
Declaratively Defining Domain-Specific Language Debuggers

Ricky T. Lindeman Lennart C. L. Kats Eelco Visser
Delft University of Technology

r.t.lindeman@student.tudelft.nl, l.c.l.kats@tudelft.nl, visser@acm.org

Abstract
Tool support is vital to the effectiveness of domain-specific lan-
guages. With language workbenches, domain-specific languages
and their tool support can be generated from a combined, high-level
specification. This paper shows how such a specification can be ex-
tended to describe a debugger for a language. To realize this, we
introduce a meta-language for coordinating the debugger that ab-
stracts over the complexity of writing a debugger by hand. We de-
scribe the implementation of a language-parametric infrastructure
for debuggers that can be instantiated based on this specification.
The approach is implemented in the Spoofax language workbench
and validated through realistic case studies with the Stratego trans-
formation language and the WebDSL web programming language.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids; D.2.6 [Software
Engineering]: Programming Environments; D.3.4 [Processors]:
Debuggers

General Terms Languages

Keywords Debugging, Domain-Specific Language, Language
Workbench, Spoofax

1. Introduction
Domain-specific languages (DSLs) increase developer productiv-
ity by providing specialized syntax, semantics, and tooling for
building software or writing specifications within a certain domain.
They provide linguistic abstractions for common tasks in a domain,
eliminating low-level implementation details and boilerplate code.
DSLs are most effective when supported by specialized tooling in-
cluding, but not limited to, an integrated development environment
(IDE) with editors tailored for the language, a debugger, a test en-
gine and a profiler [26].

The development of a new DSL without specialized tools is no
easy undertaking. A compiler or interpreter for a new language re-
quires a parser, data structures for abstract syntax trees, and likely
traversals, transformations, type checkers, and so on. To increase
the productivity of users of the DSL, IDE support should also be
implemented. This entails the implementation of editor services
ranging from syntactical services, such as syntax highlighting and
an outline view, to semantic services such as content completion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

and refactoring. In addition, a debugger can be built for the IDE,
which further increases the productivity of DSL users by allowing
them to spot runtime problems and providing insightful informa-
tion regarding the runtime execution flow.

Program comprehension is vital to effectively debug applica-
tions during software maintenance [22]. DSLs improve program
comprehension by using specialized notations and abstractions
from the domain [15]. Thus, a DSL debugger will have a positive
effect on the maintenance of DSL programs.

This paper focuses on the development of debuggers for DSLs.
Although debugging is one of the most common tasks of software
maintenance. DSL debuggers are often not available as the imple-
mentation effort of building a new debugger for a small language by
hand is often prohibitive. First, the runtime system of the DSL must
support stepping and state inspection, which is often not included
in the initial DSL design. Second, the accidental complexity of the
debugger IDE API makes it hard to integrate a DSL debugger into
the IDE framework. Furthermore, the differences between DSL im-
plementations make it difficult to reuse debug runtime components.

DSL engineering and language workbenches DSL engineer-
ing software assists in the development of new DSLs. Exam-
ples include parser generators, meta-programming languages and
frameworks, and tools and frameworks for building the IDE for a
DSL. Language workbenches are a new breed of DSL engineering
tools [7] that integrate software for most aspects of language en-
gineering into a single development environment. Language work-
benches make the development of new languages and their IDEs
much more efficient, by a) providing full IDE support for lan-
guage development tasks and b) integrating the development of the
language compiler/interpreter and its IDE. Examples of language
workbenches include MPS [25], MontiCore [16], Xtext [5], and
our own Spoofax [12].

A key goal of DSL engineering software is to provide a layer
of abstraction over general-purpose programming languages and
APIs that makes language engineers more efficient in building
DSLs. This abstraction can be provided by graphical user inter-
faces, such as wizards and configuration screens that are provided
by most language workbenches. It can also be provided as a linguis-
tic abstraction, by introducing a new high-level language for defin-
ing (some aspect of) a DSL. Language engineers can then write
high level language definitions rather than handwrite every com-
piler, interpreter and IDE component. Particularly successful are
parser generators, that can generate efficient parsers from declara-
tive syntax definitions [13].

Generating a debugger from a language definition Although the
idea of generating a debugger from a language definition is not
new [11], we developed a new, low-effort approach for the develop-
ment of debuggers for DSLs. In this paper we propose a generic de-
bugger generation framework for DSLs that abstracts over the com-
plexity of writing a debugger by hand. The framework broadly con-
sists of three components: First, a specialized, declarative specifica-

127

tion language for coordinating debug events in a language-specific
fashion. Second, a debug instrumentation tool that instruments DSL
programs based on the specification. Third, a generic infrastructure
for debuggers that is designed in four separate layers in order to
maximize reusability between different DSL implementations.

The contributions of this paper are as follows:

• The introduction of a high level debugger specification lan-
guage.

• The introduction of a four-layer infrastructure for integrating
debuggers into an IDE while maximizing reuse.

• The implementation1 of these components as part of the Spoofax
Language Workbench [12] and the Eclipse IDE.

We validate our approach through two case studies on two
languages that were previously defined for Spoofax. First, Stratego,
a program transformation language [2], and second WebDSL, a
DSL for modeling web applications with a rich data model [9].

Outline This paper is organized as follows. Section 2 describes
the general architecture of a debugger and discusses different im-
plementation techniques of DSLs and their debuggers. We then
show how debuggers for DSLs can be specified as part of a lan-
guage definition in Section 3, which can be used for a debug in-
strumentation processor, as described in Section 4. We describe the
runtime architecture of our approach in Section 5. Case studies are
described in Section 6. We we reflect on our work, compare it to
related work, and provide concluding remarks in Sections 7 and 8.

2. Debuggers
Debuggers provide an important facility for code understanding
and maintenance that is often considered to be a vital part of
IDEs. Bugs in software are an unfortunate but inevitable part of
software engineering reality. Locating (and trying to solve) bugs
is an essential part of the development and maintenance process
of software. Debuggers make this process more efficient. In this
section we describe the general architecture of a debugger and the
difficulties that arise when trying to create a debugger for a DSL.

2.1 General Architecture
Most debugger implementations consist of the following compo-
nents:

• A debugger front-end that allows developers to control the
execution flow and inspect the execution state.

• An execution context for the language, i.e. a certain position in
the source code and usually a stack trace.

• An execution state for the language, i.e. some view of the
program’s state such as local variable values.

• Debug events that are fired as the debugged program reaches a
certain state.

A debugger front-end interacts with the execution model of a
language and is able to inspect the execution state of an application
in different execution contexts during the execution of an applica-
tion. A typical execution context for a language such as Java has
the following scope hierarchy:

• Application: the top level scope.
• Threads: an application can be single threaded or multithreaded.

1 Available with nightly builds of Spoofax 0.6.1 via http://www.
spoofax.org/.

• Stack frames: for each subroutine or function call a new stack
frame is created.

• Instruction pointer: the current active statement.

Debuggers can suspend the application at fixed points in the
execution flow, as the application runtime fires an event indicating
that it reached such a point. Using conditional and unconditional
breakpoints the debugger can then decide to suspend the execution
and allow developers to inspect the execution context and state.

The execution state can be inspected in terms of language-
specific data structures. The availability and value of a variable
is related to the previously defined scope in which the variable is
defined and used.

To be able to inspect the execution context and state, a debug-
ger has to know how the runtime state and the source code of a
language are related. This means that a debugger depends on both
the syntax and semantics of a language. Using debug information
that contains relevant metadata (such as line number and filename)
and a debug runtime library that matches the debug information
to the runtime behavior of a program a debugger is able link the
syntax and semantics.

2.2 Debuggers for DSLs
Debugger implementations must be specialized for the syntax and
semantics of a language. Automating part of the implementation
effort requires high-level specification of this variability in syntax
and semantics. The remainder of this section discusses how differ-
ences in execution models, programming paradigm, and implemen-
tation approach of DSLs affect the implementation and architecture
of debuggers.

2.2.1 Executability
A key design aspect relevant to debugging is the execution model
of DSLs. Mernik et al. specify four kinds of executability [18]:

• DSL with well-defined execution semantics. A debugger for
this kind of DSL is straightforward to implement.

• Input language of an application generator [4, 20].
• DSL not primarily meant to be executable but nevertheless

useful for application generation.
• DSLs not meant to be executable [26].

As long as the semantics of the DSL are specified and the host
language provides support for suspending the runtime execution,
either via a debugger or emulated in the host language debug
runtime library, it is possible to generate a debugger for a DSL that
fits into one of the first three categories.

Non-executable DSLs are often used to formally describe
domain-specific data structures. The semantics of the information is
encoded in a domain-specific notation, also called jargon. Domain
experts can use jargon to communicate in a non-ambiguous way.
Debugging of data is not possible, but a graphical visualization (or
perhaps multiple graphical visualizations) can help to comprehend
the data structure.

2.2.2 Programming Paradigm
Related to the executability of a DSL is its programming paradigm.
Imperative and declarative programming are two high-level con-
trasting paradigms that influence the implementation of a debugger.
Imperative programming is a style of programming in which the
programmer has to explicitly specify the computations that change
a program state. In contrast, declarative programming only requires
programmers to specify the logic of a computation without actually
describing the control flow. DSLs often take elements from both
paradigms.

128

http://www.spoofax.org/
http://www.spoofax.org/

A debugger for an imperative language is rather straightforward
as the debugger should just follow the control flow. For declara-
tive programs, the method of computations and the control flow are
implicit, and whether or not to emit debug events that model the in-
ternal state of computations may depend on whether DSL users are
assumed to have sufficient knowledge of the DSL implementation.

2.2.3 DSL Implementation Approach
The implementation approach of a DSL has a large impact on the
DSL debugging capabilities. The effort required for debugger im-
plementation is influenced by the availability of debugging capa-
bilities of the runtime platform used, e.g. suspending the execution
when demanded by the user and the ability to pass the execution
state to the IDE. Therefore, in this section we will discuss various
implementation approaches and the issues that arise when such an
implementation technique is used.

DSLs can be classified as external and internal DSLs. External
DSLs have their own syntax, whereas internal DSLs rely on the
syntax of the host language [8]. For external DSLs, we can also
distinguish DSLs relying on code generators, preprocessors, and
interpretation. In this paper we focus on external DSLs, as they
have their own specialized syntax and a translation step that makes
it possible to provide a domain-specific debugger in a partially au-
tomated fashion. For completeness, we also discuss internal DSLs
and the challenges in creating domain-specific debuggers for those
languages.

Compiled DSLs Compiled DSLs are fully designed for and dedi-
cated to a particular application domain. The DSL has its own syn-
tax and is translated to a program in some target language by gen-
erating code for their host language, typically a general-purpose
language such as Java. Implementing a debugger for these DSLs
requires extending the generator with the generation of debugging
metadata in the output code, as described in Section 2.1. When not
directly supported by the runtime system of the host language, the
generator should also generate additional code to fire events. It also
requires the implementation of an actual debugger front-end that
processes this information, shows it in the IDE, and allows IDE
users to control the execution flow.

Domain-specific language extensions Domain-specific language
extension is a technique that extends the host language with a
domain-specific guest notation. The syntax of the host language
can be extended by adding new syntactic constructs using macro-
like extensions, by adding a preprocessing step that transforms the
guest notation back to the host language, or by implementing a
proper extension of the host language compiler.

Since language extensions are assimilated to their host lan-
guage, one approach to debugging language extensions is to debug
the program at the host language level. This can lead to problems as
the execution context and state of the extension does not necessar-
ily naturally align with the host language. Only by instrumenting
the extension at the source level rather than at the target level it is
projected, extensions can be debugged effectively.

Interpreted DSLs Interpreted DSLs have their own syntax and
semantics. DSL programs are executed by a separately written
interpreter that operates directly on the source code (or an abstract
representation). Furthermore, interpreted DSL programs can be run
on any platform as long as an interpreter is available. Calling an
interpreter from a general purpose language is possible if they
are written in the same language. Even interaction between the
interpreter and the host language is possible but comes at the price
of a more complicated interpreter implementation.

One of the advantages of an interpreter is that it directly operates
on the program structure, this makes it easy to retrieve metadata at
the DSL abstraction level. However, adding debug actions such as

setting breakpoints and adding stepping supports requires extend-
ing the interpreter with an execution control component.

Internal DSLs and application frameworks Internal DSLs rely
purely on the syntax and semantics provided by a general-purpose
host language such as Ruby or Scala. They are distinguished from
traditional libraries and application frameworks by their use of
programming techniques such as fluent interfaces, operator over-
loading, and meta-programming capabilities provided by the host
language such as template meta-programming and implicits. These
features give the libraries a “language”-like feel to it, while still
maintaining full integration and compatibility with the host lan-
guage. Providing specialized, domain-specific tool support and
statically checking internal DSLs is more difficult since these DSLs
are really using general-purpose language constructs rather than
specialized constructs.

For debugging, internal DSLs tend to fully rely on the debugger
of their host language. While it is convenient to get a debugger
for “free” with this approach, the debugger is not specific to the
application domain. In particular, it does not show the execution
flow and data structures in a domain-specific fashion. This would
require analysis of the source code to determine the “DSL parts”
and integration of specialized domain-specific debugging facilities
with a general-purpose debugger, which is not trivial. First, it is
hard to distinguish between GPL and DSL execution. Second,
the data structures in the GPL may not match the domain data
structures. And finally, although the DSL and the GPL can share
the same syntax, the semantics may differ.

2.3 Summary
In theory, creating a debugger for a DSL does not differ much from
generating a debugger for a traditional general purpose language.
Just as with DSL programs, programs written in a general purpose
language are translated to a lower level language. For instance, Java
is translated to Java bytecode and C# to CIL. It is the task of the
debugger to transform the low-level runtime state back to a suitable
higher level representation.

Using the execution model, the programming paradigm and the
implementation approach as a means to classify a DSL shows us
that there is a great variety between them. Also, each classification
has its own issues regarding the creation of a debugger. An auto-
mated approach to building debuggers should abstract over these
issues in a language independent way.

The chosen implementation platform influences the amount of
effort required and the approach to the implementation of a DSL
debugger. However, not the distance between the DSL and the
implementation platform is critical but rather the distance between
the host language and DSL execution model.

3. Declarative Debugger Specification
We propose a language independent debugger implementation
framework that abstracts over the issues raised in Section 2.2 re-
garding the executability, the programming paradigm and the im-
plementation approach of a DSL. The framework broadly consists
of three components: (1) a debugger specification language called
SEL that uses the language definition to define the DSL debugging
model, (2) a language-parametric debug instrumentation tool and
(3) a generic debugger runtime infrastructure that communicates
with IDE debug services.

As a basis for our approach we use an event-based debugging
model to model DSL execution flow in a generic way. The SEL
specification maps the language-specific syntax and semantics to
this generic event-based debugging model. The instrumentation
tool interprets the specification to augment DSL programs in ex-
ecutable form with debugging information. Augmented DSL pro-

129

grams interoperate with the generic debugger infrastructure, which
provides the glue to connect an instrumented DSL program to the
IDE debug services and changes the program model in reaction to
the received debug events.

This section describes the event-based debugging model and
the specification language (1) that describes the relation between
the DSL program and debug events. Section 4 discusses the imple-
mentation of the debug information extraction and event generation
used by the instrumentation tool (2). And in Section 5 the language
independent debugger runtime infrastructure (3) is discussed. The
infrastructure consists of the implementation of the host language
dependent event-sending mechanism as well as the language inde-
pendent debugger is discussed.

Debug event classes We use a set of four language-independent
debug event classes to capture the runtime program behavior, fol-
lowing Auguston [1]. First, the step event models the execution
order of DSL statements. However, a single statement does not have
to be atomic, it can consist of multiple nested statements. For ex-
ample, a call to a subroutine can generate multiple step events at a
different level of granularity. Next, the enter and the exit event
model this hierarchical relation between step events. The last event
is the var event indicating a variable is declared at the current level
in the hierarchy created by the enter and exit events.

The event-based approach eliminates the need to support the
generation of DSL metadata in the actual code generator com-
ponent. Writing the specification requires syntactic and semantic
knowledge about the DSL as language independent debug events
(enter, exit, step, var) have to be linked against matching
syntax constructs.

Syntax event linking (SEL) While the debug events we use are
the same across various DSLs, the actual instrumentation strategy
differs per DSL implementation. We abstract over this implemen-
tation by specifying the relation between the semantic behavior
(modeled with debug events) and the syntax constructs of a DSL.
The syntax-event linking language (SEL) is used to describe this
relation.

The SEL specification language describes where to inject a de-
bug event, and transformation strategies that define how to generate
debug events in DSL syntax and how to extract relevant debug in-
formation such as line number, filename and current method name
from the DSL program.

An SEL specification consists of multiple event definitions.
A single event definition is structured as follows:

event eventClass at pattern
creates generator
from extractor

A rule of this form specifies a pattern to match one or more syn-
tactic constructs (pattern), used to inject one of the four debug
events (eventClass). The actual injection is done using trans-
formations that are specified in the Stratego transformation lan-
guage [2], using the transformations indicated by the generator
and extractor names. The generator is a transformation that
generates a small DSL code fragment that represents a debug event,
while the extractor extracts the debug information from the se-
lected syntax construct. Multiple definitions can exist for the same
eventClass as long as the patterns do not overlap. This section
will continue with an example and a detailed explanation on the
basic SEL syntax. We discuss the generation and extraction trans-
formations in Section 4.

Syntax pattern matching To find specific AST nodes in a parsed
program syntax construct patterns can match against a syntax con-
struct in two ways: (1) using a syntactic category (sort) and (2) a
specific AST node (constructor).

The syntax construct pattern is defined as follows:

Sort.Constructor

Sort and Constructor both point to existing identifiers in an
SDF specification. Furthermore, either a Sort or Constructor
can be ignored by using an underscore in the pattern. For ex-
ample, Statement._ matches against all constructors that are
generated by the Statement sort, Statement.VarDef matches
against all VarDef constructor generated by the Statement sort and
_.FunctionDecl matches against all FunctionDecl construc-
tors regardless of the sort.

An example SEL specification In Figure 1 a small DSL program
with functions and statements is shown (left), together with its
abstract syntax representation (right). Note that we show abstract
syntax trees using a textual representation, using prefix constructor
terms for tree nodes and indicating lists tree nodes with square
brackets. Using graphical rectangles, the figure highlights function
declarations and statements in the abstract syntax, marking the tree
nodes that are important for the debugger.

Figure 2 shows SDF syntax definition rules2 and a SEL spec-
ification mapping the functions and statements of Figure 2 to
events. The dotted line shows how an enter debug event is matched
against the FunctionDecl constructor using a syntax construct
pattern with an explicit constructor. The solid line shows how a
step debug event is matched against a category of syntactic con-
structs, containing the FuncCall, VarAssign and Return
constructor using the Statement sort. gen-func-enter and
gen-stat-step reference transformations that generate a de-
bug event that fits into the DSL syntax. extract-function-
debug-info and extract-statement-debug-info ref-
erence transformations that extract debug information from the
matched syntax constructs.

4. DSL Program Instrumentation
One of the main tasks for runtime support of debugging is the
incorporation of debugging information into executable DSL pro-
grams. This information can be incorporated by hand by adapting
the translation step of DSLs, as outlined in Section 2.2. In this pa-
per we use a reusable, language-parametric debug instrumentation
tool instead, which uses the SEL specification to incorporate the
necessary debug information.

Tool chain The debug instrumentation tool acts as a preprocessor
that runs before the code generation or interpretation step of a DSL.
Inspired by aspect-oriented programming, it weaves debugging
information into DSL programs, again forming new, valid DSL
programs. These can then be further processed by the standard code
generator or interpreter used for the DSL.

Figure 3 shows the tool chain for DSL compilation or interpre-
tation with debug information, based on the debug instrumentation
tool. The first tool in the chain is the parser, which uses the syntax
definition of the DSL to parse the input program. It produces an
abstract syntax tree, which is used as the input of the instrumenta-
tion tool. The tool augments the abstract representation of the DSL
program with debug information using the SEL specification. The
result is used as the input for the standard processing pipeline of
the language.

The normal processing pipeline of DSLs usually starts with
a desugaring step that normalizes DSL constructs to their core
form. It is important that the debug instrumentation is performed
before this desugaring step, to allow the debugger to operate on the

2 Note that in SDF, production rules take the form p* -> sort
{cons(constructor)}, indicating a pattern on the left-hand side and
the syntactic category and abstract syntax constructor on the right [23].

130

Module(
 "example"
, [FunctionDecl(
 "main"
 , []
 , [VarAssign("bar", Add(Integer("5"), Integer("6")))
 , VarAssign("baz", FuncCall("baz", [VarUse("bar")]))
 , VarAssign("result", Add(VarUse("baz"), VarUse("bar")))
 , FuncCall("print", [VarUse("result")])
]
)
 , FunctionDecl(
 "baz"
 , [Argdef("value")]
 , [VarAssign("bar", Add(VarUse("value"), Integer("22")))
 , Return(VarUse("bar"))
]
)
]
)

module example

function main() {
bar := 5 + 6;
baz := baz(bar);
result := baz + bar;
print(result);

}

function baz(value) {
bar := value + 22;
return bar;

}

Parse

Example program Program in abstract syntax

Figure 1. An example DSL Program in concrete and abstract syntax.

ID "(" {Expr ","}* ")" ";"-> Statement {cons("FuncCall")}
ID ":=" Expr ";"-> Statement {cons("VarAssign")}
"return" Expr ";"-> Statement {cons("Return")}

"function" ID "(" {ArgDef ","}* ")" "{" Statement* "}" -> Def {cons("FunctionDecl")}

instrumentation

event enter at _.FunctionDecl
 creates gen-func-enter
 from extract-function-debug-info
event step at Statement._
 creates gen-stat-step
 from extract-statement-debug-info

SEL example

SDF grammar example

Figure 2. Relation between an SEL specification and a DSL grammar. The dotted line shows how a constructor pattern is matched against
one type of constructor. The solid line shows how a sort pattern is matched against a syntactic category (sort).

DSL
Program

SEL-spec

Parser
Debug

Instrumentation
Tool

Desugar
Code

Generator/
Interpreter

Figure 3. The tool chain for instrumentation and execution of DSL programs.

original source code without losing any syntactic sugar. Finally,
after desugaring, the DSL program is used for code generation or
interpretation.

Instrumentation by preprocessing The instrumentation tool pro-
cesses DSL programs based on a bottom-up traversal over the ab-
stract representation. If a constructor matches a pattern in the SEL
specification then the matching extraction transformation is called
to extract debug information. The extractor then returns a tuple con-
taining debug information such as the name of a local variable dec-

laration and the line number3 of a statement. Then the generator
transformation is called with the event type and the debug informa-
tion as its arguments and generates a debug event statement.

step events are inserted before the matched statement, var
events are inserted after the matched statement and enter events
are inserted at the start of the method body. Inserting exit events

3 Note that we maintain position information in memory for the abstract
representation, even though this is not shown in the textual rendition of
Figure 1.

131

Stratego
Program

(1) Stratego
Debug Library*

(1) WebDSL
Debug Library*

(1) Mobl
Debug Library*

WebDSL
Program

Mobl
Program

(3) Java
Event Handler*

(3) Javascript
Event Handler*

(4) Spoofax Debug Runtime

Eclipse Debug Interface

Local Variables
View

Breakpoint
Manager Debug View

(2) Java
Debug Library*

(2) Javascript
Debug Library*

Figure 4. An overview of the integration of runtime components
inside the Eclipse IDE, showing the components for the Mobl,
WebDSL and Stratego DSLs. Components marked with an asterisk
are specific to a DSL or DSL runtime platform.

is a bit more complicated when the DSL allows multiple return
statements at non-fixed locations in a method body. The exit
event cannot be inserted after the return statement, because the
exit event will never be reached as the execution flow is already
returned to the method caller. Also, just adding the exit event
before the return statement would change the ordering of events
because the return statement can contain an expression that calls
another method. As an example, consider the following return
statement:

return expression;

which should be transformed to something like this:

var temp := expression;
event(exit-event, debug-information);
return temp;

DSLs that support Java-like exceptions and try-finally blocks
simplify the multiple exit points issue. To ensure that the exit
event is always called for normal as well as exceptional exits the
body of a method should be surrounded with a try-finally block
and the exit event should be placed in the finally block.

Instrumenting code at the DSL level gives us the advantage that
a DSL program instrumented with debug events can run on any
back-end for which a native debug runtime library is implemented.
The implementation of the native debug library and how the debug-
ger receives the debug events are discussed in the next section.

5. Debugger Runtime Infrastructure
In this section we discuss our implementation architecture. The ar-
chitecture consists of four layers: a DSL-level debug library (1),
a platform-level debug library (2), a platform-level event handler
library (3), and a shared, IDE-specific core library (4). These com-
ponents and their integration with the Eclipse IDE and the DSL
program are illustrated by Figure 4.

By splitting up the infrastructure components into four layers,
we maximize reuse: when a new DSL is developed for a platform

that was previously targeted, only the DSL-level library has to be
implemented (1). If a new platform is targeted, e.g. JavaScript, then
the two, reusable platform-level libraries (2 and 3) should also be
implemented. The common core library component (4) is neither
language nor platform specific and does not require implementation
unless a different IDE is used.

5.1 DSL-level Debug Library
The debug events that were added by the instrumentation tool
of Section 4 are calls to the DSL debug library component. The
functions in this library correspond to the four debugging event
classes. They are implemented by simply forwarding the call to the
platform-level debug library. The calls allow easy identification of
the locations in the host locations that correspond to debug events,
thus eliminating a reverse engineering step that maps fragments of
generated code back to DSL code.

5.2 Platform-level Debug Library
The platform-level debug library is a lightweight library component
that marshalls debug events to the platform-level event handler in
the IDE. For example, for DSLs that are executed on the Java Vir-
tual Machine (JVM), it forwards the event data from that JVM to
the JVM in which the IDE runs. For DSLs that run on other plat-
forms, or DSLs that are interpreted, a similar form of marshalling
can be applied.

5.3 Platform-level Event Handler
The platform-level event handler is responsible for controlling the
runtime system in which the DSL is executed. It also passes on
events from the platform-level debug library to the IDE-level debug
library.

Where the two previously discussed libraries are executed in
the execution context of the DSL program, the platform-level event
handler is a library component that operates as part of the IDE.
As such, with Spoofax and Eclipse being based on Java, it is
implemented in Java.

Most execution platforms provide native support for debugging.
For example, the Java platform provides an API to control break-
points and reflect over the execution state of a running Java appli-
cation. This API can be used from the platform-level event handler
to control the runtime of the running DSL program. For example,
in our Java implementation of this library, we simply use the JVM
API to set a breakpoint in the platform-level debug library to sus-
pend it. The JVM API is also used to efficiently reflect over the
runtime state, e.g. to inspect local variables.

For platforms that do not provide native debugging support, we
can emulate the suspending behavior by using the platform-level
debug library to pause until resumed by the IDE. Similarly, state
can be inspected by manually marshalling it from the DSL level to
the event handler.

5.4 IDE-level Debug Library
The IDE-level debug library is the largest component in our infras-
tructure, and can be shared between all DSLs and all DSL plat-
forms. The component integrates with the Eclipse debug perspec-
tive UI, and reuses the Eclipse data structures that model the pro-
gram state and the user interface elements that act has a graphical
front-end for this model.

Each of the four debug event classes is processed and commu-
nicated to the Eclipse API. The step event is used to change the
location of the instruction pointer in the top level stack frame. The
enter event adds a new stack frame or introduces a new local
scope, and the exit event removes the top stack frame or removes
the current local scope. The enter and exit events also specify

132

DSL
Program

DSL Debug
Library

DSL Program Execution Context

IDE-Level Debug Library

Eclipse Debug Perspective

1a

2 3

4

5a

IDE Execution Context

Platform-Level
Debug Library

Platform-Level
Event Handler

5b

1b

Figure 5. DSL program execution flow.

whether to push or pop a stack frame, or to only use a local scope.
Finally, a var event declares a new variable in the current scope.

5.5 DSL Program Execution Flow
Figure 5 shows the control flow between the runtime components,
the sequence is as follows:

1. (a) The DSL Program executes a debug-event sending state-
ment, which (b) calls the matching method in the platform-level
debug library.

2. A breakpoint is hit in the host language, DSL execution is
suspended and the platform-level debug handler is notified of
the event.

3. Using reflection, the debug information attached to the event is
extracted from the suspended program.

4. The debug event is passed on to the IDE-level debug library and
the DSL program state is updated. The program state is then
used to compare it against the DSL breakpoints set by the user.

At this point two execution paths are possible:

5. (a) If a DSL breakpoint is hit, the DSL program stays suspended
and the IDE jumps to the corresponding line in the DSL pro-
gram and waits for the user to select the next action (which will
be discussed in the next paragraph). (b) If no DSL breakpoint is
hit, the DSL program execution is resumed.

When the DSL program is suspended the user can inspect the
program state that was created and can take one of the following
actions: terminate, resume, step over, step into, or step out. The
implementation of the terminate and resume action is trivial. A
step command will also resume the program execution but it will
suspend the execution either when a breakpoint was hit (canceling
the step request) or when the desired program state is hit. For a step
over action, the execution is suspended once the next step event
in the same stack frame is received or when the current stack frame
is popped from the stack. For a step into action, the execution is
suspended at the first step event that is received in the first child
stack frame. For a step out action, the execution is suspended at the
first step event originating from the parent stack frame.

6. Case Studies
We implemented our framework as part of the Spoofax language
workbench [12]. To validate the implementation we performed two
case studies. The first case study is performed with the Stratego
transformation language and the second case study is performed
with the WebDSL web programming language. A screenshot of the
Stratego debugger is shown in Figure 6.

For each case study we will motivate why it was chosen and
discuss the relevant issues raised in Section 2.2, followed by an
overview of the components that have to be implemented in order
to generate a fully working debugger.

6.1 Stratego
Stratego [2] is a transformation language used to transform pro-
gram definitions using rewrite rules and traversal strategies. Strat-
ego is actively used as a software analysis and generation tool in
projects such as Spoofax [12], WebDSL [24] (a web programming
DSL) and Mobl [10] (a DSL for mobile web application develop-
ment).

By designing a debugger for Stratego, transformations written
with the language can be stepped through and inspected. Since
Stratego is also the basis for editor services in Spoofax [12], the
same applies to editor services such as content completion.

Following to the categories specified in Section 2.2, we can
identify Stratego as an imperative programming language with well
defined execution semantics, which makes it relatively straight-
forward to recreate the program state during debugging with the
proper debug information. When we consider the implementation
approach, Stratego supports the compiled as well as the interpreted
approach both available with a Java or C back-end, for this case
study we focus on the compiled and the interpreted implementa-
tion approach with a Java back-end as it simplifies the implemen-
tation of the platform-level debug library and platform-level event
handler. Adapting the Java code generator to support the generation
of debug information is undesirable, due to the maturity and com-
plexity of the Stratego compiler, making the debug instrumentation
approach a viable solution to include debug information in Stratego
programs.

Stratego debug events Stratego is a (non-pure) functional lan-
guage based on the notion of strategy definitions and rules, which
roughly correspond to functions in other languages, and strategy
expressions, which roughly correspond to statements. Stratego also
uses local variables that are assigned in match patterns. Together,
these notions map naturally to the four debug events. Figure 7 pro-
vides an overview of the number of syntactic productions and their
events.

Using the SEL language we can define the debug instrumen-
tation preprocessor. First, we have to determine which syntax con-
structs correspond to which debug events. Second, we have to spec-
ify how we can extract the debug information from the abstract
syntax tree. And finally, we have to determine how the debug infor-
mation is stored.

Figure 8 shows a part of the SEL specification for the Stratego
language. The StrategyDef sort is a syntax construct that corre-
sponds to a strategy definition, these definitions will fire an enter
event when called and fire an exit event when the execution re-
turns to the caller. The Strategy sort captures all statements that
will generate a step event. The Strategy sort can define new
variables, but variables are also used as parameters in strategy sig-
natures. Therefore, the var event has to be matched against the
Strategy sort and the StrategyDef sort.

Figure 9 is an example of a Stratego rewrite rule that implements
the gen-strategy-enter generation transformation referred
to in Figure 8. Stratego rewrite rules have the form r: p1 -> p2

133

Figure 6. A screenshot of the Stratego debugger integrated in Spoofax/Eclipse. Left: Stratego editor with the highlighted current statement.
Top right: Debug view showing the program state. Bottom right: Variables view showing the active variables.

Event class Sort Category Production Count
step Strategy 58
enter/exit RuleDef 3
enter/exit StrategyDef 6
var Strategy 58
var RuleDef 3
var StrategyDef 6

Figure 7. Syntax productions and events in Stratego.

instrumentation

event enter at StrategyDef._
creates gen-strategy-enter
from extract-strategy-debug-info

event exit at StrategyDef._
creates gen-strategy-exit
from extract-strategy-debug-info

event step at Strategy._
creates gen-step
from extract-step-debug-info

event var at Strategy._
creates gen-var
from extract-var-info

event var at StrategyDef._
creates gen-strategy-var
from extract-strategy-var-info

...

Figure 8. A part of the SEL specification for Stratego.

gen-strategy-enter:
s -> Seq(SCallT("enter", ...), s)

Figure 9. Generation transformation for an enter event.

and rewrite a term pattern p1 to a pattern p2. This particular rule
rewrites a strategy expression tree node to one that is preceded by
an enter event.

Debugger runtime Stratego allows native method calls to Java
which makes it possible to implement the DSL debug library which
in turn calls a Java implementation of the platform-level debug li-
brary. For instance, the enter event of Figure 9 is implemented as

a call to an enter rule in the DSL debug library which in turn will
call a Java method similar to enter(String name, ...) in
the platform-level debug library.

Instrumentation Each debug event class requires a specific set
of DSL program metadata to update the program state with mean-
ingful information. To retrieve the location information, which is
required for every event, Stratego programs can be parsed to an ab-
stract syntax tree that includes source code locations annotations.
This location information is made available in the extraction trans-
formations to be included in the debug information for every event.
Furthermore, the enter and exit events require the name of the
rule or strategy and the var event requires the name of the variable
as well as the value because Stratego does not allow variables to be
redefined.

Rules and strategies usually have a single exit point, but if a
rewrite rule fails the execution is returned to the caller just like
a Java exception. Stratego supports a try-finally block using a
different notation, thus the try-finally approach from Section 4 is
used to make sure exit events are always fired.

Reflection This case studies show that it is possible to reconstruct
the Stratego program state using debug events, but the actual event
sending/receiving mechanism depends on the platform used by the
DSL. Because we use the Java back-end version of Stratego we can
reuse the Java debugger for suspending the runtime and inspecting
the execution state. The Java Debug Runtime component then uses
reflection to extract the debug information from the suspended Java
program to change the program state. The program state is then
used to determine if a Stratego breakpoint was hit using the strategy
described in Section 5.4.

6.2 WebDSL
WebDSL is a DSL for web applications with a rich data model [9].
WebDSL is used as a subject to a case study because it contains
imperative as well as declarative code. Defining a debugger for
the imperative part of WebDSL is straightforward as it is based on
the common execution model containing functions and statements.
However, it is a much greater challenge to define a debugger for
the declarative parts of the language. Therefore this case study will
focus on defining a debugger for the declarative part of WebDSL.

134

WebDSL debug events WebDSL uses a declarative language for
page definitions, with some support for control statements, to build
the user interface of a webpage. WebDSL distinguishes page and
template declarations, pages are complete page definitions while
templates can be used to define reusable user interface components.
Furthermore, template definitions can be locally redefined in a page
or template definition only for the active definition.

During the evaluation of a page definition, the web page is
outputted incrementally to a stream. These definitions can be de-
bugged, but that would actually result in debugging the creation
of the UI, not debugging the UI proper. Nevertheless, we use
enter/exit events for page definitions and templates (parts of
pages that can be included).

Template and page definitions are a mixture between control
flow statements, basic user interface components and calls to tem-
plate definitions. Not only do the debug events serve as actions that
change the runtime state, a trace of debug events also show how a
webpage is build. The enter event is fired as a new nested user
interface element is created, while the exit event makes the cur-
rent level final. The step event either models a control sequence,
a call to a template that generates a subelement of the user interface
or a call to generate a basic user interface element.

Debugger runtime WebDSL is implemented based on Java,
which means we can reuse both the platform-specific event handler
and the platform-specific debug library we also used for Stratego.
A minor difference is that WebDSL applications are hosted in an
Apache Tomcat environment, which must be configured before a
debugger can be attached to it.

7. Discussion and Related Work
This paper presented a generic debugger generation framework for
DSLs that abstracts over the complexity of writing a debugger by
hand. Our work follows in a line of previous research aimed at
more efficiently developing debuggers for custom languages [6, 11,
21, 27]. In this section we reflect over our work and highlight the
differences to related work.

Applicability to different types of DSLs A key characteristic for
debuggability of DSLs is their executability. Despite the fact that
the relation between the executability of a language and the possi-
ble debugging capabilities is rather vague, it is possible to create a
debugger as long as executable code is generated or code is exe-
cuted by an interpreter.

Although the difference between a imperative and declarative
programming language is precise, languages usually take elements
from both paradigms. A debugger for a pure declarative language
is hard to define as the execution model is hidden from the user.
Nevertheless, the debugger can be used to show how the relation-
ship between declarations is constructed improving program under-
standing.

We only evaluated our approach for interpreted and compiled
DSLs. Debuggers for DSLs implemented as language extensions
require special attention, as we only instrument the DSL parts
and not the general-purpose parts of a program. Depending on the
context in which the DSL extension is applied, additional effort
is needed to integrate the debugger with a debugger for the host
language.

While this paper focusses on debugging textual DSL programs,
the same debugger generation approach can also be applied to
domain-specific modeling languages (DSML). According to previ-
ous work DSML debuggers should debug both the synthesized ar-
tifacts and the model transformations [17]. First, our approach can
be used when the synthesized artifacts are code and the model can
be expressed as a textual DSL. For visual DSLs the instrumentation
preprocessor and debugger runtime have to be modified to interact

with the visual model. Secondly, the Stratego use case shows how
our approach can be used to create a debugger for a transforma-
tion language. Furthermore, the instrumentation preprocessor can
be used to link constructs at different levels of abstraction during a
model transformation.

Performance Debugging incurs additional runtime overhead in
both the program build process and the program execution. De-
bug instrumentation is a one time penalty during code generation,
while the debug runtime introduces extra overhead during program
execution. The overhead we experienced in our case studies was
acceptable, but a general strategy to avoid the overhead can be to
employ separate debug and release builds to minimize the overhead
in deployed applications.

The debug instrumentation preprocessor has to traverse each in-
put file only once to generate a debug instrumented DSL program.
Therefore, the performance overhead is linear with respect to the
size of the code base of a DSL program. The debug instrumenta-
tion overhead can be decreased significantly if the DSL supports
separate compilation. A change to a single file does not have to
result in a rebuild of the entire DSL program, because the prepro-
cessor can operate on a single source file without being aware of
the complete application code base.

The DSL program execution performance is affected by debug
instrumentation because of the extra debug statements, adding ex-
tra method invocation overhead, and because the debugger has to
inspect the program state with events. While our implementation
architecture may incur larger performance overhead than common
with debuggers natively supported on an execution platform, it is
common to see a certain degradation in performance even in the
most optimized natively supported debuggers.

Tools for building debuggers The Meta-Environment [14] was
one of the first tools that supported the generation of language
aware editors and debuggers for end-users. The debuggers were
generated using a generic debugging framework called TIDE [21]
which also used debug events to create the program state in the
debugger. TIDE relies on the language developer to implement a
single, handwritten debug adapter component to link the DSL run-
time to the TIDE system. In contrast, we use a layered architecture
in order to minimize the implementation effort. TIDE also requires
the code generator or interpreter to be adapted by hand, where we
provide the SEL language to weave in the required changes.

Wu et al. [27] describe a grammar-driven technique to build
a debugging tool generation framework from existing DSL gram-
mars. Similar to our approach, they allow language developers to
link grammatical constructs to events using an aspect oriented ap-
proach. However, their approach is aimed at DSLs that are speci-
fied as ANTLR grammars with semantic actions for execution. Us-
ing a technique they call grammar weaving [19], they weave de-
bug instrumentation into these semantic actions. In contrast, our
approach relies on a separate debug instrumentation tool operating
directly on the DSL program source code which does not depen-
dent on the implementation approach of the DSL. Wu et al. also
provide a debugging framework at the IDE level, but they lack the
layered architecture that allows for further reuse across DSLs in our
approach.

The Meta Programming System (MPS) [25] is a language work-
bench that uses projectional editing rather than free text editing. It is
notable because of its built-in support for debugging for languages
that are based on its Base Language (BL), a host language inspired
by Java. Most DSLs in MPS are defined as extensions of BL. By
mapping to BL statements and expressions, they can use the BL
debugger. MPS does not currently provide an API or infrastructure
for debugging based on other languages. In contrast, our approach
is independent of a particular base language, and uses a preproces-

135

sor to maintain independence of the implementation technique of
the language. We also provide a reusable infrastructure for imple-
menting debuggers for other platforms.

Libraries for building debuggers Where we use a tool-centric
approach to generate parts of a debugger implementation, there is
also related work in the form of libraries for building debuggers in
an efficient manner. The Eclipse platform itself provides the Lan-
guage ToolKit (LTK) library, which provides a layer of abstraction
over common language-oriented operations based on the tooling
Eclipse provides for the Java language. A similar library provided
for it is the Dynamic LTK (DLTK) library (eclipse.org/dltk), aimed
at dynamic languages. The IDE Metatooling Platform (IMP) [3]
is a combination of a library and a set of wizard for scaffolding.
While these libraries provide a framework for debuggers that ab-
stracts over the traditional low-level implementations and provide
hooks for IDE integration, they do not offer the layered architecture
that we apply for DSLs and still require manual implementation of
instrumentation DSL programs.

8. Conclusions and Future Work
Debuggers are an important tool in modern software engineering
practice. Full tool support with debugging facilities ensures optimal
productivity of developers with DSLs. The debugging framework
presented in this paper ensures that debugging support can be
implemented for DSLs with a minimum of effort, by abstracting
over the accidental complexity of standard debugging APIs and
providing an infrastructure that maximizes reuse across multiple
DSL implementations.

Future work is needed to further specialize debuggers for
domain-specific languages. Directions include more sophisticated
visualizations of domain-specific data structures, the addition of
domain-specific event classes to match the execution model of
some DSLs, and providing infrastructure for hot code replacement.

Acknowledgments
This research was supported by NWO project 612.063.512, TFA:
Transformations for Abstractions.

References
[1] M. Auguston. Building program behavior models. In ECAI Workshop

on Spatial and Temporal Reasoning, pages 19–26, 2007.
[2] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strate-

go/XT 0.17. A language and toolset for program transformation. Sci-
ence of Computer Programming, 72(1-2):52–70, 2008.

[3] P. Charles, R. M. Fuhrer, S. M. S. Jr., E. Duesterwald, and J. Vinju.
Accelerating the creation of customized, language-specific IDEs in
eclipse. In S. Arora and G. T. Leavens, editors, Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009,
2009.

[4] J. C. Cleaveland. Building application generators. Softw., 5(4), 1988.
[5] S. Efftinge and M. Voelter. oAW xText: A framework for textual

DSLs. In Workshop on Modeling Symposium at Eclipse Summit, 2006.
[6] R. E. Faith, L. S. Nyland, and J. Prins. Khepera: A system for

rapid implementation of domain specific languages. In Conference
on Domain-Specific Languages, October 15-17, 1997, Santa Barbara,
California, USA. USENIX, 1997.

[7] M. Fowler. Language workbenches: The killer-app for domain
specific languages?
http://www.martinfowler.com/articles/
languageWorkbench.html, 2005.

[8] M. Fowler. Domain-Specific Languages. Addison Wesley, 2011.

[9] D. M. Groenewegen, Z. Hemel, and E. Visser. Separation of concerns
and linguistic integration in WebDSL. Software, 27(5), September/Oc-
tober 2010.

[10] Z. Hemel and E. Visser. Declaratively programming the mobile web
with mobl. In Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011. ACM, 2011.

[11] P. Henriques, M. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu.
Automatic generation of language-based tools using the LISA system.
Software, IEE Proceedings -, 152(2):54–69, april 2005.

[12] L. C. L. Kats and E. Visser. The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In W. R. Cook,
S. Clarke, and M. C. Rinard, editors, Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2010, pages 444–
463. ACM, 2010.

[13] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declarative
syntax definition: paradise lost and regained. In W. R. Cook, S. Clarke,
and M. C. Rinard, editors, Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, pages 918–932. ACM,
2010.

[14] P. Klint. A meta-environment for generating programming environ-
ments. Transactions on Software Engineering Methodology, 2(2):176–
201, 1993.

[15] T. Kosar, N. Oliveira, M. Mernik, V. Pereira, M. Crepinsek, C. Da,
and R. Henriques. Comparing general-purpose and domain-specific
languages: An empirical study. Computer Science and Information
Systems, 7(2):247–264, 2010.

[16] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular development
of textual domain specific languages. In R. F. Paige and B. Meyer,
editors, Objects, Components, Models and Patterns, TOOLS EUROPE
2008, volume 11 of LNBIP, pages 297–315. Springer, 2008.

[17] R. Mannadiar and H. Vangheluwe. Debugging in domain-specific
modelling. In Software language engineering, SLE’10, pages 276–
285. Springer-Verlag, 2011.

[18] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. Computing Surveys, 37(4):316–344, 2005.

[19] D. Rebernak, M. Mernik, H. Wu, and J. G. Gray. Domain-specific
aspect languages for modularising crosscutting concerns in grammars.
IEE Proceedings - Software, 3(3):184–200, 2009.

[20] Y. Smaragdakis and D. Batory. Application generators. Encyclopedia
of Electrical and Electronics Engineering, 2000.

[21] M. van den Brand, B. Cornelissen, P. A. Olivier, and J. J. Vinju. TIDE:
A generic debugging framework - tool demonstration. ENTCS, 141(4):
161–165, 2005.

[22] I. Vessey. Toward a theory of computer program bugs: An empirical
test. Int. Journal of Man-Machine Studies, 30(1):23–46, 1989.

[23] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[24] E. Visser. WebDSL: A case study in domain-specific language en-
gineering. In R. Lämmel, J. Visser, and J. Saraiva, editors, Genera-
tive and Transformational Techniques in Software Engineering II, Int.
Summer School, GTTSE 2007, volume 5235 of LNCS, pages 291–373.
Springer, 2007.

[25] M. Voelter and K. Solomatov. Language modularization and compo-
sition with projectional language workbenches illustrated with MPS.
In M. van den Brand, B. Malloy, and S. Staab, editors, Software Lan-
guage Engineering, SLE 2010, LNCS. Springer, 2010.

[26] D. S. Wile. Supporting the DSL spectrum. CIT. Journal of computing
and information technology, 9(4):263–287, 2001.

[27] H. Wu, J. Gray, and M. Mernik. Grammar-driven generation of
domain-specific language debuggers. Software: Practice and Expe-
rience, 38(10):1073–1103, 2008.

136

http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

	Introduction
	Debuggers
	General Architecture
	Debuggers for DSLs
	Executability
	Programming Paradigm
	DSL Implementation Approach

	Summary

	Declarative Debugger Specification
	DSL Program Instrumentation
	Debugger Runtime Infrastructure
	DSL-level Debug Library
	Platform-level Debug Library
	Platform-level Event Handler
	IDE-level Debug Library
	DSL Program Execution Flow

	Case Studies
	Stratego
	WebDSL

	Discussion and Related Work
	Conclusions and Future Work

