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Abstract
Integrated development environments (IDEs) increase pro-
grammer productivity, providing rapid, interactive feedback
based on the syntax and semantics of a language. A heavy
burden lies on developers of new languages to provide ad-
equate IDE support. Code generation techniques provide
a viable, efficient approach to semi-automatically produce
IDE plugins. Key components for the realization of plug-
ins are the language’s grammar and parser. For embedded
languages and language extensions, constituent IDE plu-
gin modules and their grammars can be combined. Unlike
conventional parsing algorithms, scannerless generalized-
LR parsing supports the full set of context-free grammars,
which is closed under composition, and hence can parse lan-
guage embeddings and extensions composed from separate
grammar modules. To apply this algorithm in an interactive
environment, this paper introduces a novel error recovery
mechanism, which allows it to be used with files with syn-
tax errors – common in interactive editing. Error recovery is
vital for providing rapid feedback in case of syntax errors,
as most IDE services depend on the parser – from syntax
highlighting to semantic analysis and cross-referencing. We
base our approach on the principles of island grammars, and
derive permissive grammars with error recovery productions
from normal SDF grammars. To cope with the added com-
plexity of these grammars, we adapt the parser to support
backtracking. We evaluate the recovery quality and perfor-
mance of our approach using a set of composed languages,
based on Java and Stratego.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques; D.3.4 [Program-
ming Languages]: Processors

General Terms Languages
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1. Introduction
Integrated Development Environments (IDEs) increase pro-
grammer productivity by combining a rich toolset of generic
language development tools with services tailored for a spe-
cific language. These services provide a programmer with
rapid, interactive feedback based on the syntactic structure
and semantics of the language. High expectations with re-
gard to IDE support place a heavy burden on the shoulders
of developers of new languages. Language development en-
vironments facilitate efficient development of IDE support
for new languages. Notable examples include IMP [9], the
Meta-Environment [37], MontiCore [24], and openArchitec-
tureWare [13]. In this paper we focus on Spoofax/IMP [20].
Leveraging code generation and interpretation techniques,
these tools provide a viable, efficient approach to semi-
automatically produce IDE plugins.

Compositional Languages and SGLR Success of a lan-
guage, in part, depends on interoperability with other lan-
guages and systems. Different languages address different
concerns. Language composition is a promising approach
for providing integrated support for different concerns. How-
ever, compositional languages, such as language extensions
and language embeddings, further increase the burden for
language engineers, as they now have to provide IDE sup-
port for a combination of languages or language elements.
Therefore, language development tools must offer support
for extensions and combinations of languages. IDE develop-
ment for compositional languages greatly benefits from code
generation where several, independently defined parts can be
combined. How well a tool can support language composi-
tion depends on the underlying language techniques it uses.

The Scannerless Generalized-LR parsing parsing algo-
rithm (SGLR) [40] supports the modular syntax definition
formalism SDF [41]. SDF is declarative yet expressive, and
has been used to specify non-trivial grammars for existing
languages such as Java, C, and PHP, as well as domain-
specific languages and embeddings and extensions based on
these languages [7]. Unlike other parsing formalisms (par-
ticularly those commonly used in IDEs), SDF is closed un-
der composition: existing grammars can be reused and com-
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posed to form new languages. This makes it a useful pars-
ing technique to use in language tools supporting composi-
tion of languages. Integration of SGLR into an IDE based on
IMP [8] is ongoing work [20].

Parsing in IDEs Using a language development environ-
ment, the grammar is the first artifact constructed by the
developer. Traditionally, IDEs have often used handtailored
parsers. Doing so reduces flexibility, especially with lan-
guage extensions and combinations in mind. For the efficient
development of language tools it is essential that parser gen-
erators are used instead.

The parser for a language forms the foundation of all
language-specific editor services. The parser performs syn-
tactic analysis (parsing) to construct abstract syntax trees
(ASTs) for user programs. These ASTs can be used for pre-
sentational editor services, such as syntax highlighting, code
folding, and outlining. They also form the basis for semantic
analysis of a program, allowing for editor services such as
cross-referencing and checking for semantic errors.

To provide the user with rapid syntactic and semantic
feedback, programs must be interactively parsed as they
are edited. As the user edits a program, it is often in a
syntactically invalid state. Parse error recovery techniques
can diagnose and report parse errors, and can construct a
valid AST for syntactically invalid programs [10]. Thus, to
successfully apply a parser in an interactive setting, proper
parse error recovery is of paramount importance.

The scannerless, generalized nature of SGLR is essen-
tial for parsing compositional languages, but also introduces
challenges for implementing error recovery. The current
SGLR implementation provides no recovery of any kind,
and only reports the first unexpected character in case of fail-
ure. We have identified two main challenges. (1) Scanner-
less parsing: Where other parsers employ a separate scanner
for tokenization and report errors in terms of missing (or
expected) tokens, SGLR merely reports unexpected char-
acters. (2) Generalized parsing: A GLR parser processes
multiple branches (representing different interpretations of
the input) in parallel. Syntax errors can only be detected at
the point where the last branch failed, which may not be lo-
cal to the actual root cause of an error. This makes it difficult
to properly identify the offending substring or character.

This paper presents a novel approach to error recovery us-
ing SGLR. We base our approach on the principles of island
grammars [39, 26, 27], defining new production rules for a
grammar that make it more permissive of its inputs. We iden-
tified several idioms for defining such recovery rules that
either discard substrings in the input or insert literals (i.e.,
keywords and braces) as necessary. Based on the analysis of
an existing grammar, we can automatically derive a set of
these rules. Using the recovery rules, parse errors of various
kinds can be properly diagnosed and repaired, reporting any
missing or inserted keywords and braces, addressing chal-
lenge (1). To cope with the added complexity of grammars

with recovery rules, we adapt the parser implementation to
apply the recovery rules in an on-demand fashion, using a
backtracking algorithm. This algorithm explores an increas-
ing, backward search space to find a minimal-cost solution
for applying the set of recovery rules. This technique allows
us to identify the most likely origin of an error, thus avoiding
reports of spurious errors and addressing challenge (2).

We have incorporated the approach in the Spoofax/IMP
IDE plugin generator [20], to obtain robust editors for com-
posite languages that can provide feedback to the user in
the presence of syntactic errors. We have evaluated the er-
ror recovery approach using a set of grammars for plain Java
and for composite languages such as Stratego-Java and Java-
SQL.

Contributions

- A novel approach to parse error recovery based on gram-
mar relaxation, adding new “recovery” productions to
make a grammar more permissive.

- An adaptation of the SGLR algorithm that efficiently
handles the increased complexity of permissive gram-
mars.

- A language (grammar) independent approach to error
recovery using SGLR.

Outline The remainder of this paper starts with a motivat-
ing study of composite languages in Section 2. In Section 3
we discuss the requirements on error recovery. In Section 4
we discuss the notion of island grammars, which provide the
inspiration for our error recovery approach. In Section 5 we
show how the ideas of island grammars can be used to make
complete language grammars into permissive grammars. In
Section 6 we explain the adaptation of the SGLR algorithm
to deal with the combinatorial explosion introduced by per-
missive grammars. Section 7 evaluates the approach while
Section 8 covers related work. Finally, the paper ends with
conclusions and future work in Section 9.

2. Composite Languages
Composite languages integrate elements of different lan-
guage components. We distinguish two classes of composite
languages: language extensions and embedded languages.
Language extensions extend a base language with new, of-
ten domain-specific elements. Language embeddings com-
bine two or more existing languages, allowing one language
to be nested in the other.

Examples of language extensions include the addition of
traits [11] or aspects [21] to object-oriented languages, en-
hancing their support for adaptation and reuse of code. Other
examples include new versions of a language, introducing
new features to an existing language, such as Java 1.5’s enum
keyword for enumerated types.

Examples of language embeddings include data base que-
ry expressions integrated into an existing, general-purpose
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public class Authentication {

public String getPasswordHash(String user) {

SQL stm = <| SELECT password FROM Users

WHERE name = ${user} |>;

return database.query(stm);

}

}

Figure 1. An extension of Java with SQL queries.

webdsl-action-to-java-method:

|[ action x_action(farg*) { stat* } ]| ->

|[ public void x_action(param*) { bstm* } ]|

with param* := <map(action-arg-to-java)> farg*;

bstm* := <statements-to-java> stat*

Figure 2. Program transformation using embedded object
language syntax.

language such as Java. Such an embedding both increases
the expressivity of the host language and facilitates static
checking of queries. Figure 1 illustrates such an embedding.
Using a special quotation construct, an SQL expression is
embedded into Java. In turn, the SQL expression includes
an anti-quotation of a Java local variable. By supporting the
notion of quotations in the language, a compiler can distin-
guish between the static query and the variable, allowing it
to safeguard against injection attacks. In contrast, when us-
ing only a basic Java API for SQL queries constructed using
strings, the programmer must take care to properly filter any
values provided by the user.

Language embeddings are sometimes applied in meta-
programming for quotation of their object language. Trans-
formation languages such as Stratego [5] and ASF+SDF [38]
allow fragments of a language that undergoes transformation
to be embedded in the specification of rewrite rules. Figure 2
shows a Stratego rewrite rule that rewrites a fragment of code
from a domain-specific language to Java. The rule uses meta-
variables (written in italics) to match “action” constructs and
rewrites them to Java methods with a similar signature. SDF
supports meta-variables by reserving identifier names in the
context of an embedded code fragment.

Parsing Composite Languages Key to the effective real-
ization of composite languages are modular, reusable lan-
guage descriptions, which allow constituent languages to be
defined independently, and then composed to form a whole.

A particularly difficult problem in composing language
definitions is composition at the lexical level. Consider again
Figure 2. In the embedded Java language, void is a reserved
keyword. For the enclosing Stratego language, however, this
name is a perfectly legal identifier. This difference in lexi-
cal syntax is essential for a clean and safe composition of
languages. It is undesirable that the introduction of a new
language embedding or extension invalidates existing, valid
programs.

The difficulty in combining languages with a different
lexical syntax stems from the traditional separation between
scanning and parsing. The scanner recognizes words either
as keyword tokens or as identifiers, regardless of the con-
text. In the embedding of Java in Stratego this would im-
ply that void becomes a reserved word in Stratego as well.
Only using a carefully crafted lexical analysis for the com-
bined language, introducing considerable complexity in the
lexical states to be processed, can these differences be rec-
onciled. Using scannerless parsing [33, 32], these issues can
be elegantly addressed [6]. The Scannerless Generalized-LR
(SGLR) parsing algorithm [40] realizes scannerless parsing
by incorporating the generalized-LR parsing algorithm [35].
GLR supports the full class of context-free grammars, which
is closed under composition, unlike subsets of the context-
free grammars such as LL(k) or LR(k). Instead of rejecting
grammars that give rise to shift/reduce and reduce/reduce
conflicts in an LR parse table, the GLR algorithm interprets
these conflicts to efficiently try all possible parses of a string
in parallel, thus supporting grammars with ambiguities, or
grammars that require more look-ahead than incorporated
in the parse table. Hence, the composition of independently
developed grammars does not produce a grammar that is not
supported by the parser, as is frequently the case with LL or
LR based parsers.

The syntax definition formalism SDF2 [41] integrates
lexical syntax and context-free syntax supported by SGLR
as parsing algorithm. Undesired ambiguities in SDF2 def-
initions can be resolved using declarative disambiguation
filters [3]. Implicit disambiguation mechanisms such as
‘longest match’ are avoided. Other approaches, including
PEGs [14], language inheritance in MontiCore [24], and
the composite grammars of ANTLR [29], implicitly disam-
biguate grammars by forcing an ordering on the alterna-
tives of a production – the first (or last) definition overrides
the others. Enforcing explicit disambiguation allows unde-
sired ambiguities to be detected, tested against in regression
tests, and explicitly addressed by a developer. For non-trivial
grammars, in particular composed, independently developed
grammars, this characteristic is of vital importance.

SDF has been used to define various composite lan-
guages, often based on mainstream languages such as C/C++
[42], PHP [4], and Java [7, 19]. The example grammar
shown in Figure 3 extends Java with embedded SQL queries.
It imports both the Java and SQL grammars, adding only
productions that integrate the two. In SDF, grammar pro-
ductions take the form p1...pn -> s and specify that a
sequence of strings matching symbols p1 to pn matches the
symbol s. The productions in this particular grammar spec-
ify two productions to embed SQL into Java expressions and
two productions to embed Java into SQL. The productions
are annotated with the {cons(name)} annotation, which
indicates the constructor name used to label these elements
when an abstract syntax tree is constructed.

447



module SQL-Java

imports JavaMix[Java] SQL

exports

context-free syntax

"<|" Query "|>" -> Expr[[Java]] {cons("ToSQL")}

"<|" Expr "|>" -> Expr[[Java]] {cons("ToSQL")}

"${" Expr[[Java]] "}" -> Expr {cons("FromSQL")}

"${" Expr[[Java]] "}" -> String {cons("FromSQL")}

Figure 3. A grammar extending Java with SQL queries;
adapted from [4].

To avoid name collisions between the Expr symbol in the
SQL grammar and the Expr symbol in the Java grammar,
SDF uses parametrization of symbol names: the [Java]
parameter in the JavaMix import indicates that all Java
symbols should be referenced using the [[Java]] postfix.

3. Interactive Parsing and Error Recovery
For all the merits of SDF and the SGLR parser, in the form
of modularity, declarative disambiguation, and composition-
ality, one may wonder why these technologies have not (yet)
seen more widespread use. In part, this is due to a lack of
publicity. There are also a number of more fundamental is-
sues that have hindered their adoption. Recently, Bravenboer
et al [6] analyzed some of these issues. First, the syntax of
productions in SDF may be awkward and unappealing to de-
velopers accustomed to BNF-style rules. Perhaps reversing
the order of the production pattern and the symbol would ap-
peal to a broader audience. Second, [6] identifies error han-
dling as an open issue. Third, a lack of tool support for an-
alyzing ambiguities is identified as an open issue. Last and
perhaps a more practical issue has been that the tools were
only implemented in C, targeting the Unix/Linux platform.

The main obstacles for employing SDF and SGLR in an
interactive environment arguably are the second issue, a lack
of error handling; and the last issue, lacking cross-platform
support. This paper addresses the second issue, adding both
error diagnosis and error recovery to the SGLR parser. This
makes it possible to parse syntactically incorrect files and
use the result in the different syntactic and semantic editor
services of an IDE. We base our implementation on JSGLR,
a Java implementation of SGLR [18]. With its development,
although the implementation is not quite mature, the last is-
sue has also been effectively resolved. The remaining issues
impact only developers of SDF grammars. Based on our own
experience, and looking at the large set of grammars already
developed using SDF, we trust that these issues are not a sig-
nificant obstacle, and that they will be resolved in the future.

Parse error handling encompasses two concerns: error re-
porting and error recovery. Error reporting, by itself, has an
important role in giving feedback to the user. An error han-
dling technique should accurately report all syntactic errors
without introducing spurious errors. This requires accurate
diagnosis of errors. A faulty correction may leave the parser

module ExtractCalls

exports

context-free start-symbols

Module

context-free syntax

Chunk* -> Module {cons("Module")}

WATER -> Chunk {cons("WATER")}

"CALL" Id -> Chunk {cons("Call")}

lexical syntax

[\ \t\n] -> LAYOUT

~[\ \t\n]+ -> WATER {avoid}

[A-Z][A-Z0-9]* -> Id

lexical restrictions

WATER -/- [A-Za-z0-9]

Figure 4. An island grammar for extracting calls from a
legacy application; adapted from [26].

in a state that will cause spurious errors to be reported later.
Furthermore, when an error is misdiagnosed, the error mes-
sage issued for it tends to be misleading. An error message
should indicate the exact location of the error and provide
a suggestion for correction. Good error messages reflect the
intention of the programmer.

Furthermore, recovery from parse errors allows the parser
to continue the analysis of the source code after the detection
of an error. The resulting parse tree of the analysis is a parse
tree representing the corrected input. This parse tree allows
further analysis of the source code at the syntactical and se-
mantic level even for programs that are not in a syntactically
valid state as the programmer is editing them.

4. Island Grammars
Island grammars [39, 26, 27] combine grammar production
rules for the precise analysis of parts of a program and se-
lected language constructs with general rules for skipping
over the remainder of an input. Island grammars are com-
monly applied for reverse engineering of legacy applica-
tions, for which no formal grammar may be available, or
for which many (vendor-specific) dialects exist [26]. Us-
ing an island grammar, a parser can skip over any uninter-
esting bits of a file (“water”), including syntactic errors or
constructs found only in specific language dialects. A small
set of declarative context-free production rules specifies only
the interesting bits (the “islands”) that are parsed ‘properly’.
Island grammars were originally developed using SDF [39,
26]. The integration of lexical and context-free productions
of SDF allows island grammars to be written in a single,
declarative specification that includes both lexical syntax
for the definition of water and context-free productions for
the islands. Although SGLR did not support error recovery
per se, a parser using an island grammar behaves similar to
one that implements a noise-skipping algorithm. It can skip
over any form of noise in an input file. However, using an is-
land grammar, this logic is entirely encapsulated in the gram-
mar definition itself.
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Figure 5. The unfiltered abstract syntax tree for a COBOL
statement, constructed using the ExtractCalls grammar.

As an example, consider Figure 4, which shows an SDF
specification of an island grammar that extracts call state-
ments from COBOL programs. Any other statements in the
program are skipped and parsed as water. The first context-
free production of the grammar defines the Module symbol,
which is the start symbol of the grammar. A Module is a
series of chunks. Each Chunk, in turn, is parsed either as a
patch of WATER or as an island, in the form of a CALL con-
struct. The lexical productions define patterns for layout, wa-
ter, and identifiers. The layout rule, using the special LAYOUT
symbol, specifies the kind of layout (i.e., whitespace) used in
the language. Layout is ignored by the context-free syntax
rules, since their patterns are automatically interleaved with
optional layout. The WATER symbol is defined as the inverse
of the layout pattern, using the ~ negation operator. Together,
they can match any given character stream. The {avoid} an-
notation on the WATER rule specifies a disambiguation filter
for these productions, indicating that the production is to be
avoided: at all times, a non-water Chunk is to be preferred.
In the lexical restrictions section, we specify a follow re-
striction for the WATER symbol. This rule ensures that water
is always greedily matched, and never followed by any other
water character. Consider the following COBOL statement:

CALL "CKOPEN" USING filetable, status

Given our island grammar, the SGLR parser can construct a
parse tree – or rather a parse forest – that includes all possible
interpretations of this text.1 The parse tree includes the com-
plete character stream, all productions used, and their anno-
tations. In this paper, we focus on abstract syntax trees (de-
rived from the parse trees) where only the {cons(name)}
constructor labels appear in the tree. Figure 5 shows the

1 Note that parse forests are efficiently represented using the ATerm li-
brary [2], which employs hash-consing to achieve maximal sharing of sub-
trees, ensuring that any identical leaves and branches occupy the same space
in memory.

module Java-15

exports

lexical syntax

[\ \t\12\r\n] -> LAYOUT

"\"" StringPart* "\"" -> StringLiteral

"/*" CommentPart* "*/" -> Comment

Comment -> LAYOUT

...

context-free syntax

"if" "(" Expr ")" Stm -> Stm {cons("If")}

"if" "(" Expr ")" Stm "else" Stm

-> Stm {avoid, cons("IfElse")}

...

Figure 6. Part of the standard Java grammar in SDF;
adapted from [6].

complete, ambiguous abstract syntax tree for our example
input program. Note in particular the amb node, which indi-
cates an ambiguity in the tree: CALL "CKOPEN" in our ex-
ample can be parsed either as a proper Call statement or as
WATER. Since the latter has an {avoid} annotation in its def-
inition, a disambiguation filter can be applied to resolve the
ambiguity [3]. (Normally, these filters are applied automati-
cally during or after parsing.)

5. Permissive Grammars
As we have observed in the previous section, there are many
similarities between a parser using an island grammar and a
noise-skipping parser. In the former case, the water produc-
tions of the grammar are used to “fall back” in case an input
sentence cannot be parsed, in the latter case, the parser al-
gorithm is adapted to do so. This observation suggests that
the basic principle behind island grammars may be adapted
for use in recovery for complete, well-defined grammars. In
contrast, the technique of island grammars is targeted only
towards partial grammar definitions.

In the remainder of this section, we illustrate how the no-
tion of productions for defining “water” can be used in reg-
ular grammars, and how these principles can be further ap-
plied to achieve alternative forms of recovery from syntax
errors. Without loss of generality, we focus many of our ex-
amples on the familiar Java language. Figure 6 shows a part
of the SDF definition of the language. Indeed, Java can be
parsed without the use of SGLR, but for extensions and em-
beddings based on Java, SGLR has proved invaluable. Fur-
thermore, the current problems with a lack of error recovery
in SGLR also hold for the stand-alone Java language; cur-
rently, if any error is found in a pure Java input, the parser
comes to a screeching halt and is unable to continue.

5.1 Chunk-Based Water Recovery Rules
Whereas island grammars have an underlying “chunk” struc-
ture, this structure is lacking in complete, well-defined gram-
mars. Rather, these grammars typically have a more hierar-
chical structure. For example, Java programs consist of a one
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module Java-15-Permissive-ChunkBased

imports Java-15

exports

lexical syntax

~[\ \t\12\r\n]+ -> WATER {recover}

lexical restrictions

WATER -/- ~[\ \t\12\r\n]

context-free syntax

WATER -> Stm {cons("WATER")}

Figure 7. Chunk-based recovery rules for Java.

or more classes that each contain methods, which contain
statements, etc. Still, it is possible to impose a more chunk-
like structure on existing grammars in a coarse-grained fash-
ion: for example, in Java, all statements can be considered as
chunks.

Figure 7 extends the standard Java grammar with a
coarse-grained chunk structure at the statement level. In
this grammar, every Stm symbol is considered a “chunk,”
which can be parsed as either a statement or as water, effec-
tively skipping over any noise that may exist within method
bodies. Note that the standard Java grammar, as shown in
Figure 6, already uses an {avoid} annotation to explicitly
avoid the “dangling else problem,” a notorious ambiguity
that occurs with nested if/then/else statements. Therefore, in
our recovery rules we use {recover} rather than {avoid}
to distinguish between the two concerns of disambiguation
and recovery.

We can extend the grammar of Figure 7 to introduce a
chunk-like structure at other levels in the hierarchical struc-
ture formed by the grammar, e.g. at the method level or at
the class level, in order to cope with syntax errors in dif-
ferent places. However, doing so leads to a large number of
possible interpretations of syntactically invalid (but also syn-
tactically valid) programs. For example, any invalid state-
ment that appears in a method could then be parsed as a
“water statement.” Alternatively, the entire method could be
parsed as a “water method.” A preferred interpretation can be
picked by counting all occurrences of the {recover} anno-
tation in ambiguous branches, and selecting the variant with
the lowest count.

The technique of selectively adding water recovery rules
to a grammar allows any existing grammar to be adapted.
It avoids having to rewrite grammars from the ground up to
be more “permissive” in their inputs. Grammars adapted in
this fashion produce parse trees even for inputs that contain
syntax errors and cannot be parsed by the original grammar.
The WATER constructors in the abstract syntax trees indicate
the location of errors, which can then be straightforwardly
reported back to the user.

While the approach we presented so far is already moder-
ately effective in recovery from syntax errors, there are three
disadvantages to the recovery rules as presented here. Firstly,
the rules are language-specific and are best implemented by
an expert of a particular language and its SDF grammar spec-

ification. Secondly, the rules are rather coarse-grained in na-
ture; invalid subexpressions in a statement cause the entire
statement to be parsed as water. Lastly, the additional pro-
ductions alter the abstract syntax of the grammar (introduc-
ing new WATER terminals), causing the parsed result to be
unusable for tools that depend on the original structure.

5.2 General Water Recovery Rules
Adapting a grammar to include water productions at differ-
ent hierarchical levels is a relatively simple yet effective way
to selectively skip over “noise” in an input file. In the re-
mainder of this section, we refine this approach and use it
as a basis for our general approach to error recovery. Note
throughout this section we use only the standard, unaltered
SDF specification language, adding only the {recover} an-
notation and identifying idioms for recovery rules.

Most programming languages feature comments and in-
significant whitespace that have no impact on the logical
structure of a program. They are generally not considered to
be a logical part of the abstract syntax tree. As discussed in
Section 4, any form of layout, which may include comments,
is implicitly interleaved in the patterns of concrete syntax
productions. The parser, in a way, skips over these parts, in
a similar fashion to the noise skipping of island grammars.
However, layout and comments interleave the context-free
syntax of a language at a much finer level than the recov-
ery rules we have discussed so far. Consider for example the
Java statement

if (temp.greaterThan(MAX)/*API change pending*/ )

fridge.startCooling();

in which a comment appears in the middle of the statement.
Context-free syntax in SDF is a convenient way to define
context-free productions without having to worry about the
interleaving of layout. Only in the kernel syntax that lies at
the heart of SDF, does the production explicitly include the
layout:

syntax

"if" <LAYOUT?-CF> "(" <LAYOUT?-CF> <Expr-CF>

<LAYOUT?-CF> ")" <LAYOUT?-CF> <Stm-CF>

-> <Stm-CF> cons("If")

The parse table generator for SDF automatically converts
context-free productions to this form. (The production above
was derived from the If production in Figure 6). Expressed
in kernel syntax, the symbol names in the rule above use
angle brackets and explicitly state that they are related
to context-free (CF) syntax. The optional layout symbols
<LAYOUT?-CF> are not considered for the construction of
the abstract syntax tree (and may be stored as annotated data
instead).

We can use the notion of interleaving context-free pro-
ductions with optional layout in order to define a new varia-
tion of the water-based recovery rules we have shown so far.
Consider Figure 8, which combines elements of the com-
ment definition of Figure 6 and the chunk-based recovery
rules from Figure 7. It introduces optional water into the
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module Java-15-Permissive-WaterOnly

imports Java-15

exports

lexical syntax

[A-Za-z0-9\_]* -> WATERWORD {recover}

~[A-Za-z0-9\_\ \t\12\r\n]

-> WATERSEP {recover}

WATERWORD -> WATER

WATERSEP -> WATER

WATER -> LAYOUT {cons("WATER")}

lexical restrictions

WATERWORD -/- [A-Za-z0-9\_]

Figure 8. Water-based recovery rules.

grammar, which interleaves the context-free syntax patterns.
As such, it skips noise on a much finer grained level than our
previous grammar incarnation.

To separate patches of water into small chunks, each
associated with its own significant {recover} annotation,
we distinguish between WATERWORD and WATERSEP tokens.
This ensures that large strings, consisting of multiple words
and special characters each, are counted towards a higher
recovery cost.

As an example input, consider a programmer who is in the
process of introducing a conditional clause to a statement:

if (temp.greaterThan(MAX) // missing )

fridge.startCooling();

Still missing the closing brace, the standard SGLR parser
would report an error near the missing character, and would
stop parsing. Using the adapted grammar, a parse forest is
constructed that considers the different interpretations, tak-
ing into account the new water recovery rule. Based on the
count of the {recover} annotations, the following would
be the preferred interpretation:

if (temp.greaterThan)

fridge.startCooling();

In the resulting fragment both the opening ( and the identi-
fier MAX are discarded, giving a total cost of 2 recoveries. The
previous, chunk-based incarnation of our grammar would
simply discard the entire if clause. While not yet ideal, the
new version maintains a larger part of the input. Since it is
based on the LAYOUT symbol, it also does not introduce new
“water” nodes into the abstract syntax tree. For reporting er-
rors, the original parse tree can be inspected instead.

The adapted grammar of Figure 8 no longer depends on
hand-picking particular symbols at different granularities to
introduce water recovery rules. Therefore, it is effectively
language-independent, and can be automatically constructed
using only the LAYOUT definition of the grammar.

5.3 Literal-insertion Recovery Rules
So far, we have focused our efforts on recovery by deletion
of erroneous substrings. However, in an interactive environ-

module Java-15-Permissive-InsertionsOnly

imports Java-15

exports

lexical syntax

-> ")" {recover, cons("INSERT")}

-> "]" {recover, cons("INSERT")}

-> "}" {recover, cons("INSERT")}

-> ">" {recover, cons("INSERT")}

-> ";" {recover, cons("INSERT")}

lexical syntax

INSERTSTARTQ StringPart* INSERTENDQ

-> StringLiteral {cons("INSERTEND")}

"\"" -> INSERTSTARTQ {recover}

"\n" -> INSERTENDQ

lexical syntax

INSERTSTARTC CommentPart* INSERTENDC

-> Comment {cons("INSERTEND")}

"/*" -> INSERTSTARTC {recover}

EOF -> INSERTENDC

Figure 9. Literal-insertion recovery rules.

ment, most parsing errors may well be caused by missing
substrings instead. Consider again our previous example:

if (temp.greaterThan(MAX) // missing )

fridge.startCooling();

Our use case for this has been that the programmer was still
editing the phrase, and did not yet add the missing closing
brace. Discarding the opening ( and the MAX identifier al-
lowed us to parse most of the statement and the surrounding
file, reporting an error near the missing brace. Still, a better
recovery would be to insert the missing ).

One way to accommodate for insertion based recovery is
by the introduction of a new rule to the syntax to make the
closing brace optional:

"if" "(" Expr Stm -> Stm {cons("If"), recover}

This strategy, however, is rather specific for a single produc-
tion, and would greatly increase the size of the grammar if
we applied it to all productions. A better approach would be
to actually “insert” the particular literal into the parse stream.
SDF actually allows us to simulate this using separate pro-
ductions that “insert” literal symbols. We illustrate this in
Figure 9. Consider the first lexical syntax section, which lists
a number of basic literal-insertion recovery rules, each in-
serting a closing bracket or other literal that ends a produc-
tion pattern.

Literal-insertion rules have an empty pattern, indicating
that they match an empty string. That is, for each of these
literals specified in the grammar, an empty string may be
matched against instead. Just as in our previous examples,
{recover} ensures these productions are deferred. The con-
structor annotation {cons("INSERT")} is used as a label-
ing mechanism for error reporting for the inserted literals.
As it is defined in lexical syntax context, it is not used in the
resulting abstract syntax tree.
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Insertion Rules for Opening Brackets In addition to in-
sertions of closing brackets in the grammar, we can also
add rules to insert opening brackets. These literals start a
new scope or context. This is particularly important for com-
posed languages, where a single starting bracket can indicate
a transition into a different sublanguage, such as the |[ and
<| brackets of Figure 1 and Figure 2. Consider for example
a syntax error caused by a missing opening bracket in the
SQL query of the former figure:

SQL stm = // missing <|

SELECT password FROM Users WHERE name = ${s}

|>;

Without an insertion rule for the <| opening bracket, the en-
tire SQL fragment could only be recognized as (severely
syntactically incorrect) Java code. Thus, it is essential to
have insertions for such brackets. However, for the insertion
of opening brackets, the regular SGLR implementation no
longer suffices, since it could insert infinitely many combi-
nations of opening and closing brackets. We address this in
Section 6 by adapting the parsing algorithm to consider the
added recovery cases in an on-demand fashion.

On Literals, Identifiers, and Reserved Words Literal-
insertion rules can also be used for literals that are not re-
served words. For example, for the combined Stratego-Java
language, a good insertion rule is:

lexical syntax

-> "end"

In Java, the string end is not a reserved word and is a
perfectly legal identifier. In Java, identifiers are defined as
follows:

lexical syntax

[A-Za-z\_\$][A-Za-z0-9\_\$]* -> ID

This lexical rule would match a string end. Still, the recovery
rule will strictly be used to insert the literal end, and never
an identifier. The reason why the parser can make this dis-
tinction is that the literal end itself is defined as an ordinary
symbol when normalized to kernel syntax:2

syntax

[\e] [\n] [\d] -> "end"

The literal-insertion rule simply adds an additional deriva-
tion for the "end" symbol, providing the parser with an ad-
ditional way to parse it. As such, the rule does not change
how identifiers (ID) are parsed. This is an important property
when considering composed languages in general. In many
cases, some literals in one sublanguage may not be reserved
words in another. With a naive recovery strategy that inserts
tokens into the stream, this could result in keywords being
inserted in place of identifiers (e.g., end in Java). But since
the insertion rules only apply when a literal is expected,
these effects are avoided with out approach.

2 Actually, in fully normalized kernel syntax form, the character codes
[\101] [\110] [\100] are used.

Insertion Rules for Lexical Symbols Insertion rules can
also be used to insert lexical symbols such as identifiers. In
our approach, we only focus on a very small set of lexical
symbols; missing identifiers generally indicate an error in
the enclosing context-free construct and are not addressed
separately. Still, using identifier insertions is feasible, but
adds extra complexity to the tools that process the abstract
syntax tree.

The lower sections of Figure 9 specify insertion rules
for terminating the productions of the StringLiteral and
Comment symbols, first seen in Figure 6. Both rules have a
{recover} annotation on their starting literal. Alternatively,
the annotation could be placed on the complete production,
but this formulation is beneficial for the runtime behavior of
our adapted parser implementation, ensuring that the anno-
tation is considered before construction of the literal.

The recovery rules for string literals and comments match
either at the end of a line, or at the end of the file as appropri-
ate, depending on whether newline characters are allowed in
the original, non-recovering productions. In contrast, an al-
ternative approach would have been to add a literal insertion
production for the quote and comment terminator literals.
However, by only allowing the strings and comments to be
terminated at the ending of lines and the file, the number
of different possible interpretations is severely reduced, thus
reducing the overall runtime complexity of the recovery.

5.4 Combining Different Recovery Rules
The water recovery rules of Section 5.2 and the insertion
rules of Section 5.3 can be combined to form a unified re-
covery mechanism that allows both discarding and insertion
of substrings:

module Java-15-Permissive

imports

Java-15-Permissive-WaterOnly

Java-15-Permissive-InsertionsOnly

Together, the two strategies maintain a fine balance between
discarding and inserting substrings. Since the water-based
recovery rules incur additional cost for each water substring,
insertion of literals will generally be preferred over discard-
ing multiple input strings. This ensures that most of the orig-
inal (or intended) user input is preserved.

5.5 Derivation of Permissive Grammars
So far, we only focused on a particular kind of literals for
insertion into the grammar, such as brackets, keywords, and
string literals. Still, we need not restrict ourselves to only
these particular literals. In principle, any literal in the gram-
mar is eligible for use in an insertion recovery rule.

For many literals, automatic insertion can lead to unintu-
itive results in the feedback presented for the user. For ex-
ample, we don’t want the editor to suggest to insert a “try”
or “synchronized” keyword. In those cases, discarding some
substrings instead may be a safer alternative. The decision
whether to consider particular keywords for insertion may
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depend on their semantic meaning and importance [10]. To
take this into account, expert feedback on a grammar is vi-
tal. Since we have aimed at maintaining language indepen-
dence of the approach, our main focus is on more generic,
structure-based properties of the grammar.

In this section we have identified and focused on four
different distinct, general classes of literals that commonly
occur in grammars:

– Closing brackets and terminating literals for context-free
productions

– Opening brackets and starting literals for context-free
productions

– Closing literals that terminate lexical productions where
no newlines are allowed (such as most string literals)

– Closing literals that terminate lexical productions where
newlines are allowed (such as block comments)

Each has its own particular kind of insertion rule, and each
follows its own particular definition pattern. By analysis of a
grammar, using heuristic rules to recognize these patterns,
we derive water-based recovery rules and recovery rules
for insertions of the above categories. Thereby, our system
maintains language independence by providing a generic,
automated approach towards the introduction of recovery
rules.

Automatically deriving recovery rules helps maintain a
valid, up-to-date recovery rule set as languages evolve and
are extended or embedded into other languages. Particularly,
as languages are changed, care must be taken to remove
any recovery rules from the grammar that are no longer
applicable.

SDF specifications are fully declarative. It is this nature
that is essential for automated analysis and transformation of
a grammar specification. It is not feasible to do so for other
syntax formalisms that use semantic actions to construct
abstract syntax trees and may maintain state or call external
functions (e.g., to determine operator priorities).

We formulated a set of heuristic rules for the detection
of different production patterns based on our experience
with different grammars. For instance, opening bracket and
starting literal insertions are added based on the following
criteria. First, we only consider context-free productions.
Second, the first and last symbols of the pattern of such a
production must be a literal. And last, this literal is not used
as the starting literal of any other production.

The heuristic rules for the other categories involve a
larger set of conditions. The main characteristic of the sec-
ond category is that it is based on starting literals in context-
free productions. We only consider a literal a starting literal
if it only ever appears as the first part of a production pat-
tern in all rules of the grammar. For the third category, we
only consider productions with identical starting and end
literals. Finally, for the fourth category we derive rules for
matching starting and ending literals in LAYOUT productions.

module Java-15

...

context-free syntax

"{" BlockStm* "}" -> Block {cons("Block")}

"(" Expr ")" -> Expr {bracket}

"while" "(" Expr ")" Stm -> Stm {cons("While")}

context-free syntax

"void" "." "class" -> ClassLiteral {cons("Void")}

(Anno | ClassMod)* "class" Id ...

-> ClassHead {cons("ClassHead")}

Figure 10. A selection of context-free productions that ap-
pear in the Java grammar.

Note that we found that some grammars (notably the Java
grammar of [6]) use kernel syntax for LAYOUT productions
to more precisely control how comments are parsed. Thus,
we consider both lexical and kernel syntax for the comment-
terminating rules.

As an example, consider the context-free productions of
Figure 10. Looking at the first production, and using the
heuristic rules above, we can recognize that } qualifies as
a closing literal. Likewise, ) satisfies the conditions we
have set. By programmatically analyzing the grammar in
this fashion, we collected the set of closing literal insertion
rules of Figure 9.

Note that none of the generated inserted closing literals
of Figure 9 ever occur as an opening literal in the grammar.
We only derive rules from brackets that appear in a balanced
fashion with another (possibly different) literal (or a num-
ber of other literals). Insertions of literals that are balanced
with another literal can lead to undesired results, since such
constructs do not form a clear nesting structure. We make
an exception for lexical productions that define strings and
comments, for which we only derive more restrictive inser-
tion rules.

From the productions of Figure 10 we can further derive
the { and ( opening literals. In particular, the “while” key-
word is not considered for deriving an opening literal inser-
tion rule, since it is not used in conjunction with a closing
literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuris-
tic, an example can be constructed where it fails. We have en-
countered a number of anomalies that arose from our heuris-
tic rules. For example, based on our heuristic rules, the Java
class keyword is recognized as a closing literal. (For nar-
rative reasons, we did not include it in Figure 9.) This fol-
lows from the void class literal production of Figure 10. The
class keyword is never used as a starting literal of any pro-
duction (as seen in the same figure, not even so for class
headings), and therefore satisfies our set of rules. In prac-
tice, we have found that these anomalies are relatively rare
and harmless, or sometimes even beneficial.

We evaluated our set of heuristic rules using Java, Java-
SQL, Stratego and Stratego-Java grammars, as outlined in
Section 7. For these grammars, a total number of respec-
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tively 33, 56, 36, and 130 insertion rules were generated,
along with a constant number of water-based recovery rules
as outlined in Figure 8. The complete set of derived rules is
available from [1].

5.6 Customization of Permissive Grammars
A good error recovery mechanism is not only language inde-
pendent, but is also flexible [10]. That is, it allows grammar
engineers to use their experience with a language to improve
recovery capabilities. Our system, while remaining within
the realm of the standard SDF grammar specification for-
malism, delivers both of these properties. Language engi-
neers can add their own recovery rules using SDF produc-
tions similar to those shown earlier in this section.

Using automatically derived rules may not always lead
to the best possible recovery for a particular language. Dif-
ferent language constructs have different semantic meanings
and importance. Different languages also may have different
points where programmers often make mistakes. For exam-
ple, a common “rookie” mistake in Stratego-Java is to use
[| brackets |] instead of |[ brackets ]|. This may be recov-
ered from by standard deletion and insertion rules. However,
the cost of such a recovery is rather high, since it would in-
volve four deletions and two insertions. Other alternatives,
less close to the original intention of the programmer, might
be preferred by the recovery mechanism. Based on this ob-
servation, a grammar engineer can add substitution recovery
rules to the grammar:

lexical syntax

"[|" -> "|[" {recover, cons("INSERT")}

"|]" -> "]|" {recover, cons("INSERT")}

These rules substitute any occurrence of badly constructed
embedding brackets with the correct alternative, at the cost
of only a single recovery. Similarly, grammar engineers may
add recovery rules for specific keywords, operators, or even
placeholder identifiers as they see fit to further improve the
result of the recovery strategy.

Modular Definition of Customizations It is good practice
to separate the generated recovery rules from the customized
recovery rules. This way, the generated grammar does not
have to be adapted and maintained by hand. A separate
grammar module can import the generated definitions, while
adding new, handwritten definitions.

Besides composition, SDF also provides a mechanism for
subtraction of languages. The {reject} disambiguation an-
notation filters all derivations for a particular set of sym-
bols [3]. Using this filter, it is possible to disable some of the
automatically derived recovery rules. Consider for example
the insertion rule for the class keyword, which arose as an
anomaly from the heuristic rules of the previous subsection.
Rather than directly removing it from the generated gram-
mar, we can disable it by extending the grammar with a new
rule that rejects this recovery. Figure 11 illustrates this with

module Java-15-Permissive-Customized

imports

Java-15-Permissive

exports

lexical syntax

-> "class" {reject}

...

Figure 11. A customized permissive grammar.

i = f ( x ) + 1 ;

i = f ( x + 1 );

i = f ( x ) ;

i = f ( 1 );

i = ( x ) + 1 ;

i = ( x + 1 );

i = x + 1 ;

i = f ;

i = ( x ) ;

i = x ;

i = 1 ;

f ( x + 1 );

f ( x ) ;

f ( 1 );

;

Figure 12. Many different interpretations of i=f(x)+1;
using literal-insertion recovery rules (underlined) and water-
based recovery rules.

i = 2 ;

i = (2) ;

i = ((2)) ;

i = (((2))) ;

Figure 13. Insertion of opening brackets creates infinitely
many possible interpretation of expressions.

a grammar that imports the generated permissive grammar,
and disables the class insertion rule.

6. Parsing Permissive Grammars
When all recovery rules are taken into account, permissive
grammars provide many different interpretations of the same
code fragment. As an example, Figure 12 shows all possi-
ble interpretations of the string i=f(x)+1;. The alternate
interpretations are obtained by applying recover productions
for inserting parentheses or removing text parts. This small
code fragment illustrates the explosion in the number of am-
biguous interpretations when using a permissive grammar.
As illustrated in Figure 13, the option of inserting opening
brackets even results in an infinite number of interpretations.

Generalized parsers explore all possible interpretations
of a string in parallel. Any alternative that does not lead
to a valid interpretation is simply discarded, and remaining
branches may be filtered by disambiguation rules. Disam-
biguation can be performed during parsing, or by a post pro-
cessor on the created parse tree. A disambiguation filter for
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void methodX() {

if (true) // missing {

foo();

}

int j = 0;

while (j < 8)

methodY(j++);

}

Figure 14. An if statement with a missing opening brace,
causing the method to be closed at the end of the statement
The error is detected at the while keyword.

permissive grammars, should prefer branches with the least
number of recover productions.

Theoretically, the use of productions to specify how to
recover from errors provides an excellent mechanism for the
parsing of erroneous files. However, from a practical point of
view, the extra interpretations created by these productions
negatively affect time and space requirements. As we have
shown above, the combinatorial possibilities would grow
exponentially, leading to unacceptable overhead on perfor-
mance. Therefore, we must adapt the parser strategy, to pro-
cess the alternatives introduced by the recovery rules.

It is not practical to consider all recovery interpretations
in parallel with the ordinary grammar productions (or even
impossible as in the case of Figure 13). As an alternative
to parsing different interpretations in parallel, backtracking
LR parsers revisit points of the file that allow multiple inter-
pretations (the choice points). For normal grammars, these
parsers are less practical since they exhibit exponential be-
havior in the worst case [17]. As such, we introduce a selec-
tive form of backtracking to GLR parsing that is only used
for the concern of error recovery. We ignore all recovery pro-
ductions during normal parsing, and employ backtracking to
apply the recovery rules only once an error is detected.

6.1 Selecting Choice Points for Backtracking
To employ backtracking for applying error recovery rules it
is important that the right choice point is selected. In par-
ticular, simply trying different interpretations at the point of
failure is ineffective, especially when considering a scanner-
less parser. This is because the point of failure rarely re-
flects the location of the original error, let alone the point
where the error can be repaired. Consider for example the
code in Figure 14. Due to the missing opening brace of the
if-block, the closing brace after the enclosed foo(); state-
ment is misinterpreted as closing the method. At that point,
the parser simply continues, interpreting the remaining state-
ments as class-body declarations. This causes it to fail at
the reserved while keyword, which can only occur inside
a method body. More precisely, our scannerless parser fails
at the unexpected space after w-h-i-l-e; the character can-
not be shifted and all branches (interpretations at that point)
are discarded.

The difference between the point of detection and the
actual location of the error is a well-known factor that poses
a challenge for error recovery techniques [10]. In order to
properly recover from non-local errors, they have to consider
the text that precedes the point of detection. Backtracking
can be used to inspect this text in reverse order, starting at
the point of detection, gradually moving backwards to the
start of the input file. Using a reverse order helps maintain
efficiency, since the actual error is most probably near the
failure location.

As SGLR parses different interpretations in parallel, it
uses a more complicated stack structure than normal LR
parsers. Instead of a single, linear stack, it maintains a graph-
structured stack that efficiently stores the different interpre-
tation branches. As characters are shifted, some of these
branches may be discarded. This poses a challenge for ap-
plying backtracking, since all the discarded branches must
be stored in case the old state is revisited. We found that it is
prohibitive (in terms of performance) to maintain the com-
plete stack state for every shifted character. Therefore, we
only selectively record choice points to minimize the over-
head introduced. In the current implementation, we construct
a choice point at every new line.

6.2 Applying Recovery Rules
Our backtracking algorithm iteratively explores the input
stream in reverse order, starting at the nearest choice point.
At each point, different candidate recoveries are attempted
and discarded if a valid interpretation is not possible. An in-
terpretation is considered valid after the error detection line
is parsed. Once a valid candidate is selected, normal parsing
continues. Permissive grammars typically account for many
possible interpretations, which means that the order of ex-
ploration determines the final result. Generally, corrections
that employ fewer recover productions are preferred. There-
fore, candidate recoveries that use fewer recovery rules are
selected first.

With each iteration of the algorithm, different candidate
recoveries are explored in parallel for a restricted area of
the file and for a restricted number of recovery rule appli-
cations. For every following iteration the size of the area and
the maximum number of recovery rule applications are in-
creased. Figure 15 illustrates a number of iterations of the
algorithm for the Java method of Figure 14.

Figure 15a shows the parse failure after the while key-
word. The point of failure is indicated by the triangle. The
actual error, at the closing brace after the if-block, is shown
underlined. The figure shows the different choice points that
have been stored during parsing using circles in the left mar-
gin.

The first iteration of the algorithm (Figure 15b) focuses
on the line where the parser failed. The parser is reset to the
choice point at the start of the line, and enters recovery mode.
At this point, only candidate recoveries that use one recovery
production are considered; alternative interpretations formed
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Figure 15. Expanding search space.

by a second recover production are cut off. Their exploration
is postponed until the next iteration. The figure visualizes
the search space using boxed lines with a number indicating
the amount of recovery rules that may be applied. In this
example scenario, the first iteration does not lead to a valid
solution.

For the next iteration, in Figure 15c, the search space
is expanded with respect to the size of the inspected area
and the number of recovery rules that may be applied. The
new search space consist of the line that precedes the point
of detection, plus the error detection line where recovery

candidates with two rules are now also considered. For the
latter, interpretations that were previously cut off can now be
resumed.

In Figure 15d, the search space is again expanded to in-
spect the line where the error was detected and the two pre-
ceding lines. This time, a valid recovery is found: discard-
ing the closing brace, by application of a water-based recov-
ery rule, leads to a valid interpretation of the erroneous code
fragment.

Rather than a purely backtracking-based approach, we
use a parallel search for recovery candidates with each back-
tracking step. Ordering of recovery candidates is only im-
posed by the different iterations of the backtracking algo-
rithm. This means that in some cases more than one valid re-
covery candidate is identified. In this case we pick the candi-
date with the smallest number of recovery rule applications,
or pick an arbitrary candidate if multiple candidates have the
same number of applications.

6.3 Implementation
The implementation of the recovery algorithm requires a
number of (relatively minor) modifications of the SGLR
algorithm used for normal parsing. Firstly, productions
marked with the {recover} attribute are ignored during
normal parsing. Secondly, a choice point is stored for every
newline character. And thirdly, if all branches are discarded
and no accepting state is reached, the parser enters recov-
ery mode. Once the recovery is successful, normal parsing
resumes with a newly constructed stack.

Figure 16 shows pseudo code for the recovery algorithm.
The Recover function controls the iterative search process
described in Section 6.2. The function starts with some ini-
tial configuration (lines 3-5): it enables the recovery produc-
tions that are ignored in normal parsing mode, selects the
most recent choice point, and initializes the candidates
variable. The choice points from the point of failure are
then visited in reverse order (lines 6-10). Candidates for the
current choice point are collected and explored using the
RecoverParse function (line 7), until finally a valid inter-
pretation is found (line 10).

The RecoverParse function tries to construct a valid in-
terpretation by reparsing the area starting from the choice
point and revisiting recovery candidates that were previously
cut off. Each iteration resets the parser to the previous state
stored for the choice point (lines 20-21). It consumes char-
acters from the choice point location until the original point
of failure is reached (lines 23-32). By parsing the area again,
any previously cut off candidate stacks are explored further
and new candidates can be collected. For each character,
the stack states of candidates at that point are merged with
the current stack (line 25-27). As such, the revisited candi-
date recoveries are processed in parallel, using the standard
SGLR parser (line 28), but with the recovery rules enabled.
At that point, any new stack branches created using recov-
ery rules are excluded from further exploration and stored to
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RECOVER(sglr)
1 � Input: sglr - SGLR parser
2
3 sglr .ignoreRecoverProductions ← False
4 choicePoint ← Last inserted choicePoint
5 candidates ← Initialize list
6 do
7 candidates ← RECOVERPARSE(
8 sglr, candidates, choicePoint)
9 choicePoint ← Previous choicePoint

10 until sglr .stacks not empty
11 sglr .ignoreRecoverProductions ← True

RECOVERPARSE(sglr, candidates, choicePoint)
12 � Input:
13 sglr - SGLR parser
14 candidates - Unexplored recover branches with
15 associated location, created on previous loop
16 choicePoint - Start location for recover parse
17 � Output: New candidates created
18 by one extra recover production
19
20 sglr .stacks ← choicePoint .stacks
21 sglr .streamLocation ← choicePoint .streamLocation
22 newCands ← Initialize list
23 while sglr .streamLocation ≤ sglr .failureLocation
24 do
25 locCands ← { c | c in candidates and
26 c.streamLocation = sglr .streamLocation }
27 sglr .stacks ← sglr .stacks ∪ locCands
28 sglr .parseCharacter()
29 createdCands ← stacks created by
30 recover production
31 sglr .stacks ← sglr .stacks / createdCands
32 newCands ← newCands ∪ createdCands
33 return newCands

Figure 16. The recovery algorithm.

be revisited in the next iteration (line 31-32). The algorithm
ends once the character at the point of failure can be suc-
cessfully parsed. The parser then resumes in normal parsing
mode (line 11) using the newly constructed stack.

7. Evaluation
We add error recovery to a parser to improve the user expe-
rience. This is particularly important in an interactive envi-
ronment where many editor services depend on proper parse
error recovery, as opposed to batch use. With this in mind,
we have focused the evaluation of our approach on the fol-
lowing criteria:

– Quality of Recovery: recovery should be as close as
possible to the intention of the user. A bad recovery may
introduce spurious errors and lead to misleading error
feedback.

– Performance of the parser, with regards to parse time
and space, is important and should not disturb the work
flow of the user. A significant factor in interactive scenar-
ios is that parser input will, more often than not, contain
errors.

– Quality of Feedback: good error feedback should point
out an error as accurately as possible and also give good
suggestions on possible corrections. Quality of feedback
depends on quality of recovery.

– Language Independence and Flexibility: the recovery
solution should be independent of a particular language,
yet should be customizable to the needs and insights of
language designers.

– Transparency: it should be clear why a particular recov-
ery is presented. The language designer should have in-
sight into how the recovery works for a given grammar.

As a basis for testing we have used a set of automatically
derived, permissive grammar variants for Java, Java-SQL,
Stratego and Stratego-Java. For each language we have
tested the following permissive variants: Water (W), Inser-
tion of close (C), W + C, C + Insertion of open (O) and
W + C + O, along with standard grammars for comparison.
These grammars have been tested on a set of sample files
taken from the following projects:

– The JUnit framework: A library for defining unit
tests [15], providing Java 1.5 code used to test the Java
grammars.

– The Dryad compiler: An open compiler for the Java
platform [19], providing Stratego and Stratego-Java code
which we use to test both the Stratego and Stratego-Java
grammars.

– The StringBorg project: A tool and grammar suite
that defines different embedded languages [4], provid-
ing Java-SQL code used to test the Java-SQL grammars.

Code from these projects provide correct samples which we
use to test the parser performance for syntactically correct
files. We introduced errors to the samples to simulate editing
scenarios that result in syntactically erroneous code. These
error samples are used to test performance and quality of
recovery in the presence of syntactical errors.

Both the development of a representative error sample
suite and its evaluation have been a challenging task. There
are many factors involved: the type of error, type of gram-
mar, locations of errors, etc. For example, the distribution of
errors has an impact on time spent in recovery and the num-
ber of recoveries triggered. Clustered errors are expected to
trigger fewer recoveries compared to scattered errors. Still,

457



the actual runtime behavior of the parser remains hard to
predict.

To evaluate the recovery quality we have opted to focus
on single errors. For error performance we also focus on
small sets of clustered errors, as these have a large impact on
the runtime behavior. All measures related to time have been
collected as averages after several runs, using a “pre-heated”
JVM. All figures shown in this paper should be considered
as preliminary with the purpose of showing the effectiveness
of our approach, not as a part of an in-depth study.

7.1 Quality of Recovery
For the evaluation of recovery quality we first measure the
tree alignment distance [16], i.e., comparing the reference
AST to ASTs obtained through recovery. This is one possi-
ble way to get a number on the difference of two trees as op-
posed to, e.g, running diffs on pretty printed ASTs and mea-
sure number of lines. The reference AST is obtained from
a correct sample file, while the recovered ASTs are created
from the error samples, following [28].

Given the tree distances we study recoveries in more de-
tail in cases where the distance is larger than zero. We label
the quality of a recovery as either poor, good or excellent, as
suggested by Pennello and DeRemer [30], also used in the
comparative study of Degano and Priami [10]. A tree align-
ment distance equal to zero indicates an excellent recovery
while a larger distance indicates a poor or good recovery.
Poor recoveries are recoveries that introduce spurious errors
(as observed through manual inspection of the parse result).

We study the permissive grammars for Stratego-Java in
more detail for sample files containing one error. The set of
error samples capture six different types of errors:

– Missing Close and Added Close:
), }, >, ], ]\!|, or */

– Missing Open: (, {, or |[

– Missing Delim and Added Delim: ; or ,

– Changed order of symbols: [| instead of |[, or |] instead
of ]|

Figure 17 shows distance results per error and grammar
type, while Figure 18 shows the quality of recoveries as a
percentage of the whole error set.

Figure 18 shows that the standard grammar fails to parse
all inputs (as expected), and that most of the permissive
grammar succeed in parsing the complete set. An exception
is the C variant which only manages to recover form a subset
of all errors. The combined variants WC, CO and WCO even
get excellent recoveries for a majority of cases.

The diagram in Figure 17 shows the effect of using a
grammar variant on different error types. For the W variant
we see that it is robust but gives large distances, with the
exception of the added delimiter cases. The C variant, on
the other hand, is less robust but gives excellent recoveries
for a majority of the missing close cases. The O variant is
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Figure 17. Distance: each diagram shows results for one
error type and the following grammar variants; W, C, WC,
CO and WCO. Each bar shows for what percentage the
distance was equal to zero, larger than zero or parsing failed.
W - Water, C - Insertion of close, O - Insertion of open.
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Figure 18. Quality of recovery using various grammars for
Stratego-Java. Each bar shows for what percentage recovery
was excellent, good, poor or parsing failed. S - Standard
grammar, W - Water, C - Insertion of close, O - Insertion
of open.

not tested separately, but we see that it provides excellent
recoveries for a majority of the missing open cases when it
is included in a combination.

7.2 Parsing Performance
For evaluation of parsing performance we focus on parse
time. Space is also of interest but not addressed in this
paper. As mentioned earlier, a parser used in an interactive
scenario should not slow down the work flow of the user.
Adding recovery to a parser will potentially give overhead
with regard to time and space.
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Note that the current implementation of JSGLR is still in
active development and has not been optimized. Particularly,
algorithmic optimizations such as SRNGLR [12] have not
been integrated yet, and an overuse of object allocations and
wrapper objects currently causes a lack of memory locality
and increase in heap usage.

We are interested in the performance overhead of using
permissive production rules on both correct and erroneous
input. Figure 19 shows non-error parse time, i.e. the average
parse time for permissive grammars in relation to the stan-
dard grammar for each language. We observe that the over-
head varies between variants and languages. The W variant
gives more or less the same overhead independent of lan-
guage, while the C variant gives the best performance for all
languages, even better performance in two cases.

An important property of any parser used in an interactive
environment is its ability to handle erroneous input. Using
the WC grammar for Stratego-Java, which gives us the best
balance between quality and performance, we measure how
much additional time that is needed to parse files with one,
two, or three errors. The results are shown in Figure 20.
The figure shows that the amount of time spent in recovery
increases with the number of clustered errors. This is the
expected result since clustered errors are bound to trigger
more recoveries.

The diagram in Figure 21 shows us that the number of er-
rors in a sample will result in an equal number of recoveries
for a majority of the cases. For occasional errors, clustered
and single, recovery time can exceed 1 second. The percent-
age increases with the number of clustered errors. There are
some pathological cases for which an additional strategy is
required to avoid overly long parse times. This is further ad-
dressed in Section 7.3.
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Figure 20. Recovery time for samples with one, two or
three errors, using the Stratego-Java W+C grammar vari-
ant (water and closing-literal insertion). Each bar shows for
what percentage recovery time is less than 10 ms, 100 ms,
1 s or greater than 1 s.
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using the Stratego-Java W+C grammar variant, i.e., water
and insertion of close.

7.3 Recovery from Pathological Cases
A good error recovery strategy maintains a fine balance be-
tween response time and the quality of a recovery. Based on
our test set, we have recognized that there are certain patho-
logical cases where the complete recovery rule set takes too
long to find a proper recovery.

Through experimentation, we found that these pathologi-
cal cases arise seldomly and are hard to predict or recognize.
They only occur for particular combinations of syntax er-
rors and surrounding context. To avoid slow response due to
long-running recovery attempts, we abort attempts that take
more than a set amount of time.

We speculate that these cases arise from a combination
of syntax errors that can only be resolved by a multitude of
recovery operations and the presence of particularly liberal
productions in the base grammar. For instance, string literals
in Stratego may contain any character, including newlines,
except an unescaped closing quote. Any unterminated string
literal, or a string literal that has been partially discarded by a
water-based recovery rule, can greatly increase the possible
number of interpretations of an input file, i.e., almost any
character in the remainder of the file could be part of the
string (or not).
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Successful error recovery typically combines multiple
strategies, using a secondary strategy if the first does not
suffice [10]. In order to still provide feedback for the patho-
logical cases, such a secondary strategy can be used. This
strategy should focus purely on performance, not quality of
recovery. We have identified three viable secondary strate-
gies for error recovery with SGLR.

The first approach is simply to abort the current recovery
attempt and report all offending characters encountered so
far. With this approach, it is not possible to recover a partial
AST, but the user is still presented with feedback of errors
up to the point of where the parser is aborted.

A second fall-back strategy is to construct a partial parse
tree based on the reductions performed by the parser so
far. This approach is described in [36], where a standard,
unaltered SDF grammar is used. The available syntax tree at
the point of abortion is combined with remaining parts of the
file to create a partial parse result.

Finally, a third fall-back strategy is to confine errors to se-
lected regions of code. Each region can constrain the search
space used to recover from errors in that region. If recov-
ery is not possible within a set time limit, an entire region
can be discarded. Regions that enclose syntax errors may be
detected using coarse-grained, water-based recovery gram-
mars similar to those discussed in Section 5.1. These gram-
mars parse any of the pathological cases almost as quickly
as a non-erroneous input, identifying and skipping over erro-
neous regions of code. In ongoing experimentation we have
also seen good results in using indentation and the SGLR
graph-structured stack to identify regions while parsing. We
plan to refine these strategies in future work.

7.4 Interactive Editing and Error Reporting
A parser used in an interactive scenario should provide a user
with good error feedback. Perhaps, just as important is the
placement of error markers (“squiggles”) in the editor. Our
current implementation does this based on the layout of the
source code, as illustrated in Figure 22.

From the screen shot we can gather that the editor shows
several errors, due to successful recovery. The first and the
second errors are recovered by a literal-insertion rule, while
the third error has been recovered using the water-based re-
covery rule. We also observe that errors are detected cor-
rectly in both Stratego and embedded Java.

Due to the different characteristics of the error recovery
rules, described in Section 5.5, we use different error mes-
sages based on the constructor of the recovery rule:
– WATER rules: “[string] not expected.”

– INSERT rules: “[string] expected.” The placement of the
error marker is particularly important in this case. For
constructs with an opening and closing literal, this should
be at the same level of indentation as the other literal.

– INSERTEND rules: “construct not terminated.” High-
lights entire construct from start to end.

Figure 22. An editor for Stratego-Java using a permissive
W+C grammar variant (water and closing-literal insertion).

Syntax highlighting in Spoofax/IMP is implemented in a
scannerless fashion [20]. This means that the parse tree is
used for colorization, rather than the token stream. This
makes it important that a proper parse tree is available at all
times. Our experience shows us that even when interactively
editing a program, the coloring remains consistent. However,
since highlighting is based on successful parsing of a string,
any erroneous segments of code that have been discarded
cannot use keyword highlighting.

Compared to hand-written parsers, which are commonly
used in interactive editing, our error reports tend to be of
a more generic nature. For example, for an unterminated
string, our editor gives a generic message “construct not
terminated” instead of a language-specific message “string
literal not terminated.”

7.5 Language Independence and Flexibility
The permissive grammars we evaluated in this section were
automatically constructed using the heuristic rules described
in Section 5.5, showing that the approach works indepen-
dently of a particular language. Yet by using derived recov-
ery rules, specified as normal SDF productions, transparency
is maintained.

In Section 5.6 we discussed the customizability of derived
grammars; additional recovery rules can be added and unde-
sired rules can be removed to improve the recovery quality.
Based on the results of a test set as we constructed for our
evaluation, permissive grammars can be manually tuned in
order to improve the results.
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8. Related Work
The SGLR parser, implementing the scannerless general-
ized-LR algorithm, previously lacked any form of error re-
covery, limited to reporting only the character and location
at the point of a parse failure. However, there has been some
exploratory work on the subject by Valkering [36]. Valkering
enhances the standard SGLR error reports with information
based on the current stack at the point where an error occurs,
reporting the set of possible strings that could be inserted at
that point. Providing good feedback this way is non-trivial
since scannerless parsing does not employ tokens; often it is
only possible to report a set of expected characters instead.
Furthermore, these error reports are still biased with respect
to the location of errors; because of the scannerless, general-
ized nature of the parser, the point of failure rarely is a good
indication of the actual location of a syntactic error. In con-
trast, our error reporting strategy is based on the notions of
backtracking and considering least-cost error recovery pro-
ductions to determine the most likely cause of the error in
the context.

Using artificial reduce actions, Valkering constructs a par-
tial parse tree that precedes the point of failure. Furthermore,
he constructs partial parse trees for the fragments that follow
an error using substring parsing, introduced by Rekers and
Koorn [31]. Based on these partial parsing techniques, the
result of the parser is a set of (often highly ambiguous) par-
tial parse trees. In our approach, a single, well-formed parse
tree is constructed instead.

Lavie and Tomita developed GLR*, a noise skipping al-
gorithm for context-free grammars [25]. Based on traditional
GLR with a scanner, their parser determines the maximal
subset of all possible interpretations of a file by systemat-
ically skipping selected tokens. The parse result with the
fewest skipped words is then used as the preferred interpre-
tation. In principle, the GLR* algorithm could be adapted to
be scannerless, skipping characters rather than tokens. How-
ever, doing so would lead to an explosion in the number of
interpretations. In our approach, we restrict these by using
backtracking to only selectively consider the alternative in-
terpretations, and using water-based recovery rules that skip
over chunks of characters. Furthermore, our approach sup-
ports insertions in addition to discarding noise and provides
more extensive support for reporting errors.

Island Grammars The basic principles of our permissive
grammars are based on the water productions from island
grammars. Island grammars [39, 26] have traditionally been
used for different reverse and re-engineering tasks. For cases
where a baseline grammar is available (i.e., a complete
grammar for some dialect of a legacy language), Klusener
et al [22] present an approach of deriving tolerant grammars.
Based on island grammars, these are partial grammars that
contain only a subset of the baseline grammar’s productions,
and are more permissive in nature. Unlike our permissive
grammars, tolerant grammars are not aimed at application in

an interactive environment. They do not support the notion
of reporting errors, and, like parsing with GLR*, are limited
to skipping content. Our approach supports recovery rules
that insert missing literals and provides an extended set of
error reporting capabilities.

More recently, island grammars have also been applied to
parse composite languages. Synytskyy et al [34] composed
island grammars for multiple languages to parse only the in-
teresting bits of an HTML file (e.g., JavaScript fragments
and forms), while skipping over the remaining parts. In con-
trast, we focus on composite languages constructed from
complete constituent grammars. From these grammars we
construct permissive grammars that support tolerant parsing
for complete, composed languages.

Error Handling and Recovery in Other Parsers There are
several different forms of error recovery techniques for LR
parsing [10]. These techniques can be divided in correct-
ing and non-correcting techniques. The most common non-
correcting technique is panic mode. On detection of an er-
ror, the input is discarded until a synchronization token is
reached. Then, states are popped from the stack until the
state at the top enables the resumption of the parsing pro-
cess. Panic mode does not provide a proper diagnosis of the
error and may skip large fragments of an input. Correcting
methods try to improve on this by attempting to correct the
flawed part of the input string. Correcting methods for LR
parsers typically attempt to insert or delete tokens nearby the
location of an error, until parsing can resume. Successful re-
covery mechanisms often combine more then one technique.
For example, panic mode is often used as a fall back method
if the correction attempts fail.

While our approach to error recovery follows along the
same lines as is common to general correcting methods,
there are also two significant differences due to the nature
of SGLR. Other error reporting methods use tokens for re-
porting parse errors. Lacking tokens, our method is based
on the identification of errors – such as missing literals –
through parsing with the recovery production rules. GLR
parsing also introduces the notion of multiple branches that
are processed in parallel. Parse errors can only be identified
by a failure of the last remaining branch, which may not be
local to the actual root cause of an error. While other ap-
proaches can simply identify the offending token, we apply
backtracking to track back to the offending point in the code.

An alternative approach to scannerless parsing is used for
parsing expression grammars (PEGs) [14]. The class of lan-
guages PEGs can express has no relation to the context-free
grammars supported by SDF: instead of the commutative
choice (|) operator, PEGs use an ordered choice (/). PEGs
lack the explicit disambiguation facilities [3] that SDF pro-
vides for SGLR, and instead use ordered choice to enforce an
ordering of production alternatives, combined with greedy
matching. To our knowledge, no automated form of error re-
covery has been defined for PEGs. However, based on the
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ordering property, a “catch all” clause is sometimes added to
productions, which is used if no other alternative succeeds.
Such a clause can be used to skip erroneous content up to
a specific point (such as a newline) but does not offer the
flexibility of our approach.

IDE support for composite languages We integrated our
recovery approach into the Spoofax/IMP [20] language de-
velopment environment. A related project, also based on
SDF and SGLR, is the Meta-Environment [37, 38]. It cur-
rently does not employ interactive parsing, and only parses
files after a “save” action from the user. Using the traditional
SGLR implementation, it also provides no error recovery.

Another language development environment is Monti-
Core [23, 24]. Based on ANTLR [29], it uses traditional
LL(k) parsing. As such, MontiCore offers only limited sup-
port for language composition and modular definition of
languages. Combining grammars can cause conflicts at the
context-free or lexical grammar level. For example, any key-
word introduced in one part of the language is automati-
cally recognized by the scanner as a keyword in another
part. MontiCore supports a restricted form of embedded lan-
guages through run-time switching to a different scanner and
parser for certain tokens. Using the standard error recovery
mechanism of ANTLR, it can provide error recovery for the
constituent languages. However, recovery from errors at the
edges of the embedded fragments (such as missing quota-
tion brackets), is more difficult using this approach. This is-
sue is not addressed in the papers on MontiCore [23, 24].
In contrast to MontiCore, our approach is based on scan-
nerless generalized-LR parsing, which supports the full set
of context-free grammars, and allows composition of gram-
mars without any restrictions.

9. Conclusion
The SDF formalism allows for the specification and com-
position of modular, declarative language definitions. Parse
error recovery for parsing SDF grammars with SGLR has
previously been identified as an open issue. In this paper, we
presented a flexible, language-independent approach to error
recovery to resolve this issue. The three pillars of our work
have been to use standard SDF productions to specify error
recovery rules; to derive such error recovery rules from SDF
grammars; and to adapt the SGLR parser to efficiently cope
with the added complexity of grammars with recovery rules.
Using these techniques, we can support rapid syntactic and
semantic feedback for compositional languages as programs
are edited.

We evaluated our approach using a set of existing, non-
trivial grammars, showing a low performance overhead in
case there are no syntax errors, and acceptable (although at
times unpredictable) overhead in case of inputs with errors.
The results also show that our approach achieves excellent
recovery quality in a majority of the cases.

Our backtracking algorithm employs a growing search
space and a heuristic approach to systematically explore dif-
ferent possible recoveries in case of an error. We expect that
in the future we can further tune the weights of the different
factors that play a role in this process to provide more intu-
itive recoveries. For example, while any single insertion may
be preferred to discarding a substring (as suggested in [10]),
larger clusters of insertions are often less desirable – and
harder to identify in a growing search space – than discard-
ing longer substrings. Overall, we expect to improve both
the performance and quality through ongoing experimenta-
tion and evaluation.
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