
Library-based Model-driven Software
Development with SugarJ

Sebastian Erdweg∗ Lennart C. L. Kats† Tillmann Rendel∗

Christian Kästner∗ Klaus Ostermann∗ Eelco Visser†
∗ University of Marburg

† Delft University of Technology

Abstract
SugarJ is a Java-based programming language that provides exten-
sible surface syntax, static analyses, and IDE support. SugarJ ex-
tensions are organized as libraries; conventional import statements
suffice to activate and compose language extensions. We demon-
strate how programmers can use SugarJ to modularly extend Java’s
syntax, semantic analyses and IDE support.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Extensible languages; D.2.13 [Reusable Software]

General Terms Languages

Keywords language extensibility, library, DSL embedding, lan-
guage workbench

1. Introduction
With embedded domain-specific languages (DSLs) and language-
oriented programming, two core requirements arise: Languages
have to be extensible and language extensions need to compose
easily. Programmers require language extensibility to break up the
ties to a single (typically general-purpose) programming language
and to benefit from all aspects of embedded DSLs (for instance,
domain-specific syntax or IDE support). Furthermore, since soft-
ware projects touch upon multiple domains, it is essential to support
composing DSLs for the common case of conflict-free language
composition. For example, it should be possible to extend Java with
SQL, XML or regular expressions with regard to their concrete syn-
tax, IDE support (e.g., code completion), static analyses (e.g., XML
Schema validation), and so forth. It should be simple for program-
mers to use any combination of such language extensions within a
single source file.

To address these goals, we propose to organize and implement
language extensions as libraries in the object language itself. In
contrast to conventional libraries, language libraries do not ex-
port functionality and data structures but rather stipulate an aug-
mentation of the object language. Due to our library-based design,
a programmer can easily activate and compose language exten-
sions by simply importing the corresponding language libraries;

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

no external configuration or reasoning is necessary to understand
a given source file. Furthermore, programmers can readily imple-
ment a language extension themselves by writing a language li-
brary; no additional tools but the object language compiler are re-
quired. Lastly, language libraries inherit the self-applicability prop-
erty from conventional libraries, that is, language extensions can be
used for developing language extensions: domain syntax, IDE sup-
port and static analyses for the definition of syntactic extensions,
IDE extensions, static analyses, and so forth.

We have developed an extension of Java—called SugarJ—
which demonstrates the feasibility of our library-based approach
for extending a language [2]. SugarJ supports the definition of syn-
tactic sugar within libraries, where each syntactic sugar extends the
grammar of the object language and specifies a transformation—
called desugaring—from the extended syntax into the base syntax.
Programmers can activate and compose (domain-specific) syntax
extensions through simple import statements that bring the cor-
responding libraries into scope. Technically, we support library-
based syntax extensions through an incremental parsing process
that parses a file one top-level entry at a time and adapts its own
grammar as it goes along. The finally resulting abstract syntax tree
is desugared using all desugarings in scope.

For example, consider the illustration of a SugarJ source file
in Figure 1. We extended the base language with syntax for XML
through an import of the xml.Sugar library and compose the gram-
mar of XML with SugarJ’s base grammar, so that SugarJ parses
XML documents as part of the surrounding Java syntax. Further-
more, the xml.Sugar library declares a desugaring of XML to Java,
which SugarJ applies after parsing. Programmers can easily com-
pose the XML embedding with other syntactic extensions such as
SQL or regular expressions by adding more import statements.

As the screenshot furthermore highlights, we generalize our
library-based extensibility mechanism towards IDEs [1]. Accord-
ingly, we promote to organize and implement IDE extensions
within libraries of the object language, so that simple import state-
ments suffice to activate and compose editor services of several
DSLs. In the example above, we import the xml.Editor library and
the Book schema to bring syntax coloring and code completion for
XML into scope. Such editor services compose with editor services
for Java because each one only affects those fragments of the syntax
tree that correspond to Java or XML, respectively. We have imple-
mented a prototypical extensible IDE—called Sugarclipse—based
on the Spoofax language workbench [3] and its support for the
declarative configuration and dynamic reloading of editors. Sugar-
clipse provides editor services on a file-by-file basis, according to
the libraries in scope.

In summary, SugarJ is a lightweight and scalable alternative to
model-driven language workbenches: it is lightweight because it is

17



Figure 1. SugarJ extended with support for XML processing: The library xml.Sugar provides an integration of XML syntax, xml.Editor
provides XML IDE support (e.g., code coloring, folding and outlining), and xml.schema.BookSchema integrates XML validation and auto-
completion rules derived from an XML schema.

purely textual and aligns with the host language’s module system;
it is scalable because DSLs and their code generators can easily be
combined and composed.

SugarJ is an open source project; its compiler, Eclipse plugin
and case studies are publicly available at http://sugarj.org.

2. Demonstration description
In our SugarJ demonstration, we will illustrate how to grow a
language’s syntax, static checks and tool support using our library-
based extensibility approach. In particular, we will demonstrate
how to perform the following tasks with SugarJ:

• Extend Java with syntactic language extensions and DSL em-
beddings.
• Specify domain-specific static analyses on top of a DSL embed-

ding.
• Provide domain-specific IDE support such as code completion.
• Compose language extensions to support multiple DSLs in sin-

gle files.
• Incrementally build language extensions on top of each other.

In addition, we will elaborate on the technical challenges we
encountered while realizing SugarJ. In particular, we will discuss
our incremental parsing technique, which takes import statements
into account when parsing the remainder of a file, and explain how
this parsing technique co-operates with source location tracking as
needed for error marking and syntax highlighting.

3. About the presenters
Sebastian Erdweg is a Ph.D. student in the programming language
and software engineering research group at University of Marburg
and leads the SugarJ project. He received an honours master’s de-
gree in computer science from Aarhus University. Klaus Ostermann
is full professor at the University of Marburg and leads the pro-
gramming language and software engineering research group.

Acknowledgments
This work is supported in part by the European Research Coun-
cil, grant No. 203099, and NWO/EW Open Competition project
612.063.512, TFA: Transformations for Abstractions.

References
[1] S. Erdweg, L. C. L. Kats, T. Rendel, C. Kästner, K. Ostermann, and

E. Visser. Growing a language environment with editor libraries. In
Proceedings of Conference on Generative Programming and Compo-
nent Engineering (GPCE). ACM, 2011.

[2] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann. SugarJ: Library-
based syntactic language extensibility. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 2011.

[3] L. C. L. Kats and E. Visser. The Spoofax language workbench: Rules
for declarative specification of languages and IDEs. In Proceedings
of Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 444–463. ACM, 2010.

18

http://sugarj.org

	Introduction
	Demonstration description
	About the presenters



