
Testing Domain-Specific Languages

Lennart C. L. Kats
Delft University of Technology

l.c.l.kats@tudelft.nl

Rob Vermaas
LogicBlox

rob.vermaas@logicblox.com

Eelco Visser
Delft University of Technology

visser@acm.org

Abstract
The Spoofax testing language provides a new approach to testing
domain-specific languages as they are developed. It allows test
cases to be written using fragments of the language under test,
providing full IDE support for writing test cases and supporting
tests for language syntax, semantics, and editor services.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing Tools; D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.6 [Software Engi-
neering]: Interactive Environments

General Terms Languages, Reliability

Keywords Testing, Test-Driven Development, Language Engi-
neering, Grammarware, Language Workbench, Domain-Specific
Language, Language Embedding, Compilers, Parsers

1. Domain-specific Language Engineering
Domain-specific languages (DSLs) provide high expressive power
focused on a particular problem domain. They provide linguistic
abstractions and specialized syntax specifically designed for a do-
main, allowing developers to avoid boilerplate code and low-level
implementation details.

The development of new DSLs comprises many tasks, ranging
from syntax definition to code generation to the construction of
an integrated development environment (IDE). The Spoofax lan-
guage workbench [2] combines meta-languages for syntax defini-
tion, transformations, analyses, and editor services to form com-
prehensive language definitions that can be used to generate full
interpreters, compilers, and IDE plugins.

2. Test-driven Language Development
In this demonstration we introduce the Spoofax testing language,
a language-parametric testing language [1]. The testing language
can be instantiated for a specific language under test, thereby in-
tegrating its syntax, semantics, and editor services into the testing
language. This allows language engineers to write test cases in the
language under test with full IDE support (Figure 1 (a, b)). The
testing language also provides primitives for specifying assertions
on tested fragments (Figure 1 (c)).

In this demonstration we show how tests can be used as the basis
for an incremental, test-driven approach to language engineering.
Test cases can be used to sketch and validate new syntax designs,

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

(a) Content completion for the language under test.

(b) Online evaluation of tests and error markers.

(c) Passing test case specifying negative test condition.

Figure 1. IDE support for test specifications.

through positive and negative test cases of small snippets written in
the language under test. As a language definition evolves, tests can
also be written for the semantics and editor services of the language
under test. Test cases can check whether static semantic constraints
hold (Figure 1 (c)), and can check the result of transformations
and code generation. For editor services, tests can check whether
hyperlinks resolve to the correct declaration, and whether services
such as content completion and refactorings deliver the expected
result.

Spoofax is an open source project and is publicly available at
http://spoofax.org/.

25

http://spoofax.org/


3. About the presenters
Lennart Kats is a PhD student at Delft University of Technology,
where he works on techniques and tool support for developing
domain-specific languages. He is the lead developer of the Spoofax
project. Rob Vermaas is a researcher and developer at Delft Uni-
versity and LogicBlox, and is a contributor to the Spoofax project.
Eelco Visser is associate professor at Delft University,where he
conducts research in the areas of language engineering, DSLs, and
software deployment. He is the project lead of the TraCE, TFA,
MoDSE, and PDS projects and published over 70 papers in peer-
reviewed venues.

Acknowledgements This research was supported by NWO
project 612.063.512, TFA: Transformations for Abstractions and
the NIRICT LaQuSo Build Farm project.

References
[1] L. C. L. Kats, R. Vermaas, and E. Visser. Integrated language defini-

tion testing: Enabling test-driven language development. In K. Fisher,
editor, Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2011), Portland, Oregon, USA, 2011. ACM.

[2] L. C. L. Kats and E. Visser. The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In W. R. Cook,
S. Clarke, and M. C. Rinard, editors, Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2010, pages 444–463.
ACM, 2010.

26


	Domain-specific Language Engineering
	Test-driven Language Development
	About the presenters



