
WebDSL
A Domain-Specific Language for Dynamic Web Applications

Danny M. Groenewegen Zef Hemel Lennart C. L. Kats Eelco Visser
Delft University of Technology, The Netherlands

{d.m.groenewegen,z.hemel,l.c.l.kats,e.visser}@tudelft.nl

Abstract
WebDSL is a domain-specific language for the implementa-
tion of dynamic web applications with a rich data model. It
consists of a core language with constructs to define entities,
pages and business logic. Higher-level abstractions, model-
ing access control and workflow, are defined in a modular
fashion as extensions of the core language.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming; D.2.3 [Software
Engineering]: Coding Tools and Techniques

General Terms Languages, Design

1. Introduction
Developing web applications comprises many technical con-
cerns, such as data representation, querying, and modifica-
tion, input handling, user interface design, and navigation.
Often separate languages are used to address these various
concerns. For example, a typical web application may use
the Java general-purpose programming language, the SQL
query language, the JavaServer Faces (JSF) presentation lan-
guage with the EL expression language for accessing data
and XML for configuration of frameworks.

Having separate languages for different technical do-
mains is conceptually appealing, but the way these lan-
guages evolved introduced a number of issues for web ap-
plication programmers. One issue is the presence of redun-
dancy and inconsistency among the languages, as shown
by the EL expression language, which is essentially a non-
strict subset of Java expressions. Another issue is in the lack
of awareness of other languages in different tools that sup-
port them. For instance, the Java compiler performs static
analysis, but is oblivious of other languages involved, such
as SQL queries embedded in Java strings. Lack of static

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

checking of such expressions increases the chance of in-
jection attacks. Integrating aspects defined in different lan-
guages often also requires additional boilerplate code, which
is repetitive and error-prone to implement.

The WebDSL project aims at providing an integrated web
development platform, alleviating the issues associated with
a heterogeneous environment. To deal with its inevitably in-
creasing complexity that occurs as the project evolves, we
formulated the approach of code generation by model trans-
formation [2] to ensure a modular and extensible architec-
ture, ensuring maintainability of its implementation.

2. WebDSL
WebDSL is a Domain-Specific Language (DSL) for the im-
plementation of dynamic web applications with a rich data
model [6, 5]. WebDSL consists of smaller sub-languages
addressing different technical domains which are statically
checked and transformed into one coherent web application.

WebDSL provides sub-languages for the specification
of data models and for the definition of pages for view-
ing and editing objects in the data model. Consider Fig-
ure 1, which illustrates a simple web application. Its data
model is described using entity definitions (e.g., User1 and
ProgressMeeting2), containing properties with a name
and a type. Page definitions3 can be parameterized with and
instantiated for specific entities4. They specify a presenta-
tion5 of a web page and its associated entities. Navigation
between pages is expressed in the form of navigate ele-
ments that specify linked pages10.

To provide the user with the ability to manipulate enti-
ties, the example page specifies input6 elements that allow
a user to input different properties of an entity. The modifi-
cation of elements is finalized by means of an action7, which
specifies the operation to undertake when the page is to be
saved. In the definition of an action definition8 objects can
be further modified and persisted to the database. Actions
may affect navigation by specifying return9 with a page
reference.

Building upon the WebDSL core language elements,
higher abstractions have been created in WebDSL for ac-
cess control and workflow. The access control abstraction of

779

entity User {1

username :: String (id)
password :: Secret
name :: String
manager -> User
employees -> Set<User>
isAdmin :: Bool

}

entity ProgressMeeting {2

employee -> User
employeeView :: Text
managerView :: Text
report :: Text
approved :: Bool
comment :: Text

}

define page editUser3 (u : User4) {

title { "Edit User: " output(u.name) }5

section {
header { "Edit User: " output(u.name) }
form {

par { "Name: " input(u.name)6 }
par { "Password: " input(u.password) }

par { action("Save Changes", saveUser())7 }
}
action saveUser() {8

u.persist(); return viewUser(u);9

}
navigate(home()) { "return to home page" }10

}
}

rule page editUser(u : User) { principal = u }11

principal is User with credentials username, password12

procedure meeting(p : ProgressMeeting) {13

process {
(writeEmployeeView(p) |AND| writeManagerView(p));
repeat {

writeReport(p);
(approveReport(p) |XOR| commentReport(p))

} until finalizeReport(p)
}

}

Figure 1. WebDSL example

WebDSL [1] offers an integrated and concise way of speci-
fying access to the application components. Access is gov-
erned by rules that determine access to matching elements11.
The application data can be accessed with the same expres-
sions used in the action language, offering a linguistically in-
tegrated way to specify access checks. The resulting checks
are statically verified and woven into the application. A user
representation can be declared using the principal12 defini-
tion, which offers a default login facility but is flexible to
accomodate other types of authentication as well.

The workflow abstraction, WebWorkFlow [3], is an object-
oriented workflow modeling language for high-level de-
scriptions of workflows in web applications. Workflow de-
scriptions define procedures13 operating on domain objects,
representing coordinated activities between different actors.
Procedures, the basic elements of these activities, are com-
posed using sequential and concurrent process combinators.
These workflow definitions result in task pages, task lists,
status pages and navigation between them.

3. Code generation by model transformation
The architecture of WebDSL follows the approach of code
generation by model transformation [2]. It has been devel-
oped using Stratego/XT, a high-level term rewriting system
that integrates model-to-model, model-to-code, and code-
to-code transformations. The language provides rewrite

rules for the definition of basic transformations, and pro-
grammable strategies for building complex transformations
that control the application of rules. Using strategies, the
WebDSL generator is divided into different transformation
stages. Each consists of a set of rewrite rules that rewrite
extensions of the WebDSL core language to more primitive
language constructs. Using this technique of compilation by
normalization [4], we gradually reduce the semantic gap be-
tween input and output model, thus avoiding the complexity
associated by directly generating code from the input mode.
Extensions of the WebDSL language, such as the access
control and workflow abstractions are realized as plug-ins
to the base language, extending the generator with new nor-
malization rules.

4. Conclusion
WebDSL is a DSL that enables development of web appli-
cations at a high level abstraction with less boilerplate code.
The approach of code generation by model transformation
enables the generator to be easily extended with new, higher-
level abstractions as illustrated by the access control and
workflow extensions.

Acknowledgements This research was supported by
NWO/JACQUARD projects 638.001.610, MoDSE: Model-
Driven Software Evolution, and 612.063.512, TFA: Trans-
formations for Abstractions.

References
[1] D. Groenewegen and E. Visser. Declarative access control for

WebDSL: Combining language integration and separation of
concerns. In International Conference on Web Engineering
(ICWE 2008). IEEE CS Press, July 2008.

[2] Z. Hemel, L. C. L. Kats, and E. Visser. Code generation
by model transformation. A case study in transformation
modularity. In J. Gray, A. Pierantonio, and A. Vallecillo,
editors, International Conference on Model Transformation
(ICMT 2008), volume 5063 of LNCS. Springer, June 2008.

[3] Z. Hemel, R. Verhaaf, and E. Visser. Webworkflow: An object-
oriented workflow modeling language for web applications.
In K. Czarnecki, editor, International Conference on Model
Driven Engineering Languages and Systems (MODELS08),
Lecture Notes in Computer Science. Springer, October 2008.

[4] L. C. L. Kats, M. Bravenboer, and E. Visser. Mixing source
and bytecode. A case for compilation by normalization. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications
(OOPSLA 2008), LNCS. ACM Press, October 2008.

[5] E. Visser. DSLs for the web (talk). In Conference on Object-
Oriented Programing, Systems, Languages, and Applications
(OOPSLA 2008), Nashville, Tenessee, USA, October 2008.

[6] E. Visser. WebDSL: A case study in domain-specific language
engineering. In Generative and Transformational Techniques
in Software Engineering (GTTSE 2007), volume 5235 of
LNCS. Springer, 2008.

780

