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Abstract—This paper investigates the application of domain-
specific languages in product line engineering (PLE). We start
by analyzing the limits of expressivity of feature models. Fea-
ture models correspond to context-free grammars without re-
cursion, which prevents the expression of multiple instances
and references. We then show how domain-specific languages
(DSLs) can serve as a middle ground between feature modeling
and programming. They can be used in cases where feature
models are too limited, while keeping the separation between
problem space and solution space provided by feature models.
We then categorize useful combinations between configuration
with feature model and construction with DSLs and provide
an integration of DSLs into the conceptual framework of PLE.
Finally we show how use of a consistent, unified formalism for
models, code, and configuration can yield important benefits for
managing variability and traceability. We illustrate the concepts
with several examples from industrial case studies.

I. INTRODUCTION

The goal of product line engineering (PLE) is to efficiently
manage a range of products by factoring out commonalities
such that definitions of products can be reduced to a speci-
fication of their variable aspects. One way of achieving this
is the expression of product configurations on a higher level
of abstraction than the actual implementation. An automated
mapping transforms the configuration to the implementation.
Traditionally this higher level of abstraction is realized with
feature models [5] or similar configuration formalisms such
as orthogonal variability models [17] or decision models [10].
A feature model defines the set of valid configurations for a
product in a product line by capturing all variations points (i.e.
features), as well as the constraints between them.

However, since feature models can only describe bounded
configuration spaces, their expressivity is limited. This lim-
itation can be reduced to the fact that the feature modeling
formalism corresponds to context-free grammars without re-
cursion. By using full context-free grammars, the expressiv-
ity of feature modeling can be extended to domain-specific
configuration languages with unbounded configuration spaces,
without the need to regress to programming in a general-
purpose programming language.

In this paper, we investigate the application of domain-
specific languages (DSLs) in product line engineering. We
first analyze the difference in expressivity between feature
models and DSLs, and discuss when to use which approach
(Section II). For a given product line, the decision between

feature models and DSLs often is not mutually exclusive.
We categorize approaches for composing feature models and
DSLs, for example, by using feature models to configure DSL
programs (Section III). If we express the complete product
definition based on the linguistic integration of feature models
and DSLs, we can reap a number of additional benefits
such as uniform traceability (Section IV). To illustrate the
approach, we discuss three industrial case studies of DSLs
used in product line engineering (Section V). Finally, to put
the approach into perspective, we present a mapping of DSLs
and their tools to the core concepts and processes of PLE
(Section VI).

II. FROM FEATURE MODELS TO DSLS

A feature model is a compact representation of the features
of the products in a product line, as well as the constraints
imposed on configurations. Feature models are an efficient for-
malism for configuration, i.e. for selecting a valid combination
of features from the feature model. The set of products that
can be defined by feature selection is fixed and finite: each
valid combination of selected features constitutes a product.
This means that all valid products have to be ”designed into”
the feature model, encoded in the features and the constraints
among them. Some typical examples of variation points that
can be modeled with feature models are the following:

• Does the communication system support encryption?
• Should the in-car entertainment system support MP3s?
• Should the system be optimized for performance or

memory footprint?
• Should messages be queued? What is the queue size?
In the simplest case, product lines can be implemented with

programming languages only. For example, an object-oriented
framework is implemented as part of domain engineering,
and it is then customized specifically for each product by
writing framework client code. The advantage of this code-
only approach is that no special tools are needed and that
there is a high degree of flexibility for the implementers.
Any kind of variability can be expressed with programming
languages, using techniques such as preprocessors, branching,
polymorphism, generics or design patterns. However, using
these techniques only, there is no distinction between the
problem space and the solution space — no higher level
representation of the variability in a product line is provided,



making it hard to keep track of, and manage the variability.
This is especially problematic if the definition of a product
requires consistent changes in several places in the implemen-
tation artifacts.

Feature models provide an abstraction over the implemen-
tation of the product. Based on the feature configuration, map-
pings derive the necessary adaptations of the underlying imple-
mentation artifacts. Because of this abstraction, feature model-
based configuration is simple to use — product definition is
basically a decision tree. This makes product configuration
efficient, and potentially accessible for stakeholders other than
software developers.

As described by Batory [4] and Czarnecki [9], a par-
ticular advantage of feature models is that a mapping to
logic exists. Using SAT solvers, it is possible to check, for
example, whether a feature model has valid configurations
at all. The technique can also be used to automatically
complete partial configurations. This has been shown to
work for realistically-sized feature models [15]. Pure::variants
(http://pure-systems.com) maps feature models to Prolog to
achieve a similar goal, as does the GEMS-based tool described
in [23].

In the rest of this section we will discuss the limitations
of feature models. We argue that in cases in which feature
models are unsuitable, we should not regress to low-level
programming, but use DSLs instead, to avoid losing the dif-
ferentiation between problem space and solution space. As an
example we use a product line of water fountains as found in
recreational parks1. Fountains can have several basins, pumps
and nozzles. Software is used to program the behavior of the
pumps and valves to make the sprinkling waters aesthetically
pleasing. The feature model in Fig. 1 represents valid hardware
combinations for a simple water fountain product line. The
features correspond to the presence of a hardware component
in a particular fountain installation.

Fig. 1. Feature model for the simple fountains product line used as the
example. Fountains have basins, with one or two nozzles, and an optional full
sensor. In addition, fountains have a pump.

The real selling point of water fountains is their behavior. A
fountain’s behaviour determines how much water each pump
should pump, at which time, with what power, or how a
pump reacts when a certain condition is met, e.g. a basin
is full. Expressing the full range of such behaviors is not
possible with feature models. Feature models can be used

1This is an anonymized version of an actual project the authors have
been working on. The real domain was different, but the example languages
presented in this paper have been developed and used for that other domain.

to select among a fixed number of predefined behaviors, but
approximating all possible behaviors would lead to unwieldy
feature models. Instead we could program the behavior in a
general purpose language such as C. However, this means
that we lose the abstraction feature models provide, reducing
efficiency and understandability, as well as the possibility
for direct involvement of non-programmers. Domain-specific
languages can serve as a middle ground between the controlled
setting of feature model-based configuration and the complete
lack of restrictions of general purpose programming languages.

A. Feature Models as Grammars

To understand the limitations of feature models, consider
their relation to grammars. Feature models essentially corre-
spond to context-free grammars without recursion [8]. For
example, the feature model in Fig. 1 is equivalent to the
following grammar. We use all caps to represent terminals,
and camel-case identifiers as non-terminals:

Fountain -> Basin PUMP
Basin -> ISFULLSENSOR? (ONENOZZLE | TWONOZZLES)

This grammar generates a finite number of sentences, i.e there
are exactly four possible configurations, which correspond to
the finite number of products in the product line. However,
this formalism does not make sense for modeling behavior,
for which there is typically an infinite range of variability. To
accommodate for unbounded variability, the formalism needs
to be extended. Allowing recursive grammar productions is
sufficient to model unbounded configuration spaces, but for
convenience, we consider also attributes and references.

Attributes express properties of features. For example, the
PUMP could have an integer attribute rpm, representing the
power setting of the pump. Some feature modeling tools (e.g.
pure::variants) support attributes.

Fountain -> Basin PUMP(rpm:int)
Basin -> ISFULLSENSOR? (ONENOZZLE | TWONOZZLES)

Recursive grammars can be used to model repetition and
nesting. Repetition is also supported by cardinality-based
feature models, as described in [8]. Nesting is necessary to
model tree structures such as those occurring in expressions.
The following grammar extends the fountain feature model
with a Behavior, which consists of a number of Rules. The
Basin can now have any number of Nozzles.

Fountain -> Basin PUMP(rpm:int) Behavior
Basin -> ISFULLSENSOR? NOZZLE*
Behavior -> Rule*
Rule -> CONDITION CONSEQUENCE

References allow the creation of context-sensitive relations
between parts of generated sentences — or subtrees of the
generated derivation trees. For example, by further extending
our fountain grammar we can describe a rule whose condition
refers to the full attribute of the ISFULLSENSOR and whose
consequence sets a PUMP’s rpm to 0.

Fountain -> Basin id:PUMP(rpm:int)? Behavior
Basin -> id:ISFULLSENSOR(full:boolean)? id:NOZZLE*
Behavior -> Rule*



Fig. 2. An extended feature modeling formalism is used to represent the
example feature model with attributes, recursion and and references (the dotted
boxes).

Rule -> Condition Consequence
Condition -> Expression
Expression -> ATTRREFEXPRESSION | AndExpression |

GreaterThanExpression | INTLITERAL;

AndExpression -> Expression Expression
GreaterThanExpression -> Expression Expression

Consequence -> ATTRREFEXPRESSION Expression

Fig. 2 shows a possible rendering of the grammar with an
enhanced feature modeling notation. We use cardinalities, as
well as references to existing features, the latter are shown as
dotted boxes. A valid configuration could be the one shown in
Fig. 3. It shows a fountain with one basin, two nozzles named
n1 and n2, one sensor s and a pump p. It contains a rule that
expresses that if the full attribute of s is set, and the rpm of
pump p is greater than zero, then the rpm should be set to
zero.

B. Domain-Specific Languages

While the extended grammar formalism discussed above en-
ables us to cover the full range of behavior variability, the use
of trees to instantiate these grammars is not practical. Another
interpretation of these grammars is as definition of a language
with a textual concrete syntax — the tree in Fig. 3 looks like
an abstract tree (AST). To make the language readable we
need to add concrete syntax definitions (keywords), as in the
following extension of the fountain grammar:

Fountain -> "fountain" Basin Pump Behavior
Basin -> "basin" IsFullSensor Nozzle*
Behavior -> Rule*

Rule -> "if" Condition "then" Consequence

Fig. 3. Example configuration using a tree notation. Referenceable identities
are rendered as labels left of the box. The dotted lines represent references
to variables.

Condition -> Expression
Expression -> AttrRefExpression | AndExpression |

GreaterThanExpression | IntLiteral;

AndExpression -> Expression "&&" Expression
GreaterThanExpression -> Expression ">" Expression
AttrRefExpression -> <attribute-ref-by-name>
IntLiteral -> (0..9)*

Consequence -> AttrRefExpression "=" Expression

IsFullSensor: "sensor" ID (full:boolean)?
Nozzle: "nozzle" ID
Pump: "pump" ID (rpm:int)?

We can now write a program that uses a convenient textual
notation, which is especially useful for the expressions in
the rules. We have created a domain-specific language for
configuring the composition and behavior of fountains. A
complete language definition would also include typing rules
and other constraints, but that is beyond the scope of this paper.

fountain
basin sensor s

nozzle n1
nozzle n2

pump p
if s.full && p.rpm > 0 then p.rpm = 0

DSLs fill the gap between feature models and program-
ming languages. They can be more expressive than feature
models, but they are not as unrestricted and low-level as
programming languages. Like programming languages, DSLs,
support construction, allowing the composition of an unlimited
number of programs. Construction happens by instantiating
language concepts, establishing relationships, and defining
values for attributes. We do not a-priori know all possible
valid programs. In contrast to programming languages, DSLs
keep the distinction between problem space and solution space



intact since they consist of concepts and notations relevant
to the problem domain. Non-programmers can continue to
contribute directly to the product development process, without
being exposed to implementation details.

DSLs are a good fit when instances of concepts need to be
created, when relationships between these instances must be
established, or when algorithmic behavior has to be described,
e.g. in business rules, calculations, or events. Examples of
the application of DSLs include calculating the VAT and
other taxes in an invoicing product line, specifying families
of pension contracts, and defining communication protocols
in embedded systems.

In general, a domain-specific language (DSL) is a software
language specialized for a particular problem domain. DSLs
can use graphical, textual or tabular concrete syntax, or any
combination thereof. Like programming languages, DSLs can
either be compiled — typically through code generation to
a programming language — or interpreted by an interpreter
running on the target environment.

A DSL’s concrete and abstract syntax are tailored closely
to the domain at hand. Using DSLs only requires knowledge
about the problem domain, not about the solution domain.
This improves productivity, quality and maintainability. Pro-
ductivity is improved because a higher level notation is pro-
vided, avoiding dealing with implementation details. Quality
is improved because transformations or interpreters execute
the programs consistently. Maintainability is improved because
changes to the program can be done on the level of the DSL
program, or by changing the generator or interpreter.

A note on terminology: we use the terms DSL program,
DSL code and model interchangably. Strictly speaking, the
DSL code is a textual representation of a model, but this
distinction is not relevant in this paper. While we focus
primarily on textual DSLs in this paper, the discussion is
equally valid for DSLs using other notations, as long as the
underlying expressivity is not reduced, as for example in
purely tabular notations. However, expression-like models can
best be expressed using a textual notation.

Supplying convenient editors and other tools along with
the DSL increases the usability of the language significantly.
The term language workbench has been introduced by Martin
Fowler in 2004 [11], referring to tools that support the effi-
cient definition, composition and use of DSLs. Open Source
examples include Eclipse Xtext (http://eclipse.org/xtext),
Spoofax (http://strategoxt.org/Spoofax) and JetBrains MPS
(http://www.jetbrains.com/mps/).

III. COMBINING DSLS AND FEATURE MODELS

In the previous sections we have explained the difference in
expressive power between feature models and DSLs. We have
also outlined the benefits and drawbacks of both approaches.
In this section we categorize how both approaches can be
combined.

A. Implementing Components with DSLs
One way of using feature models is to use them to select

between a number of prebuilt, reusable components that are

used to customize a framework as part of product definition.
Instead of implementing these components in a programming
language, they can be implemented using DSLs. This is
especially useful if the behavior in these components is highly
domain-specific. At the time of product definition using the
feature model, the domain expert does not have to know that
the components have been developed using DSLs .

For example, we have worked on a system in which a DSL
was used to describe OSGi component structures, generating
all the low level OSGi details. Feature model-based configu-
ration was then used to create different products from these
components.

B. Variation over models

Feature models can also be used to vary the model in a fine-
grained way. Model execution then happens in two steps: first,
the model is configured based on the feature configuration,
and then the configured model is processed as before via
transformation, generation or interpretation.

Similar to configuration of source code, for example via
the C preprocessor, the configuration of models can be done
in several different ways. The actual implementation may be
different depending on the DSL and language workbench:

• Negative Variability via Removal DSL program elements
can be annotated with presence conditions, Boolean ex-
pressions over the features of a feature model. When
the DSL program is mapped to the solution space, a
model transformation removes all those elements whose
presence condition is false based on the current fea-
ture configuration. Czarnecki and Antkiewicz show this
approach applied to UML models [6], including static
checks that ensure that every valid feature configuration
leads to a structurally correct UML model.

• Positive Variability via Superimposition A set of prebuilt
model fragments is created. The feature configuration
selects a subset of them. The fragments are then merged
using some DSL-specific or generic merge operator, re-
sulting in a superimposed model representing the variant.
Apel et al discuss the approach in general and demon-
strate it for various UML diagrams, among them class
diagram, state diagrams and sequence diagrams. [1].

• Positive Variability via Aspects A core program is avail-
able, together with a set of aspects. The aspects use
pointcuts to define where and how they affect the core
program. Based on the feature configuration, a subset
of these aspects is selected and applied to the core
program. The case study in [22] describes this approach
applied to EMF models (Eclipse Modeling Framework,
http://eclipse.org/emf).

As Fig. 4 shows, this approach reduces the numbers of
variation points in the artifacts and automatically supports the
consistent implementation of several, non-local adaptations.
Since the models are transformed into lower-level artifacts
automatically, they ”expand” the variability to potentially
many low-level variation points.



Fig. 4. Transformations ”expand” variation points, thereby reducing the
number of variation points that have to be management explicitly.

C. Variations in the Transformation or Execution

When working with DSLs, the execution of models — by
transformation, code generation or interpretation — is under
the control of the domain engineer. The transformations or the
interpreter can also be varied based on a feature model.

• Negative Variability via Removal The transformations or
the interpreter can be annotated with presence conditions,
the configuration happens before the transformations or
the interpreter are executed.

• Branching The interpreter or the transformations can
query over a feature configuration and then branch ac-
cordingly at runtime.

• Positive Variability via Superimposition Transformations
or interpreters can be composed via superposition before
execution. For transformations, this is especially feasible
if they transformation language is declarative, which
means that the order in which the transformations are
specified is irrelevant. Interpreters are usually procedural,
object-oriented or functional programs, so declarativeness
is hard to achieve in those.

• Positive Variability via Aspects If the transforma-
tion language or the interpreter implementation lan-
guage support aspect oriented programming, then this
can be used to configure the execution environ-
ment. For example, the Xpand code generation engine
(http://wiki.eclipse.org/Xpand) supports AOP for code
generation templates.

Examples for all of these are described by Voelter and
Groher [19] based on the openArchitectureWare tool suite2.

Creating transformations with the help of other transforma-
tions or by any of the above variability mechanisms is also
referred to as higher-order transformations [16]. Note that if
a bootstrapped environment is used, the transformations are
themselves models created with a transformation DSL. This
case then reduces to just variation over models, as described
in the previous subsection.

D. DSLs as Attribute Types

Some feature modeling tools support feature attributes.
Typically, the types of these attributes are primitive (integer,
string, float). They could also be typed with a DSL, the set of

2openArchitectureWare has since been migrated to the Eclipse Xpand and
Xtext projects

valid programs expressed in this DSL would be the range of
values.

This approach is useful when the primary product defini-
tion can be expressed with a feature model. The DSL-typed
attributes can be used for those variation points for which
selection is not expressive enough.

E. Feature Models on Language Elements

The opposite approach is also possible. The primary prod-
uct definition is done with DSLs. However, some language
elements may have a feature model associated with them for
detailed configuration. When the particular language concept is
instantiated, a new (”empty”) feature configuration is created,
and can be configured by the application engineer.

F. Merging of the two approaches

We have described the limitations of the feature modeling
approach. The feature modeling community is working on
alleviating some of these limitations.

For example, cardinality based feature models [8] support
the multiple instantiation of feature subtrees. References be-
tween features could be established by using feature attributes
typed with another feature — the value range would be
the set of instances of this feature. Name references are an
approximation of this approach.

Clafer [2] combines meta modeling and feature modeling. In
addition to providing a unified syntax and a semantics based
on sets, Clafer also provides a mapping to SAT solvers to
support validation of models. The following code is Clafer
code (adapted from Michal Antkiewicz’ Concept Modeling
Using Clafer tutorial at http://gsd.uwaterloo.ca/node/310).

abstract Person
name : String
firstname : String
or Gender

Male
Female

xor MaritalStatus
Single
Married
Divorced

Address
Street : String
City : String
Country : String
PostalCode : String
State : String ?

abstract WaitingLine
participants -> Person *

The Clafer code example describes a concept Person with the
following characteristics:

• a name and a first name of type String (similar to
attributes)

• a gender which is Male or Female, or both (similar to
or-groups in feature models)

• a marital status which is either single, married or di-
vorced (similar to xor-groups in feature models)

• an Address (similar composition is language definitions)



• and an optional State attribute on the address (similar to
optional features in feature modeling)

The code also shows a reference: a WaitingLine refers to
any number of Persons.

Note, however, that an important ingredient for making
DSLs work in practice is the domain-specific concrete syntax.
None of the approaches mentioned in this section provide
customizable syntax. However, approaches like Clafer are
a very interesting backend for DSLs to support analysis,
validation and automatic creation of valid programs from
partial configurations (Section VII).

IV. BENEFITS OF TOOLS

If all product line artifacts, i.e. program code, models,
and transformations, are expressed using a single modeling
infrastructure, then only a single approach is needed for
varying any of them. In addition, the integration between
different models representing different aspects of the over-
all product configuration becomes simpler. For example, the
ability to refer to features in a feature model from an Xtext-
based language is a generic, reusable module that can be
integrated into arbitrary DSLs. Similar tooling is available
for JetBrains MPS. Arbitrary program elements expressed
with any language defined in MPS can be annotated with
presence conditions (Fig. 5). Upon transformation, all those
model elements whose presence condition is false at the time
of generation are removed, so no lower level code is generated
from them. It is also possible to configure the program for a
specific variant while it is edited.

Fig. 5. Presence conditions (Boolean expressions over features) on program
elements in the MPS tool. Presence conditions can be attached to any program
node and control which nodes are transformed during code generation.

A similar approach can be used for expressing traceabil-
ity, another important cornerstone of PLE [13]. Arbitrary
model elements can be annotated with traceability links to
a requirements database. For Eclipse, the VERDE project
(http://www.itea-verde.org/) develops generic traceability tool-
ing with which any EMF-based model can be related to other
models or RIF-based requirements files. In MPS this is possi-
ble as well, using the same annotation-based approach that is
used for presence conditions. MPS’ capability to combine in-
dependently developed languages makes the composition of an
overall product configuration from program/model fragments

expressed in various languages almost trivial. Language com-
position in MPS and the annotation mechanism is explained
in detail in [20].

V. EXAMPLES

This section contains industry examples in which DSLs
are used to implement product lines. Note that we cannot
reveal the actual companies using the DSL, and in case of the
fountains, which we had already introduced in Section II, we
even had to move the example into another domain. However
the cases and the languages are real world examples.

A. Alarm System Menus

The company manufactures burglar alarm systems. These
systems detect when buildings are compromised. They consist
of sensors that detect the burglary, and actuators including
sirens, lights, and alarm propagation facilities to the police.
These systems also have configuration devices, used by the
house owner to configure, among other things, when the
system should be active, and which kinds of alarms should
be raised under which conditions.

The company sells many different alarm systems, sensors,
and actuators. Based on the configuration of an individual
system, the menus in the configuration device need to be
adapted. Traditionally these menus have been described using
Word documents, developers then implemented the menus
in C.

A new approach uses a DSL that formally describes the
menu structure. Code generation creates the C implementation.
Fig. 6 shows some example code. The language is purely
structural, no behavior is described explicitly. A templating
mechanism is provided that supports multiple instantiations of
the same template in several locations in the tree, configuring
each instance with different values passed into the template
instance. Menus can also inherit from other menus to avoid
code duplication for related systems.

While the DSL is relatively simple, it plays an important
role nonetheless, because product management can directly
describe the menus in a formal way, making the overall
development process much simpler, faster, and less error
prone.

We have used a DSL instead of a feature model for the
following reasons: menus require recursion in the underlying
formalism to be able to define unlimited numbers of instances
of submenus. The ability to define standalone submenus that
can be included in other menus is an example of references.
Finally, the various elements have many fine grained attributes.
A textual notation works much better in these cases than trees.

B. Fountains

This is the example used in section II. Before using DSLs,
fountain designers experimented with different arrangements
of basins and pumps, writing down, in prose text, interesting
configurations and behaviors. Developers wrote the corre-
sponding controller code in C. The domain from which this



Fig. 6. Example menu definition for the alarm systems. Menus contain
submenus and items. Templates can be defined, and template instances can
be embedded into a menu tree several times with different parameter values.

example is derived is very complex, with ca. 700 different
products!

Several DSLs are used. The first one (Fig. 7) is used to
describe the logical structure of basins, pumps and valves. It
uses a form of multiple inheritance similar to classes (here:
appliances) and traits (here: features), quite similar to what
Scala provides (http://scala-lang.org).

Fig. 7. Fountains can be composed from features, who contribute hardware
elements. Parametrized features (those with brackets) can be included more
than once, binding the parameter differently each time.

A second language (Fig. 8) is used to describe the behavior.
The behavior model refers to a hardware structure. All the
hardware elements have events, properties and commands
defined, which can be accessed from the behavior model.
A state based, reactive, asynchronous language is used to
describe the behavior, driving the activation of the pumps and
valves based on sensor input and timing events.

In addition to generating C code, there is also an in-IDE
interpreter that can run the pumping programs and execute

Fig. 8. The fountain behavior is defined with a reactive, asynchronous
language. A pumping program is defined for a combination of hardware
features. The properties, events and commands of the hardware elements
defined by these features can be used in the programs.

tests. These tests are also described with a textual language.
A simulation engine to ”play” with the programs is available
as well. This is an example where additional tools make the
use of DSLs much more feasible for domain experts.

The behavior language also overlays configuration over the
pumping behavior, an example of negative variability of a
model (Section III). The behavior can be varied depending on
whether certain optional hardware components are installed in
the fountain, as shown in Fig. 9.

We have used DSLs in this case because algorithmic behav-
ior is described. The expressions used in the language cannot
sensibly be represented with feature models. The hardware
structure language has to be able to instantiate the same
hardware component several times, another reason for using a
DSL instead of a feature model. We use negative variability
to overlay hardware structure dependencies over the behavior
specifications.

Fig. 9. Within a pumping program, variant statements can be used to
implement negative variability over optional hardware features. The example
shows code that is only executed if the WithAlarm feature is present.



C. Architecture DSLs

Many product lines are built on a common software archi-
tecture, while the application functionality varies from product
to product. Architecture DSLs [21], [12] can be used very
effectively in these cases. An architecture DSL is a DSL,
in which the abstractions of the language correspond to the
architectural concepts of the execution platform. They are
defined by architects, and used by developers as they de-
velop applications. When developing products in challenging
environments such as distributed real-time embedded systems,
architecture DSLs can provide the benefit of simulation and
automatic optimization as described by Balasubramanian and
Schmidt in [3].

One project in the transportation industry has used an
architecture DSL overlaid with configuration-based variability.
The architecture models directly refer to the features defined
in the configuration model, a form of presence conditions.
Tooling is based on Eclipse Xtext and pure::variants. Fig. 10
shows a screenshot. The system also supported AOP: aspects
are available to ”contribute” additional properties to existing
model elements. The article in [21] describes this example,
and the general approach, in more detail.

Fig. 10. Tool support (Eclipse Xtext and pure::variants) for referring to
feature models from DSLs, implementing negative variability over DSL code.

A DSL was used in this case because architecture definition
makes heavy use of identities and references, attributes and
recursion. For example, it must be possible to define any
number of components, and these than have to be instantiated
and connected. So even while no expressions are used, DSLs
are still useful in this case.

VI. CONCEPTUAL MAPPING FROM PLE TO DSLS

This section looks at the bigger picture of the relationship
between PLE and DSLs. It contains a systematic mapping
from the core concepts of PLE to the technical space of DSLs.
First we briefly recap the core PLE concepts.

• Core Assets designate reusable artifacts that are used
in more than one product. As a consequence of their
strategic relevance, they are usually high quality and
maintained over time. Some of the core assets might have
variation points.

• A Variation Point is a well-defined location in a core asset
where products differ from one another.

• Kind of Variability classifies the degrees of freedom one
has when binding the variation point. This ranges from
setting a simple Boolean flag over specifying a database
URL to a DSL program to a Java class hooked into a
platform framework.

• Binding Time denotes the point in time when the decision
is made as to which alternative should be used for a
variation point. Typical binding times include source time
(changes to the source code are required), load time
(bound when the system starts up) and runtime (the
decision is made while the program is running).

• The Platform are those core assets that actually form a
part of the running system. Examples include libraries,
frameworks or middleware.

• Production Tools are core assets that are not part of
the platform, but are used during the possibly automated
development of products.

• Domain Engineering refers to activities in which the core
assets are created. An important part of domain engi-
neering is domain analysis, during which a fundamental
understanding of the domain and its commonalities and
variability is established.

• Application Engineering is the phase in which the domain
engineering artifacts are used to create products. Unless
variation points use runtime binding, they are bound
during this phase.

• The Problem Space refers to the application domain
in which the product line resides. The concepts found
in the problem space are typically meaningful to non-
programmers as well.

• The Solution Space refers to the technical space that is
used to implement the products. In case of software prod-
uct line engineering, this space is software development.
The platform lives in the solution space. The production
tools create or adapt artifacts in the solution space based
on a specification of a product in the problem space.

In the following sections we now elaborate on how these
concepts are realized when DSLs are used.

A. Variation Points and Kinds of Variability

This represents the core of the paper and has been dis-
cussed extensively above: DSLs provide more expressivity
than feature models, while not being completely unrestricted
as programming languages.

B. Domain Engineering and Application Engineering

As we develop an understanding of the domain, we classify
the variability. If the variability at a particular variation point
is suitable for DSLs, we develop the actual languages together
with the IDEs during domain engineering. The abstract syntax
of the DSL constitutes a formal model of the variability
found at the particular variation point. This is similar to
analysis models, with the advantage that DSLs are executable.
Users can immediately express exemplary domain structures



or behavior and thereby validate the DSL. This should be
exploited: language definition should proceed incrementally
and iteratively, with user validation after each iteration. The
example models created in this way should be kept around,
they constitute unit tests for the language.

The combination of several DSLs is often necessary. Dif-
ferent variation points may have different DSLs that must
be used together to describe a complete product. In the
fountains example, one DSL describes the hardware structure
of the fountains, and another one describes the behavior. The
behavior DSL refers to elements from the hardware DSL for
sensor values and events. In this case, one language merely
refers to an element of another language. Deeper integration
may also be necessary. For example, we may want to embed a
reusable expression language into the fountain behavior DSL.
Different language workbenches support language composi-
tion to different degrees. References between languages are
always possible. Language embedding is not yet mainstream.
It supported for example by Spoofax [14] and MPS [20].

Application engineering involves using the DSLs to bind
the respective variation points. The language definition, the
constraints, and the IDE guide the user along the degrees of
freedom supported by the DSL.

C. Problem Space and Solution Space

DSLs can represent any domain. They can be technical,
inspired by a library, framework or middleware, expected
to be used by programmers and architects. DSLs can also
cover application domains, inspired by the application logic
for which the application is built. In this case they are expected
to be used by application domain experts. In the case of
application DSLs, the DSL resides in the problem space.
For execution they are mapped to the solution space by the
production tools. Technical DSL can, however, also be part of
the solution space. In this case, DSL programs are possibly
created by the mapping of an application domain DSL to the
solution space. This is an example of cascading [18], [7]: one
DSL is executed by mapping it to another DSL. It is also
possible that technical DSLs are used by developers as an
annotation for the application domain DSLs, controlling the
mapping to the solution space or configuring some technical
aspect of the solution directly [18].

D. Binding Time

DSLs can be executed in two ways. Transformation maps a
DSL program to another formalism for which an execution
infrastructure already exists. If this formalism is another
DSL, we speak of model-to-model transformation, or simply
transformation. If the target is a programming language, we
speak of code generation. Alternatively, the DSL can also
be interpreted: a meta program that is part of the platform
executes the DSL program directly.

• If we generate source code that has to be compiled,
packaged and deployed, the binding time is source. We
speak of static variability, or static binding.

• If the DSL programs are interpreted, and the DSL pro-
grams can be changed as the system runs, this constitutes
runtime binding, and we speak of dynamic variability.

• If we transform the DSL program into another formalism
that is then interpreted by the running system, we are in
a middle ground. It depends on the details of how and
when the result of the transformation is (re-)loaded into
the running system whether the variability is load-time
or runtime.

When to use transformation vs. interpretation depends on
various, usually non-functional concerns. Transformation and
code generation is the more mainstream approach because
most people find it easier to implement and debug. It has
a couple of advantages compared to interpretation, better
performance being the most important one, especially in
embedded systems. Interpretation is intriguing because of the
fast turnaround time. A detailed discussion of the trade-offs is
beyond the scope of this paper.

E. Core Assets, Platform and the Production Tools

DSLs constitute core assets, they are used for many, and
often all of the products in the product line. It is not so easy
to answer the question whether they are part of the platform
or the production tools:

• If the DSL programs are transformed, the transformation
code is a production tool. It is used in the production of
the products. The DSL or the models are not part of the
running system.

• In case of interpretation, the interpreter is part of the
platform. Since it directly works with the DSL program,
the language definition becomes a part of the platform as
well.

• If we can change the DSL programs as the system runs,
even the IDE for the DSL is part of the platform.

• If the DSL programs are transformed into another formal-
ism that is in turn interpreted by the platform, then the
transformations constitute production tools and the inter-
preter of the target formalism is a part of the platform.

VII. FUTURE WORK

Hybrid solutions such as Clafer and their relationships to
DSLs require further investigation. One question is whether
Clafer is suitable as a verification backend for DSLs: a DSL’s
abstract syntax, including possible selection-based parts, could
be translated into Clafer, and then Clafer’s integration with
solvers could be used to verify and check DSL programs. This
approach promises a simplification over directly integrating
DSLs with solvers, because Clafer provides abstractions that
are much closer to DSLs than raw logic. A second, related
question is which kinds of languages are suitable for this kind
of integration. A third question relating to Clafer is whether
it could be directly used as the abstract syntax formalism for
DSLs. In this case, Clafer models would be annotated with
concrete syntax definitions to render a textual DSL.



VIII. CONCLUSION

In this paper we have positioned domain-specific languages
into the context of PLE. Our practical experience shows that
DSLs play an important role in PLE, filling the expressive gap
between feature models and programming languages. DSLs
can provide problem space-level, formalized descriptions of
the core application logic, that is hard to capture with feature
models. We show that DSLs fit well with the existing feature
model-based PLE approaches and the overall PLE approach.
Tool support for DSLs, and for the integration between DSLs
and feature models this is coming along. Finally, it is worth
pointing out that language workbenches are becoming more
and more powerful and user friendly, making the development
of DSLs and their tools much less effort than language
construction has historically been. The language workbench
competition webpage at http://www.languageworkbenches.net/
provides a good overview.
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