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Abstract
A new generation of mobile touch devices, such as the
iPhone, iPad and Android devices, are equipped with pow-
erful, modern browsers. However, regular websites are not
optimized for the specific features and constraints of these
devices, such as limited screen estate, unreliable Internet ac-
cess, touch-based interaction patterns, and features such as
GPS. While recent advances in web technology enable web
developers to build web applications that take advantage of
the unique properties of mobile devices, developing such
applications exposes a number of problems, specifically: de-
velopers are required to use many loosely coupled languages
with limited tool support and application code is often ver-
bose and imperative. We introduce mobl, a new language
designed to declaratively construct mobile web applications.
Mobl integrates languages for user interface design, styling,
data modeling, querying and application logic into a single,
unified language that is flexible, expressive, enables early
detection of errors, and has good IDE support.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.2.11
[Software Engineering]: Software Architectures; D.2.4 [Soft-
ware Engineering]: Software/Program Verification

General Terms Design, Languages, Verification

1. Introduction
With the rapid growth in sales of modern smart phones and
tablets, such as iPhone, iPad, Android and BlackBerries, the
web becomes available on an increasing number of pow-
erful mobile devices equipped with modern web browsers.
However, today’s websites are optimized for personal com-
puter browsers and environments, whereas mobile devices
are used in different contexts, and have different features and
constraints than personal computers, for instance:

• Internet access is not always available, reliable or fast;
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• Screen estate is limited;
• Expected user interaction patterns are different, such as

touch controls and gestures such as tapping, swiping and
pinching;

• Applications are expected to respond to changes in con-
text, such as holding the device in portrait or landscape
mode, or changes in location.

Consequently, hundreds of thousands of custom native
mobile applications are being developed. Examples include
communication applications (e-mail, messaging), content
viewers (books, articles, papers, RSS feeds, video, photos,
audio) and location-based services (wikihood, foursquare,
loopt). While these applications run locally on the device
itself, a large class of these applications are data-driven ap-
plications that communicate with one or more web services
to exchange data.

While iOS, Android, BlackBerry, WebOS, Windows
Phone 7 and other platforms are similar in terms of inter-
action, features and restrictions, their development envi-
ronments are quite different. iPhone and iPad applications
are developed using the Objective-C language; Android and
BlackBerry applications are built using Java, but using very
different APIs; WebOS applications use HTML, CSS and
JavaScript; Windows Phone 7 development is done using
.NET. Developing software that is portable to multiple plat-
forms is difficult. In addition, deployment is non-trivial; most
platforms come with an application marketplace, some of
which require manual testing of submitted applications by
the marketplace provider before being published — a pro-
cess that can take many weeks — and applications can be
rejected for seemingly arbitrary reasons.

At the end of the 1990s, mobile phones started to gain
access to the Internet through WAP (Wireless Application
Protocol). The development model for WAP applications
was very similar to the development of regular web appli-
cations. Rather than sending HTML, a server would send
WML (Wireless Markup Language) to the mobile phone.
With the release of the original iPhone in 2007, a new gener-
ation of smart phones and tablets started to be released with
more powerful browsers that support all modern web tech-
nologies. At the same time, advancements in HTML (HTML
5) and CSS (CSS 3) started to enable the creation of web ap-
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plications that offer a comparable experience to native appli-
cations, especially for data-driven applications, by support-
ing application and data caching, detection of touch gestures
and access to geographical position information (GPS). The
portability and deployment advantages of web applications
make the use of web technologies for building mobile appli-
cations very attractive.

Similar to native applications, mobile web applications
can now be developed that run completely disconnected
from the server, requiring a different development model
than regular web applications. When a mobile web appli-
cation is first launched through the web browser, its applica-
tion code is cached on the device. The application can use
local SQL databases to cache data obtained from a server
for offline use. When no Internet connection is available,
the mobile browser retrieves the application from its cache
and continues to operate. All application logic, written in
JavaScript, resides on the device rather than on the server
as is the case in regular web applications. Communication
with the server, similar to native applications, happens by
performing web service calls using AJAX (Asynchronous
JavaScript and XML). At the time of writing, HTML5 is
well supported by the iPhone, iPad, Android, WebOS and
BlackBerry (6+) platforms.

While HTML5 makes it possible to develop offline-
capable mobile web applications that are portable and easy
to deploy, development of such applications exposes a num-
ber of problems.

First of all, web development does not enforce a par-
ticular application architecture; application concerns (such
as data modeling, user interface and application logic) can
be mixed arbitrarily – an approach that does not scale
well. Therefore, a structured architecture is required to de-
velop mobile web applications. A common architectural
style in organizing user-facing software is the Model-View-
Controller (MVC) pattern [6]. The MVC pattern separates
the Model (data, e.g. in a database) strictly from the View
(the user interface) by making the Controller responsible for
communication between the two. While the separation of
View and Model is good, the MVC pattern results in boiler
plate code that needs to be written to glue the application
together.

Second, mobile web applications are built by mixing
a number of loosely coupled languages including HTML,
CSS, JavaScript, SQL and a cache manifest. While the use
of domain-specific languages in web development support a
declarative programming model, they are not very well in-
tegrated. In previous work we have studied the current state
of server-side web frameworks [8] which, similar to mo-
bile web development, take advantage of multiple loosely-
coupled languages. The consequence of this design is the
same both in mobile and regular web development: lack
of static analyses detecting inconsistencies results in late
detection of failures. In addition, developers have come to

expect excellent IDE support for their languages, includ-
ing in-line error highlighting, reference resolving, outlines,
code completion and refactoring support. The dynamic na-
ture and loose coupling of the web languages complicates
the construction of IDE support.

Third, web languages such as HTML and CSS do not sup-
port basic abstraction mechanisms, complicating the reuse
of user interface elements. As a result, HTML and CSS arti-
facts contain a lot of code duplication.

Fourth, JavaScript in the browser is a single-threaded
environment, forcing developers to use asynchronous APIs
for performing expensive computations, including database
queries and obtaining GPS coordinates. These asynchronous
APIs require the developer to write code in the unnatural
continuation-passing style, one example of accidental com-
plexity in mobile web development.

In this paper, we introduce mobl1, a high-level, declar-
ative language for programming mobile web applications,
which addresses these problems. Mobl is our second case
study in the design and implementation of syntactically inte-
graded DSLs, DSLs that integrate sub-languages for multi-
ple application aspects, enabling static verification of the en-
tire application. Previously, we developed WebDSL, a DSL
to develop data-driven web applications. While covering a
different domain, many ideas from WebDSL are reused in
the design of mobl. Mobl integrates languages for user in-
terface design, styling, data modeling, query and application
logic into a single, unified language. The language is high-
level since it avoids accidental complexity such as contin-
uation passing style and supports the definition of reusable
user interface elements. The language is declarative since it
ensures automatic updates of the user interface through re-
active programming and automatic persistence of data in the
client-side database.

Mobl implements the Model-View (MV) pattern, a variant
of Model-View-Controller where the role of Controller has
been automated, data model-related logic has been moved
to the Model and user interface logic has been moved to
the View. The MV pattern reduces the amount of boilerplate
code that needs to be written compared to MVC.

The integration of the various concerns of mobile web
programming into a single language, enables consistency
checking across concern boundaries, ensuring early detec-
tion of many common errors by the mobl IDE (integrated
into Eclipse), which provides in-line error reporting, code
completion and reference resolving. The mobl compiler
compiles mobl code into a pure client-side web applica-
tion, implemented using a combination of HTML, CSS,
JavaScript and application caching manifests. Mobl appli-
cations can be deployed to any web server and are server-
technology agnostic.

1 http://www.mobl-lang.org
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Outline The rest of this paper is organized as follows: Sec-
tion 2 analyzes the mobile domain and its problems. Sec-
tion 3 describes the general architecture and design princi-
ples of mobl. Subsequent sections discuss the various as-
pects of mobile applications and how mobl supports them:
data modeling (Section 4), user interfaces (Section 5), nav-
igation (Section 6), higher-order controls (Section 7) and
styling (Section 8). Section 9 discusses related work and
Section 10 concludes.

2. Mobile Web Applications
The design of a new language for mobile web application de-
velopment requires a thorough understanding of the mobile
domain. This section discusses the architecture of traditional
web applications and compares it to the architecture of mo-
bile web applications. Subsequently, we identify a number
of problems in the development of mobile web applications.

2.1 Technical Architecture
The traditional style of web applications, sometimes referred
to as RESTful web applications [20], are request-oriented.
Objects on the server have the life span of a single request,
and are recreated as needed on every request. Since making
HTTP requests is relatively expensive, they are used spar-
ingly, when navigating to a new page, submitting a form or
performing an AJAX (Asynchronous Javascript and XML)
call. The web application server responds to requests from
the client (browser). When a request comes in, it is handled
by a server written using, for instance, Java, .NET, PHP or
Ruby. The server communicates with a database to retrieve
or manipulate data, and eventually sends back HTML to the
browser which renders it on the user’s screen. A server han-
dles multiple users and typically stores data for all its users
in a shared database. HTTP requests can also be sent by
JavaScript code on the web page, using AJAX calls. Based
on the result of such a request, the JavaScript may manip-
ulate the HTML DOM (Document Object Model) to make
changes to the user interface without requiring an entire page
reload. In addition to performing AJAX calls, JavaScript is
used for client-side validation of user input in forms.

There are multiple approaches to developing mobile web
applications. For older, non-smart phones, processing power
is the main bottleneck. Therefore, several thin-client ap-
proaches exist [12, 11] where all processing happens on the
server and phones are served with pre-rendered pages. How-
ever, today’s modern smart phones have more powerful pro-
cessors, thus client-side processing is no longer a bottleneck.
Therefore, for these devices applications can be developed in
a range of styles. On one end of the scale are web applica-
tions that are built similarly to regular web applications, ex-
cept reducing the amount of data presented on a single page,
to fit the screen size of the mobile device. It is relatively easy
to adjust a regular web application to produce pages that are
more friendly to the smaller screen size of a mobile device.

Figure 1. Mobile web application technical architecture

A drawback of this approach is that such applications are
not available without an Internet connection. In addition, In-
ternet speeds on mobile devices are on average a lot slower
than on PCs, resulting in a bad user experience.

At the other end of the spectrum are offline-capable mo-
bile web applications that, once accessed by the mobile
browser, are cached locally. They may fetch data from the
server and cache it in a local database on the device as well.
The development model of this type of application is very
similar to desktop applications and native mobile applica-
tions and merely use web technologies as an implementa-
tion means. All the application logic, written in JavaScript,
executes at the client, in the device’s browser. This enables
much more responsive user interfaces, because a “click” no
longer requires a HTTP request be sent to the server. Events
can therefore be processed much more granularly than in
RESTful-style web applications, and can respond immedi-
ately to gestures and key presses. Like desktop applications,
mobile web applications are single-user applications that do
not require user authentication and access control. This type
of application can be used without an Internet connection,
after the application and its data is loaded and cached locally.
Internet latency on mobile networks is also less problematic
because fewer requests have to be sent to the server.

Figure 1 shows the technical architecture of offline-
capable mobile web application. The user interface is de-
fined using HTML (HyperText Markup Language) and
styled using CSS (Cascading StyleSheets). The runtime rep-
resentation of the user interface is the Document Object
Model (DOM), which can be manipulated at runtime using
JavaScript. JavaScript acts as a glue language, manipulat-
ing the DOM, calling web services and executing database
queries. The application’s data is stored in a SQLite database
running locally on the device. The database is accessed
through an asynchronous JavaScript API that supports the
execution of SQL queries. All application resources (such as
HTML, CSS, JavaScript and images) are cached locally on
the device using the HTML5 Application Cache. When an
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Internet connection is available, the application can request
data from, and push data to the server.

2.2 Architectural Patterns
There is no particular application architecture enforced in
web development. HTML, JavaScript and CSS can be mixed
arbitrarily. While lowering the barrier to entry, this unstruc-
tured web application development does not scale well for
larger applications. Therefore, a number of architectural
patterns have been developed for user facing applications.
The most commonly used is the Model-View-Controller
(MVC) [6] pattern, but alternatives include Model-View-
Presenter [19] and Model-View-ViewModel [21].

The Model-View-Controller pattern creates a strict sepa-
ration between three layers of the application:

1. The Model represents the data to be manipulated by the
application, e.g. persistent data objects.

2. The View defines a user interface, presenting (elements
of) the Model.

3. The Controller responds to user events and adapts the
View and Model accordingly.

While developing WebDSL [22], we studied MVC web
frameworks that are commonly used in web development.
We observed that the Controller is required to perform a
mostly infrastructural role. It is responsible for reading user
input, applying requested changed to the Model, and manip-
ulating the View. It impedes the rapid development of appli-
cations: minor changes, such as a new property in the Model
that has to be editable from the View, requires not only the
adaptation of the Model and View, but the Controller as well.
Consequently, the use of the Model-View-Controller, as well
as similar patterns, result in a lot of boiler plate code that
needs to be written.

2.3 No Integration
In previous work we surveyed the state of practice in web de-
velopment [8]. We observed that web frameworks typically
rely on a number of loosely-coupled languages, e.g. Java,
XML configuration files, SQL, HTML, CSS and Javascript.
Due to their loose coupling, these framework typically lack
tools that can statically verify applications to detect incon-
sistencies between components of the applications defined
using different languages, such as HTML pages that link to
non-existing Java controllers, or HTML elements that refer-
ence non-existing CSS styles. As a result, errors materialize
as runtime faults with obscure error messages that are hard
to trace back to their origin.

Mobile web development suffers from the same problem.
It too relies on the use of multiple languages, such as HTML
for creating user interfaces, CSS for styling, JavaScript for
application logic, SQL for database querying and caching
manifests for application caching. In addition, since all web
languages are dynamically typed, accurate implementation

of typical IDE features such as code completion and refer-
ence resolving has become challenging. Consequently, tool
support for mobile web development is sub-optimal.

2.4 No Abstraction
HTML was architected to define the structure of an entire
web page. It does not support the definition of reusable
HTML templates, or means to invoke a template. Simi-
larly, CSS’s support for abstraction is also limited. Using
CSS classes, styles can reused by attaching them to multi-
ple HTML tags, but no parameterization of these styles is
supported to vary colors slightly, for instance. SQL does
not support abstraction either. A SQL query can only be
expressed as a whole, not in reusable parts. Although it is
possible to iteratively construct a query by concatenating
strings, this is very error prone.

2.5 Accidental Complexity
JavaScript in the browser runs on a single thread that is
shared with the page renderer. Therefore, JavaScript calls
that take a long time to complete can freeze the browser. As
Javascript does not allow developers to create threads, many
JavaScript APIs are defined as asynchronous APIs. Asyn-
chronous computations are computed on a separate thread
(managed by the browser), and call back to the Javascript
thread when the computation completes. While synchronous
calls return the result of their computation as a return value,
asynchronous methods are passed a callback function (or
continuation), which is called with the result when the com-
putation has finished. This style of programming is called
continuation passing style.

Asynchronous APIs have favorable performance charac-
teristics, because they do not block the user-interface thread.
Nevertheless continuation-passing style leads to verbose,
difficult to read and maintain code. Effectively, developers
have to adapt their programming style as a result of a low-
level performance-related issue.

3. Mobl Architecture
We have developed mobl. Mobl is a new statically typed,
domain-specific language designed specifically for the rapid
development of data-driven mobile web applications.

Mobl linguistically integrates all aspects of mobile ap-
plication development into a single, statically verifiable lan-
guage. It enables separation of concerns by supporting the
separation of user interface and data model. It applies do-
main abstraction to abstract from accidental complexity and
irrelevant details of the platform/domain. It supports user-
defined abstractions by enabling users to define reusable
screens, controls and styles.

This section discusses the high-level aspects of the lan-
guage and application architecture. Subsequent sections give
detailed descriptions of the sub-languages that mobl com-
prises.
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Figure 2. Mobl application compilation and deployment

3.1 Integration and Tooling
HTML, JavaScript and CSS contain numerous cross-references.
For instance, CSS selectors rely on the structure of the
HTML page and JavaScript is used to manipulate the HTML
DOM at run-time, e.g. by attaching or removing CSS classes.
Verifying that these cross references are correct, e.g. that a
CSS selector matches the right HTML tag and JavaScript
attempts to manipulate an existing DOM node, is typically
done by running the program, resulting in late failure. In
addition, loose coupling of web languages makes imple-
menting accurate IDE support difficult. Therefore, web de-
velopment IDEs are not at the level of languages such as
Java and C#.

By contrast, mobl integrates the aspects of mobile appli-
cations into a single, integrated language, rather than us-
ing several loosely-coupled languages. Mobl consists of a
number of integrated sub-languages for the definition of data
models, queries, user interfaces, styles and application logic.
Language elements are shared across the sub-languages. For
instance, the expression language used in application logic is
reused in user interfaces, resulting in a consistent language.
This linguistic integration, previously also applied in the im-
plementation of WebDSL [8], enables accurate end-to-end
static verification of applications, e.g. verifying that controls
are invoked correctly, invoked screens exist, the properties
of data objects presented in the user interface exist and are
of the correct type, and queries filter based on existing prop-
erties.

The mobl compiler compiles a mobl module to a combi-
nation of HTML, JavaScript and CSS. As Figure 2 shows,
the resulting compiled files can be deployed to a web server
along with any web services that the application may use. A
mobile device requests the HTML file, automatically fetch-
ing the CSS and JavaScript resources. All application re-
sources are cached in the browser’s HTML5 application
cache, allowing the application to be launched even when no
Internet connection is available. The application runs on the
device and has access to a local database, as well as other
APIs including Geo Location. The application may call a

Figure 3. Model-View pattern

web service on the server pulling or pushing data, presenting
that data and optionally caching it locally in the database.

The mobl IDE is implemented as an Eclipse plug-in using
Spoofax [9]. As Figure 4 illustrates, it offers an outline view,
in-line highlighting of verification errors, reference resolv-
ing and code completion. The mobl compiler is integrated
into the IDE, and triggered on every save of a mobl module.
There is also a stand-alone compiler available.

3.2 Model-View Pattern
While the Model-View-Controller pattern is a good organi-
zational tool, it also requires a considerable amount of boiler
plate code to set up and to achieve simple tasks. This boiler
plate is largely caused by the Controller. In a typical appli-
cation, the Controller has the following responsibilities:

• Read data from the Model and send it to the View;
• Manipulate the Model based on forms defined in the

View (user input);
• Persist changes in the Model to database;
• Activate and deactivate (parts of) Views;
• Communicate with external data sources, e.g. web ser-

vices.

While the core of the application is encoded in the Model
and the View, a lots of plumbing code is required in the Con-
troller, while most of the Controller’s tasks are very common
and infrastructural in nature. Therefore, mobl implements
the Model-View (Figure 3) architecture. The MV architec-
ture is an adaptation of the MVC pattern, automating the
tasks of the Controller rather than letting the developer en-
code them manually.

In the MVC architecture the Controller is responsible for
instantiating Views and populating them with data. In con-
trast, in the MV architecture Views are the initiators. Views
can be parameterized with one or more Model objects to
present, or they can send a request to the Model themselves
to retrieve data. Views are also responsible for handling user
input events, such as button clicks and responding to them,
e.g. navigating to another View or calling a method on the
Model. The Model is automatically persisted to a database,
no explicit save operations are required. In addition, the
Model communicates with web services to synchronize and
cache data. Data binding establishes a direct connection be-
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Figure 4. The mobl Eclipse IDE

tween the Model and View, eliminating the need to manually
copying data from the Model to the View and vice versa.

4. Data Model
The implementation of an application’s data model, as well
as the manipulation of data at run-time, is cumbersome in
mobile web development because of the lack of domain
abstraction. This section details the underlying issues and
shows how mobl raises the level of abstraction by using
declarative data models, its imperative language and inte-
grated query language. It concludes with an example detail-
ing the implementation of a data model for a simple task
manager application.

HTML5 data persistence Part of HTML5 is the Web SQL
API2, enabling the creation of local (SQLite) databases in a
mobile device’s browser. The amount of space available to
a database varies from the device to device, but is typically
around 5 megabytes. Therefore, the local database is per-
fectly suited to store small amounts of data and cache data
from remote resources.

Since the HTML5 database APIs are new, libraries and
frameworks built around them are still limited. Therefore,
communicating with an HTML5 database is still done at the
level of low-level SQL statements, which is not only incon-
venient for developers, but also more prone to security prob-
lems such as SQL injection attacks. In addition, encoding
queries in strings is error prone because developers do not

2 http://www.w3.org/TR/webdatabase/

get the support from the IDE that they do get for the rest of
the language, including syntax checking, semantic checking
and code completion.

SQL queries do not compose well. It is difficult to pass
a partial query to a different part of the application where it
can be extended, e.g by adding an additional filter condition.
Therefore, reuse of queries is limited to what can easily be
achieved using string concatenation.

Search Most mobile web applications require simple full-
text search functionality, allowing users to quickly search
through local data. HTML5 does not offer direct support for
this. Therefore, custom solutions need to be built.

Logic Database and web service related Javascript APIs
are exposed as asynchronous APIs. This requires the devel-
oper to write code in a continuation-passing style. For in-
stance, consider the following code written using (hypothet-
ical) synchronous JavaScript APIs:
var tasksJSON = httpRequest("/export");
tx.executeQuery("INSERT INTO Task ...");
alert("Done!");

Javascript’s asynchronous APIs, rather than returning the re-
sult as the result of a function, are passed a callback func-
tion and return immediately. The actual execution occurs on
a separate thread, managed by the browser. When the com-
putation finishes, the callback function is invoked with the
result. Therefore, the above code using asynchronous APIs
has to be rewritten as follows:
function completed() {
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Def ::= "entity" ID "{" EBD* "}"

EBD ::= ID ":" Type ("(" {Anno ","}* ")")?
| "static"? "function" ID

"(" {FArg ","}* ")" ":" Type
"{" Stat* "}"

Type ::= ID
| "Collection" "<" Type ">"
| "[" Type "]"
| "(" {Type ","}* ")"

Anno ::= "inverse:" ID
| "searchable"

FArg ::= ID ":" Type
| ID ":" Type "=" Exp

Figure 5. Data model syntax

alert("Done!");
}
function receiveTasks(tasksJSON) {

tx.executeQuery("INSERT INTO Task ...",
completed);

}
var tasksJSON = httpRequest("/export",

receiveTasks);

As can be observed, the code in continuation-passing style
is written in an inverted order. While this asynchronous
code leads to more responsive applications in the browser,
it impedes developer productivity. It is a typical example of
accidental complexity.

4.1 Data
Mobl contains domain abstractions for declaratively defin-
ing persistent data structures (entity definitions), abstract-
ing from the underlying SQL database that implements
them. Persistence of data is handled by the mobl runtime
transparently.

The syntax of data models is detailed in Figure 5. Data
model declarations consist of zero or more entity defi-
nitions. Every entity has a name, zero or more properties
and associated functions expressing application logic related
to the entity. Each property has a name, type and option-
ally one or more annotations. Its type can be of a scalar
type (e.g. String, Num, DateTime or Bool) as well as
Collections of other entities.

A Collection represents a (virtual) collection of en-
tity instances that can be filtered, sorted, paged and ma-
nipulated. Collections are used to represent one-to-
many and many-to-many relationships in models, but also
to query persistent data. In addition, the Collection ab-
straction is used for full-text search. The (searchable)
annotations on textual properties indicate that the property
should be included when performing full-text searches on in-
stances of this entity. These searches are performed through

a EntityName.search(phrase) call, which returns
a Collection object representing the search results. As
with any Collection, the results can subsequently be
filtered and paged.

An (inverse: property) annotation on a property
defines property as the inverse property of this one. Prop-
erties declared as each other’s inverse keep each other in
sync and are used to declare one-to-one, one-to-many and
many-to-many relationships.

Outside data models, mobl also supports variables of
other collection types, including arrays and tuples. Arrays
are declared using the [Type] notation and tuple types
using (T1, T2, T3) syntax.

Implementation We have developed a JavaScript object-
relational mapper [1] (ORM) library called persistence.js3 to
handle data persistence mobl. The library implements trans-
parent data persistence, querying and search. Data models
defined in mobl are translated to calls to persistence.js by
the mobl compiler. A full-text search index (implementing
a simple stemming algorithm [13]) is automatically main-
tained by the ORM library.

4.2 Logic
Mobl’s imperative object-oriented sub-language enables
programming in the natural, synchronous style, abstracting
from the accidental complexity of the asynchronous pro-
gramming style enforced by HTML5 JavaScript APIs.

Imperative code is written using a JavaScript-like [4] syn-
tax. The language supports variable declarations, assign-
ments, if-statements, for-each and while loops, function and
method calls, and various arithmetic expressions. Its full
syntax is defined in Figure 6. Mobl comes with an extensive
set of libraries4 containing reusable user interface elements,
as well as APIs to call web services, perform web searches
and get contextual information such as GPS location and de-
vice orientation.

At compile-time, the mobl compiler analyzes mobl im-
perative code to determine whether it relies on asynchronous
methods and functions. If so, it automatically performs the
continuation-passing style transform [18], turning code writ-
ten in a synchronous style to the asynchronous style with
callback functions as illustrated in the beginning of this sec-
tion.

4.3 Query
Mobl’s query language is linguistically integrated into the
expression language part of the imperative language defined
in the previous sub-section. The query abstraction is built
on the Collection abstraction. Collections can be in-
stantiated by the user, but for each entity there is also an
Entity.all() collection defined, and for each one-to-
many and many-to-many property there is a collection ob-

3 http://persistencejs.org
4 http://docs.mobl-lang.org
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Stat ::= "var" ID "=" Exp ";"
| LVal "=" Exp ";"
| Exp ";"
| "if" "(" Exp ")" Stat

("else" Stat)?
| "foreach" "(" LVal "in" Exp ")"

"{" Stat* "}"
| "while" "(" Exp ")" "{" Stat* "}"

"{" Stat* "}"
| "return" Exp? ";"
| "screen" "return" Exp? ";"

LVal ::= ID
| Exp "." ID
| "(" LVal "," {LVal ","}* ")"

NamedExp ::= Exp
| ID "=" Exp

Exp ::= STRING | NUMBER | ID | "true"
| "false" | "null" | "this" | "!" Exp
| "(" Exp ")" | "[" {Exp ","}* "]"
| "(" Exp "," {Exp ","}* ")"
| ID "(" {NamedExp ","}* ")"
| Exp "." ID "(" {NamedExp ","}* ")"
| Exp "." ID | Exp Op Exp
| Exp "?" Exp ":" Exp | "{" Stat* "}"

Op ::= "||" | "&&" | "==" | "!=" | "<"
| "<=" | ">" | ">=" | "*" | "/"
| "%" | "+" | "-" | "++" | "--"

Figure 6. Imperative language syntax

Exp ::= Exp Filter+

Filter ::= "where" SetExp
| "order" "by" OrderExp
| "limit" Exp
| "offset" Exp

OrderExp ::= ID | ID "asc" | ID "desc"

SetExp ::= ID "==" Exp | ID "!=" Exp
| ID "<" Exp | ID "<=" Exp
| ID ">" Exp | ID ">=" Exp
| ID "in" Exp | ID "not" "in" Exp
| SetExp "&&" SetExp

Figure 7. Query syntax

ject as well. The Collection type has methods for filter-
ing, sorting, paginating, aggregating and manipulating the
collection. For instance:

Task.all().filter("done", "=", true)
.order("due", false)
.limit(10)

Figure 8. Todo list data model

This expression represents the top ten results of tasks that
are not done, sorted by due date in descending order. The
disadvantage of encoding queries as method calls is the
lack of static checking of property names as well as its
verbose syntax. Therefore, mobl defines a thin syntactic
layer, similar to LINQ [14] on these methods as defined
in Figure 7. This (optional) syntactic layer has the added
advantage of enabling code completion support in the IDE.
The same expression using the query syntax look as follows:

Task.all() where done == true
order due desc
limit 10

Full-text search queries are formulated using an entity’s
search(phrase) method, returning a Collection
representing search results, ordered by relevance. Like any
other Collection, results can be filtered and paginated.

These (virtual) query collections can be reused and ex-
tended by storing them in variables and passing them to
functions. The result of a query is only calculated when
required (e.g. when iterating over the result). Therefore, it
is possible to define a method on an entity that returns a
filtered collection (using where clauses), which is subse-
quently called and paginated in the user interface by adding
limit and offset clauses to the method’s resulting
Collection object.

4.4 A Task Manager Data Model
To demonstrate the data modeling language, as well as
model-related logic, we describe the data model of a sim-
ple task manager (Figure 8). The mobl implementation of
this data model is listed in Figure 9. The data model defines
three entities: Task, Category and Tag. A task has a
name, a done property to keep track of whether the task has
been completed or not, a due date, a category it belongs to
and a collection of tasks. Implicitly there is a one-to-many
relationship between Task and Category: a task belongs
(points to) a category, and a category has many tasks. The
inverse annotations define the inverse relationship so that
a task is automatically added to a category’s collection of
tasks when the category property is set and vice versa.

The function postpone, defined on Task, postpones
the task a number of days, i.e. it moves the due date back.
The static function (a function that is called on the entity it-
self, not an instance) import takes two arguments: a user-
name and a password, and invokes a web service (located
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entity Task {
name : String (searchable)
done : Bool
due : DateTime
category : Category (inverse: tasks)
tags : Collection<Tag>

(inverse: tasks)

function postpone(days : Num) {
this.due = DateTime.create(

this.due.getFullYear(),
this.due.getMonth(),
this.due.getDate() + days);

}
static function import(user : String,

pw : String) {
var tasksJSON =

httpRequest("/export?user="
+ user + "&pw=" + pw);

foreach(t in tasksJSON) {
add(Task.fromSelectJSON(t);

}
}

}
entity Category {

name : String
tasks : Collection<Task>

(inverse: category)
}
entity Tag {

name : String
tasks : Collection<Task> (inverse: tags)

}

Figure 9. Mobl implementation of data model

on the URI /export) to import all tasks defined on the
server for the given user and cache them locally in the de-
vice’s database. Web service results, by default, are returned
as JSON5 objects, a lightweight notation to represent struc-
tured data. The service returns an array of JSON objects,
each representing a task. The Task.fromSelectJSON
method is used to convert a JSON object into a Task object
and cache it locally.

5. Reactive User Interfaces
In the current state of practice, web-based user interfaces
are implemented at a low-level of abstraction. A lot of UI-
related code is the result of accidental complexity. This sec-
tion identifies the underlying problems and shows how mobl
solves them by introducing domain abstractions such as data
binding and reactive programming and by supporting user-
defined abstractions such as controls.

Coupling View and Model The interaction between (per-
sistent) application data and the user interface requires a lot

5 http://json.org

of Controller boilerplate code. Data values have to be copied
into the user interface when it is first loaded and stored back
into data objects when certain events occur (e.g. when a
“Save” button is pushed). Similarly, changes to data often
give rise to changes in the user interface. For instance, when
the user of a task manager application creates a new task in
the database, the screen that displays all tasks has to be up-
dated. Current frameworks require developers to encode this
behavior manually.

Adapting the user interface is done by traversing the
DOM and manipulating it in-place. These manipulations are
imperative, e.g. “replace this node with this new node” and
“remove this node”.

Abstraction A HTML page defines the content and struc-
ture of a page. CSS styles are used to apply styling to a
HTML page (e.g. defining fonts, colors, borders and posi-
tioning), based on the knowledge it has about the page struc-
ture (using CSS selectors). A feature that both HTML and
CSS do not support are user-defined abstractions. Reuse
of page and style fragments, e.g. to reuse a calendar wid-
get or a grid view control, is not supported by these lan-
guages. It also lacks support to define such reusable com-
ponents. Consequently, JavaScript frameworks, such as
jQTouch6 and jQuery Mobile7 attempt to fix this reuse
issue by inventing an encoding. For instance, a frame-
work like jQuery mobile may reinterpret a HTML tag
<div class="calendar"/> as a calendar control, dy-
namically adapting the DOM to implement it. Neverthe-
less, such mechanisms only allow use of controls built into
the framework, while definition of new controls has to be
done using imperative JavaScript. Other frameworks, such
as GWT8 and Sencha Touch9 abstract from HTML alto-
gether with a Java (GWT) or JavaScript (Sencha) API to
imperatively construct user interfaces.

Neither of these approaches is perfect. Annotating HTML
is declarative, but uses an arcane encoding and attaching new
meaning to HTML elements; using JavaScript to build the UI
is imperative and low-level.

5.1 Declarative User Interfaces
Mobl supports user-defined abstractions for user interfaces
through two core syntactic constructs: screens and controls.
Screens take up the entire size of the physical screen (hence
the name) and are composed of controls, state variables, con-
ditionals and loops. Both screens and controls have a name,
a set of formal arguments and a body. Screens, in addition,
have an optional return type. The full syntax of user inter-
faces in mobl is detailed in Figure 10.

The body of screens and controls consist of local variable
declarations, HTML tags, control calls, conditionals (when,

6 http://jqtouch.com
7 http://www.jquerymobile.com
8 http://code.google.com/webtoolkit/
9 http://www.sencha.com/products/touch/

703



Def ::= Anno* "control" ID "(" {FArg ","}*
")" "{" SE* "}"

| Anno* "screen" ID "(" {FArg ","}*
")" ":" Type "{" SE* "}"

SE ::= "<" HTMLID HtmlArg* ">"
SE*

"</" HTMLID ">"
| Exp "(" {NamedExp ","}* ")"

"{" SE* "}"
| "var" ID "=" Exp
| "list" "(" ID "in" Exp ")"

"{" SE* "}"
| "when" "(" Exp ")" "{" SE* "}"

HtmlArg ::= ID "=" Exp
| "body" "=" Exp

NamedExp ::= Exp
| ID "=" Exp

Anno ::= "@when" Exp

Figure 10. User interface syntax

for conditionally rendering parts of the user interface) and
loops (list, for rendering UI fragments for every item in a
collection).

Local variables are used to store state relevant to the user
interface. At the lowest level, mobl embeds HTML tags to
construct a DOM. As can be seen from the syntax, HTML
attributes in mobl cannot only contain strings, but arbitrary
mobl expressions (numbers, variables, calculations, function
calls).

Controls are domain abstractions, abstracting from low-
level HTML. Controls are called by name with zero or more
(optionally named) arguments and, optionally, a control
body (in-between { and }). Screen and control arguments
are passed by reference, enabling controls to write values
back to the variables and properties passed to them, which is
an essential element to enable user-defined abstractions, as
will be demonstrated in the next sub-section.

5.2 Data Binding and Reactive Programming
Mobl user interfaces declare a View of the Model. Data
bindings establish a direct connection between View and
Model. The View is automatically updated when the Model
is changed, and the Model is updated when Model properties
are changed in the View.

The following fragment of user interface code demon-
strates how this data binding works using HTML tags:

var name = "John"
<input type="text" value=name/>
<span body="Hello, "+name/>

A local variable name is used to keep track of the user’s
name. The <input> HTML tag implements an input field

and binds its value to the variable name. Consequently, the
input field displays ”John” as initial value and as the user
types in the text field (on every key stroke), the changed text
box value is propagated back to the name variable.

The <span> tag implements a label in the user inter-
face, whose body (the text that appears inside the label)
is bound to the expression "Hello, " + name. Conse-
quently, when the user types in the input field, the name is
adapted, which, in turn, propagates to the <span> whose
body is updated to reflect the new value of name.

Beside local variables and inline HTML, user interfaces
use conditionals and loops which expose similar reactive
behavior. The when construct conditionally shows a part
of the user interface as long as a certain condition holds,
i.e. when the condition’s value changes the when construct
adapts the user interface accordingly.

As an example, in the following example the validation
error remains hidden while the length of name exceeds 3
characters in length and appears as soon as the name is
shorter than 3 characters:

var name = "John"
<input type="text" value=name/>
when(name.length < 3) {

<span body="Name should be at least three
characters"/>

}

The list construct iterates over a collection and renders
its body for every item in the collection. Similar to when,
list automatically adapts to changes in application state;
it reacts to changes in the collection it iterates over, i.e. if
items are added or removed from the collection, it adapts the
user interface accordingly.

In summary, rather than imperatively manipulating the
DOM to make changes to the user interface, mobl’s user in-
terfaces are reactive [7] – their structure and content depend
on application state and adapts to changes automatically. As
a result boiler plate code to implement this behavior manu-
ally is eliminated.

5.3 Implementation
Mobl’s data binding establishes a direct connection between
the value or an attribute of an HTML node in the DOM
(representing an HTML tag) and a variable, property or
expression in the Model. For variables and properties, a
two-way binding is established: when the DOM is modified
(for instance, when a user edits a text input field), this new
value is propagated back into the variable or property. When
the value of a variable or property changes this change is
propagated back to the DOM. When a DOM node is bound
to a more complex mobl expression, a one-way connection
is established: whenever the value of the expression changes,
it is propagated to the DOM.

Changes are propagated by using the Observer Pat-
tern [6]. Any piece of data in a mobl application is observ-
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able (including local variables, control arguments and entity
properties) and UI constructs subscribe to change events
of the observable values that they rely on. For instance,
a label that shows a user’s full name by concatenating its
firstName with its lastName property, will subscribe
to both of these properties and rerender itself whenever any
of these two properties trigger a ’change’ event.

Similarly, a list loop that iterates over a search collec-
tion, as is the case in Figure 13, subscribes to changes in
the search collection. The search collection, in turn, keeps
track of all Task objects and their name properties (which
has been marked as searchable) and on every change,
reevaluate if they match the search phrase or not.

5.4 Reusable Controls
Rather than requiring the duplication of the same HTML
code in multiple places, controls can be used to implement
user-defined abstractions for user interfaces. Control argu-
ments are passed by reference, enabling constructing con-
trols that abstract from low-level HTML while maintaining
data binding semantics. Figure 11 demonstrates the imple-
mentation of the textField and label controls. Using
these definitions the previous code, using HTML tags, can
be reduced to the following, more clean and concise code,
maintaining the same behavior. Section 7 gives more com-
plex examples of control implementations.

var name = "John"
textField(name)
label("Hello, " + name)

Control arguments, as well as function and screen argu-
ments, are passed in order, or can be explicitly named. For
instance, label("Hello") is equivalent to
label(s="Hello"). This proves particularly useful for
optional arguments.

By annotating controls with a @when <exp> annotation
it is possible to implement multiple versions of a control,
deciding at run-time which implemention to use, based on
a run-time condition. An application of this will be demon-
strated in Section 7.2.

6. Navigation
Section 5 only considered the definition of single-screen
interfaces. However, a typical application requires multiple
screens and navigation between them.

control textField(s : String) {
<input type="text" value=s/>

}
control label(s : String) {

<span body=s/>
}

Figure 11. Text field and label control implementation

screen prompt(question : String) : String {
var answer = ""
header(question) {

button("Done", onclick={
screen return answer;

})
}
textField(answer)

}

screen root() {
button("Ask", onclick={

alert("Hello " + prompt("First name")
+ " " + prompt("Last name"));

})
}

Figure 12. A screen with return type

The ‘regular’ web is navigated by clicking hyperlinks,
sending the user from one web page to another. Browsing
patterns can be random, and websites are not always or-
ganized in a strictly hierarchical manner. We observe that
in mobile applications, navigation patterns are more strin-
gent. Data-driven mobile applications typically organize in-
formation as trees. Some applications present the top-level
of the tree as tabs, enabling the user to quickly switch be-
tween them. Deeper levels of information are presented in
list views. When the user selects a list item, the current
screen slides to the left, and a new one slides in from the
right. Navigation between screens usually happens by navi-
gating deeper into the hierarchy or moving back to a higher
level (using the back button).

On iPhones and iPads, navigation is implemented using a
stack of screens where only the top of the stack is visible.
When an item is selected, a new screen, representing the
item is pushed onto the stack and when the user pushes the
back button, the screen at the top is popped off the stack
and the previous screen appears. This screen stack has to
be managed manually by the developer, by pushing and
popping screens.

6.1 Multiple screens
This stack-based navigation very closely matches the call
stack of function invocations in programming languages, a
concept familiar to any programmer. Therefore, in mobl,
screens are called as if they were functions and can option-
ally return a value using screen return.

As an example, Figure 12 defines a prompt screen,
which takes a question as argument and returns the answer
as result. The textField is bound to a local answer
variable, which is returned by the screen when the “Done”
button is clicked. The root screen contains a button, which,
when clicked, invokes the prompt screen twice: first asking
for the first name, then for the last name, then showing
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screen root() {
var phrase = ""
header("Tasks") {

button("Add", onclick={ addTask(); })
}
searchBox(phrase)
group {

list(t in Task.search(phrase) limit 20){
item {

checkBox(t.done, label=t.name)
}

}
}

}
screen addTask() {

var t = Task()
header("Add") {

button("Done", onclick={
add(t);
screen return;

})
}
textField(t.name)
datePicker(t.due)

}

Figure 13. Tasks root screen with search

an alert pop-up box producing a greeting concatenating the
results from the two prompt screen calls.

6.2 A Task Manager User Interface
Section 4.4 demonstrated how to define a data model for a
task management application. Figure 13 shows how to build
a simple user interface for this data model. When a mobl
application launches, the root screen is loaded. Figure 13
defines the main screen of the task manager application. The
screen shows a header, a search box and a group of at most
20 tasks that match the search phrase. Each task has a check
box that can be used to mark the task as done.

The user interface is realized using a local user interface
variable phrase to keep track of the search phrase. The
search box is bound to this variable. The body of the group
control contains a list construct that iterates over the
search collection representing all tasks that match phrase
with a maximum of 20 results. The body of the list con-
struct instantiates an item control for every task, containing

a checkBox which is bound to the done property of the
task, as well as using the name property of the task for the
checkbox label.

As the user types a search phrase in the search box,
the changed search phrase is written back to the phrase
variable. The list construct iterates over a collection that
relies on the phrase variable. Therefore, it is recalculated
as well. As a result, the list of tasks updates as the user is
typing in the search phrase. Whenever new tasks are added
to the database that match the search phrase, the task list will
automatically be updated as well.

When the “Add” button is pushed, the addTask screen
activates. The addTask screen uses a local variable t to
keep a new task object whose name property is bound to a
textField control and whose due property is bound to a
datePicker control. The button control takes two ar-
guments: a label to put on the button, as well as a named ar-
gument onclick of type Callback. Callbacks are snip-
pets of imperative code, written using the same language as
described in Section 4.2, to be executed when a certain event
occurs (in this case an on click event). These snippets can be
defined in-line in between { and }. When the user is done
editting the name, he pushes the “Done” button, which adds
the t object to the database and returns the user to the previ-
ous screen using a screen return.

7. Higher-Order Controls
Mobl comes with a extensive library of reusable controls.
These controls have been implemented in mobl itself, con-
cisely defined using its abstraction, data binding and reactive
programming features. Section 5 demonstrated how simple
controls such as textField and label can be imple-
mented top of HTML with data binding. This section will
describe how higher-level controls are implemented. Specif-
ically, the tabSet and masterDetail controls are de-
scribed. The tabSet control is a higher-order control, tak-
ing other controls as arguments. The masterDetail takes
control arguments as well, but in addition has two sepa-
rate implementations: the ‘right’ implementation is chosen
at run-time based on the screen width.

To support higher-order controls, mobl has a set of types
to represent controls as values: Control, represents a con-
trol without arguments. Similarly, Control1<Num> rep-
resents a control with one argument, of type Num. Control
arguments are passed as arguments are instantiated as any
other control.

7.1 Tab Set
Figure 14 demonstrates how the tabSet control is used.
It defines two controls: one for each tab. The root screen
invokes the tabSet control with a list of tuples where each
tuple represents a single tab. The first element of the tuple
is the tab title (of type String), the second a reference to
the control to use for the body of the tab (of type Control,
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control tab1() {
header("Tab 1")
label("This is tab 1")

}
control tab2() {

header("Tab 2")
label("This is tab 2")

}
screen root() {

tabSet([("One", tab1), ("Two", tab2)],
defaultTab="One")

}

Figure 14. Using tabSet

control tabSet(tabs : [(String,Control)],
activeTab : String) {

list((tabName, tabControl) in tabs) {
block(onclick={ activeTab = tabName; },

style=activeTab==tabName ?
activeTabButton
: inactiveTabButton) {

label(tabName)
}

}
list((tabName, tabControl) in tabs) {

block(activeTab==tabName ?
visibleTab : invisibleTab) {

tabControl()
}

}
}

Figure 15. tabSet implementation

a control without arguments). The defaultTab argument
specifies the title of the tab to activate first. The screenshots
in Figure 14 show the result: a tab bar along the top and when
a tab is selected, the tab view changes to the selected tab’s
body.

Implementation Figure 15 details the entire implemen-
tation of the tabSet control. It takes two arguments:
an array of tuples and the currently active tab. The tab
set implementation relies on a few styles (styling in mobl
will be discussed in Section 8) that are used with block

control taskItem(t : Task) {
checkBox(t.done, label=t.name)

}
control taskDetail(t : Task) {

textField(t.name)
datePicker(t.due)

}
screen root() {

header("Tasks")
masterDetail(Task.all() order by due desc,

taskItem, taskDetail)
}

Figure 16. Using the masterDetail control

controls. The block control is a simple stylable con-
tainer control. An activeTabButton block appears
as a selected tab, with rounded borders at the top. An
inactiveTabButton block is similar, but looks like
an inactive tab. The visibleTab and invisibleTab
block respectively are visible and invisible. Thus, when a
tab is not selected, its control is still rendered, it is just hid-
den using styling.

The activeTab argument keeps track of the currently
selected tab. When a tab is selected, the activeTab vari-
able is changed. Consequently, due to the reactive semantics,
the styles on the tabs are toggled (tab content gets visible
style, tab button gets selected style) and the new tab appears.

The list((tabName, tabControl) in tabs)
{ ... } notation uses tuple syntax on the left-hand side. It
binds the first value of each tuple in tabs to tabName and
the second to tabControl.

7.2 Master-detail
A common pattern in mobile user interfaces is the master-
detail user interface pattern. There are two common imple-
mentations of this pattern, based on the available screen es-
tate: On mobile devices with narrow screens, such as phones,
initially a list of items appears and after selecting one, its de-
tails appear on a separate screen containing a back button
to navigate back to the list. On devices with wider displays,
such as tablet devices, the list of items appears along the left
side of the screen and details of the selected items appear
along the right.

Figure 16 shows how the masterDetail is used and
how it looks on a narrow-screen device (first two screen-
shots) and on a wide screen (third screenshot). Two con-
trols are defined: taskItem is used in the list view and
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control masterDetail(items : Collection<?>,
masterItem : Control1<?>,
detail : Control1<?>) {

group {
list(it in items) {

item(onclick={
detailScreen(it,detail);

}) {
masterItem(it)

}
}

}
}
screen detailScreen(it : ?,

detail : Control1<?>) {
header("Detail") {

backButton()
}
detail(it)

}

Figure 17. masterDetail implementation

@when window.innerWidth > 500
control masterDetail(items : Collection<?>,

masterItem : Control1<?>,
detail : Control1<?>) {

var current = items.one()
block(sideBarStyle) {

group {
list(it in items) {

item(style=current == it ?
selectedItemStyle
: notSelectedItemStyle,

onclick={ current = it; }) {
masterItem(it)

}
}

}
}
block(mainContentStyle){

detail(current)
}

}

Figure 18. A wide-screen masterDetail

taskDetail in the detail view. The root screen calls the
master detail control with a collection representing all tasks
ordered by due date in descending order, the taskItem and
taskDetail controls.

Implementation Figure 17 shows the default implementa-
tion of the masterDetail control (used for devices with
a narrow screen). It takes three arguments: a collection of
any type (? is syntactic sugar for the Dynamic type, repre-
senting dynamically typed values), a masterItem control

that is used for the list view and a detail control that is
used to show the details of the item. Both the masterItem
and detail are controls that take an item from the items
collection as argument.

The control iterates over each item and renders an item
control for it, using the masterItem control to render
the content of the item. When the item is clicked, the
detailScreen is called with both the item and the
detail control as arguments. The implementation of the
detailScreen renders a header control with a backBut-
ton, that, when click returns the user to the previous screen.
It calls the detail control, passed as an argument with the
it argument to render the detail view.

Figure 18 shows an alternative implementation of the
masterDetail control that is only used when the browser
window’s inner width is larger than 500 pixels (expressed us-
ing the @when annotation), i.e. on wider screens. The argu-
ments match exactly with the previous implementation, but
the control body differs. A local variable current is used
to keep track of the currently selected item in the collection.
It is initialized to the first item in the collection (the .one()
method limits the collection to a single item, returning the
first one). The sideBarStyle is used to show a block to
the left of the screen containing the list of items. The style
(color) used for the item depends on whether it is selected or
not. When the item is clicked, it is assigned as the current
item. The block styled with the mainContentStyle ap-
pears right of the list and uses the detail control to ren-
der the currently selected item’s details. The item rendered
by the detail control automatically updates as new values
are assigned to current.

8. Styling
Cascading Stylesheets (CSS) are used to define the look
and feel of a mobile web application. Styles are attached to
HTML either automatically (using CSS selectors) or explic-
itly by attaching class attributes to HTML tags. Neverthe-
less, stylesheets are source of code duplication due to its lack
of support for parameterization.

For instance, the following style can be attached to an
HTML element to implement rounded corners. Due to the
current state of browser support for the border-radius
(a CSS3 feature), it uses browser-specific properties for We-
bkit and Gecko-based browsers (two common rendering en-
gines) to make it work on all browsers:

.rounded-corners {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
border-radius: 5px;

}

However, whenever rounded corners are required with a ra-
dius other than 5 pixels, these three lines have to be dupli-
cated and adapted.

708



Def ::= "style" ID "{" StyleProp* "}"
| "style" "mixin" ID

"(" {StyleFarg ","}* ")"
"{" StyleProp* "}"

| "style" "$" ID "=" StyleVal

StyleProp ::= ID "=" StyleVal* ";"
| ID "(" {StyleVal ","}* ")" ";"

StyleVal ::= CSSSTYLEVALUE
| "$" ID
| "$" ID "." "r"
| "$" ID "." "g"
| "$" ID "." "b"
| StyleVal "+" StyleVal
| StyleVal "*" StyleVal
| StyleVal "-" StyleVal

Figure 19. Styling language syntax

8.1 Styling in Mobl
In order not to reinvent the wheel, mobl’s styling language
reuses all of CSS3’s styling properties [23]. In addition, it
adds styling constants, calculations based on these constants
and style mixins. These additions were inspired by Sass10,
an extension of CSS that adds similar features.

Figure 19 defines the syntax for styles in mobl. At the
HTML level, style values are attached to the class attribute
of tags. Typically, controls have a style argument (of type
Style) that is used to pass styles around. For instance, the
block control:

style largeStyle {
font-size: 100pt;

}
screen root() {

block(largeStyle) { label("Large text") }
}

8.2 Theming
Applications can easily be themed with custom colors by
overriding style constants used by the standard mobl library
of controls. For this purpose, mobl supports global style
constants that can be referenced in styles. When using RGB
(Red-Green-Blue) colors, the individual color components
can be accessed to build new colors:

style $baseColor = rgb(72, 100, 180)
style $textButtonColor = rgb($baseColor.r-50,

$baseColor.g-50,
$baseColor.b-50)

style buttonStyle {
color: $buttonTextColor;
...

}

10 http://sass-lang.com

Figure 20. Theme derivation

style mixin borderRadiusMixin($radius) {
-moz-border-radius: $radius;
-webkit-border-radius: $radius;
border-radius: $radius;

}
style buttonStyle {

color: $buttonTextColor;
borderRadiusMixin(5px);
...

}

Figure 21. Style mixin example

The controls that come with mobl all derive their colors from
the $baseColor constant. Therefore, simply overriding
this constant and changing it to a different color, creates a
new color theme based on the given base color. Figure 20
shows how buttons change with different $baseColor
settings.

Parameterized styles are implemented using style mix-
ins. Style mixins can be used and parameterized in other
styles. Figure 21 implements a parameterized version of a
border radius style taking the border radius as argument. The
buttonStyle uses the mixin to realize a border radius of
5 pixels. Mobl comes with a library of reusable style mixins,
including border radius and gradient mixins.

9. Discussion
To evaluate the coverage of mobl we have built a number
of applications using mobl, ranging from simple toy appli-
cations such as a todo list manager and a tip calculator to
more complex applications such as a twitter client, a confer-
ence planner application and even simple graphical games
and a collaborative drawing application. Mobl receives a lot
of interest from industry. Several companies are working on
mobile applications built using mobl. Together with our user
community we grew a library of reusable controls, ranging
from basic, such as labels and buttons, to more complex,
such as the tab set, a master-detail, accordion, date picker
and context menu controls. The definitions of these controls
are all declarative and concise. A member of the community
has also developed a framework (using mobl) to enable unit
testing of the data model and logic.

This section discusses the limitations of our approach and
compares it to related work.

Language Limitations While mobl’s type checker checks
many program properties, it does not yet check everything.
For instance, item controls controls have to be nested
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within groups to be rendered properly. Mobl does not yet
support declaring such nesting requirements.

Data synchronization with web services currently has to
be implemented manually. In the future we intend to sup-
port transparent data synchronization web services as part of
the mobl language, thereby eliminating the custom synchro-
nization code that need to be written on an application-by-
application basis.

Mobile web applications generated by mobl are portable
to any mobile platform that supports HTML 5. However, the
user interface does not adapt to the look-and-feel of the plat-
form, while mobl supports this variability using @when an-
notations, we have not yet developed many platform-specific
control implementations.

Performance The performance of mobile web applications
will always be worse than native applications, just as web
applications in general are slower than native desktop appli-
cations. Nevertheless, by caching both the application and
its data locally and the recent performance improvements of
(mobile) browsers, performance of mobile web applications
is very reasonable. While performance has not been the pri-
mary focus of the mobl compiler thus far, it is possible to
produce an optimized build which eliminates all unused def-
initions from the generated JavaScript and CSS files. In ad-
dition, unnecessary whitespace is removed and variables are
renamed with shorter names to considerably reduce the ap-
plication’s download size.

Good Web Citizenship While mobl uses the web as a
medium to deliver applications, and uses web technologies
to run applications, a mobl application is not built like a
regular web application: a mobl application does not con-
sist of pages with unique URLs; breaks the browser’s back
button; and is not indexable by search engines. We intend to
solve some of these issues. A working back button is rela-
tively easy to implement. Full history support is much more
complex, requiring some type of encoding of the application
state in the URL of the application. Indexing mobile appli-
cations can be useful for some data-driven applications. A
tool such as CrawlJax [15] could be used to generate a static,
indexable version of the application.

Web Application Limitations While web applications have
the advantage of being portable, they have limitations too.
HTML5 offers many JavaScript APIs that give access to
various device services, but their implementation in mobile
devices is not always complete. Access to audio and video
services is limited — it is possible to play an audio or
video file, but only by launching the dedicated audio or
video player. Access to other device-specific features such as
bluetooth, the built-in compass, camera and local file storage
are not supported yet.

A way around these restrictions is a native/web hybrid
approach. PhoneGap11 allows a developer to build applica-

11 http://www.phonegap.com

tions using web technologies, and expose additional native
APIs including a file storage API and a camera API through
JavaScript, an approach that works nicely with mobl. Appli-
cations built with PhoneGap can be deployed as native ap-
plications through e.g. the Apple AppStore or Android Mar-
ketplace.

Web applications have limitations in user experience as
well. It is very difficult to reproduce certain native applica-
tion behaviors in web applications. Inertia scrolling is one
such behavior, where, after a finger flick on the screen, the
screen keeps scrolling for a while longer after the finger no
longer touches the screen. There are a number of projects
that attempt to emulate this behavior in the browser, but
it has proven very difficult to do perfectly. Fixed position-
ing is another behavior that is difficult to achieve in mobile
browsers. A control that has a fixed position, does not move
when the rest of the screen scrolls. A typical example is a
screen header. A header is positioned at the top of the screen
and while the rest of the content scrolls, the header remains
fixed at the top.

9.1 WebDSL
In previous work we developed WebDSL [22], a domain-
specific language for the development of RESTful web ap-
plications. From a WebDSL program, the WebDSL compiler
generates a Java web application, deployable in any Java
servlet container.

Mobl borrows many concepts from WebDSL. For in-
stance, like WebDSL, mobl is statically verifiable [8] and
has similar constructs for the definition of data models.

State and Event Handling Syntactically, the definition of
WebDSL and mobl user interfaces are similar, but their se-
mantics differ when it comes to the time of data binding. The
unit of interaction within a WebDSL application is a HTTP
request, either executed using an AJAX call, a form submit
or page request. Pages are reconstructed on every request,
instead of incrementally updated as is the case in mobl. In-
cremental user interface updating is cheap when maintain-
ing state locally, while implementing incremental updates
efficiently in a client-server application requires application
state to be maintained on the server as well as client, which
would require the storage of application state for potentially
thousands or millions of users.

Handling of events in mobl is more fine-grained than in
WebDSL: when editing a data object in WebDSL, changes
are persisted only when the edit form is submitted to the
server, rather than instantaneously as is the case with mobl
applications. Since all interaction and persistence happens
locally, such continuous persistence is much cheaper to im-
plement. Sending every keystroke to the server would be
very expensive.

Extension Mobl has a different philosophy than WebDSL
when it comes to language extension. WebDSL developed
many abstractions as built-ins, including built-in types, con-
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trols and functions. As a result, any modifications or im-
provements to these constructs requires extension or adap-
tation of the compiler. Mobl takes the approach of library
extension. Rather than hard-coding types and controls into
the compiler, they are defined in libraries either encoded in
mobl itself, or through the native Javascript interface. The
advantage of this approach is that users can easily add new
functionality to mobl, without the need to know how its com-
piler works. This approach is currently in process of being
adopted in WebDSL as well.

9.2 Related work
DSLs for mobile development Behrens [2] describes a
domain-specific language for creating native mobile appli-
cations, using a single language from which both iPhone
and Android applications can be generated. Similar to mobl,
the language comes with an IDE plug-in for Eclipse that
supports error high-lighting, code completion and reference
resolving. Berhens’ language has a number of high-level
controls built into the language, including sections, detail
views and cells. It can fetch its data from data providers.
However, the DSL currently only supports data viewing and
is not as flexible as mobl; defining custom controls is not
supported, for instance.

Kejriwal and Bedekar developed MobiDSL [10], an
XML-based language for developing mobile web applica-
tions. Unlike mobl, the application is executed on the server
and plain HTML is sent to the mobile device. MobiDSL
comes with a number of built-in controls, such as query
views, page headers and search requests that can be used to
build pages. It is not possible to define custom controls, nor
is there specific IDE support available.

Google Web Toolkit is a tool that enables client-side web
applications using Java. The use of Java has the advan-
tage of having excellent IDE support. A GWT plug-in12 en-
ables access to HTML 5 APIs such as geolocation and local
databases. Like mobl, GWT applications are compiled to a
combination of HTML, Javascript and CSS. However, user
interfaces using GWT have to be defined using verbose Java
code. In addition, GWT does not provide data binding or
reactive programming support, therefore requiring a lot of
boiler plate code to bind the Model to the View.

Reactive User Interfaces Courtney and Elliot developed
Fruit [3], a Haskell framework that applies functional reac-
tive programming [17, 5, 24] to user interfaces. It is based
on signals (streams of events) and signal transformers (func-
tions that transform streams of events). On top of these con-
cepts, Fruit builds a purely functional user interface library.
Mobl’s user interfaces are also reactive, but not based on
pure functions. Concepts such as signals and signal trans-
formers are not exposed to the developer in mobl. Instead,
events triggered by changes in data or control events, result
in updates to the user interface.

12 http://code.google.com/p/gwt-mobile-webkit/

Meyerovich et al. describe FlapJax [16], a language for
building AJAX applications. Flapjax is also built on the con-
cept of event streams: streams of events that model, for in-
stance, mouse movements, clicks and web service responses.
These streams can be filtered and merged to build responsive
user interfaces. Mobl takes a more traditional approach to
event handling. Events in mobl trigger event handler logic,
which can modify application state potentially resulting in
user interface changes.

10. Conclusion
In this paper we introduced mobl, a new language for de-
veloping mobile web applications. Mobl linguistically inte-
grates languages for data model definition, user interface,
styling and application logic. It introduces domain abstrac-
tions to abstract from accidental complexity and irrelevant
details of the platform and domain. Mobl’s support for user-
defined abstractions, data binding and reactive program en-
able the reusable implementation of both simple controls
(labels and button) and higher-level controls (tab sets and
master-detail). Mobl automates the tasks typically manually
encoded in Controller logic, thereby reducing the amount of
boiler plate code that needs to be written. Mobl has received
a lot of interest from industry. A number of companies have
already committed to implement their mobile applications
using mobl.
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