...,ty) n-ary constructor application > 0
c == identifier| str |4 constructors

Constructors are identifiers, quoted stringg-), or integer constantg)(While this is the notion of
terms we will use when considering the semantics of Strategaise a slightly enriched term format in
actual Stratego programs.

The Annotated Term (ATerm) Format a format for the representation and exchange of strutture
data [6]. The format basically corresponds to first-ordemteas defined above, but provides a little
syntactic sugar for common terms such as tuples and lisessgidmmar in Figure 3 defines the structure
of ATerms, and indicates using the equivalences how ATewn®spond to first-order terms. Note that
the adjectiveannotatedstems from the fact that ATerms can be annotated with terfiestare that is not
considered in this article. Stratego is indifferent to tbarse of the terms it transforms. These can be
produced by a parser derived from an SDF2 syntax definiti6h [t may be produced by any program,
including for instance a YACC parser or another Strateggzim.

To illustrate how programs correspond to terms, considerctnstructors assigned to productions
in the grammar for Tiger in Figure 1. Examples of terms overTiger grammar argar ("x") which
represents the variable Call (Var ("£"), [Var("x")]), which represents (x), the call of function
f with argumentx; andLet ([VarDec ("x" ,NoTp,Int("1"))], [Var("x")]), which represents the
expressionlet var x := 1 in x end, the declaration of local variable initialized to the integer
constantt.

A term patternis a term with variables, that is, a pattern is either a véeialy the application
c(p1,...,pp) Of ann-ary constructorc to term patterng;. To emphasize the distinction between
term patterns from terms without variables, the latter araetimes referred to atosed terms

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 131

2.3. Term Rewriting

Term rewriting is a declarative paradigm for transformiegrs. A rewrite system consists of a set of
rewrite rules of the formL: p; -> py where s, consisting of a label, term patterng; andp,, and
conditions. An unconditional rule has the fori: p; -> po. A conditions is some computation, in-
volving the variables bound by the left-hand side, eithexc&ing an additional constraint for application
of the rule and/or producing values to be used in the rightdtsade by binding new variables. The exact
nature of conditions will be discussed in Section 3. Exasplerewrite rules are the following constant
folding and desugaring rules:

EvalBinOp : BinOp(PLUS, Int(%), Int(y)) -> Int(k) where <add>(%i,7) => k
DefAnd : And(el, e2) —> If(el, e2, Int("0"))

Note that pattern variables are typeset in italics.

A patternp; matches with a termif there is a substitutioa mapping the variables im, to subterms
of ¢ such thatr(p;) = t. Arewrite ruleL: p; -> p, where s applies to a term if the left-hand side
patternp, matchest with substitutiono, the conditions succeeds under producing an extensios’,
and returns the instantiation of the right-hand side pagigwith ¢’. For example, the expression

And(Var("x"), BinOp(GT, Var("x"), Int("5")))
is rewritten by ruleDef And to
If (Var("x"), BinOp(GT, Var("x"), Int("5")), Int("0"))

As should be apparent from this description, a rewrite rale &ccess only to local information, i.e. the
subterms of the term to which it is applied, and thus lackgecdrinformation. This is the problem we
set out to solve with dynamic rules.

The usual interpretation of a set of rewrite rules in staddawriting engines is to compute the nor-
mal form of a term with respect to all rules, that is, exhawdyi apply rules to all subterms until no
rule can be applied anymore. In this interpretation, it isally assumed or required that rule sets are
confluent and terminating. That is, any order in applicatibthe rules has the same result (confluent)
and always leads to a normal form (terminating). The lackesé properties in pure rewrite rules leads
to workarounds in the form of additional constructors (fiimrs) that control the order in which transfor-
mations are applied and leads to tangling of rewrite rulesthair application strategy. Programmable
rewriting strategies avoid this tangling by allowing aftative strategies to be defined independently of
the rewrite rules.

2.4. Concrete Syntax

We have argued above that programs can be represented astathat term rewrite rules can be used
to manipulate programs. However, when manipulating lapgegram fragments, term syntax tends to

become harder to understand. Exploiting the isomorphistwedsn the trees induced by context-free

grammars and terms, we can use toacrete syntanf the programming language to express the term
patterns of rewrite rules [40]. We writf £]|, with £ a phrase in concrete syntax, to denote the term
corresponding td. For example, the rule

EvalBinOp : L e + 01 > [e]l

132 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

EvalBinOp : [e +0 1 —> I[e]
EvalBinOp : IL 2 + 7 I -> Il & 1| where <add>(i, j) => k
EvalBinOp : IL 2 * 7 1 -> Il & 1| where <mul>(i, j) => k

AddAssoc : [(el + e2) + e3 1 > I[el + (e2 + e3) 1

EvalIf : Il if O then el else e2]| > I[e2 1]
Evallf : L if 2 then el else e2]| -> Il el]| where <not(eq)>(%, 0)
EvalWhile : [while 0 do e 1 > L O 1

EmptyLet : I[let in e* end 1 -> I[(ex) 1

LetSplit : |[let dI d2 d* in e* end]| -> |[let dI in let d2 d* in e* end end]
LetFlatl : |[let d in let d* in e* end end]| -> |[1let d d* in ex* end]|

DefAnd i Il el & e2 1| —=> [if el then e2 else 0]|

DefOr : L el | e2 | => [if el then 1 else e2]

AssignIf : |[[z := (if el then e2 else e3)] -> |[[if el then z := e2 else z := e3]
ElimIf : [if e then () else O I > IL (e; O) 1

ElimIf : [if el then e2 else () 1| -> [[if el then e2 1l

ElimIf : [if el then () else e2]| -> [if not(el) then e2 1l

ElimIf : [if e then () 1-> I[L Ce; O) 1

ElimFor : [for © := el to e2 do O 1 > IL (e1; e2; O) 1

Figure 4. Some rewrite rules for Tiger expressions.

denotes the following rule using abstract syntax:
EvalBinOp : BinOp(PLUS, e, Int("0")) -> e

Stratego supports the specification of transformationesystwithconcrete object syntafor arbitrary
object languages [40]. In the rest of this paper, we will ugececete syntax for all terms iexample
specifications. In the semantic rules we will use the termesgntation, i.e. consider terms of the form
c(ty,...,t,). In example programs, pattern variables will be typesetalics. Figure 4 presents a set
of rewrite rules on Tiger expressions, some of which will eferred to in later examples. Note that the
names of meta-variables correspond to the non-terminalgimiger grammar in Figure 1; for example,
e denotes a Tiger expressian,a Tiger variable, and an integer constant.

3. Rewriting Strategies

Programmable rewriting strategies provide a mechanismadbreving control over the application of
rewrite rules, while keeping rules and strategies sepérabtel avoiding the introduction of new con-
structors or rules. The strategies in Stratego were ingfliyethe strategy language Bt AN [4], which
was itself influenced by tactics in theorem provers. The ifipatontributions of strategies in Stratego
are first class pattern matching and generic traversal lmasbdsic traversal operators [22, 43, 44]. This

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 133

P u= di...dy, program (list of definitions)
d n= dsig = s strategy definition
dsig == f(sdy,...,sdy | vdy,...,vdy) definition signature
sd u= f| fitp strategy argument (with optional type)
vd n= x| z:tp term argument (with optional type)
P n= str|i|r string, integer, real constant
T term variable
c(p1y..., Pn) constructor application
s = 7p match
I'p build
{z1,..;xn s term variable scope
let dy,...,d, in s end local definitions
81,y Sl D1y, D) call
id identity
fail failure
S1 3 89 sequential composition
51 < 89 + S3 guarded deterministic choice
c(S1, .00y Sp) congruence traversal
tr(s) traversal to subterms
tr m= all|one traversal operator
I = identifier strategy operator
z x= identifier term variable
x= identifier constructor
tp = . type (omitted)

Figure 5. Syntax of (a subset of) core Stratego.

section reviews the syntax and semantics of basic rewrdtiredegies in Stratego and lays the foundation
for their extension with dynamic rules in the next sections.

3.1. Syntax and Semantics

Syntax Stratego is split in a core language providing the fundaaleanstructs and syntactic abstrac-
tions defined in terms of those constructs. The syntax of Stnaego is presented in Figure 5. The core
language is enriched with several syntactic abstractidmshware presented in Figure 6 and which are
reduced to the core syntax of Figure 5. The extension of&gfoatvith dynamic rules is introduced in
Section 4. The syntax definition in Figure 5 also introdudesmeta-variableghat will be used in the
operational semantics. For instangalenotes a strategy ampda term pattern. Note that the core syntax
in Figure 5 is not complete. We are omitting generic term dstoction [38], some traversal operators,
and term annotations.

134 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

d dsig : p1 —> pa (where s)? rule definition (with optional condition)
dsig fsdy, ..., sdy) definition without term arguments

f definition without arguments
p (P1,y ey Pr) tuple

p1; . P | P] list

[p1, ..., pnl fixed length list

if s1 then so else s3 end

conditional choice

§1 < Sy deterministic choice

where(s) test

not(s) negative test

<$>p apply to pattern

s=>p match against pattern
F(81,ee,80) call (only strategy arguments)

f call (no arguments)

rec f(s) recursive closure

{s} local scope for all free variables in

Figure 6. Extensions (sugar) of the syntax of core Stratego.

Operational Semantics A rewriting strategyis a program that transforms a term or fails at doing so.
In the case of success, the result is a transformed termeloatbe of failure, there is no resulting term,
but the state may be changed. A rewrite rule is just a strategyapplies a transformation to the root of
a term. Strategies can be combined into more complex skeatbg means of strategy combinators. In
this section, we will give an overview of the constructs & Bitratego language and define them using
a formal operational semantics. The operational semaist&s extension of the semantics presented in
[43, 44], and integrates an environment and a state in tles.riilhe semantics should be understood as a
description of the behaviour of programs, not (necesgaaiya model of the implementation.

The semantics of the core constructs is defined in terms eftamss of the form
D, T, EF (s)t = ' (I",&)

which states that the application of strategio subject ternt in the context of strategy definition3,
statel’, and environmeng evaluates to the new subject tetimstatel”, and environmeng’. A failing
strategyapplication is denoted by an assertion

D, EF(s)t = 1t (I',&)

That is, the result of the application of a strategy is in tbendin of terms extended with the special
valuet, denoting failure. We usgto denote a value from the extended domain of terms, whaleays
denotes a term, and not failure. Strategy definitions in #id)sare only visible in the lexical scope
of their definition and are not changed as result of stratqmpfi@ations. We omit strategy definitions
from semantic rules, except in Section 3.4, where we defigie semantics. StatdSare used to model

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 135

dynamic rules; their structure will be described in SecdonEnvironments£ model pattern variable
bindings. Note that changes to the state and environmenpraszrved in the case of failure. The
semantics of syntactic abstractions is expressed by mdapguationse; = e,. We will also use
such equations to illustrate some of the algebraic praggedf the language constructs. Equations are
universally quantified unless otherwise indicated.

3.2. Matching and Building Terms

In the previous section we described rewrite rules as apesathat first match their left-hand side
pattern, then evaluate their condition, and finally ingtdatthe right-hand side pattern. Instead of taking
rewrite rules as basic actions, in Stratego the actionsntlade up rewrite rules are first class. That is,
matching a term against a pattern and instantiating a patdsuild a new term are first class strategies.
The strategy?p denotes matching against the pattgrand ! p denotes building an instantiation of the
patternp. This decomposition allows many language constructs todfi@et from first principles. For
instance, a rewrite rulg; -> po corresponds to the sequential composition ; ! p;. The sequential
composition of strategies will be defined formally belowt Biuicomes down to first applying the first
strategy and then the second. To define match and build pheweis need variable binding environments.

Environments A variable binding envionmerf = [z — ¢, ..., z,, — &,] is a finite ordered map-
ping from variables to closed terms or failure. An envirominean contain more than one binding for
a variablex, in which case the first binding (from the left) is applicablEhus, theapplication of an
environment to a variabler is defined as

_ _ T oifr=sandVi<i:a,
(01 5 Ty g o T () = 4 0 @i = wandvy <icaFo
T ifVi<n:z;Z«x

Theloose applicatior€ (z) of an environment behaves as the identity map on unboundbles:

E@):{t if £(z) =t

z otherwise

The application of environments can be extended to ternepatiand strategies. Th#ict instantiation
&(p) of aterm patterp with an environmen€ yields the closed term obtained by replacing each variable
x in p with £(z), if each€& () is defined, and otherwise. Théoose instantiatiort (p) of a term pattern

p with an environmen€ yields the term pattern obtained by replacing each variabitep with £ ().

The loose instantiatiod (s) of a strategy expression consists in replacing each term patterin s

with &(p).

An environment’ is arefinemenbf the environmen€ (notation&’ 3 &) if £’ has the same domain
as¢& and ismore definedhané. Thatis, if€ = [z, — t1,...,z, — ,] then’ = [z; — E, ooy Ty > 1]
and for each, £(z;) = &'(z;) or E(x;) = T and&’(x;) = ¢ for some termt. An environment’ is the
smallest refinemerdf £ with respect to a term pattegn(notation’ 1, £), if £’ J & and for allz not
inp, &'(x) = £(z). That is, the only difference betweé€handé& are bindings for variables in.

The compositionf; &, of two environments; andé&s is equivalent to the concatenation of the two
mappings.

136 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Match The match operationnp matches the subject term against the term patterihis involves
checking that the subject term corresponds to the pattedralso involves binding the variables in the
pattern to the corresponding subterms of the subject teratciihg is defined by the following rules. A
strategy?p applies to a ternt if there is an environmenrf’ that refines the current environmehtand
makesp equal tot. A match fails if there is no such environment.

£, & Ep) =t ~3E (€' D, € & E'(p) =)
[,EF (7p)t — t(L,&) LEF (7p)t — 1 (1,€)

Note that patterns may be non-linear or contain variablas ltve been used in an earlier match, but
that the definition off entails that such variables can only be bound to the sametkayrwere bound
to before.

Example: applying IL(e1 | e2) & e3]ltothetermi[(a < b | ¢) & 4 > 10]l succeeds since
the environmentez — [[a < bll, e2 — Ilcll, e3 — [[d > 10]] makes the pattern equal to the sub-
ject term.

Build The build operation p replaces the subject term with the instantiation of thegpaj using the
bindings from the environment. The semanticd pfs defined as follows:

LEF(Ip)t = E(p) (I',€E)

Note that this uses the strict instantiationggfentailing that if one of the variables mis not bound
in £, the build fails. Example: in the presence of environmet — [[a < bll,e2 — [[c],e3 —
I[d > 1011}, the build! [[(ez | e2) & e3] producestheterni(a < b | ¢) & d > 10].

Scope Once a variable is bound, it cannot be rebound to a differenmb.t Thescope of a variable
bindingcan be restricted using tHe:1 , . . . ,z,, : s} scope construct. That is, the binding to a variahle
outside the scopézr,, . . . ,z,: s} iS not visible inside it, nor is the binding tq inside the scope visible
outside it. The semantics of the scope construct is forntfined as follows:

Dyfyr = 1y e Y = NEF (w1 /21 yn/zn]s) t = ¢ (I, [y1 = 1y ooy Un > Ea)E') (Y1 ynfresh)
D, ({z1, oy xp s}t = ' (I, &)

That is, the strategy, with the scope variables replaced by fresh copies, is ateduin an extended
environment in which the local variables are unbound iliytigAfter the application of the strategy the
new bindings are removed from the environment and the oldihgs are recovered. The convenience
construct{s} implicitly makes all free variables ia local:

{s} = {z1,..., x5} with {zy,...,2, } = freevargs)

Appendix A gives a formal definition of the free variables ateategy expression.

Example: In the strategy expressiodel,e2,e3:7|[(e1|e2)&e3]l;!I[(el1&e3|e2&e3)]},
the scope of the variables?, e2, and e3 is restricted to the match-build sequence. Thus, this ex-
pression implements a rewrite rule that can be used mutiiples. That is, each time it is applied, fresh
unbound variables are used in the pattern match. As an dbkiddransformation, which distributes
over |, is only valid if e3 is apure Tiger expression, since the3 computation is duplicated.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 137

3.3. Strategy Combinators

Match and build are the basic operations of program tramsition and can be combined using a few
built-in combinators into complex transformations. Thentinators can be divided into control combi-
nators and traversal combinators. We start with the forarat,come back to the latter in Section 3.5.

The control combinators basically allow composing tramsfations sequentially, or choosing be-
tween transformations. For programming with these combisait is useful to have the identity and
failure strategies as unit or zero:

[,EF (id)t = t(I,E) TL,EF (fail)t = 1 (I,€)

The identity strategyid always succeeds and leaves its subject term unchangedfaillre strategy
fail always fails.

Sequential Composition Thesequential compositios, ; so Of strategiess; ands,, first attempts to
apply s; to the subject term. If that succeeds, it appliges$o the result; otherwise it fails.
D,ER (s1)t = ¢ (I",&") IV, & F (so)t! = " (I",E") [,EF(s1)t = 1 (I, &
[,EF (s1; s9)t = 1" (T",E") DEF (815890t = (I, &)
From this definition it is clear that in the sequential comfias ?p; ; ! p» of a match and a build, the

bindings from the match are carried over to the build via t@renment&’ in the first rule above. The
identity strategy is a unit for sequential composition, &illire a left zero, i.e.

id;s=s s;id=s fail ; s = fail ds:s; fail # fail

However, failure is not a right zero for sequential composibecause of the effects on the state that the
first strategy may have.

Guarded Choice The other fundamental strategy combinator isgbarded choice; < s9 + s3 Of
strategies, so, andss. It first attempts to apply; to the subject term. If that succeeds it appkgso
the result, but if it fails, it appliess to the original subject terrand environment.
[,EFR (s))t = ¢ (I",&") I, &F (so)t = " (I",E")
Irér <31 <S89+ 83) t = 1 (P",gu)

D,EF (s1)t = 1+ (I",&") T, EF (s3)t = ' (T",E")
I.ér <31 < s59 + S3> t =t (Fllvgll)
The following laws illustrate the choice between the brascimduced by success or failure of the guard
strategy:

id < 89 + 53 = $9 fail < 59 + 83 = S3

This might suggest that the combinator is a simple condifi@moice, which it is not. Rather it is a
limited backtracking combinator. The guard strategyan be a complex strategy that may fail at some
point, in which case control backtracks to thgstrategy, which is applied to the original subject term
and environment. But when thg strategy succeeds, the choice is committed and contrainces with
s9; NO backtracking ta; is then possible, even i, or the continuation of the expression fails.

The guarded choice operator is rarely used directly. A nunabesyntactic abstractions capture
typical uses of the choice.

138 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Deterministic Choice Thedeterministicor left choices; <+ sy of strategiess; andss, first attempts

to apply s; to the subject term. Only i, fails, it attempts to apply, to the subject term. 1§; and

s9 both fail, the choice fails as well. The left choice combirdts a special case of the guarded choice
combinator as expressed by the first of the following equatio

81 < S9 = 851 <id + 59 id < s = id Jds:s<idZ s fails*s=s s<fail=s

The other equations assert that identity is a left zero, buamight unit or zero for left choice, and that

failure is a left and right unit for left choice. The inequglabove indicates how left choice and identity
can be used to turn a strategy that may fail into a strategyatilays succeeds. Note that sequential
composition does not distribute over left-choice:

Js1, 52,53 1 (S1 % 82) 5 53 Z (515 83) < (525 53)
3s1, 82,83 81 ; (89 % s3) Z (515 82) < (815 53)

In the first case the incorporation ef in the choice may lead to failure of the left branch whileby
itself might succeed and commit the choice. The first caserhes an equality if3 is guaranteed to
succeed. The second case is an equality in gabas no effect on the staté

The choice combinator is typically used as prioritized chdbetween rewrite rules; i to s,, are
rewrite rules, then the strategy < ... < s,, tries each of the rules one by one from left to right, stopping
as soon as one of the rules has been applied successfully.

Testing A strategy can be used testa property of a term, in which case one is not interested in the
result of the transformation, but only in the fact of its segs or failure. This can be achieved using the
where andnot combinators, which are defined as follows:

not(s) = s < fail + id where(s) = {z: 7z; s; 'z}} z ¢ freevargs)

Thewhere combinator tests whether a strategy succeeds, ansbtheombinator tests whether a strategy
fails. Both combinators restore the original term, but tfieats on the state and in casewtfere on the
environment are retained. The following laws hold for thesmbinators:

where(id) = id where(fail) = fail not(fail) =id not(id) = fail

If-then-else-end The guarded left choice combinator is reminiscent of theveotional if-then-else
construct in which the condition decides on the branch. édd&tratego provides a@f-then-else-end
construct defined as

if s1 then s9 else s3 end = where(sy) < s9 + S3

The condition in this construct preserves the subject tesinguhere, entailing thatss and s3 are
applied to the original subject term.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 139

Abstractions for Applying Strategies The first class status of pattern matching and instantiation
makes it easy to define compound constructs capturing frelgueccurring uses of these operations.
One such use is the direct application of a strategy to a tattenn and matching the result of a strategy
application to a term pattern. These are expressed usingptistruct<s>p ands => p, respectively,
which are defined as

<s>p = !p; s s =>p=35;7

A typical example is the combined use of these constructssiredegy expressiotadd>(z,7) => k,
which is thus equivalent to (%, 7); add; 7k and applies the strategydd to the pair(z, 7) and
matches the result against the pattern

3.4. Strategy Definitions

With matching and building as basic operations, complemsfiarmation strategies can be constructed
using a small set of built-in strategy combinators. In ortdesbstract over recurring patterns in strategy
expressionsstrategy definitiongan be used to create new strategy combinators.

A strategy definitionf (f1,...,fulz1,...,2,) = sintroduces a new strategy combinafowith
body s, parameterized with strategy variablgs ..., f, and term variableg, ..., z,,,. An application
fGs1,.0.580lp1, ... ,pm) entails applying the body of f with the strategy arguments bound to
the strategy parametgf and the instantiated pattern argumemtso the term variableg;. To express
the semantics of strategy definitions we actually need d #mwvironmentD in the semantic rules that
keeps track of the available strategy definitions. Sincgdhvironment is static and just passed around
unchanged in all other rules, it is omitted there.

Divesi(f) = fCf1y s fulzr,eszm) = s t1 =EP1)tm =EPm) & =[z1 - t1..Zm = ty)
bind(D,E)(f(s15.-ssnlprs-. spm)) = ([f1=51---fn=5n],E",)

Drresn(f) = f(f1sevs fulzi, e zm) = s Fi:(1<i<mAE(p)=1)
bind(D,E)(f(s1,---s8nlpry--spm)) =1

bind(D, £)(f(519)) =1
D, I EF(fSIP)t = 1 (I,E")

bind(D,E)(f(31p)) = (D', &',s) D'D,I,EEF (s)t = ¢ (I",E'E")
D, T.EF(fGEIN)t = ' (IV,&")

The auxiliary ‘bind’ assertion is used to bind the actualapaeters of a call to the formal parameters of
a strategy definition. Her®xesh(f) produces a fresh instance of the strategy definitioyi,afe. using
unigue new nameg, ..., f, andzy, ..., z,, for all bound variables. In the implementation, this is of
course efficiently implemented by means of stack frames.e Nt the original environmerd may
change during the execution of the call since the strategynaentss, may refer to variables in that
environment and bind them, if not already bound. However,ghvironment’ does not change since
all term parameters are bound at call-time, as expressée iddfinition of ‘bind’.

The list of term arguments of a strategy combinator is opti@md the| can be left out if no term
arguments are present. Similarly, if the list of strategyuanents is also empty the parentheses may be

140 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

omitted. Thus we have the following equivalences for defini and calls:
Ffiseesfn) =s = f(fr,.--sfnl) =5 f=s=fU) =s
fGs1,c..,80) = f(s1,.--58,1) f =)

There are no global term variables in Stratego programsteftie, the scope of any free term variable
in atop-levelstrategy definition is the body of that definition:

fCfseosfulo, oo am) =5 = f(fi,.o o falz, oo, om) = {yr, .0 ,y:82
with y1, ..., y; = freevargs)/{z1, ..., zn, }

Example: The following definitions define the combinatey that attempts to apply a strategy, but
falls back toid when that fails, andepeat, which repeatedly applies a strategy until it fails:

try(s) = s <« id
repeat(s) = try(s; repeat(s))

Local Strategy Definitions Strategy combinators can be introduced locally usingliée-in-end
construct, which extends the definition environment whilecaiting the body of theet:

fresh(let di...d,, in s end) = let d}...d), in s’ end [d}...d,|D,I',E (')t = ¥ (I, &)
D,T,EF (let dy...d, insend)t = t' (I",&)

Again the names of the local definitions are renamed to avaidenclashes.

Recursive Closure Therecursive closurerec f (s) is syntactic sugar for a local recursive definition,
i.e.,rec f(s) is equivalenttdlet f = s in f end. The construct can be useful in strategy expres-
sions to abbreviate a recursive invocation. For exampleyriting repeat (s) = rec x(try(s; x))
instead ofrepeat (s) = try(s; repeat(s)).

Rewrite Rules Now we can define rewrite rules in terms of strategiedaleled conditional rewrite
rule is implemented by a strategy definition that first matcheddfiehand side pattern, then evaluates
the condition, and finally builds the right-hand side, asxjgressed by the equation:

dstg : p1 -> py where s = dsig = {x1,...,2,:7p1; where(s); !ps}
with z1, ..., z; = freevargp:, ps, s) /vargdsig)

An unconditional rule corresponds to a conditional rulehwtihe identity strategy as condition, i.e.,
dsig: p1 —> poisequivalenttaisig: p; -> po where id. Example: the rewrite rule

DefAnd : [el & e2 1] -> |[[if el then e2 else 0 ||
corresponds to the strategy definition

DefAnd = {el,e2: 7| el & e2]I; where(id); !'|[if el then e2 else O]|}

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 141

Multiple Definitions It is sometimes useful to give a set of rules the same name.instamce the
EvalBinOp rules in Figure 4 define multiple rules for evaluating binanthmetic expressions. A set
of definitions with the same signature are reduced to a sidefimition making a choice between the
bodies of the definitions, i.adsig = s; ... dsig = s,, = dsig = (s1 < ... < s,,). Note that the order
in which definitions are combined is not defined. Thus, it isegally only sensible to use this method
when definitions are mutually exclusive or confluent, asésdhse in the example rules above.

3.5. Term Traversal

The strategy combinators just described combine strategiich apply transformation rules to the roots
of their subject terms. In order to apply a rule to a subtetns mecessary to traverse the term. Strat-
ego defines several basic combinators which expose thet dubterms of a constructor application.
These can be combined with the combinators described abalefine a wide variety of complete term
traversals.

Congruence Congruence combinators provide one mechanism for ternersalzin Stratego. I is
ann-ary constructor, then the congruencégs, . . .,s;) is the strategy that applies only to terms of
the forme(tq, ... ,%,), and works by applying each strategy to the corresponding terny. For
example, the congruentet (s, ,sy) transforms terms of the formet (¢, ,t2) into Let (¢} ,¢,), where

t: is the result of applying; to ¢;. If the application ofs; to ¢; fails for anyi, then the application of
c(S81,...,8,) t0c(ty,...,t,) also fails. Congruence combinators can be defined usingtectutes

of the following form:

c(S15evesSp) o @1y enesxy) => c(y1,...,Yy) where <s1>x1 => Y1;...;<8,>T, => Yy

Congruences are very useful for defining traversals that@eeific for some abstract syntax. For exam-
ple, the following strategies define operations on listagisiongruences:

map (s) = [<« [s | map(s)]
filter(s) = [1 < [s | filter(s)] <« T1; filter(s)
Tl : [x | xs] —> xs

Themap strategy applies a transformation to each element of alistfails when one of those applica-
tions fails. Thefilter strategy does the same, but removes elements for which fieatpon fails.

In this article, we will use concrete syntax for congruenoesr Tiger constructs using the nota-
tion <s> to embed a strategy within a Tiger expression. Thus, for gkanthe strategy expression
I[[if <si;> then <s9> else <s3>] corresponds to congruente(sy,ss,ss) overtheif-then-else
construct and applies strategy to the condition and the strategies and s; to thethen andelse
branch, respectively. We use the notatiors> to distinguish application to a list of subterms from ap-
plication to a list with a single element. For example, Tigart construct has a list of declarations
and a list of expressions as direct subterms. Thus, welldge <*s;> in <*s9> end]l to denote
Let(s1,59), i.e., the application of the strategiesand s, to the lists of declarations and expressions,
respectively. Compare this tblet <s1> in <s9> end]l, which denoteget ([s1], [s2]).

142 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

All Subterms Often a traversal over an abstract syntax tree has unifolravi@ur for most or even all
constructors of the language. In those cases, it is atteattiuse ajeneric traversalnstead of spelling
out the traversal for all constructors. Stratego providesdcombinators such a3l andone that allow
the composition of many different generic traversals. &h&(s) combinator applies to all direct
subtermst; of a constructor applicatioa(ty, . . . ,t,). It succeeds if and only if all applications to the
direct subterms succeed. The resulting term is the constrapplicationc (¢! , . . . ,%;,) where thet] are
the results obtained by applyingo the termg;.

Fo,gg F <S> tl = tll (Flagl) anl,gnfl F <S> tn = tln (Fnagn)
Lo, & F (all(s)) e(tr, ..., tn) = c(t],...,t) Tn, &)

Fo,&] F <S> 1 = tll (Fl,gl) Fl‘,l,gifl F <S> t;, = T (Fiygi)
POagﬂ F <a11(8)> C(tla cee ;tn) = T (F’tag’t)

Note thatid is a zero forall, thatall (s) is the identity on constants (constructor applicationdeut
subterms), and thatll (fail) only succeeds on constants, i.e.

all(id) = id <all(s)>c = <id>c <all(fail)>c(t1,...,tn) = fail (if n > 0)

Example: Traversal Strategies Many different traversals can be composed usingattie traversal
combinator. As an example consider the following strategfjnitions:

topdown(s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s

alltd(s) s < all(alltd(s))

downup(s) = s; all(downup(s)); s
innermost(s) = bottomup(try(s; innermost(s)))

In the first definition, the strategy expression all(topdown(s)) specifies that the parameter trans-
formations is first applied to the root of the current subject term. It thacceeds, the strategy is applied
recursively to all direct subterms of the term, and, therebyall of its subterms. This definition of
topdown captures the generic notion of a traversal that visits eablesm in pre-order.Bottomup
defines a post-order traversadll1td applies a topdown traversal that stops as the transformitie
applying succeedsDownup applies a transformation pre-order and post-ordemermost is a fixed
point traversal that applies a transformation exhaustistrting with innermost terms.

The examples in the following sections use traversal gliegethat are partly specific for certain
constructs of the language, and otherwise generic wheferombehaviour is possible.

Example: Desugaring and Constant Folding As an example of the application of these generic strate-
gies consider the followinglesugaringtransformation for Tiger that simplifies programs by definin
constructs in terms of other constructs or simplifying thisiage; e.g. splitting let bindings into lets with
only a single binding.

desugar = topdown(repeat(Desugar < LetSplit < EmptyLet < ElimSingletonTuple))

Thedesugar strategy performs a topdown traversal applying a numbeulesralong the way. Some of
these rules are shown in Figure 4. Thesugar strategy that is called is a composition of many rewrite
rules:

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 143

Desugar = DefPlus < DefMinus < DefEq < ... < DefSeql < DefAnd < Def(r

Thus, a fairly elaborate transformation—touching manystactors—is defined in only a few lines of
code using separately defined and reusable rewrite rules.

Another example is the followingonstant foldingtransformation that evaluates constant valued
expressions:

const-fold = bottomup(try(EvalBinOp < EvalRelOp < Evallf < EvalWhile < EvalFor))

It is defined as a bottom-up traversal applying various ataa rules where possible. Again the trans-
formation is a one-liner using separately defined rewrikes;ieach of th&val rules is actually a choice
between several rewrite rules with the same name.

One Subterm While theall combinator transforms all direct subterms of a term,chve combinator
finds a single subterm that it transforms.

F,g F <S> 1 = T (Fl) Fz;l,g F <S> ti1 = T (Fifl) Fz;l,g F <S> t;, = t; (Fivgi)
F, EF (one(s)) C(tl, - ,tn) - C(tl, vy biza, té, ti+1, . tn) (FZ’, 5,)
Iék (8) tL = 1 (Fl,gl) .. ', &F (8) t, = 1 (Pn,gn)
[, EF (one(s)) c(tr,....tn) = T (Tn,&n)

Note that this is a backtracking combinator, in that it ressche environment after failing to apply to a
subterm, and before applying to the next subterm. Some dranapersal strategies composed with this
combinator are:

oncetd(s) = s < one(oncetd(s))
oncebu(s) = one(oncebu(s)) < s

The strategyi s-subtermis an example application ohcetd:

is-subterm(|z) = oncetd(7z)
It traverses the subject term to find an occurrence of the éegmmentx by means of the matchx.
Example: Contextual Rules As an example of the expressivity of the combination of gerteaversal

and first class pattern matching, consider how contextles ican be implemented in Stratego [37]. The
function inlining rule

UnfoldCall :
Il let function f(z) = el in e2[f(e3)] end] ->
Il let function f (=) el in e2[let var ¢ := e3 in el end] end]

replaces a call to a functiop by an instance of its body. This can be implemented by meaasocfl
traversalin the condition of the rule:

UnfoldCall :
Il 1let function f(z) = el in e2 end]| -> |[let function f(z) = el in e2’ end]
where <oncetd({e3: 7I[f(e3)]; !'lllet var =z := e3 in el end]l})> e2 => e2’

144 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Theoncetd strategy searches for one subtermegfthat is a call to functiory and replaces it with the
instantiation of the body. It achieves this by means of agpatinatch and a build that involve variables
that were boundn the contexbf the traversal, i.e. by the match of the left-hand side efrille. The
Stratego compiler supports contextual rules using theeamphtation scheme sketched above [44, 37]
(although the syntax is currently only supported for rulssg abstract syntax terms). While the idea is
nice, the shortcoming of the approach is (1) that the travésdocal to the inlining rule and is initiated
at the definition site, (2) that onlgnefunction at a time is inlined, and (3) thahcetd does not respect
the scoping rules of the object language.

4. Defining Rules Dynamically

In the previous section we have seen how programmable negvistrategies allow the definition of

separate rewrite rules and fine-grained control over thgtieation. The combination of first class

pattern matching and traversal strategies allows comsnxsitive rewriting to a certain extent in the
form of contextual rules. However, the local traversal dmedingle binding of context variables makes
contextual rules of limited use. Nonetheless, the conéxtue solutiondoescontain the germ of a more

general solution. The strategy expression

{e3: 7I[f(e3)]; !'l[let var = := e3 in el end]l}

in the implementation of thenfoldCall contextual rule is a rewrite rule (a sequence of a match and a
build) with some of its pattern variables, i.¢.,and e1, bound in the contextstead of being bound by
the application of the match as is the case with conventimvalite rules.

This is exactly the idea behinddynamic rule That is, a dynamic rule is a rewrite rule that inherits
bindings to its pattern variables from the context in whicls defined. The difference with a contextual
rule is that a dynamic rule isamedlike a normal rewrite rule and can be referredtdaside the lexical

s = rules (drd; ... drd,) dynamic rule definition
{fr, ey frisl} dynamic rule scope
s1 /frsee s fu\ 82 fork and intersect
51 \fis--sfu/ 52 fork and union
[fis e sfn* s fix and intersect
\Nfiseeesfu/* s fix and union
drd n= drsig : p1 -> p2 (where s)? dynamic rule definition
drsig :+ p; -> ps (where s)? dynamic rule extension
drsig : p dynamic identity rule definition
drsig :- p dynamic rule undefinition
f+p label current scope
drsig == sig relative to current scope
sig.p relative to labeled scope
Stg+p relative to current scope and label current scope

Figure 7. Extension of syntax of Stratego with dynamic rules

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 145

scope of its definitionFurthermore, there can be many dynamic rules with the same ndiffering in
the values bound to the pattern variables of the rule. Thusmlaing transformation can define rules
dynamically when encountering function definitions andlgpipose rules when encountering function
calls, all in the same traversal.

There are many variation points in the definition and use ofdyic rules, which have been captured
in a coherent extension of the Stratego language. The sghthis extension is presented in Figure 7. In
this and the next three sections, we will define the semaafitisese language constructs, and motivate
their design and usage by means of example transformationthis section, we introduce the basic
concepts of dynamic rules, i.e. applying rules, definingswdynamically, the shadowing of older rules
by newer rules, and explicitly undefining rules.

4.1. Example: Constant Propagation in Basic Blocks

Constant propagation replaces uses of variables that cdetéenined to have constant values with those
values [1, 24]. We will use this transformation as a runnirgreple, and gradually extend it to cover
the whole Tiger language. We start with constant propagatidasic blocks, which should achieve a
transformation such as the following:

(b := 1; (b := 1;
c :=b + 3; c := 4;
b :=b + 1; = b = 2;
b :=z + b; b =z + 2;
a:=b+ c) a:=b+ 4)

Here the variabl® in the second statement is replaced by its value in the ficstlaresulting constant
expression is folded. The assignment in the third statemegtgfines the value af to be propagated.
The assignment in the fourth statement blocks the furth@pagation of the constant value wfbut ¢
does have a constant value in the fifth statement and shoulplaeed.

Constant folding can clearly be expressed by means of eevuies using thEvalBinOp rules from
Figure 4. The replacement of a variable by a value,elyy 1, can also be expressed by rewriting, i.e. by
arewriterulesuchaf b 1 -> IL 1 1. However, such a rewrite rule cannot be applied everywhere;
not to the variable in the left-hand side of an assignmerd, rat after a different expression has been
assigned to the variable. Thus, such a rewrite rule is spdoifi part of a particular program, rather than
being a universally valid transformation rule. Thus, theaidf dynamic rules is to define such rués
run-timeand only apply them to the parts of the program where theyalid.v

prop-const =
PropConst < prop-const-assign <+ (all(prop-const); try(EvalBinOp < EvalRelOp))

prop-const-assign =

[£ := <prop-const => e>]|
; 1f <is-value> e then rules(PropConst : [=z 1 -> [l e 1)
else rules(PropConst :- [[=z]) end

Figure 8. Strategy for constant propagation in basic blocks

146 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

The prop-const strategy in Figure 8 implements constant propagation feichialocks using dy-
namic rules. The strategy has three cases. The first is tHeamm of thePropConst rule, which
replaces a variable with a constant value, if it has one. dénsbtond case an assignment statement is
encountered and used to define a dynamic rule, as will be stisdubelow. In the final case, a generic
traversal is performed and the sub-expressions are tramstbwith theprop-const transformation.
After that an attempt is made to perform constant foldinggisiome appropriateval rule.

Now the crucial part of the transformation is theop-const-assign strategy, whichdefinesa
PropConst rule for each particular assignment it encounters. Fitst,dongruence strategyz :=
<prop-const => e>]| (equivalent ttAssign(?x,prop-const => e))is used to transform the right-
hand side expression by a recursive invocation ofgthep-const strategy, leaving the left-value un-
touched (to prevent the replacement of the variable in tevddue). If the right-hand side expression of
the assignment is a constant, as determined bygdhealue strategy, then BropConst rule is defined
that replaces an occurrence of the variablieom the left-hand side of the assignment by the expression
e from the right-hand side. This is expressed by the stratggyession

rules(PropConst : Lz 1l -> [e 1)

Therules construct introduces several rules which inherit variddatelings for all variables occurring
in the context. If the expressianis not a constant, then tikeropConst rule isundefinedor z with the
strategy expression

rules(PropConst :-= I[L =z 1)

which disables anpropConst rules withz as left-hand side.

To get an impression of events during this transformatibe,niddle box in the following diagram
represents at each line the set of dynaPtiepConst rules that are validfter transforming the statement
on the same line in the left box.

(b := 1; b > 1 (b := 1;
c :=b + 3; b->1, c >4 c = 4;
b :=b + 1; = |b>2, c >4 = b := 2;
b :=z + b; c > 4 b =z + 2;
a:=b+ c) c >4 a:=b + 4)

Theb- anda- entries indicate that theropConst rule isundefinedfor these variables. Note how the
definition of the rule fob on the third linereplacesthe previous rule fob. Thus, a rule can beedefined
as well as undefined.

4.2. Semantics: Defining and Undefining Rules

For each dynamic rulé an entry in the stat® is maintained. This entry encodes the current set of
dynamic rules. In the semantic rules, we encode a set of dgnalas as a strategy expression, since that
allows us to define the behaviour of dynamic rules as concasgpossible. In our current implementation
a more efficient encoding using hash tables is used [8].

Thus,applying a dynamic ruld. entails looking up the strategyencoding the current rule set far
and applying it. FEF ()t — T (I, &)
L), EF (L)t = ¢ (I, &)

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 147

' (sy means thal' has an entry fol and that its strategy is If no L rules are defined, we haV®g, a11).
Therules(...) construct is used to define dynamic rules and can contain ef ligle definitions.
Such a list is equivalent to the sequential composition efdéfinition of the individual rules, i.e.

rules(Ly:ry... Ly 1) = rules(Ly:r1);...; rules(Ly,:my)
The definition of a single dynamic rule entails modifying thentry inT".

st = {&E(?py1 ; where(ss) ; 'p2)} < 51
PL(sl)ag + <ru1es(L : p1 — pa where 82))t =t (FL(SII)78)

The new strategy is a prioritized choice that first tries tplgpghe new rule, and if that fails the old
strategy expression is applied. The new rule is specializesubstituting variables bound in the envi-
ronment. This definition entails that: (1) multiple rulesdze defined at the same time; (2) a definition
of a rule with the same left-hand side as an earlier define] sladows (or redefines) that earlier rule.
Note that we require that left-hand sides of dynamic rulesat@verlap in order to guarantee an efficient
implementation; see [8].

Finally, rules can beindefined This is achieved by inserting into thg,,) strategy a test for the
pattern concerned and explicitly failing when it is encauat.

s' = if {?€(p)} then fail else s end
PL(s)a‘S F (rules(L :-p))t = ¢ (FL(SI),(S‘)

This entails that after undefining a pattern, an attemptugite a term matching that pattern will fail.
For terms not matching the pattern, the search continud®ioltl strategy, however.

5. Dynamic Rule Scope

A useful feature of dynamic rules as defined in the previogfi@eis that rule definitions are not con-
strained to a lexical scope, but are visible globally. Thitaés that rules are propagatéadplicitly; a
transformation strategy does not need to pass around thentget of rules. Thus, a rule defined in one
part of a strategy can be applied in another part, withowdmater passing. In particular, this means that
a transformation can be organized as a sequence of phasgmésaon information through dynamic
rules. For instance, one phase may define inlining rulesofeddvel functions, which are then used to
inline function calls in subsequent phases.

As a consequence of this design, the definition of a dynantegarermanently redefines any previous
definition for the same left-hand side. Likewise, the undtdin of a dynamic rule permanently erases
that definition. However, sometimes it is useful to redefinermlefine a rule only temporarily and restore
the old definition after performing some local transformati For instance, an inlining rule for a local
function may redefine an inlining rule for an outer functioththe same name. Thus, after traversing the
subtree in which the local function is in scope, the inlinfate for the outer function should be restored.
Achieving this with only rule definition and undefinition rdges maintaining information about dynamic
rules in strategies, which is undesirable. Instead, Sfoapeovides a construct for limiting the lifetime
of dynamic rules. In this section, we introduce the balsinamic rule scopeonstruct{| L : s |}, and its
refinement with scope labels, which provide fine-grainedrobover the scope in which a rule is defined.
These concepts are illustrated by bound variable renarhingtion inlining, constant propagation with
local variables, and dead function elimination.

148 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

let var a : int := x let var a : int := x
function foo(a : int) : int = function foo(b : int) : int =
let var a := a + 3 let var ¢ := b + 3
var z := 0 = var z := 0
in for a := a to a + 100 do in for d := ¢ to ¢ + 100 do
z =z + a end z =z + d end
in foo(a) end in foo(a) end

Figure 9. Application of bound-variable renaming.

5.1. Example: Bound Variable Renaming

Programs can use the same name for different variables ogagm. Local variableshadowthe declara-
tion of variables in outer blocks. The scoping rules of thglaage determine which variable occurrence
corresponds to which variable declaration. Bound variadeaming is a transformation that gives de-
clared variables a unique new name, producing a program ichwio variable declaration shadows any
other variable declaration. This may be useful to clarifg grogram for programmers, and for other
program transformations, after bound variable renamivg,dccurrences of the same identifier denote
the same variable. Bound variable renaming is necessargmsformations to avoid variable capture
upon substitution.

The example in Figure 9 illustrates bound variable renarfandocal variables €ar), function ar-
guments function) and loop index variableg ér) in Tiger. The program on the left uses the identifier
a for a number of different variables. These are renamed toidemtifiers in the program on the right.
The example illustrates the different binding construnt$iger and their scoping rules. That is, not all
subterms are necessarily in the scope of a declaration. rghenants of a function definition are visible
in the body of that function, and shadow all external detiana for the same name. A local variable
declaration ¢ar) is visible in all subsequent declarations in the saree and in the body of thaet,
but notin the initializer of the declaration. Finally, the indexriable of afor loop is local to that loop,
but the lower and upper bound of the loop are not in the scopigavteclaration.

Implementation of bound variable renaming can be achievidd dynamic rules, where we define
a new renaming rule for each declared variable. Thus, fdn éaaling construct we define a transfor-
mation rule that (1) renames the variable being declared2ndefines the renaming rukenameVar
to replace occurrences of the old variable with its new nafoe.example, for variable declarations we
introduce the following rule:

RenameVarDec :
[var ¢ ta := e]| > |[[var y ta := e]
where new => y; rules(RenameVar : [[=z 1 -> Il v 1)

It replaces the identifiex in the declaration with a new identifigr. Thenew primitive strategy generates
a new name that is guaranteed not to occur anywhere in anyctemmntly in memory. (See Appendix
B of [8] for a discussion of the semantics wéw.) Furthermore, an instance BénameVar is defined,
renaming an occurrence ofto y.

Now, when we would just perform a topdown traversal over tteg@mm applyingRenameVarDec
andRenameVar, as in

exprename = try(RenameVarDec + RenameVar); all(exprename)

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 149

exprename = rec rn(

RenameVar
< |[var <id> <id> := <rn>]|; RenameVarDec
& |[let <*id> in <*id> end]I; {| RenameVar : all(xm) |}
& |[for <id> := <rn> to <rn> do <id>]|
; {| RenameVar: RenameFor; [[for <id> := <id> to <id> do <rn> 1 |}

< |[function <id>(<*id>) <id> = <id>]|
; {| RenameVar : RenameArgs; |[function <id>(<*id>) <id> = <rm>]| |}
< all(rn))

RenameVarDec :
[var ©z ta := e]| -> [var y ta := e] where <NewVar> z => y

RenameFor :
[for z := el to e2 do e3]| -> I[for y := el to e2 do e3]
where <NewVar> z => vy

RenameArgs :
[function f(zi*) ta = e] -> [[function f(z2*) ta = e]
where <map(FArgll <NewVar> : <id> 1|)> zl1x => z2*

NewVar :
z -> y where if <RenameVar> |[z] then new else !z end => y
; rules(RenameVar : Lz 1 -> Ly 1)

Figure 10. Bound variable renaming.

the result would not be correct, since the renaming rulevdaiables in innellets would replace re-
naming rules for variables from outgets. Thus, the scope of a renaming rule should be restricted to
the traversal of that part of the program in which the comesling variable is in scope. After that the
old renaming rule should re-emerge.

The dynamic rule scope construgtL : s |} restricts the scope of new definitions of the dynamic rule
L to the strategys. That is, any rule defined during the executionsdé removed aftes terminates.
Thus, in the strategy expressigh RenameVar : all(exprename) [} anyRenameVar rule defined
during the traversadll (exprename) is undefined afterwards. This is exactly what we need in aaler
restrict renaming rules to the scope of the correspondinghla declarations.

Figure 10 presents the complete variable renaming tramsfiion for Tiger. It consists of a number
of rules that rename identifiers in binding constructs udigauxiliary ruleNewVar, which defines the
RenameVar rule. These rules are called during the traversal perforbyetieexprename strategy. This
strategy uses the dynamic rule scope construct to restecdope of thBenameVar rules. For instance,
the clause

[1let <*id> in <*id> end 1; {| RenameVar : all(s) |}

declares that angenameVar rules defined during the traversal oiat are restricted to thatet. Sim-
ilarly, the traversal restricts the scope of function arguts to the body of the function definition and
the scope of théor loop index variable to théodyof the loop. Note that the loop bound expressions

150 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

let function fact(m : int) : int = let var n : int := 10
let function f(n : int, acc : int) : int = var b : int :=n
(while n > 0 do var acc : int := 1
(acc := acc * n; n :=n - 1) = in while b > 0 do
; acc) (acc := acc * b;
in f(n, 1) end b :=b-1);
in fact(10) end acc end

Figure 11. Example application of function inlining.

are visited before defining the renaming rule. Similarlyg thitializer of a variable declaration is vis-
ited before renaming the variable declaration itself, taasuring that any occurrences of the identifier
within the initializer are renamed first. Finally, note hdveNewVar rule invokes th&®enameVar rule to
establish whether the identifier was already used in an simgjascope; iRenameVar fails, then this is
not the case and there is no need to rename the identifier.

5.2. Example: Function Inlining

Another example of the use of scoped definitionfrgction inlining Function inlining is a transforma-
tion that replaces a function call with the body of the cqumsling function, instantiating the formal
parameters with the actual parameters. For example, thefdranation in Figure 11 shows the result of
first inlining the local functiort in the body offact and then inlining the functioiact at its call site.

The specification in Figure 12 defines a simple inlining athon replacing all function calls of
inlineablefunctions with their bodies. This algorithm is overly singtic, since an actual inliner would
(1) use sophisticated criteria at the definitimmd at the call site to determine whether a particular call
should be inlined, and (2) would combine inlining with otheansformations [31]. Nonetheless, the
strategy contains the essence of inlining.

The inline strategy has four cases. The first case is the applicatiomeofiynamicinfoldCall
rule to replace a function call with an instantiation of thadtion body, followed by a renaming of bound
variables éxprename), and a recursive invocation ahline on the inlined code. In the second case,
a new scope for thenfoldCall rule is entered when encountering &, to ensure that functions are
only inlined in their lexical scope.

The real work is done in the third case, when encounteringtaofifunction declarations. Recall
from the syntax of Tiger in Figure 1 on page 129 that a list othion declarations is a single declaration
in a let binding. Furthermore, these declarations can bealiytrecursive, and then have to be treated
as one when inlining. The stratedyiline-fundecs uses the congruendg<fdx*:s>]l to transform a
list of function declarations. In particulainline-fundecs visits the declarations three times. The first
time to define an unfolding rule for each inlineadblanction. The second time to apply the inlining
transformation to the function declarations themselvesd te third time to define unfolding functions
for the transformed function declarations. Furthermdre,last stageemovesach function declaration
that is being inlined; after inlining all function calls tieeis no need for the declarations anymore.

’The strategyis-inlineable represents some analysis to determine whether a functiatirisable. For instance, recursive
functions could be excluded from inlining to prevent nomvmation. Other heuristics such as the size of the fundtimaty, or
its ‘atomicity’ could be added.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 151

inline = inline-call < inline-let < inline-fundecs < all(inline)
inline-call = UnfoldCall; exprename; inline
inline-let = |[let <*id> in <*id> end J]I; {| UnfoldCall : all(inline) |}

inline-fundecs =
[<fd*: map(is-inlineable < define-unfold + undefine-unfold)
; map(inline)
; filter(is-inlineable < define-unfold; fail + undefine-unfold)>]I

define-unfold =
?|[function f(z*) ta = e]
; rules(UnfoldCall : |[f(a*)]| —> Il let d* in e end]
where <zip(bind-arg)> (z*, a*) => d*)
bind-arg :
(FArgll =z ta 1, e) => [var = ta := e]|

undefine-unfold =
?I[function f(z*) ta = e 1; rules(UnfoldCall :- I[f(ax*) 1)

zip(s) : (OO, 0O) > [
zip(s) : ([zl=zs], [ylys]) -> [z | zs] where <s>(=z,y) => z; <zip(s)>(zs, ys) => zs

Figure 12. Function inlining.

Thedefine-unfold strategy defines a ne¥nfoldCall rule for a functionf, replacing a call to
f with its body inside dlet, binding the actual parametets: to the formal parameters* as local
variables. The creation of the ligt of local variable declarations is achieved bypping together the
list of formal parameters* and the list of actual parametets, usingbind-arg to create a declaration
for each pair. If a function is not deemed inlineable,th€o1dCall rule is undefined in order to shadow
any inlining rules for a function with the same name in an esiclg scope.

5.3. Semantics: Scope

In the semantics of dynamic rules in the previous sectiotradeg)y expression was used to encode the
set of rules defined. In order to keep track of rules introducedifferent scopes, we refine this to a
list of strategy expressions]|...|s,, where the leftmost strategy denotes the rules defined in the most
recent scope. The scope constrlict, ..., L, : s} can restrict the scope of multiple dynamic rules

to L,,, which is equivalent to nesting the scopes, as expressduelpltowing equation:

ULy, ..;Ly:sly ={Ly:{l La:.. Al Ly:slF.. [}

Therefore, we will treat only the case of a scope for a single.rThus, entering a new scope entails
adding a new scope strategy to the list:

Litaitfsol.ofsn) € F ()8 = ¥ (D gg)) €)
Lpsalofsn): € F (U L:s})t = ¢ (I JEN

(s2].--$n)

152 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Since no rules have been defined yet, the strategy for the capesorresponds ttail. After appli-
cation of the strategy, the new scope is removed. The definition and undefinition dyraamic rule
modifies the strategy expression in the current scope:

sy = definddrd, £, s1)
),5 F (rules(drd))t == (PL(s’l\52|...|sn)75)

Tp

s1]s2]...|sn

Where the modification of the scope strategy is factored simiguthe semantic function ‘define’:

defingL : p; — powhere sy, &, s0) = {E(?p1 ; where(sy) ; 'pa)} & so
defindL - p,&,5) = {?2E(p) ; ' L} <« s

That is, undefining a rule is modeled by producing the speerah L. This is necessary to distinguish
failure to find any matching pattern in the current scope ffiming an undefined pattern.

Applying a rule requires finding theost recentule definition matching the subject term. This
corresponds to the prioritized application of the straegiorresponding to the scopes, with the most
recent scope having the highest priority. There are threesc#éo consider. First, one of the scope
strategies succeeds, producing a térgmot equal tal).

MEF(si<..ssp)t = ¢ (I,E) t/#£1L
PL(S1\...\sn)a5 F <L> t =t (I‘I’gl)

Secondlyt matches an explicitly undefined pattern, hence, the apjicaf the scope strategies pro-
ducesl. In that case, application of the dynamic rule fails. Fipaflall of the scope strategies fail, then
obviously no rule matchingwas defined, and application fails as well.

LEF (s ... <s,)t = L (I, [LEF (sy ... <s,)t = 1(IV,&)
FL(sl\...\sn)ug - <L>t =1 (Flvgl) FL(51|...|sn)75 - <L>t =1 (1“/75/)

5.4. Example: Constant Propagation for Local Variables

New dynamic rules are defined in the current scope and disa@gpeéhe end of that scope. This is not
always adequate. Sometimes it is necessary to redefinethalelsave been defined in an earlier scope.
Consider for instance, the application of constant proflagan Figure 13. Each of the variables

b, andc requires different behaviour. The innest-block defines a new local variabte Hence, the
propagation rules foe in the enclosing block should be shadowed within and redtateéhe end of the
inner block. Thus, the occurrence ®in the last statement refers to the value dfefore the inner block.
This behaviour is obtained by using a dynamic rule scopetetraversal olet blocks, as follows:

let var a := 1 var b := 2 var ¢ := 3 let var a := 1 var b := 2 var c := 3
in a := b + c; in a := b;
let var ¢ := a + 1 let var ¢ := 6
in b :=b + c; = in b := 8;
a := a + b; a := 13;
b :=z + b end; b :=z + 8 end;
a :=c¢ b + a end a:=3+Db+ 13 end

Figure 13. Application of constant propagation on prograith Vocal variables.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 153

prop-const =
PropConst < prop-const-assign < prop-const-let < prop-const-vardec
< all(prop-const); try(EvalBinOp < EvalRelOp)

prop-const-let =
[let <*id> in <*id> end]|; {| PropConst : all(prop-comnst) |}

prop-const-vardec =

[var =z ta := <prop-comst => e>]|
; 1f <is-value> e then rules(PropConst+z : [z 1 -> [[e 1)
else rules(PropConst+z :- [[z]) end

prop-const-assign =

[£ := <prop-const => e>]|
; if <is-value> e then rules(PropConst.z : [z 1 -> [e 1)
else rules(PropConst.z :- [[z]) end

Figure 14. Constant propagation for basic blocks with leeaiables.

[let <*id> in <*id> end]|; {| PropConst : all(prop-comnst) |}

This entails that a new local propagation rule is defined wdr@ountering a local variable declaration
or assignment, and these rules are discarded after thesaave

On the other hand, the variablesandb are not redeclared in the inner block. Thus, assignments in
the inner block affect the values of these variables in thdosing block. That is, the occurrence @f
in the last statement refers to the value assigneditothe inner block, and since the valuezotannot
be determined, should not be replaced in the last statement. Now, the protdehat this behaviour is
not supported by dynamic rule scopes as defined above. Aay thiét are defined within the scope are
discarded afterwards.

The solution is more fine-grained control over the scope ifickvia rule is defined. We achieve
this by labeling scopes with symbolic names (terms), and referring to thalseld when defining or
undefining a rule. The specification in Figure 14 is an extensif the constant propagation strategy
in Figure 8 for blocks with local variables. A new scope igt&d just as in the case of renaming with
{l PropConst : all(prop-const) [}. In order to ensure that propagation rules are defined in the
right scope, these are labeled with the names of the vasiatdelared within that scope. Thus, when
encountering a variable declaration, the rule definition

rules(PropConst+z : Lz 1 -> Il e 1)

defines a constant propagation rule for the variabia the current scopeand labels the current scope
with label z. This models the fact that a variable declaration introduzeew local variable. On the
other hand, when encountering an assignment, a propagaters defined in the scope labeled with the
name of the variable being assigned to:

rules(PropConst.z : Lz 1 -> Il e 1)
In case the expression assigned to a variable is not a constaRropConst rule is undefined for that

variable, following the same reasoning: labeling the autrezope in the case of a variable declaration,
and undefining in the labeled scope in the case of an assignmen

154 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

5.5. Semantics: Labeled Scopes

The definition of a dynamic rule in conjunction with labelitige current scope is a composition of those
two operations:
rules(L+p:r) = rules(L+p); rules(L.p:r)

To model labeled scopes, each scope of a dynamic rule hasoh lebels associated with if;.labels,,
denotes the set of terms labeling iltte scope of';. Labeling the current scope entails adding a label to
this list:

Ibls = [E(p)|T.labels;,]
I',E F (rules(L+p))t = t (I'.labels,, := lbls, &)

Note that labels are term patterns and are instantiated tisencurrent variable bindings.
Defining a rule in a scope labeled withentails finding the first scope that is labeled witlextend-
ing the corresponding strategy, and removing the rule froynnaore recent scopes.

labeldrd) =p E(p) €T.labelg,, definddrd,&,s;) = s,
VI_1(E(p) & I labels,; A removedrd, £, s;) = s)
L L (s1|lsioalsilsiza]lsn)s € F (rules(drd)) t = t (T

€)

Weelsh_q|sh]siq1].-lsn)s
Here ‘label’ denotes the label of a dynamic rule definitioinene® abstracts over definition J, undefi-
nition (: -), and extension:@):

rules(L®r) = rules(L.c®r) labekL.pdr) = p

Note thate is used to denote the current scope. That is, defining a ruleouti a label is equivalent to
defining a rule in the scope labeled withSince every scope has this label, this entails definingttién
current scope. Removing a rule from a scope is defined asvigllo

removeé L.pg : p1 — powheresi,&,50) = {?E€(p1)} < fail + s
removeL.py - p1,E,8) = {?2E(p1)} < fail + s
By letting the scope strategy fail when encountering théepatconcerned, lookup will proceed in the
next scope.

Finally, the semantics of dynamic rule scope needs to bdinede since the strategies of enclosing

scopes may change within the scope by rule definition reldt\a label:
UL(tailfss]sn): € F () = ¥ (I &

&

shlsh|---1s7,)°

Lrsolfsn) € F (U L:sh) 6 = # (I,

CANPAL

A scope label may also be assigned as part of the scope dexlarahich is an abbreviation for a scope
with an explicit labeling action:

{ILp:sl} = A{lIL:rules(L+p);sl}

The application of a dynamic rule is not affected by the addibf labels.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 155

6. Extending Dynamic Rules

The examples of dynamic rewrite rules we have consideredra@irite one left-hand side term to one
right-hand side term. When defining a new rule, the old rukh tie same left-hand side is discarded. In
some applications it turns out to be useful to be able to tevoimultiple right-hand sides. For example,
in partial evaluation, for each function call with statigaments, a specialized function definition is
generated. Thus, the original function definition shouldréeritten to a list of specialized function
definitions. This could be modeled by maintaining a list afrte as right-hand side. For example, the
strategy for specializing function calls might have a cadgment such as the following:

.= fd
; <Specializatiomns> |[function f(z*) ta = e 1 => fd*
; rules(Specializations : [[function f(z*) ta = e 1 -> [fdlfd*])

where somehow a specialized function definitfahis computed. To extend the list with specializations
for function f, the old list of specializationgd* is retrieved by applying thepecializations rule,
and then theSpecializations rule for function f is redefined to include the new function definition.
This turned out to be a frequently occurring programmingdggpatfor dynamic rules, leading to code
cluttered with list extension operations, distractingiirthe actual transformation being defined.

The idea of dynamic rulextensionis to allow multiple rules with the same left-hand side and di
ferent right-hand sides. For example, using this approacittion specializations can be modeled by a
dynamic ruleSpecialization, which rewrites a function definition taspecialization. Thus, the code
fragment above is reduced to

. => fd
; rules(Specialization :+ |[function f(z*) ta = e 1 -> fd)

which declares that the dynamic ruleastendedwith a new case for functiorf without discarding
previously defined rules. A dynamic rule thus defined can lptiegb in various ways; producing the
most recently added right-hand side, producing all rigintéhsides, producing one right-hand side and
then discarding it. The result is a more general model foradyio rules in which the undefinedness
of a dynamic rule corresponds to the absence of any ruleshignsection, we generalize dynamic
rules to support rule extension with different applicatimodes, and we illustrate rule extension with
common subexpression elimination. Another applicati@iuees in the function specialization example
in Section 8.

6.1. Example: Common Subexpression Elimination in Basic Bicks

Common subexpression elimination (CSE) is a transformadtiavhich an expression is replaced with
a variable containing the value of that expression as cosdpearlier in the program. The following
application illustrates the transformation, and the ms&ués in its implementation:

(x := a + b; (x := a + b;

y :=a+ b; y = X5

z := a + c; == z := a + c;

a := 1; a := 1;

z :=(a+c) + (a+ b)) z :=(a+c) + (a+ b))

156 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

cse = cse-assign < (all(cse); try(ReplaceExp))

cse-assign =
[z := <cse => e>]
; where(<undefine-subexpressions> |[[= 1)
; if <not(is-subterm(||[z 1))> Il e] then
rules(ReplaceExp : [e 1 -> [= 1)
; where(<register-subexpressions(le)> Il z := e 1)
end

register-subexpressions(|e) =
get-vars; map({y : ?I[y 1; rules(UsedInExp :+ |[L y 1 -> e)})

undefine-subexpressions =
bagof-UsedInExp; map({7e; rules(ReplaceExp :- I[e 1)1}

get-vars = collect({?[[=z 1}

Figure 15. Common subexpression elimination in basic dock

The example shows how later occurrences of the expressienb can be replaced with the variable
x, since that variable contains the value of the expressionwenter, as soon as the variabder one
of the variablesa or b in the expression are assigned a new value, that replacéseatlonger valid.
Thus, the occurrence af + b in the last statement cannot be replaced, since the assignoein the
preceding statement invalidates it. For the same reaseoctturrence of + ¢ in that statement cannot
be replaced wittz.

Figure 15 shows the specification of common subexpressionngltion for basic blocks. The trans-
formation is similar to constant propagation, but the réawnile is reversed. That is, instead of defining a
rule that rewrites the variable to the expressior when encountering an assignmélint := e]l, arule
is defined that rewriteg to z (unlessz occurs ine). The main difference between CSE and constant
propagation is that it is not obvious which rules to undefirfeewencountering an assignment. In the
case of constant propagation, an assignniient := e]l invalidates the propagation rule with variable
z as left-hand side. This is directly expressed-ases (PropConst :- [[z]l). However, in common
subexpression elimination, an assignmint := e]l invalidatesall rules that rewrite an expressien
containingz ortoz.

The specification in Figure 15 models this by maintairtwg dynamic rulesReplaceExp rewrites
expressions to the variables that contain their value,UaedInExp keeps track of which expressions
a variable is used in. Thusegister-subexpressions defines an instance WkedInExp for each
variable occurring in an assignment. This rule definitioarisextensionsince a variable can occur in
multiple expressions. Subsequently, on encountering sigrasent|[z := e]l, all ReplaceExp rules
that rewrite an expression containing the variabkre undefined byndefine-subexpressions. This
is achieved using thieagof -UsedInExp strategy that producesl expressions thatsedInExp rewrites
z to.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 157

6.2. Dependent Dynamic Rules

The approach of using an extra dynamic rule to keep trackeofutes defined for another dynamic rule
may seem awkward, and cumbersome to extend to a settingaeih $copes and control flow (as dis-
cussed in Section 7). However, a general pattern can benmizeay Thecse strategy is registering all
dependencies of ttReplaceExp dynamic rule. In [27] we describgependent dynamic rulean exten-
sion of dynamic rules, which provides built-in support fegistering rule dependencies and undefining
rules by their dependencies. Using this approachRépdaceExp rule is defined as

where(<get-vars> [= := e]| => deps)

; rules(ReplaceExp : Il e]| -> Il =]| depends on deps)
When encountering an assignmédiy := e’] a call toundefine-ReplaceExp(|y) suffices to un-
define all rules depending an. The dependent dynamic rule mechanism is an abstractidinoouiop
of the dynamic rules described in this article.

6.3. Semantics: Extend Rule

To define the semantics of rule extension, the strategy émgad a rule set needs to produce all terms
that a term rewrites to. This is implemented in the semarijcdaving the strategies produce a list
of terms. A normal rule definition adds an alternative thatdpices a singleton list, thus discarding
all previously defined rules matching the same pattern. Bmtlen of a pattern (-) is modeled by a
strategy producing the empty list. Finally, extensionm)(is defined by a strategy that builds a list with
the new right-hand side as head element and any other appligams for applying the original strategy
to produce the tail of the list.

defing L.pg : p1 — powhere s1,&,52) = {7€(p1) ;where (E(s1)) ;! [E(pa)1} < s9
defingL.pg - p1,E,5) = {?2E(p1); (1} < s
defind L.py :+ p1 — powhere sy, &,s2) = {?€(p1) ;where(E(s1)) ; (sa! [1)=>x; ' [E(p2) 1x]1}
& 59
with x a fresh variable

Thus, by using the empty lisf] to model undefinedness, there is no more need forlthalue of
Section 5.

Application Normal application of a rule produces the most recent teomfthe applicable rule in-
stance. Thus, if the prioritized choice of the scope stiagegpwrites to a list of terms, the first one is
produced:
DEF (s sy)t = [t1,...,t,] (I',E") (m>0)
FL(51|___|SH),5 = <L>t == 1 (F',gl)

When the scope strategies produce the empty list, rewifitintnis term was explicitly undefined. When
application of the scope strategies fails, no matching wds encountered. In both cases application
fails:

TLEF (sy<...<s,)t = [0 (T,&) [EFR (s . syt = 1T (I, ¢&)

FL(sl\...\sn)aE - <L> t =1 (]_"/’gl) FL(51|...|5n)a5 - <L>t = 1 (I‘I’gl)

158 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Bagof Now, the interesting use of ‘extended’ rules is obtainingpaksible rewrites for a term. For
each dynamic ruld., there is a correspondinigagof-L rule that produces the list of all terntsto
which a tern rewrites withL.

LEF (s <. <sp)t = [t1,...,tn] (I",E)
FL(sl\...\sn)ug F (bagof-L)t = [t1,...,t,] (I",&')

EF (s1 <. .<sp)t = 1 (I, &)
FL(S1|...|Sn)78 F (bagof—L)t = [] (F’,E’)

Note thatbagof-L always succeeds. If there are no defined rules, the resulitithie empty list.

Once Another interesting use of extended dynamic rules, is tipicgiion of a dynamic rulgust once
That is, by applying the rule it is ‘consumed’ and cannot bgliag again. Thus, for each dynamic rule
L, there is a corresponding strategyce-L, which applies the first availablé rule, which is then
undefined:

[, & F {oncer, (s1) < ... «oncey, (s,))t = ' (I, &)
FL(51|---|Sn)’E F <OIlC€—L>t — (].—V,(S’)

LEF(s)t = [t1,...,tn] (I",E) (n>0) s ={?t; '[t2,....,t,1} <s
I &+ (oncer,(s))t = t1 (I,

/
(51\...\si_l\s’\si+1\...\sm)’g)

LEF(s)t = 1 (I",¢&) ILEF(s)t = [1(I",&)
I'E F (oncer,(s))t = 1 (I",&) I'EF (oncer,(s))t = T (IV,&)

These rules are somewhat simplified, since the undefinitiathé second rule is done for therm¢,
rather than for the underlyingatternp. This is an anomaly of the representation of dynamic rulas th
we have chosen for presenting the semantics.

An example of the use of this feature is to ensure that a fonds unfolded at most once, which
is achieved by calling the unfolding rule asce-UnfoldCall. When this is successfully applied to a
function call, it is automatically undefined. In Section 8 present a larger application of dynamic rules
to the implementation of function specialization, whiclesishis feature.

7. Intersection and Union of Rule Sets

In the previous sections, we have used dynamic rules inwgapoogram transformations, including ones
such as constant propagation and common-subexpresswinaion where they are used to model data
flow facts. However, we have only considered straight lindecim these transformations so far. That
is, code without conditionals or loops. In straight line edHere is a single execution path. A traversal
strategy follows this path and maintains data flow inforomatalong the way in the form of dynamic

rewrite rules. For example, tlRropConst rule set represents all known propagation facts at the urre
point in the program at any time during the constant propagdtansformation. Real programs do not
have a single execution path. Rather, execution forks atittonals and iterates at loops. Thus, to model
data flow facts using dynamic rules, we need to account faetippenomena. To achieve this we need

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 159

to fork dynamic rule sets for use in different branches, ai fhem again when branches meet. These
operations are captured in several strategy combinatdnghvprovide exactly the abstractions needed
to define data flow transformations for programs with stmezdicontrol flow in a concise manner. In this
section we define the semantics of these fork-and-join coatbis, and illustrate their use with two data
flow transformations, constant propagation and dead caaénaltion.

7.1. Example: Flow-Sensitive Conditional Constant Propagtion

Thus far, we have considered constant propagation witlgbtrine code, possibly with local variables.
Figure 18 presents @mpletespecification of intra-procedural, flow-sensitive consiamopagation. A
particular point of interest about this specification isttthaombines analysis with transformation in
the same traversal, similarly to the conditional constawpagation transformation of Wegman and
Zadek [47] and the approach of Lerner et al. [19]. This comtiam is strictly more expressive than
separate analysis and transformation phases, sincedrarafon can influence the result of analysis.
For example, the transformation in Figure 16 shows how th@iGgiion of constant propagation (to
determine thak is 10 at the condition), gives rise to elimination of code, redgciheif-then-else
construct to thehen branch. This elimination prevents considering éhee branch, which would inter-
fere with the knowledge thatis 10. We achieve this with the generally applicable featuredrategies
and dynamic rules, which are not specific to constant prdagaor even data flow transformation.

The flow-sensitive constant propagation strategy is ameida of the constant propagation strategy
for straight line code. To understand the extension, wearéxe the design of the original strategy. The
basic idea of the transformation is that the setxdpConst rules reflects the constant propagation facts
valid at the currently visited program point for all exeous of the program. The rule set is modified
during the traversal to maintain this invariant. Thus, asigasnent statement := e either redefines
PropConst to rewritez to e in casee is a constant, or undefines the rule in cade not a constant. Any
other rules are not affected by the assignment and remaleirute set. Variable declarations introduce
local propagation rules (or locally undefined rules) shadgvany rules in outer scope.

For straight line code, there is only one possible executidowever, for code with control flow
there are multiple execution paths, for all of which the @ggtion invariant needs to be maintained. The
issues that need to be solved in the implementation of flovgidee constant propagation are illustrated
by the example in Figure 17. (1) Facts that are valid beforenditional should be propagated into both
branches of the conditional. For exampdeandz in the second branch get the value that they have
beforethe conditional. (2) Within a branch, facts can be propayja®is usual in a basic block. For

let var x := QO var y := 0
in x := 10; let var x := 0
while A do var y := 0
(if x = 10 in x := 10;
then dosomething() = while A do
else (dosomethingelse(); dosomething();
X 1=x + 1)); y := 10
y =X end
end

Figure 16. Combination of analysis and transformation.

160 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

X y z a
let var x := 1 var y := z 1 - - - - let var x := 1 var y := z
var z := 3 var a := 4 1 - 3 4 - var z := 3 var a := 4
in x = x + z; 4 - 3 4 - in x := 4;
a := b; 4 - 3 5 - a := by
if y then (y :=y + 5; 4 - 3 b5 - if y then (y :=y + 5;
z := 8) - |4 - 8 5 - = z := 8)
else (x := a + 21; 26 - 3 5 - else (x := 26;
y :=x + 1; 26 27 3 5 - y = 27;
Z :=a+ 2); 26 27 8 5 - z :=8);
- - 8 5 -
b = a + z; - - 8 b 13 b := 13;
Z =z + x end - - 8 5 13 z := 8 + x end

Figure 17. Example application of flow-sensitive constanppgation. The table shows the constant vaaftes
transforming the statement on the same line.

example, the value of can be propagated within the second branch. (3) Facts thaguaranteed to be
the same after execution of any of the branches can be primobafter the conditional, but facts that are
inconsistent should not be propagated. For example, thee wvdk is unchanged by both branches, so it
is the same after the conditional. Whiés changed in both branches, its value is always the samg, so i
can be propagated. However, the valuec@ changed in the second branch, therefore its value cannot
be propagated afterwards.

Thus, to maintain the propagation invariant (1) transfdaromaof the two branches of a conditional
should start with the same set of dynamic rules as was vafmtdéhe conditional. Hence, after prop-
agation in one branch, the rule set should be restored to ivivais beforethe conditional in order to
correctly propagate in the other branch. (2) Within a bratremsformation proceeds as usual. (3) After
the conditional, transformation proceeds with those riiles the rule sets for the branches that are
consistent. These requirements are implemented by thid.\ s, strategy combinator, which applies
two strategies; ands,; sequentially to the subject term, but each starts with theesaile set for. and
the resulting rule sets are intersected to form the new wetléos L. afterwards. The/L\ combinator
is language independent, that is, it has no knowledge of atethe ‘branches’ that should be treated
separately. Instead this notion is expressed in the argustraiegies. For example, the strategy

[if <id> then <prop-const> else <id>]|
/PropConst\ I[if <id> then <id> else <prop-const>]|

applies the strategyrop-const first to thethen-branch of the conditional and then to #iese-branch.
Afterwards, thePropConst rule sets from the branches are intersected to maintaintboge propaga-
tion rules that are the same after both branches.

In the case of loops, one traversal is not sufficient. The gggapon rules applied to the loop body
should be valid foeveryiteration of the loop. The rule set applicable before thelsonot necessarily
valid in every iteration. We compute a rule set tigavalid in all iterations by repeatedly applying the
propagation to the loop, taking the intersection betweerrdle sets’ before and the rule set after the
application, until a stable rule set is achieved, i.e., ghahs'= sN s'. At each iteration we transform the
original loop, rather than accumulating the transformations frantexations. This is necessary since

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 161

prop-const = PropConst <+ prop-const-assign < prop-const-vardec < prop-const-let
<& prop-const-if < prop-const-while < prop-const-for
< (all(prop-const); try(EvalBinOp < EvalRelOp))

prop-const-vardec =

[var = ta := <prop-comst => e>]|
; if <is-value> e then rules(PropConst+z : [z 1 -> [e 1)
else rules(PropConst+z :- [[z]) end
prop-const-assign =
[£ := <prop-const => e>]|
; if <is-value> e then rules(PropConst.z : [z] -> [e 1)
else rules(PropConst.z :- L ¢ 1) end

prop-const-let =
[let <*id> in <*id> end]I; {| PropComnst : all(s) |}

prop-const-if =
[if <prop-const> then <id>]|
; (Evallf; s < ([[if <id> then <prop-comnst>]| /PropConst\ id))

prop-const-if =

[if <prop-const> then <id> else <id>]|

; (Evallf; s < (| if <id> then <prop-const> else <id>]|

/PropConst\ [[if <id> then <id> else <prop-comnst>]|))

prop-const-while =

[while <id> do <id>]|

; (I while <prop-const> do <id>]I; EvalWhile

< /PropConst\#* |[while <prop-const> do <prop-const> J)

prop-const-for =
[for <id> := <prop-const> to <prop-const> do <id>]|
; (EvalFor < /PropConst* [|[for <id> := <id> to <id> do <prop-comnst>]|)

Figure 18. Intra-procedural flow-sensitive constant pgai@n.

let var w := 20 var x := 20 var y := 20 var z := 10 W % y 2
in while SomethingUnknown() do
(if x = 20 then w := 20 else w := 10; 20 20 20 10
if y = 20 then x := 20 else x := 10; 1 20 20 10 10
if z = 20 then y := 20 else y := 10); 20 20 - 10
W; X; y; Z end 2 20 - 10 10
let var w := 20 var x := 20 var y := 20 var z := 10 20 - - 10
in while SomethingUnknown() do 3 - - 10 10
(if x = 20 then w := 20 else w := 10; _ _ _ 10
if y = 20 then x := 20 else x := 10;
y = 10); 4 - - 10 10
w; X; y; 10 end - - - 10

Figure 19. Example showing the need for multiple iteratiorse table shows the values of the variables before
the loop (first row) and at the end of each iteration, befoafter computing the intersection with the previous
rule set.

162 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

the transformations from all but the last iteration may gpples that are not valid in all iterations, and
may thus be incorrect. This process is illustrated in Figife Note that the rule set after the loop
need not be the same as the rule set before the loop. Thu Wiehloop values can still be propagated
as usual. In the example, variabtehas the valuel0 after every iteration. This cannot be propagated
outside the loop since it has a different value before thp,laad there is no guarantee that the loop will
execute at least once.

The iteration of dynamic rule propagation with interseatie expressed using the fixed point com-
binator/L* s, which repeats the application efuntil no more changes in the rule set fooccur, i.e.,
until a fixed point is reached. For example, in the constampagation transformation, the strategy

/PropConst* |[while <prop-const> do <prop-comnst>]|)

expresses the fixed point iteration ovestda le-loop. The specification in Figure 18 uses these intersec-
tion combinators to express constant propagation ovectsired control flow constructs.

Finally, the transformation is enhanced with unreachabtie@limination, which gives the effect of
conditional constant propagation [47, 19] as illustratedrigure 16. This is achieved by the following
strategy expression

[if <prop-const> then <id> else <id>]|
; (Evallf; prop-comst < (|[if <id> then <prop-const> else <id>]|
/PropConst\ [[if <id> then <id> else <prop-const>]))

which first applieprop-const to the conditional. Then it tries to appBralIf, which discards one of
the branches if the condition is constant, after which thahth can be transformed as normal code with
an application oprop-const. If the conditional cannot be reduced, the intersectionvueked, instead.

7.2. Semantics: Intersection of Dynamic Rules

The semantics of the join-and-fork combinators are sttéoghard. The argument strategies are applied
sequentially to the subject term. That is, the second glyaseapplied to the result of the first. However,
each strategy application uses the original sdt ofiles, and afterwards the intersection of the resulting
rule sets is taken.

o € st = ¢ (U 5. €) D€ F ()t = " () ;). €")
Fue € Flsi /N syt = ¢ (] ;o E7)
L €F ()t = 1 (1 5,€)
i € F (st /INso)t = 1 (T, &)
Pugp€F ()t = 1/ (I 5. &) Ty & F (sa)t = 1 (1) ;,€")

(5)s EF <81 /L\ 82>t - T (F” 5”)

The intersection of two rule sets is the point-wise intetisacof the scope strategies, and the intersection
of two scope strategies corresponds to the intersectidmeafetsulting strategy application:

-
!

sNs' = (s1 N8y (80 NsL) 51N 89 = <isect>(<s1>,<59>)

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 163

whereisect is a library strategy that computes the intersection of s3] andunion computes the
union of two lists, removing duplicate elements.

The fixed point variants of the intersection operation répéae application of a strategy until the
rule set is stable. Thus, the first semantic rule defines ligatesult of the application of the fixed point
operation produces the result of applying the transfoinatif the intersectiors N s of the L rule set
5 before ands’ after application are equal # The second rule expresses that if this is not the case, a
recursive invocation of the fixed point operation should edgrmed.

g §=8ns
&

LEF (st = ¢ (T ;.
FL(g),g F </L* 81>t = (F’LI

(8)7

1 (T / . s !
LEF)t = #1(I5),8) "=5ns'25 Ty, &)

FL(§)75 = </L* 31>t — (FZ

E'F(/INk s1)t = 1" (I
L&)

()

(s")
Note that in the second case the recursive invocation apmi¢heoriginal subject termt. Only the
result of the last iteration is produced as result of thesfiamation. Thus, the transformation is applied
only after a stable rule set is obtained.

We have omitted the failure rules for the fixed point operattrich recover the rule set to its original
state, just like the binary operator. In fact, the fork-goitc- combinators are more general, since they
allow alist of dynamic rules over which the fork-and-join operations performed simultaneously. The
extension of the semantics to these generalized combinatatraightforward. Furthermore, Stratego
provides thaunionoperators\L/ and\L/x* , the semantics of which is entirely analogous to semantics
of the intersection operators with intersection replacgdriion. An example of their use follows below.

7.3. Example: Dead Code Elimination

Finally, as an example of tha L/ combinators for taking the union of rule sets, we presenspes-
ification of dead code elimination, a transformation thatoges assignments that compute a value that
is not needed. The transformation is illustrated in Figue I2removes an assignment statement if its
left-value variable is not needed on entry to the next statemA variable is needed if it is used in a
statement, which is needed itself and follows the assighmwifetihe variable. Thus, the neededness of a
variable requires Backwardslow analysis. By combining this analysis with the actuahsfarmation,
i.e., removing dead assignments, all dead code can be atiedirn a single traversal.

The specification in Figure 21 defines the strategy for dea@ @imination for basic blocks with
control flow, but without variable declarations. The cehttde of the specification i€1imAssign,
which replaces an assignment with the empty sequence, fatigble it assigns is not needed. Need-
edness is indicated by theeded dynamic rule. If an assignmest:=e is needed §limAssign fails
to apply), the dynamic rule isndefinedoy dce-assign for x, since all subsequent uses of the variable
use the value computed by the assignment. By genericallgrsmg needed expressions, all needed
variables are encountered, which are then marked as negdeslreeded. The generic traversal is
specialized for sequence, if, and while statements, wHichilg be traversed in backwards control flow
order. Thusdce-seq uses thereverse-filter strategy to applyice recursively to the statements
in a sequence from last to first, and to remove those statentieat have been reduced to the empty
sequence). Thedce-if strategy first eliminates code in the branches of tithen-else statement,

164 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

(x := foo(b); {c,b}
y := bar(h); {x,c} (x := foo(b);
a = c + 23; {x,c}
if 4 > x then {x,a} a = c + 23;
(d :=b + a; {a} if not(4> x) then
g =4+y)| = |{a} =
else
(b := 2; {x}
a =y + 3; {x}
a:=4 + x) {x}
print(a)) {a} a := 4 + x;
print(a))

Figure 20. Example of dead code elimination. The table bgis which variables are needeul entryof the
statement on the same line.

dce = VarNeeded < ElimAssign < dce-assign < dce-seq < dce-if < dce-while < all(dce)
ElimAssign : [L 2 := e]| => [()] where <not(Needed)> I[z 1|

ElimIf : Il if e then () else O 11 > IL (e) 1]
ElimIf : |[if el then e2 else () 1] -> |[if el then e2]
ElimIf : |[if el then () else e2 1] -> I[if not(el) then e2]l

VarNeeded = 7I|[= 1; rules(Needed : I[= 1)
dce-assign = ?[[z := e]; rules(Needed :- [[= 1I); I[<id> := <dce>]
dce-seq = [[(<* reverse-filter(dce; not(?7IL OO 1)) > 1

dce-if =
(I if <id> then <dce> else <id> 1| \Needed/ [if <id> then <id> else <dce>]I)
; I[if <dce> then <id> else <id>]|
; try(ElimIf)

dce-while = |[while <id> do <id>]|; (\Needed/* |[while <dce> do <dce> 1)

Figure 21. Intra-procedural dead code elimination.

taking the union of the variables needed in both branches tleen transforms the conditiofE1imIf
simplifies a statement if one or both branches reduced tortiptyesequence. Similarlyjce-while
computes the fixed point of the variables neededwhile loop.

8. Example: Function Specialization

Next we present a somewhat larger example, illustratingededynamic rules, the use ofice-1 dy-
namic rule application, and the interaction between dyoanies.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 165

function mod(x : int, y : int) : int =
x - (x/y *xy)
function even(x : int) : int =
mod(x, 2) = 0
function square(x : int) : int =
X * X
function power(x : int, n : int) : int =| =
if n = 0 then 1
else if even(n) then
square(power(x, n / 2))
else x * power(x, n - 1)
function main() =
printint (power (string2int(argv(1)),5))

function square(x: int): int = x * x
function a(x: int): int = x * b(x)
function b(x: int): int = square(c(x))
function c(x: int): int = square(e(x))
function e(x: int): int = x * £(x)
function f(x: int): int = 1
function main() =

printint (a(string2int (argv(1))))

Figure 22. Specialization glower (_,5).

Partial evaluationis a transformation that specializes a program to its stapiots [17]. One aspect
of partial evaluation igunction specializationthe generation of a derived function definition that is
specialized to some values of its parameters. Partial &iatucan be considered as an extension of
constant propagation to involve functions. The exampleiguie 22 illustrates partial evaluation by
the specialization of theower function to the constant valugas its second argument. A specialized
function a(x) is generated that denotgswer (x,5). Propagating the constagtin the body of the
specialized function gives rise to a cabbwer (x,4), which is itself specialized to(x). This process
continues by specializing all function calls that have sa@mastant values as arguments. Function calls
for which all arguments are constants, are not specializetare unfolded. Since all argument values
are available, these calls can be completely evaluatedexample, as part of partial evaluation of the
specialized body opower(x,5), the calleven(n) is instantiated t@ven(5). By unfolding this call
and all nested calls, the value efen(5) is computed during specialization, and can thus be used to
evaluate the.f-then-else.

To achieve partial evaluation, the specification in FiguBés?2a combination of constant propagation
for local propagation of constant values, call unfoldingl danction specialization. The strategy has
basically the same structure as the constant propagatiategy in Figure 18, with a few extra cases.
The strategieprop-const-vardec, prop-const-assign, prop-const-if, prop-const-while,
andprop-const-for are reused from Figure 18

The major part of the transformation is the stratégylare-fundec, which defines for each func-
tion definition three dynamic rules. Firgpecialization is the rule used to collect specializations
for the function, which is initialized to produce the furwtiitself as specialization. ThetipfoldCall
is the familiar unfolding rule that replaces a call with astantiation of the function body, but only if
all arguments are constants. FinabpecializeCall generates a new function with the body of the
original function with the constant actual parameters lidiorthe corresponding formal parameters. Be-
fore examining the latter rule in more detail, note how thedes are used in the overall strategy. The
prop-const-let strategy transform3et bindings by first declaring the unfolding and specializatio
rules by means of a map over all declarationgérlare, which callsdeclare-fundec for each func-
tion definition. Next, it performs constant propagationhe1et body (recursive call tprop-const),
which may give rise to function specializations. Finallyfanction specializations are added to thet,
by rewriting each function definition to the list of its sp@l@ations inspecialize.

166 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

prop-const = PropConst < prop-const-assign < prop-const-let < prop-const-fundec
<& prop-const-funarg < prop-const-if < prop-const-while < prop-const-for
< all(prop-const); try(EvalBinOp < EvalRelOp < unfold-call < SpecializeCall)

unfold-call = UnfoldCall; exprename; prop-const

prop-const-let =
[let <*id> in <*id> end]|
; {| PropConst, UnfoldCall, SpecializeCall, Specialization :

Il let <*declare> in <*prop-const> end]|; [let <*specialize> in <*id> end 1 |}
; try(\ IL let d* in 2 end 1 -> L 2 1 \)

declare = map(prop-const-vardec + |[[<fd*:map(declare-fundec)> 1)
specialize map (try ([<fd*:mapconcat (specialize-fun)>]))
specialize-fun ! [<once-Specialization; prop-const>|<specialize-fun>] < ![]

declare-fundec
?|[function f(z1*) ta = el 1;
rules(
Specialization+f :
[function f(zi1*) ta = e2]| -> I[function f(zi1*) ta = el]

UnfoldCall :
[fCax) I => IL let d* in el end]
where <map(is-value)> a* // only unfold if all args static
; <zip(\ (FArgll =z ta 1, e) > [var z ta := e 1\)> (z1*, ax) => d*

SpecializeCall :
L fCatx) I > IL g(a2*)]
where <split-static-dynamic-args> (zi1*, alx*) => (d*, (z2*%, a2%))
; new => g
; rules(
Specialization.f :+ [[function f(zi1#*) ta = e2] ->
[function g (z2*) ta = let d* in el endll

split-static-dynamic-args =
zip; partition(bind-arg-value); (not([]), unzip)

bind-arg-value : (FArgll =z ta 1, e) -> I[[var =z ta := e]| where <is-value> e

prop-const-fundec =
?|[function f(z*) ta = e 1; {| PropConst : all(prop-const) |}

prop-const-funarg =
?FArgll = ta 1I; rules(PropConst+z :- [z 1)

Figure 23. A simple online partial evaluator with functigresialization.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 167

The interesting rule in the specificationSisecializeCall. It transforms a calf (a1+*) into a call
to a new functiory . The new function is a specialization of functigrio the constant valued arguments
of the call. As a side effect, the definition of the new funetip is declared as a specialization pfby
means of the nested dynamic rule definition3pecialization. By extendinghe Specialization
rule, any previous specializations are preserved. Thakigf-Specialization produces all special-
izations forf. The definition of the specialized functignhas the following form:

[function g (z2#) ta = let d* in el end]|

It is a combination of the original function definition fgt and the actual parametees * of the

call. Thesplit-static-dynamic-args strategy is used to partition the formal and actual pararsete
(z1*,a1x) into (1) a list of local variable declaratiord*, assigning the constant valued arguments
to the corresponding formal parameters (producedind-arg-value); and (2) a list of formal pa-
rametersgz2* and actual parametewe+*, corresponding to the non-constant valued arguments. Thus
the specialized functiop has the remaining parameterg+ as formal parameters and uses the variable
bindingsd# to specialize the original bodyz . Finally, g (a2*) is a call to the newly created specialized
function with as parameters the non-static parametey(af).

As an example, consider the specialization of the palter(y,5). Splitting the argument list
produces the variable declaratifinvar n : int := 5]|, and the remaining non-constant argument
y with the formal parameteff x : int]l. Arbitrarily choosinga as the name for the specialized
function,SpecializeCall produces the specialized cally), and extends the definition of the dynamic
rule Specialization as follows:

Specialization :+ I[function power(x : int, n : int) : int = e2 1 ->
[function a(x : int) : int =
let var n : int := 5
in if n = 0 then 1
else if even(n) then square(power(x, n / 2)) else x * power(x, n - 1)
end]l

Note that this specialized function has not yet been tramsfd byprop-const itself. That is, the
specialization is just a copy of the original function defom with a local variable declaration, binding
the formal parametar to the actual parametér No specializations have been generated for the recursive
call in this specialization.

Thus, the result of transforming the body olet is that alldirect function calls have either been
unfolded or specialized. The specializations have not lspecialized themselves. This is done while
replacing the original function definition with its spedaaltions in thespecialize strategy. Since
the partial evaluation of the specialized functions mayegise to further specializations, it is not
sufficient to applybagof-Specialization once. To obtain all specializations of a function, an in-
teraction between constant propagation and retrievingialzeations is needed. For this purpose, we
useonce-Specialization, which produces one right-hand side of the dynamic rulesadding it at
the same time. Thusince-Specialization produces one previously defined specialization for the
function under consideration, and then deletes that djgetian from the rule set. The auxiliary strat-
egy specialize-fun builds a list of specializations by callinghce-Specialization to obtain the
next specialized function, partially evaluating it by @&l prop-const, and then recursively calling
specialize-fun to obtain further specialized functions. For example,iglytevaluating the special-
ization ofpower(_,5) above produces the following definition

[function a(x : int) : int = let var n : int := 5 in x * b(x) end]|

168 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

and gives rise t (x), a call to the specialization glower (x,4). Specialization ob gives rise to the
new functionc, and so on. (Note that the variable declarationifas dead and can be removed, which
is not done by the specializer in Figure 23, but by a sepakdd dode removal transformation.)

To summarize, the specification in Figure 23 defines an omaréal evaluator that evaluates calls
with all constant arguments and specializes calls withadtlene constant argument (and at least one
non-constant argument). The complete specification is avat 100 lines including the propagation
strategy for control flow, but excluding standard evaluatioles. This specification lacks memoization
to prevent re-specialization of function calls with the saoonstant arguments. This requires another
dynamic rule. This approach to partial evaluation has beearporated in a compiler for Octave [25],
a high-level language, primarily intended for numericainpaitations [13]. We have also developed an
offline partial evaluator with separate binding-time amtion using these techniques [45].

9. Related Work

Scoped dynamic rewrite rules are a novel extension of giatewriting. The rewriting strategy controls
not only the application of static rewrite rules, but alsatrols the definition, scope, and application of
dynamic rewrite rules. This language extension is insping@nd/or related to previous work in sev-
eral areas. Firstly, in compilers, program analysis, amdj@m optimizers all kinds of specialized data
structures, e.g. symbol tables, are used to store infoomatbout the program. Secondly, several pro-
gramming languages support implicit parameters and dymaodping of names. Lastly, many systems
provide run-time code generation, usually for adding cb@¢ is dependent on information not available
until runtime.

9.1. Data Structures in Program Optimization and Compilation

Symbol Tables In program transformation systems all kinds of data stmestiare used for storing
context-sensitive information. In particulasymbol tablesare widely used to associate symbols in a
program with information, e.g. the type of the symbol. Syirthbles are often implemented by using
a hash table for efficient lookup. Since symbol tables are@oed with names, they have to handle
the scoping rules of the object programming language. Famgie, the symbol table implementation
used in Appel's Tiger compiler [2] remembers the state of shitable in ebeginScope and restores
this information in theendScope. Dynamic rewrite rules lift this functionality for handtinscopes to
the language level by adding special purpose languagerootsstor scoping to the meta-language. The
implementation of scopes in Stratego is efficient and gémm@ugh to handle a wide variety of scopes
in programming languages.

Bit Vectors In data flow analysibit vectorsare used to represent facts about entities in a program. For
example, in calculating the definitions that reach prograintp, for every program point a bit vector

is constructed. The bit vector of a program point containkaacter for every definition, so the length
of the bit vector is the number of definitions in a procedure. cdllect the required information, the
control flow of the program is simulated until a fixed point é&ached. Such a bit vector encoding of
information is extremely compact and intersection and mimbbit vectors is very efficient. Dynamic

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 169

rewrite rules also have fixed point operations, union, ggetion, and they can be used as predicates.
However, compared to data flow analysis with bit vectors dhistraction clearly comes at a cost.

Value Numbering Value numberings used in a wide range of program optimizations. Initiatlyyas

a method used for common subexpression elimination andamtrfslding in basic blocks [10]. In value
numbering every expression in a basic block is assignedquanmiumber. The goal of value nhumbering
is to discover redundancy, which is determined by lettirgy\thlue of two expressions be equal if the
expressions are equal. This number is stored in a hash tilijch the keys are based on the structure
of the expression. For example, for a binary operator theikeletermined by its operands and the
operator. Dynamic rewrite rules use a comparable methodffimient access to the rewrite rules that
have been defined for a term. The rewrite rules are stored a@sh table, of which the key is based on
the dynamic part of the left-hand side of the rewrite rule.

9.2. Language Independent Traversals

Language independent traversals [38] allow the implentientaf certain program transformations using
traversals that are independent of a specific object lareguHtese traversals have been implemented for
reoccurring program transformations, such as collectieg Yariables, renaming bound variables, syn-
tactic unification of terms with object variables, and sitbsbn of expressions for object variables. The
language independent traversals are implemented usirgetieric traversal operators of Stratego [44]
and are parameterized with strategies for handling largspgcific issues, such as the representation of
variables and the constructs for variable binding.

Language independent traversals for program transfoomaftien implement context-sensitive trans-
formations. Before the introduction of scoped dynamic i®aules, such context-sensitive issues had to
be handled by threading an environment with context infélmnathrough the traversal, or alternatively,
by controlling the traversal from the topmost location whtre required information is available. The
second option leads to repeated traversals over the absfraax tree of the object program and in both
cases the traversals are more difficult to understand anctairai

Scoped dynamic rewrite rules are a useful language extef@ioaking these language independent
traversals more concise. First, the threading of contemsiive information can now be delegated to
dynamic rules, which are implicitly passed to strategiescdBd, scope can be controlled in a declarative
way with the scoping facilities of dynamic rules. Third, gram analysis and program transformation
can now be combined in a single traversal. The resultingetsals are much more attractive. For
example, information on constructs having local scope dmred to leave this scope. This solves the
name conflicts that have to be solved in case a separate ¢gdibalof information is constructed first.

The traversal functions in ASF+SDF [7] can be used to threa@r&vironment through a traver-
sal. ASF+SDF provides three kinds of traversal functionandformers, accumulators and accumulat-
ing transformers. For each of these kinds, there is a fixedfseaversal functionsbottom-up and
top-down, which can be configured tereak or continue after a successful application. The accu-
mulators and accumulating transformers are used to aceteinformation, in case of an accumulating
transformer during a transformation. The accumulatedevedwpdated on every application of the accu-
mulator, and the next application will then use this new gala Stratego, context-sensitive information
is represented in dynamic rewrite rules, which makes theatting of context-sensitive information more
natural in the paradigm of strategic rewriting. Alternatirewritings are represented by defining several

170 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

applicable rewriting rules, as opposed to expensive coctstn and threading of lists. Like the appli-
cation of static rules is controlled by a strategy, so is tefnition, scope, and application of dynamic
rewrite rules under full control of user-definable travésdeategies.

9.3. Runtime Extension of Logic Programs

Dynamic rewrite rules are closely related to the extradagbperatorassert andretract in Pro-
log. These operators allow dynamic inspection and modifinatf the clause database. The predicate
assert (X) adds the clause to the rule database. If the clause is added to an existirdjoate with
assert, then the location of the new clause is implementation dégetn Theasserta andassertz
operators provide more control over this by letting the niawse be the first, respectively the last, clause
of the predicate. The predicatetract (X) removes the first clause that unifies wkhMost Prolog
implementations provide getractall (X) predicate, which removedl clauses that unify witix.

Backtracking In case of backtracking a clause added by an assert is noveehfimm the database.
The clause must be retracted by hand if this is required. I&ilyi Stratego’s dynamic rewrite rules are
not removed on backtracking either. However, the scopindyafimic rewrite rules makes it possible
to restrict the live range of dynamic rules. This is not costglly comparable to retracting clauses on
backtracking, since the dynamic rules generated in thigesace removed in case of failuaed success.
Currently, there is no language construct for removingsirecase of failure, although this can easily be
implemented with the dynamic rule API. Similar to backtriaigkover an assert predicate, clauses are not
re-added to the Prolog database if backtracking occursavetract predicate. In Stratego, undefined
rules become visible again when the scope of undefinitioafis Also in this case, there is no language
construct for making the dynamic rules visible again in aafdailure only.

Live Range In Prolog the live range of clauses is controlled by the mtt@edicate. The retract
predicate requires an argument that is used for speciffniegcltause that must be removed. On the
other hand, a dynamic rule scope automatically removeslas that have been defined in this scope.
Therefore, the dynamic rules are not removed based on thgitt ior output. This is natural in the
application domain of program transformations, since esdgpically correspond with scopes in the
object language. If this scope is left, then the informatioltected in this scope is no longer applicable.
If a scope is left, then dynamic rules that were defined oetid scope are preserved and might become
visible when the scope is left.

Retract removes clauses based on their goal. In contrasanuyg rules are undefined by their left-
hand side. Although clauses and rewrite rules are diffecenstructs, the goal of a clause is more
comparable to the right-hand side of a rewrite rule. Claus#sbe made undefined by a pattern of
their output, whereas rewrite rules are undefined by a patiktheir input. Dynamic rules are only
undefined for the current (or a given) scope. If this scopefisthen the dynamic rules that have been
defined outside this scope will become visible again. AgHiis, is natural in the domain of program
transformation.

In Prolog the location of a clause in an existing predicatelmacontrolled bysserta andassertz.
Stratego’s dynamic rewrite rules organize the defined dymaewrite rules in scopes, which might be
labeled. This scope label can be used to define a dynamicrrale outer scope instead of the current
one. These features provide fine-grained control over ttegilon of a newly defined rule.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 171

Alternative Results In Prolog the ordinary collectors (e.@agof, setof, findall) can be used to
get all alternative solutions. Backtracking for clausesegated at run-time byssert is not different
from ordinary backtracking. In Stratego’s dynamic rulesréhis a distinction between static and dynamic
rewrite rules. Static rules with the same name cannot beeabia produce all alternative solutions, since
they are combined by tHecal-choiceoperator), which commits the choice for a strategy argument
if it succeeds. In contrast, all possible results of apglyindynamic rule can be produced by means
the special purpose strategggof-L, which immediately returns all results. It might be intéirss to
consider more programmer control over the backtrackingiehr.

9.4. Dynamic Binding

Dynamic rewrite rules are related to dynamic scoping andib In this section we will first review how
dynamic rules implement dynamic binding, and proceed d&siog differences with implementations of
dynamic binding in other programming languages.

The terms dynamic scoping and dynamic binding are often asexynonyms, although they refer
to different, yet related, concepts. Bndingis an association between a name and a value.stbpe
of a name concerns its visibility, that is, the part of thegrean where the name can be usétktent
refers to the lifetime of a binding. Istatic or lexical scoping, the scope of a name is determined by the
lexical structure of the program. A binding is availablenfrthe start of the definition construct to its end.
In other words, names are evaluated in the definition enmeort. The name might be shadowed by a
nested definition of a name, but this does not mean that tiénigjris really not available, since it should
still be available if the control flow turns to a part of the gram where the name is not shadowed by a
nested binding. Imlynamicscoping a name is visible in all execution paths that inclihgedefinition of
the name. In other words, dynamic variables are evaluat#eignvironment of their application. Since
these execution paths cannot be determined at compile-timaébinding of names must be determined
at runtime, whereas the binding can be determined at cortipikeif lexical scoping is used.

In most programming languages variables are lexically adpput dynamic binding is also used by
default or at least available in many programming languagés best-known examples are the various
Lisp dialects (e.g. McCarthy’'s Lisp, Common Lisp, GNU Emaésp), but EX, shell scripting, and
XSLT 2.0 implement dynamic binding as well. More recentlyesal papers have reintroduced dynamic
scope as a feature in strongly-typed general purpose lgeguaamely statically-typed Haskell-like
languages with Hindley-Milner type inference [21], andalile languages [16].

Dynamic Rewrite Rules The scope of the name of a dynamic rewrite rulglabal. In other words,

a dynamic rewrite rule can be applied anywhere in a progrdmo dynamic rules for this rule have
been defined (or those that have been defined, have been walefiren the application just fails. This
is perfectly acceptable, since failure of strategy appiticais used for control flow in Stratego. More
comparable to dynamic variables are dynamic rule scopesbifiding of dynamic variables is based on
the execution path. Similarly, the dynamic rule scopes eftkecution path determine the dynamic rules
that can be applied. The dynamic rule scopes thus corredpahghamic variables whose value is a set
of dynamic rules. A novel aspect of dynamic rewrite rulesht ta scope itself does not automatically
hide the rewrite rules defined in outer scopes. Furtherntiymegamic rewrite rules defined in the current
scope, but at execution paths that have already returnedgtitiiavailable.

172 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

In contrast to the dynamic binding of dynamic rules, the egnvariables of a dynamic rewrite rule
have lexical scope. That is, their value at rule definitionetiis stored as a closure in the dynamically
defined rewrite rule. Currently, strategy definitions in ttomtext of a dynamic rule definition are not
part of its closure.

Lisp Dialects Dynamic binding first appeared as a more or less unintendedréeof Lisp 1.0. Lisp
1.0 had one kind of variable, which was dynamically scopetle linexpected behaviour of dynamic
binding was soon reported, and was at first was thought to lng &y McCarthy [23]. The analysis of
this problem led to the identification of tanarg problem and the first implementation of closures, a
representation of a function and the lexical environmenthich the function is defined. In Lisp dialects
that have been developed later, dynamic scoping was nordatefault for variables. However, most
dialects include an explicit notion of dynamically scopedtiables. In Common Lisp, variables can be
declared to bepecial, which indicates that they are dynamically scoped. Uspaily-level variables
(globals) are special and local variables are lexical. Dyinally scoped variables can be used to give
the ‘global’ variable a new value temporarily, since a nevealefinition of the global variable with a
let only influences the execution paths that containlie

Alternatively, several Scheme implementations proviageftuid-1let binding construct to control
dynamic binding [15]. Fluid bindings are somewhat simiaspecial variables in Common Lisp. How-
ever, the fluid-let of Scheme does not determine the scopevafiable. Instead, it temporarily assigns
a different value to variables that have already been definedme outer scope. This binding is stored
in a per-thread fluid binding association list, which is adted when a non-local variable is evaluated.
Therefore, the fluid-let can be described as a thread-lodag¢ijted by child threads) scoped assignment
construct.

Dynamically scoped variables are very useful for passimgegto parts of a program to configure its
behaviour, without passing loads of parameters to evergtifom that might possibly be on an execution
path to this part of the program. These variables allow watode passed in amplicit way. Decades
after the introduction of dynamic and lexical scoping ind_end Scheme, there has recently been more
interest in adding dynamically scoped variables to curpeojramming languages.

Implicit Parameters in Haskell Lewis et al. [21] have proposed implicit parameters for fioral
programming languages like Haskell. These implicit part@nsehave been implemented as extensions
of Haskell in Hugs [20] and GHC. Implicit parameters can beple embedded in a functional definition
and can be bound at some outer level without having to pasgathe explicitly through all the inter-
mediate function calls. Rather, the need for passing anicgihparameter is inferred statically. Adding
implicit parameters to a statically-typed language witbetynference introduces some problems, which
results in some limitations. First, the approach does notvdglinction arguments that take implicitly pa-
rameterized arguments. Second, implicit parameters neustdnomorphic. Third, implicit parameters
are not allowed in the context of a class or instance deataraBesides these restrictions that are based
on static type system issues, the implicit parameters atehat: parameters. Implicit information can
be only be passed to callees. There arenmglicit results which would allow the passing of results to
callers in an implicit way.

Dynamic Variables in Imperative Languages Hanson and Proebsting [16] reintroduced dynamic
scope as a feature in imperative languages. They proposaimatistic language extension for dy-

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 173

namic variables, which are to be used sparingly. The use ghardic variable refers to the most recent
setting of a dynamic variable with the same name. Dynami@bkes could replace thread local vari-
ables (for example available in Java fsva.lang.ThreadLocal), which allow separate threads to
have their own, independent variables. Indeed, the dynaariable proposal is based on a data struc-
ture for storing dynamic variables on the stack, which aatiocally makes the dynamic variables local
to a thread. Note that there is thus a slight difference Withfluid-let in Scheme, where child threads
inherit dynamic variables from their parent. Java provideseparate subclass THreadLocal called
InheritableThreadLocal. For this class, the initial values of the thread local Jalga are inherited
from its parent. The child thread still gets it own copy of tfziable: it can set the value of the thread
local variable, but the value of the parent’s variable wilt be modified.

XSLT’s Tunnel Variables Most recently, Schadow proposed dynamically scoped Vasabr XSLT
[33]. This proposal has been accepted for XSLT 2.0 [18], whieey are now called tunnel parameters.
A parameter of a template can be defined as a tunnel parariietanel parameters are recursively and
implicitly passed to all templates that are called. All tahparameters are passed through a built-in
template rule. The tunnel parameters are very similar taymamic variables that have been discussed
before. XSLT does not allow side effects to variables andetieno way to return dynamically scoped
variables implicitly. In short, the design of tunnel paraens is not very surprising, yet, itis interesting to
see dynamically scoped variables live again in a pure fanatilanguage that is widely used in practice.

It would be interesting to develop a system comparable t@ahya rules for XSLT. This would then
be a facility for the run-time definition of templates, whegriables from the definition context can be
used in the dynamically defined templates.

Domain-Specific Languages Domain-specific languages such gX&nd shell scripting make use of
dynamically scoped variables that allow for easy redefinitif behaviour; for example, irgX configu-
ration of a document, style can be influenced by redefiningrosaepresenting parameters of the style.
In shell scripting, environment variables are implicitlggsed to all parts of the shell script.

9.5. Fresh O'Caml and FreshML

FreshML and Fresh O’Caml [34, 32] lift the problem of mangting hames and binding constructs to
the meta language. This makes meta-programming tasksahatid consider free and bound variables
much easier, since the meta language guarantees that tresteucts are manipulated in a proper way.
Variable binding in object languages is the focus of FreshiWterefore, it does not provide any further

facilities to deal with context-sensitive information irogram transformations. Furthermore, FreshML
restricts the possible ways of binding to just lexical (s)abinding. Object languages with dynamic

binding cannot be transformed with the variable bindinglitaes of FreshML.

10. Conclusion

In this paper we have presented an extension of term reg/miith the run-time definition of context-
dependent rewrite rules. Dynamic rules can be used as phe gfobal tree traversal, thus not increasing
complexity by performing additional traversals. The esien is not limited to some specific form of

174 M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

program representation such as control flow graphs, buteapplied in the transformation of arbitrary
abstract syntax trees. The implementation of dynamic nl&ratego has been designed to achieve the
best possible efficiency of all operations such that transéitions can scale to large programs.

Scoped dynamic rewrite rules solve (many of) the limitati@aused by the context-free nature of
rewrite rules, strengthening the separation of rules aradegfies, and supporting concise and elegant
specification of program transformations. This has beestithated in this paper by the specification of
several transformations, i.e., bound variable renamunggtfon inlining, constant propagation, common-
subexpression elimination, dead function eliminatiord anline partial evaluation. The techniques are
equally well applicable to many other program transfororai

Acknowledgments We thank Patricia Johann, Oege de Moor, and Ganesh Sittamgaf discussions
on the subject of this paper. In particular, Ganesh Sittdampa remarks during the Stratego User Days
2004 triggered the development of scope labels and charige $he anonymous referees provided
valuable feedback for improving the presentation of thikex.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 175

A. Free Variables

This appendix contains a definition of the free pattern Wdemin a strategy expression in core Stratego.

freevargstr) = {}
freevargi) = {}
freevargr) = {}
freevargz) = {z}
freevargc(py, ..., pn)) = freevargp;) U ... U freevargp,,)

freevarg?p) = freevargp)
freevarg!p) = freevargp)
freevarg{z1, ..., z,, : s}) = freevargs)/{z1, ...,z }
freevarglet di,...,d, in s end) = freevargd;) U ... U freevarsd,) U freevargs)
freevargf (s1,...,8,1p1,--.,pm)) = freevargs;) U ... U freevargs,,)
U freevargp;) U ... U freevargp,,)
freevargid) = {}
freevarg¢fail) = {}
freevargs; ; sq) = freevargs;) U freevargss)
freevargs; < sg + s3)
)
)
)

= freevargs;) U freevargsy) U freevargss)
freevargc(sy, ..., s,)) = freevargs;) U ... U freevargs,,)
freevargall(s)) = freevargs)
freevargone (s)) = freevargs)

freevargf (sdy,...,sd, | vdy,...,vd,) = s) = freevargs)/{vdy, ...,vd }

176

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

References

[1] A. Aho, R. Sethi, and J. UllmanCompilers: Principles, techniques, and toolkddison Wesley, Reading,

Massachusetts, 1986.

[2] A. W. Appel. Modern Compiler Implementation in MICambridge University Press, 1998.

[3] A. W. Appel and T. Jim. Shrinking lambda expressions irelr time.Journal of Functional Programming

[4]

7(5):515-540, September 1997.

P. Borovansky, C. Kirchner, and H. Kirchner. Controdli rewriting by rewriting. In J. Meseguer, edi-
tor, Proceedings of the First International Workshop on RewgtLogic and its Applications/olume 4 of
Electronic Notes in Theoretical Computer Scien&silomar, Pacific Grove, CA, September 1996. Elsevier
Science Publishers.

[5] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR pragn transforming system: Simplifying the

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

development of numerical software. In E. Arge, A. M. Bruasetd H. P. Langtangen, editorslodern
Software Tools in Scientific Computirgpges 353-372. Birkhuser, 1997.

M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivigfficient annotated termsSoftware, Practice &
Experience30(3):259-291, 2000.

M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term reimg with traversal functionsACM Transactions
on Software Engineering and Methodolod®(2):152—-190, 2003.

M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Progteansformation with scoped dynamic rewrite
rules. Technical Report UU-CS-2005-005, Department obrimfation and Computing Sciences, Utrecht
University, 2005. Extended version of this article with epdices on implementation and performance.

M. Bravenboer and E. Visser. Rewriting strategies fatinction selection. In S. Tison, editdrewriting
Techniques and Applications (RTA'Q2plume 2378 of_ecture Notes in Computer Scienpages 237-251,
Copenhagen, Denmark, July 2002. Springer-Verlag.

J. Cocke and J. T. Schwartz. Programming languagestaiddompilers: Preliminary notes. Technical
report, Courant Institute of Mathematical Sciences, NewkYdniversity, April 1970.

P. Cousot and R. Cousot. Systematic design of prograinstormation frameworks by abstract interpretation.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programranguages (POPL'02)pages 178—
190, Portland, Oregon, USA, January 2002. ACM Press.

E. Dolstra and E. Visser. Building interpreters wittwréing strategies. In M. G. J. van den Brand and
R. Lmmel, editors\Workshop on Language Descriptions, Tools and ApplicatibBRSA’02), volume 65/3 of
Electronic Notes in Theoretical Computer ScienGeenoble, France, April 2002. Elsevier Science Publish-
ers.

J. Eaton. Octaveattp://www.octave.org/.
M. Fowler. Refactoring: Improving the Design of Existing Programa&ldison-Wesley, 1999.

C. Hanson. MIT/GNU Scheme reference. http://www.gnu.org/software/mit-scheme/
documentation/scheme.html, 2003.

D. R. Hanson and T. A. Proebsting. Dynamic variablesPiogramming Language Design and Implemen-
tation (PLDI'01), Snowbird, UT, USA, June 2001. ACM.

N. Jones, C. Gomard, and P. Sestéfartial Evaluation and Automatic Program GeneratidPrentice Hall,
1993.

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules 177

[18] M. Kay. XSL Transformations (XSLT) Version 2.0, W3C Working Draflbvember 2003MNorld Wide Web
Consortium, November 2008t tp: //www.w3.org/TR/xs1t20/.

[19] S. Lerner, D. Grove, and C. Chambers. Combining datadlioalyses and transformations 3StGPLAN Sym-
posium on Principles of Programming Languages (POPL 20p2yes 270-282, Portland, Oregon, January
2002.

[20] J. Lewis. The hugs 98 user’s guide: Implicit parametetsp: //cvs.haskell.org/Hugs/pages/users.
guide/implicit-parameters.html, 2003.

[21] J. R. Lewis, J. Launchbury, E. Meijer, and M. Shields. plitit parameters: Dynamic scoping with static
types. InSymposium on Principles of Programming Languages (POBLj##ges 108-118. ACM, January
2000.

[22] B. Luttik and E. Visser. Specification of rewriting stegies. In M. P. A. Sellink, edito2nd International
Workshop on the Theory and Practice of Algebraic Specifioat(ASF+SDF’97)Electronic Workshops in
Computing, Berlin, November 1997. Springer-Verlag.

[23] J. McCarthy. History of LISP. In R. L. Wexelblat, editdtistory of Programming Languages: Proceedings
of the ACM SIGPLAN Conferengeages 173—-197. Academic Press, June 1-3 1978.

[24] S. S. Muchnick Advanced Compiler Design and Implementatiborgan Kaufmann Publishers, 1997.

[25] K. Olmos and R. Vermaas. The Stratego Octave Compiletp: //www.octave-compiler.org, 2003—
2005.

[26] K. Olmos and E. Visser. Strategies for source-to-segmnstant propagation. In B. Gramlich and S. Lucas,
editors,Workshop on Reduction Strategies (WRS'08lume 70 ofElectronic Notes in Theoretical Computer
Sciencepage 20, Copenhagen, Denmark, July 2002. Elsevier Sciulgéshers.

[27] K. Olmos and E. Visser. Composing source-to-sourca-flatv transformations with rewriting strategies and
dependent dynamic rewrite rules. In R. Bodik, edifigkth International Conference on Compiler Construc-
tion (CC’05), volume 3443 ol ecture Notes in Computer Sciengages 204—-220. Springer-Verlag, April
2005.

[28] W. F. Opdyke. Refactoring Object-Oriented FrameworksPhD thesis, University of lllinois, Urbana-
Champaign, IL, USA, 1992.

[29] R. Paige. Future directions in program transformati@@omputing Survey28A(4), December 1996.

[30] A. Pettorossi and M. Proietti. Future directions in gram transformation. ACM Computing Surveys
28(4es):171—es, December 1996. Position Statement at dhlesiédp on Strategic Directions in Comput-
ing Research. MIT, Cambridge, MA, USA, June 14-15, 1996.

[31] S. Peyton Jones and S. Marlow. Secrets of the GlasgowaHaSompiler inliner. Journal of Functional
Programming 12(4):393-434, July 2002.

[32] A. M. Pitts and M. J. Gabbay. A metalanguage for prograngmvith bound names modulo renaming. In
R. Backhouse and J. N. Oliveira, editoMathematics of Program Construction. 5th Internationaln€o
ference, MPC2000, Ponte de Lima, Portugal, July 2000. Rrdaegs volume 1837 ofLecture Notes in
Computer Scieng@ages 230-255. Springer-Verlag, 2000.

[33] G. Schadow. Request for dynamically scoped variabie¥SLT. http://lists.w3.org/Archives/
Public/xsl-editors/2002JanMar/0002.html, 2002.

[34] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:0Bramming with binders made simple. In
Eighth ACM SIGPLAN International Conference on FunctioRadgramming (ICFP 2003), Uppsala, Swe-
den pages 263-274. ACM Press, Aug. 2003.

178

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

M. Bravenboer, A. van Dam, K. Olmos and E. Visser/ Transftionavith Dynamic Rewrite Rules

Terese.Term Rewriting Systemsolume 55 ofCambridge Tracts in Theoretical Computer ScienGam-
bridge University Press, 2003.

E. Visser. Syntax Definition for Language PrototypinghD thesis, University of Amsterdam, September
1997.

E. Visser. Strategic pattern matching. In P. Narendnatgh M. Rusinowitch, editor®ewriting Techniques
and Applications (RTA'99)Volume 1631 ot ecture Notes in Computer Scienpages 30—44, Trento, Italy,
July 1999. Springer-Verlag.

E. Visser. Language independent traversals for pragransformation. In J. Jeuring, edit®orkshop on
Generic Programming (WGP’00Ponte de Lima, Portugal, July 2000. Technical Report UYJ2080-19,
Department of Information and Computing Sciences, UnitatdJtrecht.

E. Visser. Scoped dynamic rewrite rules. In M. van deari8t and R. Verma, editorKule Based Pro-
gramming (RULE’01)volume 59/4 ofElectronic Notes in Theoretical Computer Sciengksevier Science
Publishers, September 2001.

E. Visser. Meta-programming with concrete object aynt In D. Batory, C. Consel, and W. Taha, edi-
tors, Generative Programming and Component Engineering (GPZE\®lume 2487 olecture Notes in
Computer Scieng@ages 299-315, Pittsburgh, PA, USA, October 2002. Sprivigdag.

E. Visser. Program transformation with Stratego/XTilé8, strategies, tools, and systems in StrategoXT-
0.9. In C. Lengauer et al., edito®pmain-Specific Program Generatiovolume 3016 ol ecture Notes in
Computer Scieng@ages 216-238. Spinger-Verlag, June 2004.

E. Visser. A survey of strategies in rule-based progta@nsformation systemslournal of Symbolic Com-
putation 40(1):831-873, 2005. Reduction Strategies in Rewritimgj Rrogramming special issue.

E. Visser and Z.-e.-A. Benaissa. A core language foriteévg. In C. Kirchner and H. Kirchner, editors,
Second International Workshop on Rewriting Logic and itplisations (WRLA'98) volume 15 ofElec-
tronic Notes in Theoretical Computer ScienBent-a-Mousson, France, September 1998. Elsevier Szien
Publishers.

E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Buildimgpgram optimizers with rewriting strategies. In
Proceedings of the third ACM SIGPLAN International Confiee on Functional Programming (ICFP’98)
pages 13-26. ACM Press, September 1998.

E. Visser, M. Bravenboer, and K. Olmos. Implementatiépartial evaluation in Stratego/XT. Presentation
at Functional Refactoring Workshop in Canterbury, Kent,, Bbruary 9 2004http://www.cs.uu.nl/
wiki/Visser/ResearchTalks.

E. Visser et al. Stratego/XThttp://wuw.stratego-language.org, 1999-2005.

M. Wegman and F. Zadeck. Constant propagation with itmmél branches.ACM Transactions on Pro-
gramming Languages and Systerh3:181-210, April 1991.

