
SugarJ: Library-based Language Extensibility

Sebastian Erdweg∗ Lennart C. L. Kats† Tillmann Rendel∗

Christian Kästner∗ Klaus Ostermann∗ Eelco Visser†
∗ University of Marburg

† Delft University of Technology

Abstract
SugarJ is a Java-based programming language that provides exten-
sible surface syntax, static analyses, and IDE support. SugarJ ex-
tensions are organized as libraries; conventional import statements
suffice to activate and compose language extensions. We illustrate
how programmers can use SugarJ to modularly extend Java’s syn-
tax, semantic analyses and IDE support.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Extensible languages; D.2.13 [Reusable Software]

General Terms Languages

Keywords language extensibility, library, DSL embedding, lan-
guage workbench

1. Introduction
With embedded domain-specific languages (DSLs) and language-
oriented programming [1, 6], two core requirements arise: Lan-
guages have to be extensible and language extensions need to com-
pose easily. Programmers require language extensibility to break
up the ties to a single (typically general-purpose) programming
language and to benefit from all aspects of embedded DSLs (for in-
stance, domain-specific syntax or IDE support). Furthermore, since
software projects touch upon multiple domains, it is essential to
support composing DSLs for the common case of conflict-free lan-
guage composition. For example, it should be possible to extend
Java with SQL, XML or regular expressions with regard to their
concrete syntax, IDE support (e.g., code completion), static analy-
ses (e.g., XML Schema validation), and so forth. It should be sim-
ple for programmers to use any combination of such language ex-
tensions within a single source file.

To address these goals, we propose to organize and implement
language extensions as libraries in the object language itself. In
contrast to conventional libraries, language libraries do not ex-
port functionality and data structures but rather stipulate an aug-
mentation of the object language. Due to our library-based design,
a programmer can easily activate and compose language exten-
sions by simply importing the corresponding language libraries;
no external configuration or reasoning is necessary to understand
a given source file. Furthermore, programmers can readily imple-

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

ment a language extension themselves by writing a language li-
brary; no additional tools but the object language compiler are re-
quired. Lastly, language libraries inherit the self-applicability prop-
erty from conventional libraries, that is, language extensions can be
used for developing language extensions: domain syntax, IDE sup-
port and static analyses for the definition of syntactic extensions,
IDE extensions, static analyses, and so forth.

We have developed an extension of Java—called SugarJ—
which demonstrates the feasibility of our library-based approach
for extending a language [4]. SugarJ supports the definition of syn-
tactic sugar within libraries, where each syntactic sugar extends the
grammar of the object language and specifies a transformation—
called desugaring—from the extended syntax into the base syntax.
Programmers can activate and compose (domain-specific) syntax
extensions through simple import statements that bring the cor-
responding libraries into scope. Technically, we support library-
based syntax extensions through an incremental parsing process
that parses a file one top-level entry at a time and adapts its own
grammar as it goes along. The finally resulting abstract syntax tree
is desugared using all desugarings in scope.

For example, consider the illustration of a SugarJ source file
in Figure 1, where we extended the base language with syntax for
XML through an import of the xml.Sugar library. In our embedding,
we compose the grammar of XML with SugarJ’s base grammar, so
that SugarJ parses XML documents as part of the surrounding Java
syntax. Furthermore, the xml.Sugar library declares a desugaring
of XML to Java, which SugarJ applies after parsing. Programmers
can easily compose the XML embedding with other syntactic ex-
tensions such as SQL or regular expressions by adding more import
statements.

As the screenshot furthermore highlights, we generalize our
library-based extensibility mechanism towards IDEs [2]. Accord-
ingly, we promote to organize and implement IDE extensions
within libraries of the object language, so that simple import state-
ments suffice to activate and compose editor services of several
DSLs. In the example above, we import the xml.Editor library and
the Book schema to bring syntax coloring and code completion for
XML into scope. Such editor services compose with editor services
for Java because each one only affects those fragments of the syntax
tree that correspond to Java or XML, respectively. We have imple-
mented a prototypical extensible IDE—called Sugarclipse—based
on the Spoofax language workbench [5] and its support for the
declarative configuration and dynamic reloading of editors. Sugar-
clipse provides editor services on a file-by-file basis, according to
the libraries in scope.

In summary, SugarJ is a lightweight and scalable alternative to
model-driven language workbenches: it is lightweight because it is
purely textual and aligns with the host language’s module system;
it is scalable because DSLs and their code generators can easily be
combined and composed.

187



Figure 1. SugarJ extended with support for XML processing: The library xml.Sugar provides an integration of XML syntax, xml.Editor
provides XML IDE support (e.g., code coloring, folding and outlining), and xml.schema.BookSchema integrates XML validation and auto-
completion rules derived from an XML schema.

SugarJ is an open source project; its compiler, Eclipse plugin
and case studies are publicly available at http://sugarj.org.

A slightly altered version of this text has been published as a
demonstration proposal at the same conference [3].

Acknowledgments
This work is supported in part by the European Research Coun-
cil, grant No. 203099, and NWO/EW Open Competition project
612.063.512, TFA: Transformations for Abstractions.

References
[1] S. Dmitriev. Language oriented programming: The next programming

paradigm. Available at http://www.jetbrains.com/mps/docs/
Language_Oriented_Programming.pdf., 2004.

[2] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and
E. Visser. Growing a language environment with editor libraries. In

Proceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE). ACM, 2011.

[3] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and
E. Visser. Library-based model-driven software development with Sug-
arJ. In Companion to Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM, 2011.

[4] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 2011.

[5] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In Proceedings
of Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 444–463. ACM, 2010.

[6] M. P. Ward. Language-oriented programming. Software – Concepts
and Tools, 15:147–161, 1995.

188

http://sugarj.org
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf
http://www.jetbrains.com/mps/docs/Language_Oriented_Programming.pdf

	Introduction



