
Weaving Web Applications with WebDSL (Demonstration)

Danny M. Groenewegen
Software Engineering Research Group,

Delft University of Technology, The Netherlands
d.m.groenewegen@tudelft.nl

Eelco Visser
Software Engineering Research Group,

Delft University of Technology, The Netherlands
visser@acm.org

Abstract
WebDSL is a domain-specific language for the develop-
ment of web applications that integrates data-models, user-
interface models, actions, validation, access control, and
workflow. The compiler verifies the consistency of appli-
cations and generates complete implementations in Java or
Python. We illustrate the key concepts of the language with
a small web application.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques; D.3.4 [Program-
ming Languages]: Processors
General Terms Languages
Keywords domain-specific languages, web application model,
data model, data binding, access control

1. Motivation
The implementation of web applications comprises many
technical concerns, including data representation, querying,
and modification, user input, data validation, user interface
design, and navigation. These concerns are often addressed
by separate languages. For example, in (one configuration
of) the Java web programming platform we find the Java
general purpose programming language, the SQL query lan-
guage (or some dialect such as HQL), the JavaServer Faces
(JSF) presentation language with the EL expression lan-
guage for accessing data, the CSS stylesheet language, and
other XML schemas for configuration such as page flow dec-
larations.

While separation of concerns and ‘choosing the right lan-
guage for the job’ are conceptually appealing, the amalgam
of languages used in a single web application project are typ-
ically poorly integrated, with an adverse effect on productiv-
ity and software quality caused by boilerplate code, loose
coupling, and a lack of static verification.

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

2. WebDSL
WebDSL [3] is a domain-specific language for the develop-
ment of web applications that integrates data models, user in-
terface models, actions, styling, access control [1], data vali-
dation, and workflow [2]. While these different concerns are
supported by separate domain-specific sub-languages, the
static semantics of the language verifies the consistency of
the different concerns of an application model. The WebDSL
compiler generates a complete implementation in Java or
Python without the need to write further code in these lan-
guages.

3. Example: WebTasks
We illustrate the features of WebDSL with a small web
application for managing tasks (WebTasks). During the
demonstration we will build this application from scratch,
while introducing the concepts of the language. The next
page illustrates the main concepts with a fragment of the
WebTasks application. Figure 1 shows screenshots of three
types of pages from the WebTasks application. Figures 2 to 7
show the WebDSL code for these pages.

Acknowledgments This research was supported by
NWO/JACQUARD project 638.001.610, MoDSE: Model-
Driven Software Evolution.

References
[1] D. M. Groenewegen and E. Visser. Declarative access control

for WebDSL: Combining language integration and separation
of concerns. In D. Schwabe and F. Curbera, editors, Eighth
International Conference on Web Engineering (ICWE 2008),
pages 175–188. IEEE CS Press, July 2008. best paper award.

[2] Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow:
An object-oriented workflow modeling language for web
applications. In Model Driven Engineering Languages and
Systems (MODELS 2008), volume 5301 of LNCS, pages 113–
127. Springer, 2008.

[3] E. Visser. WebDSL: A case study in domain-specific language
engineering. In Generative and Transformational Techniques
in Software Engineering (GTTSE 2007), volume 5235 of
LNCS, pages 291–373, Heidelberg, October 2008. Springer.

797



(a) task page (b) task edit page (c) task list

Figure 1. Screenshots of the WebTasks application.

entity User {
username :: String (id, name,

validate(isUniqueUser(this), "Username is taken"))
password :: Secret
tasks -> List<Task>
todo -> List<Task>

:= [t | t : Task in this.tasks where !(t.archived)]
}
entity Task {

name :: String (name)
description :: Text
done :: Bool
archived :: Bool
user -> User (inverse=User.tasks)

}

Figure 2. Data model defines entities with properties. En-
tity declarations are mapped to a database schema and ob-
jects are automatically persisted to the database. Validation
constraints (username) pose extra requirements on entities.
A derived property (todo) is a transient property whose
value is computed from other properties.

define page task(task : Task) { main{
section{ header{output(task.name)}

output(task.description)
par{ "Done: " output(task.done)

"Archived: " output(task.archived)
"Assigned to: " output(task.user) }

manageTask(task) } } }

Figure 3. Page definition (Fig 1(a)) defines view of proper-
ties of the parameter objects of the page.

define page edittask(task : Task) { main{
section{ header{output(task.name)}

form{
par{ input(task.name) }
par{ input(task.description) }
par{ "Assigned to: " input(task.user) }
action("Save", save())
navigatebutton(task(task), "Cancel")
action save() { return task(task); } } } } }

Figure 4. Data input forms (Fig 1(b)) provide automatic
data binding of form fields to entity properties.

define page tasks(user : User) { main{
section{

header{"Tasks for " output(user.username) }
table{ taskList(user.todo) }
par{ addTask(user) }
par{ navigate(archive(user)){"Archive"} } } } }

Figure 5. Page definition for user task list (Fig 1(c)) with
navigation to archive page.

define taskList(tasks : List<Task>) {
for(task : Task in tasks) {

row{ output(task.done) output(task) manageTask(task) } } }

define addTask(user : User) {
var newTask : Task := Task{ done := false }
action addtask() { user.tasks.add(newTask); newTask.save(); }
form{ input(newTask.name) action("Add Task", addtask()) } }

define manageTask(task : Task) {
action done() { task.done := true; }
action undo() { ... }
action delete() {

var user := task.user; user.tasks.remove(task);
task.delete(); return tasks(user); }

form{
navigatebutton(edittask(task), "Edit")
if(!task.done) { action("Done", done()) }
else { action("Undo", undo()) ... }
action("Delete", delete())

}
}

Figure 6. Template definitions define page fragments that
can be reused in multiple page definitions.

access control rules

principal is User with credentials username, password

rule template manageTask(task : Task) {
securityContext.loggedIn
&& task.user == securityContext.principal

}

Figure 7. Access control rules restrict access to pages, tem-
plates, or actions using Boolean constraints on the data
model.

798


