
Stratego/XT 0.16: Components for Transformation Systems

Martin Bravenboer
Department of Information and

Computing Sciences, Utrecht University
The Netherlands
martin@cs.uu.nl

Karl Trygve Kalleberg
Department of Informatics

University of Bergen, Norway
karltk@ii.uib.no

Rob Vermaas
Machina, Utrecht
The Netherlands
rob@levellers.nl

Eelco Visser
Department of Information and

Computing Sciences, Utrecht University
The Netherlands
visser@acm.org

Abstract
Stratego/XT is a language and toolset for program transformation.
The Stratego language provides rewrite rules for expressing basic
transformations, programmable rewriting strategies for controlling
the application of rules, concrete syntax for expressing the pat-
terns of rules in the syntax of the object language, and dynamic
rewrite rules for expressing context-sensitive transformations, thus
supporting the development of transformation components at a high
level of abstraction. The XT toolset offers a collection of flexi-
ble, reusable transformation components, as well as declarative lan-
guages for deriving new components. Complete program transfor-
mation systems are composed from these components. In this paper
we give an overview of Stratego/XT 0.16.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.3.4 [Programming
Languages]: Processors

General Terms Languages, Design

Keywords Transformation Systems, Program Transformation,
Transformation Components, Term Rewriting, Rewriting Strate-
gies, Compilers, Program Optimization, Program Analysis, Parsers,
Pretty-printers

1. Introduction
Stratego/XT is a development environment for creating stand-
alone transformation systems. It combines Stratego, a language
for implementing transformations based on the paradigm of pro-
grammable rewriting strategies, with XT, a collection of reusable
components and tools for the development of transformation sys-
tems. In general, Stratego/XT is intended for the analysis, ma-
nipulation and generation of programs, though its features make

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM ’06 January 9–10, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-196-1/06/0001. . . $5.00.

it useful for transforming any structured documents. In practice,
Stratego/XT has been used to build many types of transformation
systems including compilers, interpreters, static analyzers, domain-
specific optimizers, code generators, source code refactorers, doc-
umentation generators, and document transformers. These systems
involved numerous types of transformations, including desugaring
of syntactic abstractions; assimilation of language embeddings [7];
bound variable renaming; optimizations, such as function inlin-
ing; data-flow transformations such as constant propagation, copy
propagation, common-subexpression elimination, and partial eval-
uation [4, 14]; instruction selection [6]; and several analyses in-
cluding type checking [5] and escaping variables analysis.

In this paper, we give an overview of Stratego/XT. In Section 2
we describe the transformation infrastructure provided by the XT
toolset. In Section 3 we sketch the technical foundations of the
Stratego language. In Section 4 we outline the experience with
using Stratego/XT in concrete projects. In Section 5 we describe
the availability of software, documentation, and support. Along the
way we refer to previous publications for further information about
implemenation aspects and applications of Stratego/XT. These pub-
lications also provide discussions of the relation to other systems.

2. The XT Transformation Tools
XT [10] is a collection of generic, reusable tools serving two pur-
poses. First, it provides several domain-specific languages designed
for the development of language-specific transformation compo-
nents. Second, XT contains ready-made, generic components. The
existing and generated components all fit together in a flexible and
scalable component model. XT relies on the SDF parsing technol-
ogy, providing a parser generator and a scannerless, generalized-LR
parser (SGLR) [15]. XT extends the SDF distribution with tools
for unit testing grammars; a well-formedness checker for ASTs; a
pretty-print generator based on the Box layout language [8]; and
XML conversion tools.

The syntax definition language SDF is central to XT. It is used
to specify the syntax of programming languages in a declarative
way. Different code generators take the syntax definition as input,
deriving several artifacts: a parser which directly constructs an AST
from a source code file, a format checker for such ASTs (used
to determine the correctness of subsequent transformations on the
AST), a Stratego signature (data declaration) for the AST, and a
pretty-printer for turning ASTs back into text.

95



Parse

program

Transform Pretty-Print

Parser
Generator

Parse Table

Signature
Generator

Signature

Pretty-Printer
Generator

Pretty-Print
Table

program

Syntax
Definition

Figure 1. Transformation infrastructure

Figure 1 depicts the architecture of a transformation system and
shows how XT facilitates the development of its components. The
Parser and Pretty-Printer in the pipeline are entirely derived
from the SDF definition. The SDF grammar enjoys its central po-
sition in this picture for a good reason. Unlike most other gram-
mar formalisms, it is highly modular and declarative. This allows
the formalism to easily scale to large language declarations, but
more interestingly, it also allows for easy language composition and
embedding, see Section 4 for details. The Transform component
(which may be a series of components), is written in the Stratego
language, described next.

Components are connected using the Annotated Term Format
(ATerms) [2], an exchange format that supports easy persistence of
terms used to represent programs.

3. The Stratego Language
In transformation systems built with Stratego/XT, transformation
components are implemented using the Stratego language [20, 18,
4]. Stratego provides rewrite rules for expressing basic transforma-
tions, programmable rewriting strategies for controlling the appli-
cation of rules, concrete syntax for expressing the patterns of rules
in the syntax of the object language, and dynamic rewrite rules for
expressing context-sensitive transformations.

Terms Stratego programs transform terms that are essentially of
the form c(t1, ..., tn), i.e. the application of a constructor c to zero
or more terms ti. Terms are equivalent to trees and are used to
represent parse or abstract syntax trees of programs, or any other
structured documents. The terms used internally are equivalent
to the ATerms used for exchange between tools. Thus, Stratego
programmers directly manipulate ATerms.

Stratego is agnostic to the producers and consumers of terms,
i.e. Stratego is not concerned with turning programs into terms
(parsing), or vice versa (unparsing). This means that a Stratego
program can be connected with any parsers and unparsers, not just
with parsers/unparsers produced from SDF definitions. This allows
existing front-ends to be used in combination with Stratego, as long
as the front-end is adapted to produce ATerms.

Rewrite Rules Rewrite rules are the basic units of transformation.
A rewrite rule has the form R : p1 → p2, where R is the name of
the rule, p1 the left-hand side pattern of the rule and p2 the right-
hand side pattern. A pattern is a term with variables. Applying
a rule R to a term t, entails matching p1 against t, binding the
variables in the pattern. If they match, the rule replaces t with
the instantiation of the right-hand side p2, replacing its variables
with the terms found during matching. When matching fails, the
application of a rule fails as well.

Rewriting Strategies Traditional term rewriting is the exhaustive
application of a set of rewrite rules to a term until no more rules
apply. This procedure is usually not adequate for program transfor-
mation, however. One rule may be the inverse of another, leading to
non-termination, or different rule application orders may give dif-
ferent results (non-confluence). Stratego sidesteps these issues by
allowing the programmer to declare the order of application using
programmable rewriting strategies [20]. Strategies are composed
from rules and other strategies using combinators. For example,
the left-choice combinator s1 <+ s2 first tries to apply strategy s1

and if that fails, applies strategy s2. Primitive strategies include
id which always succeeds and fail, which always fails. Stratego
provides combinators for composing generic traversals, which are
used to traverse a term, controlling where in the term a transforma-
tion should be applied. An example of such a generic traversal is
topdown(s), which traverses an entire term and applies strategy s
in pre-order. If s fails at any point, so does topdown. topdown(s
<+ id) will traverse the tree, apply s wherever possible and ignore
any failures. Stratego is not the only language which uses the con-
cept of strategies. See [19] for a survey of strategies in program
transformation.

Dynamic Rules Rewrite rules are context-free, i.e. only have ac-
cess to the term to which they are applied. To express context-
sensitive transformations, Stratego has introduced dynamic rewrite
rules [4, 14], which allow the definition of rewrite rules at run-time.
Such rules can inherit information from the context in which they
are defined and propagate this to the location where they are ap-
plied.

Concrete Syntax Finally, Stratego supports the use of concrete
syntax [17] in the patterns of rewrite rules. That is, rather than ex-
pressing abstract syntax tree patterns using nested constructor ap-
plications, one can use the concrete syntax of the object language.
For example, a pattern, matching an assignment of an expression
to a variable, may be expressed as Assign(Var(x ), e ) using
terms, and may be written as |[ x := e ]| using concrete syntax.

Example The features of Stratego are illustrated in Figure 2,
which defines a flow-sensitive, intraprocedural constant propaga-
tion transformation for an imperative language with assignments
and structured control flow, as illustrated by the following transfor-
mation:

(a := 1;
if foo()
then (b := a + 1)
else (b := 2; a := 3);
b := a + b)

⇒

(a := 1;
if foo()
then (b := 2)
else (b := 2; a := 3);
b := a + 2)

96



EvalBinOp :
|[ i + j ]| -> |[ k ]| where <add>(i ,j ) => k

EvalIf :
|[ if 0 then e1 else e2 ]| -> |[ e2 ]|

propconst =
PropConst
<+ propconst-assign
<+ propconst-if
<+ propconst-while
<+ all(propconst)

; try(EvalBinOp <+ EvalIf)

propconst-assign =
|[ x := <propconst => e > ]|
; if <is-value> e

then rules( PropConst : |[ x ]| -> |[ e ]| )
else rules( PropConst :- |[ x ]| ) end

propconst-if =
|[ if <propconst> then <id> else <id> ]|
; (EvalIf; propconst

<+ (|[ if <id> then <propconst> else <id> ]|
/PropConst\

|[ if <id> then <id> else <propconst> ]|))

propconst-while =
|[ while <id> do <id> ]|
; (|[ while <propconst> do <id> ]|; EvalWhile

<+ /PropConst\*
|[ while <propconst> do <propconst> ]|)

Figure 2. Flow-sensitive constant propagation

The rewrite rules EvalBinOp and EvalIf express constant folding.
Typically there would be many more constant folding rules for the
constructs of a language.

The propconst strategy traverses a function body in a bottom-
up manner using the generic traversal combinator all, apply-
ing constant folding rules after transforming subterms. That is,
the expression all(s) denotes a one-level traversal that applies
the strategy s to each direct subterm of the subject term. Thus,
all(propconst) recursively applies the propconst strategy to
the subterms. The other elements of the choice handle special cases,
where a uniform traversal is not appropriate.

The PropConst rule is defined dynamically during the transfor-
mation and replaces variable occurrences with their constant value.

The propconst-assign strategy matches assignment state-
ments, transforming the right-hand side with a recursive invoca-
tion of propconst, but not the left-hand side; replacing the left-
hand side variable with a constant would not be correct. Next the
propconst-assign strategy inspects the result e of transforming
the right-hand side. If it is a constant value, the PropConst rule
is defined to rewrite occurrences of the variable x to the constant
right-hand side of the assignment. In case the expression is not a
constant, the rule is undefined, to prevent propagation of a value
previously associated with the variable.

The propconst-if and propconst-while strategies define
flow-sensitive propagation through control flow constructs [4, 14].
The s1/PropConst\s2 operator applies the strategies s1 and s2

strategies sequentially, for each using the same set of dynamic rules
for PropConst. Afterwards it takes the intersection of the rule-sets
resulting from each invocation. Thus, only those rules consistent
with both branches are kept. Similarly, /PropConst\*s performs
a fixed point iteration until the PropConst rule-set is stable.

4. Experience
Stratego/XT is being applied in a number of research and industrial
projects. The experience from these projects has been influential on
the design and implementation of Stratego/XT.

Stratego/XT Stratego and the XT tools are bootstrapped, that is,
they are used in their own implementation. The 0.16 release of
Stratego/XT counts well over 50K lines of Stratego code. Addi-
tionally, many extensions and utilities have been built using Strat-
ego/XT, including the Stratego Shell, an interactive interpreter for
Stratego; xDoc, a Javadoc-like source code documentation system
for Stratego code; and Aspect Stratego [12], a language extension
to Stratego which adds pointcuts and advice.

Java Besides generic tools, it is important to have ready-made
components for specific programming languages. For Java, we have
developed a modular Java 1.5 syntax definition, a high-quality
pretty-printer, a disambiguation phase, an extensible type checker
(including generics), an extensive reflection library for use in Strat-
ego, and tools for reading and writing Java bytecode to terms. These
tools are used in the implementation of language embeddings, a re-
cently added application area of Stratego/XT [7, 3]. Extensions of
Java with domain-specific languages for user-interfaces and regular
expressions are available. JavaJava [5] is an advanced code genera-
tion tool, based on the extensible type checker and the GLR parsing
technology used in Stratego/XT.

Also, we have developed an AspectJ grammar, wich is a modu-
lar extension of the Java syntax definition. Thus, the AspectJ gram-
mar only defines the syntax extensions to Java provided by AspectJ,
and is programmed against the public interface of the Java gram-
mar. This sort of language composition is possible because of the
scannerless, GLR nature of the SGLR parser.

C/C++ The Transformers project at LRDE, EPITA, France has
produced a disambiguating front-end for C99, and is doing the
same for C++ 2003. Disambiguation of both languages requires
semantic analysis, which is implemented in an attribute grammar
extension to SDF, which in turn is implemented in Stratego. Code-
Boost [1] is a source-to-source optimizer for C++ code, developed
at the University of Bergen, Norway, supporting domain-specific
optimization of numerical software. Codeboost includes a semantic
analyser for substantial parts of C++, written entirely in Stratego.
Proteus [22] is a C/C++ transformation framework, based on Strat-
ego, constructed at Lucent, USA. It compiles a high-level transfor-
mation language (YATL) to Stratego. Compared to CodeBoost, it
relies on a different C++ parser, retains layout and deals gracefully
with pre-processor directives.

Miscellaneous Stratego/XT has been used to build several other
(experimental) compilers and front-ends. OctaveC is a compiler for
Octave, a clone of Matlab. It includes loop vectorization, and par-
tial evaluation [13]. Tiger in Stratego is a demonstration compiler
that includes all aspects of compilation, from type checking, via
optimizations, to instruction selection. Prolog Tools provides a lan-
guage front-end and DSL embedding for Prolog [9]. Spoofax [11]
is an Eclipse plugin that provides content-aware, syntax highlight-
ing editors for SDF and Stratego. Our BibTEX transformation tools
provide extractions and refactorings on BibTEX bibliography files.

5. Availability
Software Stratego/XT is an open source project, distributed under
the GNU LGPL license. This license allows closed source trans-
formation systems based on Stratego/XT. The Subversion source
code repository is publicly readable. From this repository integra-
tion releases are generated for a number of different platforms after
every commit by a continuous build system. This buildfarm helps

97



with testing portability and backwards compatibility. Additionally,
many satellite projects, such as the Java front-end, are continu-
ously tested against the integration releases. For each major release,
source drops and binaries for most popular platforms and operating
systems are produced.

Documentation The primary source of documentation is the
manual. It offers an extensive introduction of the XT architecture,
and also a complete Stratego tutorial. The tutorial includes several
program transformation examples shown on a small, imperative
language. The reference material includes complete manual pages
for all the XT command-line tools, and online API documentation
of the library, which is also available for download.

Support The Stratego/XT website [21] contains pointers to mail-
ing lists for users and developers, a wiki, release pages, documen-
tation and issue tracking. Additionally, the developers are available
for questions or chat on IRC.

6. Discussion
Previous Work Compared to earlier publications about Strat-
ego/XT [10, 16, 18] we have gained new experience with the devel-
opment of transformation systems for Java, C, Octave, and BibTEX.
Motivated by these projects new language constructs such as dy-
namic rules and concrete object syntax have matured. Stratego/XT
now also provides new tools for testing, validating, and debugging,
to help in developing reliable transformation systems.

Usability Being a research project, Stratego/XT has enjoyed rapid
evolution but lagging and incomplete documentatiton. In the last
few years, the system has reached a new level of maturity and
stability, allowing us to document core parts of the system. Creating
complete documentation is a huge effort, given the size of system,
but we are working on improving the situation for our developers,
with manual pages for all tools, improved API documentation, and
an extensive manual with examples. Still, users need to invest time
learning the foundations, the Stratego language and the XT tools.
We are continually working on making the initial learning curve
small.

Reuse Stratego/XT promotes reuse at all levels of granular-
ity [18]. First, the focus on transformation components strongly
promotes reuse of large-grained components. In many cases, users
of Stratego/XT do not start with the development of a parser, but
can immediately get started with the actual transformation. Strat-
ego/XT has a varied selection of actively developed front-ends
(Section 4). Second, the focus on domain-specific languages for
different phases of a transformation system is a substantial time
saver. In this way, implementations are more abstract, easier to
maintain, and easier to read. Third, the extensive Stratego library,
with its generic traversals, generic transformations for scoping,
control- and data-flow and many other convenience functions for
program transformation allows developers to write their transfor-
mations concisely.

7. Conclusion
Stratego/XT has considerably matured in the last few years of in-
tensive development and research. We have been successful in ex-
ploring the implementation of individual transformations, and the
range of transformations that we know how to encode effectively
and elegantly grows. Along the way we keep discovering better id-
ioms and abstractions for implementing transformations.

The goal of Stratego/XT is to support a wide-range of transfor-
mations and to provide a new level of abstraction for the implemen-
tation of transformation systems by third parties. Experience shows
that external users can succesfully build non-trivial transformation
systems on top of Stratego/XT.

8. Acknowledgements
Many people have contributed to the development of Stratego/XT
over the years. Hayco de Jong, Jurgen Vinju, and Mark van den
Brand at CWI do a great job as maintainers of the ATerm library
and SDF/SGLR, projects which are all fundamental parts of Strat-
ego/XT. Bas Luttik co-invented generic traversal strategies with
Eelco Visser; Zino Benaissa and Andrew Tolmach were involved in
the design of the very first version of Stratego; Merijn de Jonge and
Joost Visser co-developed the first version of the XT toolset; Ka-
rina Olmos and Arthur van Dam were involved in the design and
implementation of dynamic rules; The redesign of dynamic rules
reported in those papers was triggered by Ganesh Sittampalam at
the Stratego User Days in 2004. Patricia Johann was involved in the
design and correctness proof of innermost fusion; Anya Bagge de-
veloped CodeBoost, one of the first big applications of Stratego/XT.
Eelco Dolstra has been an indispensable resource for tracing bugs
in the back-end, and has also provided the Nix build-farm that
plays a crucial role in our development and deployment process.
Jan Heering and Magne Haveraaen provided moral support and em-
ployed Stratego in the Saga/CodeBoost project at the Univerity of
Bergen. Martin Bravenboer has acted as the release manager for
Stratego/XT in the later years, and made many other contributions,
including the format checking tools, the Stratego Shell, and the
Dryad Java compiler. Rob Vermaas developed the xDoc documen-
tation system and has been an active developer of Stratego/XT and
OctaveC for several years. Karl Trygve Kalleberg helped develop
CodeBoost, wrote the AspectStratego language and the Spoofax
editor. He actively helps maintain Stratego/XT.

Stratego/XT is the brainchild of Eelco Visser, who has been
intimately involved in all extensions and additions to the language
and toolset since its inception.

Finally, the feedback from our users has been a constant source
for improvements. The Transformers group at Epita led by Akim
Demaille are early adopters of our improvements and extensions,
have contributed many bugreports and improvements, and invest a
lot of effort in the development of C/C++ transformation system
based on Stratego/XT. Daniel Waddington’s Proteus group at Lu-
cent Bell Labs has shown us that people can build complex trans-
formation systems with Stratego/XT without our involvement, even
before we had proper documentation. Several generations of stu-
dents in the courses on Software Generation, High-Performance
Compilers, and Program Transformation at Universiteit Utrecht
have provided valuable feedback and sometimes innovations. Their
suffering through imperfect implementation and lack of documen-
tation have not been in vain. About 15 of those students ended up
doing a master’s thesis project related to Stratego/XT, contributing
to the system and research.

We would also like to thank the anonymous reviewers for com-
ments on early versions of this article.

References
[1] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser.

Design of the CodeBoost transformation system for domain-specific
optimisation of C++ programs. In D. Binkley and P. Tonella, editors,
3rd IEEE Itl Workshop on Source Code Analysis and Manipulation
(SCAM’03), pages 65–74, Amsterdam, The Netherlands, Sep 2003.
IEEE Comp. Soc. Press.

[2] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30(3):259–291,
2000.

[3] M. Bravenboer, R. de Groot, and E. Visser. Metaborg in action:
Examples of domain-specific language embedding and assimilation
using Stratego/XT. In Proceedings of the Summer School on Gen-
erative and Transformational Techniques in Software Engineering
(GTTSE’05), Braga, Portugal, July 2005.

98



[4] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program
transformation with scoped dynamic rewrite rules. Fundamenta
Informaticae, 69:1–56, 2005.

[5] M. Bravenboer, R. Vermaas, J. Vinju, and E. Visser. Generalized type-
based disambiguation of meta programs with concrete object syntax.
In R. Glück and M. Lowry, editors, Proc. of Fourth Itl Conference on
Generative Programming and Component Engineering (GPCE’05),
volume 3676 of LNCS, pages 157–172, Tallin, Estonia, Sep 2005.
Springer.

[6] M. Bravenboer and E. Visser. Rewriting strategies for instruction
selection. In S. Tison, editor, Rewriting Techniques and Applications
(RTA’02), volume 2378 of LNCS, pages 237–251, Copenhagen,
Denmark, July 2002. Springer.

[7] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
D. C. Schmidt, editor, Proc. the 19th ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA’04), pages 365–383, Vancouver, Canada, October 2004.
ACM Press.

[8] M. de Jonge. A pretty-printer for every occasion. In I. Fergu-
son, J. Gray, and L. Scott, editors, Proceedings of the 2nd Inter-
national Symposium on Constructing Software Engineering Tools
(CoSET2000). University of Wollongong, Australia, 2000.

[9] B. Fischer and E. Visser. Retrofitting the AutoBayes program
synthesis system with concrete object syntax. In C. Lengauer
et al., editors, Domain-Specific Program Generation, volume 3016 of
LNCS, pages 239–253. Spinger-Verlag, 2004.

[10] M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program
transformation tools. In M. G. J. van den Brand and D. Perigot,
editors, Workshop on Language Descriptions, Tools and Applications
(LDTA’01), volume 44 of ENTCS. Elsevier, April 2001.

[11] K. T. Kalleberg. www.spoofax.org.

[12] K. T. Kalleberg and E. Visser. Combining aspect-oriented and
strategic programming. In N. M.-O. Horatiu Cirstea, editor,
Proceedings of the 6th International Workshop of Rule-Based
Programming (RULE), ENTCS, Nara, Japan, April 2005. Elsevier.

[13] K. Olmos and E. Visser. Turning dynamic typing into static typing
by program specialization. In D. Binkley and P. Tonella, editors,
Third IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM’03), pages 141–150, Amsterdam, The
Netherlands, September 2003. IEEE Computer Society Press.

[14] K. Olmos and E. Visser. Composing source-to-source data-flow
transformations with rewriting strategies and dependent dynamic
rewrite rules. In R. Bodik, editor, 14th International Conference
on Compiler Construction (CC’05), volume 3443 of LNCS, pages
204–220. Springer-Verlag, April 2005.

[15] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[16] E. Visser. Stratego: A language for program transformation based
on rewriting strategies. System description of Stratego 0.5. In
A. Middeldorp, editor, Rewriting Techniques and Applications
(RTA’01), volume 2051 of LNCS, pages 357–361. Springer, May
2001.

[17] E. Visser. Meta-programming with concrete object syntax. In
D. Batory, C. Consel, and W. Taha, editors, Generative Programming
and Component Engineering (GPCE’02), volume 2487 of LNCS,
pages 299–315, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

[18] E. Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In C. Lengauer
et al., editors, Domain-Specific Program Generation, volume 3016 of
LNCS, pages 216–238. Spinger-Verlag, June 2004.

[19] E. Visser. A survey of strategies in rule-based program transformation
systems. J. Sym. Comp., 40(1):831–873, 2005. Special issue on
Reduction Strategies in Rewriting and Programming.

[20] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program

optimizers with rewriting strategies. In Proceedings of the third ACM
SIGPLAN International Conference on Functional Programming
(ICFP’98), pages 13–26. ACM Press, September 1998.

[21] E. Visser et al. www.stratego-language.org.

[22] D. G. Waddington and B. Yao. High fidelity C++ code transformation.
In Proceedings of the 5th workshop on Language Descriptions, Tools
and Applications, ENTCS. Elsevier, April 2005.

99




