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ABSTRACT
The implementation of refactorings for new languages re-
quires considerable effort from the language developer. We
aim at reducing that effort by using language generic tech-
niques. This paper focuses on behavior preservation, in
particular the preservation of static name bindings. To de-
tect name binding violations, we implement a technique that
reuses the name analysis defined in the compiler front end.
Some languages offer the possibility to access variables us-
ing qualified names. As a refinement to violation detection,
we show that name analysis can be defined as a reusable
traversal strategy that can be applied to restore name bind-
ings by creating qualified names. These techniques offer an
efficient and reliable solution; the semantics of the language
is implemented only once, with the compiler being the single
source of truth. We evaluate our approach by implement-
ing a language generic rename refactoring, which we apply
to two domain specific languages and a subset of the Java
language.

Categories and Subject Descriptors
D.3 [Programming Languages]: Miscellaneous

General Terms
Languages

Keywords
Static Analysis, Refactoring

1. INTRODUCTION
The successful development of new languages is currently

hindered by the high cost of tool building. Developers are ac-
customed to the integrated development environments (IDEs)
that exist for general purpose languages, and expect the
same services for new languages. For the development of
Domain Specific Languages (DSLs) this requirement is a
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particular problem, since these languages are often devel-
oped with fewer resources than general purpose languages.

Language workbenches aim at reducing that effort by fa-
cilitating efficient development of IDE support for software
languages [18]. Notable examples include MontiCore [27],
EMFText [22], MPS [25], TMF [7], Xtext [14], and our own
Spoofax [26]. The Spoofax language workbench generates
a complete implementation of an editor plugin with com-
mon syntactic services based on the syntax definition of a
language in SDF [35]. Services that require semantic analy-
sis and/or transformation are implemented in the Stratego
transformation language [12]. Especially challenging is the
implementation of refactorings, which are transformations
that improve the internal structure of a program while pre-
serving its behavior. Even with specialized compiler tech-
niques such as rewriting languages and attribute grammars,
implementing conditions for behavior preservation is a tough
task that requires global understanding of the semantics of
the language for which the refactoring is developed.

Traditionally, conditions for behavior preservation are im-
plemented as preconditions that are checked before the trans-
formation [31, 32]. This approach has some clear weak-
nesses: It is extremely difficult to derive a correct set of
preconditions that guarantees behavior preservation with-
out excluding refactorings that in fact could be carried out.
Moreover, additional preconditions have to be implemented
in case the language evolves. Finally, preconditions are not
easily shared among different refactorings, nor do they trans-
fer to different languages. Current refactoring implementa-
tions rarely guarantee behavior preservation. Rather, refac-
torings are tried on examples and validated ‘in the field’,
which may result in subtle errors triggered by corner cases
not foreseen by the developer. Even mature refactoring
frameworks used in current IDEs contain bugs as a result
of insufficient preconditions [33, 34].

The limitations of preconditions are addressed in [16, 33].
The authors propose an invariant based approach which is
implemented in JastAdd [15], an attribute grammar system
that extends Java with support for circular reference at-
tribute grammars (RAGs) [21]. Invariants for name binding,
control-flow and data-flow are implemented as complemen-
tary analysis functions that are checked after the transfor-
mation. Compared to refactoring frameworks used in exist-
ing IDEs, Java refactorings implemented in JastAdd proved
to be more reliable and required less effort in terms of lines
of code. The success of this approach can be explained by
the fact that, compared to preconditions, the specification
of the invariants more closely follows compiler analysis that



define the static semantics of a language.
Attribute grammars allow for a high-level declarative spec-

ification of semantic analysis, however, they offer no specific
language features to declaratively express syntax tree trans-
formations. An alternative approach is to use term rewrit-
ing for implementing refactorings. Term rewriting is used
in systems such as Maude [19], Tom [9], Strafunski [28] and
Stratego [12]. Term rewriting makes it easy to describe syn-
tax tree transformations, but is less declarative with respect
to semantic analysis. Rewriting systems typically view syn-
tax trees as terms without a concept of node identity; AST
nodes are characterized only by their subtrees, and not by
their position within the whole tree. Reference attributes
crucially rely on node identity, and hence have no direct
equivalent in a term-based representation of syntax trees.
In this paper we implement an invariant based approach
within the paradigm of term rewriting.

The paper focuses on preservation of name bindings. All
refactorings that introduce new names into a scope have to
guard against accidental changes of existing name bindings,
which change the semantic behavior of the program. We im-
plement a preservation criterion for statically known name
bindings that is generic applicable to different languages and
different refactorings. The preservation criterion takes as ar-
guments a language specific name analysis and a refactoring
specific transformation.

Many languages offer the possibility to access variables
defined in a namespace via qualified names. A notable ex-
ample is Java; a field that is shadowed by a local variable
can still be accessed using a qualifier such as this or super.
As a refinement to the preservation criterion, we show that
name analysis can be implemented as a reusable traversal
strategy that can be applied to restore name bindings by
creating qualified names, thereby enabling refactorings that
would otherwise be rejected.

The described techniques for name binding preservation
and name binding restoring form the main contribution of
the paper. Contrary to prior approaches, these techniques
adhere to the “Single Source of Truth” principle [5], with
the compiler being the single, authoritative representation
of semantic behavior. To see how our approach works in
practice, we implemented a language generic rename refac-
toring which we applied to Stratego [12], MiniJava [8] and
Mobl [24]. Our experience shows that the effort it takes to
implement the rename refactorings is significantly reduced
by using language generic techniques. Furthermore, manual
and automated testing demonstrate that the implemented
refactorings indeed preserve semantic behavior.

2. MOTIVATION
Refactorings are behavior preserving source-to-source trans-

formations with the objective of improving the design of ex-
isting code [17]. Although it is possible to refactor manually,
tool support reduces evolution costs by automating error-
prone and tedious tasks. In particular, behavior preserva-
tion is automatically checked; in case the transformation
changes the semantic behavior of the program, the refactor-
ing is rejected and the problem is reported to the user.

Name bindings associate identifiers with program entities
such as variables, methods and types. Name bindings form
a semantic concern that should be preserved by refactorings.
Intuitively, all name accesses in a program should bind to
the same declarations before and after the transformation.

The problem of maintaining existing name bindings occurs
in many refactorings, with renaming being the obvious ex-
ample. Automatically renaming an identifier requires bind-
ing information to determine which names must be renamed.
Furthermore, behavior preservation requires that conflicting
and accidentally shadowed declarations are detected.

Shadowing occurs when the same identifier is used for dif-
ferent entities in nested lexical scopes. Shadowing poses a
challenge for binding preservation in refactorings, Figure 1
illustrates variable shadowing. The age variable in the body
of the setAge method refers to the age field of the surround-
ing class. After renaming s to age (Figure 1, lower left), the
age field is shadowed by the method parameter age, declared
in an inner scope. As a consequence, the binding of the age
variable has changed. As a minimal requirement, refactor-
ing tools are expected to detect name binding violations to
guarantee the save application of the refactoring.

A namespace is a scope that groups related identifiers,
and allows the disambiguation of homonym identifiers re-
siding in different namespaces. In many programming lan-
guages, identifiers that appear in namespaces have a short
(local) name and a long “qualified” name. By using the
qualified name, an identifier can still be accessed in an inner
scope, even though a program entity with the same name
is declared within that inner scope. Figure 1 (lower right)
provides an example. By adding a name qualifier (this) to
the age variable, the original name bindings are restored so
the refactoring can still be carried out. Thus, the policy to
reject all refactorings with name binding violations is in fact
too restrictive, preventing refactorings that only require a
small modification to be applied. Therefore, a demanded
feature for refactoring tools is that they are able to restore
violated name bindings by creating qualified names.

Name binding analysis is implemented by the compiler of a
language, involving complex semantic rules for namespaces,
scoping and visibility. Name binding preservation conditions
in refactoring frameworks must implement the same seman-
tic rules. This can hardly be guaranteed with an ad hoc,
precondition based approach. Indeed, existing refactoring
implementations based on preconditions contain bugs be-
cause of (new) language features that are not supported [33].
A more reliable solution can be realized when the criterion
for name binding preservation is directly based on the name
analysis implemented in the compiler. This way, the se-
mantics assumed by the refactoring tool is guaranteed to be
consistent with the semantics implemented in the compiler,
even when the language evolves. We implement a name
binding preservation criterion that reuses the existing name
analysis defined in the compiler front-end. As a refinement,
we present an approach for restoring name bindings. Us-
ing strategic rewriting, we show that name analysis can be
defined as a reusable traversal strategy which is used to an-
alyze name bindings as well as to check and restore name
bindings by creating qualified names.

This paper is organized as follows. The name binding
preservation criterion is discussed in Section 3, while Sec-
tion 4 shows how name analysis can be reused to check and
restore name bindings. Section 5 reports on our experience
with applying both techniques to different languages.

3. PRESERVING NAME BINDINGS
Refactorings must preserve the name binding structure

of a program, implicitly defined by the name analysis im-



class Person {
int age;
void setAge(int s){

age = s;
}

}

class Person {
int age;
void setAge(int age){

age = age;
}

}

class Person {
int age;
void setAge(int age){

this.age = age;
}

}
Figure 1: Renaming s to age, incorrectly and correctly ap-
plied to code fragment.

ClassDec(
"Person"{"n0"}

, [ FieldDec("int", "age"{"n1"})
, MethodDec(

Void(), "setAge"{"n2"}, [Param("int", "age"{"n3"})]
, [Assign(QA(This(), "age"{"n1"}), Var("age"{"n3"}))]

)])
Figure 2: Name annotations make bindings explicit. The
reference names ‘n1’ and ‘n3’ distinguish the parameter ‘age’
from the field ‘age’

plemented in the compiler. To make the binding structure
explicit, we use the technique of explicit renaming imple-
mented in Stratego by means of term annotations [11]. The
result of the name analysis is an abstract syntax tree in
which all identifiers are annotated with a globally unique
reference name. That is, two identifiers are annotated with
the same reference name if and only if they bind to the same
declaration. Figure 2 shows the abstract syntax tree of the
Java fragment of Figure 1 (lower right) in the ATerm for-
mat [10]. The names in the AST are annotated with unique
reference names. The reference names ‘n1’ and ‘n3’ distin-
guish the parameter ‘age’ from the field ‘age’. This infor-
mation can be used for example in a rename refactoring to
determine which identifiers must be renamed.

We use name annotations to implement name binding
preservation as a post condition on the transformed tree.
The preservation condition compares the existing annota-
tions, which represent the original bindings, with the new
annotations, obtained by reanalyzing the transformed tree.
Preservation is realized if and only if the existing name an-
notations are equal to the new name annotations, modulo
renaming. The criterion does not make any assumptions
about the reference names that are generated for the decla-
rations, except that they are unique. In particular, existing
reference names may change after re-analysis. Furthermore,
the criterion applies to refactorings that change the AST
structure, as long as the name annotation in the transformed
AST represent the original binding structure.

Figure 3 illustrates the preservation condition for our run-
ning example. For convenience, only the relevant name an-
notations are shown. The lower right and upper code frag-
ments are equivalent modulo renaming, that is, the name
annotations follow the same pattern ([a,b,a,b]). By con-
trast, the name annotations in the lower left fragment follow
a different pattern ([a,b,b,b]), which means that the frag-
ment has a different binding structure.

Figure 4, apply-refactoring implements the name bind-
ing violation detection, taking a language specific name anal-
ysis strategy and a refactoring specific transformation rule

int age{n1};
void setAge(int s{n3})
{

age{n1} = s{n3};
}
int age{o1};
void setAge(int age{o3})
{

age{o3} = age{o3};
}

int age{p1};
void setAge(int age{p3})
{

this.age{p1} = age{p3};
}

Figure 3: Name binding pattern [n1, n3, n1, n3] in the
upper fragment, has binding violations in the lower left frag-
ment [o1, o3, o3, o3], and is preserved in the lower right
fragment [p1, p3, p1, p3].

apply-refactoring(transform, analyze, is-name):
ast -> (ast-t’, violations)
where

ast-t := <analyze; transform> ast;
ast-t’ := <analyze> ast-t;
old-names := <collect-all(is-name)> ast-t;
new-names := <collect-all(is-name)> ast-t’;
violations := <zip; binding-violations>

(old-names, new-names)

binding-violations:
[(x,y)|tl] -> <conc>

(hd-violations, <binding-violations <+ ?[]> tl’)
where

hd-violations := <filter(is-binding-viol(|x,y))> tl;
tl’ := <filter(not(?(_,y) <+ ?(x,_)))> tl

is-binding-viol(|x,y) =
(?(_,y) <+ ?(x,_)); not(?(x,y))

Figure 4: binding-violations collects binding violations
by comparing the reference names in the transformed tree,
before and after re-analysis. a.

aThe syntax < r > is used for rule application in Stratego,
s1; s2 represents the sequential operator, first apply s1, then
apply s2 to the resulting term

as arguments. The refactoring application returns the tree
that results after applying the transformation, plus a (pos-
sible empty) list of name binding violations. The name
binding violations are collected by comparing the original
name annotations (old-names) with the new name annota-
tions (new-names), in the order in which they occur in the
transformed tree. All name tuples that break the implicit
mapping between old and new names are returned as bind-
ing violations by the binding-violations rule. To improve
performance, the is-name pattern can be implemented refac-
toring specific to enforce that only the endangered names are
checked.

4. CREATING QUALIFIED NAMES
In the previous section we implemented a language generic

preservation criterion that is parameterized with an existing
name analysis strategy. In this section we propose an alter-
nate approach. Instead of passing the name analysis as a
parameter to the preservation criterion, we pass the preser-
vation criterion as a parameter to the name analysis. The
advantage of this approach is that we can extend the binding
preservation condition with a binding repair rule. We show
how a reusable name analysis traversal can be applied to
set name binding annotations (Section 4.2), to detect name
binding violations (Section 4.3), and to restore name bind-



class A { int a; }
class B extends A { int b; }
class C extends B {

int c;
class D extends E {

int d; int x;
void foo() {

int i;
i = <name> ; }}}

class E { int e; int x;}
Figure 5: Name lookup in Java proceeds in an outward-
upward motion.

ings by creating appropriate qualified names (Section 4.4).
Name lookup requires contextual information such as the

set of visible declarations, nesting and inheritance relations
between namespaces, and type information. The main task
of the name analysis strategy is to propagate this contex-
tual information to the access terms where a lookup rule is
applied that returns the associated declaration. Using the
Stratego paradigm of reusable traversal strategies, we as-
sume that the rule applied at the access terms is passed as
a parameter to the name analysis traversal. Since we treat
name analysis as a black box, we will not provide implemen-
tation details. Example implementations of name analysis
in Stratego are given in [23] and [26].

As a leading example, we implement our approach for a
subset of Java that models some essential features of the
Java language with respect to resolving name bindings. Sup-
ported features are: class inheritance and class nesting, local
variable, field and method declarations, and variable access
by simple or qualified names. Most other Java features are
excluded.

4.1 Name Lookup in Java
Figure 5 shows a small Java fragment which features class

inheritance, class nesting and variable declarations. To il-
lustrate name lookup in Java, we show how name bindings
are resolved for variable accesses at the <name> location.
The declaration is looked up in the set of visible declara-
tions, starting at the most local scope and proceeding in an
“outwards-upwards” motion. In the given example, the de-
clared variables are looked up in the following order: local
declarations (i), fields declared in the enclosing class (d and
x), fields declared in the super class (e and x), the outer
class (c), and the super classes of the outer class (b and a).
The field x in the super class E is not accessible by its simple
name x, since it is shadowed by the field x in class D. How-
ever, the shadowed field can still be accessed by its qualified
name, super.x. Qualifiers force the lookup to start at a spe-
cific namespace, thereby skipping over the names declared
in nested or inner scopes.

4.2 Setting Name Binding Annotations
Figure 6 shows the Stratego code for name lookup in Java.

The lookup logic is implemented in the lookup strategy;
which progresses outwards lexically (ns-out), taking a de-
tour upwards the inheritance hierarchy (ns-up). Lookup
starts at the local namespace for local variables (Var(name)),
and at the namespace associated to the qualifier for quali-
fied access (QA(qualifier, name)). When the processed
namespace contains a declaration with the given name, the
Reference rule applies successfully and the reference name
is returned. Otherwise, name lookup proceeds with the next,

annotate-names:
ast -> <analyze-names(annotate-name)> ast

annotate-name:
Var(name) -> Var(name{ref-name})
where

ref-name := <lookup> (Local(), name{})

annotate-name:
QA(qualifier, name) -> QA(qualifier, name{ref-name})
where

ref-name := <lookup> (<get-type> qualifier, name{})

get-type : This() -> <CurrentClass> // this
get-type : Super() -> <CurrentClass; Super> // super
get-type : QThis(ctype) -> ctype // C.this
get-type : QSuper(ctype) -> <Super> ctype // C.super
get-type : CastRef(ctype, t) -> ctype // ((A)t)

lookup:
(ns, name) -> ref-name
where

<while-not(
while-not(

// looks up reference for name
// in namespace (Local() or classname)
ref-name := <Reference> (<id>, name),
ns-up

),
ns-out

)> ns

// lookup rules for the name of the
// super class, current class and outer class
ns-up : cl -> <Super> cl
ns-out: Local() -> <CurrentClass>
ns-out: cl -> <Outer> cl
Figure 6: annotate-names sets reference annotations at vari-
able accesses. The reference is looked up in an outward-
upward motion.

more global namespace set by ns-up or ns-out. Reference,
CurrentClass, Super and Outer are dynamic rules, the Strat-
ego equivalent of symbol tables. Unlike standard rewrite
rules in Stratego, dynamic rules are created at run-time, and
propagate information available at their creation contexts.

The lookup strategy is called by the annotate-name rule
which sets the looked up reference name as annotation to
the access term. The name annotation rule is passed as
a parameter to the name analysis strategy analyze-names,
which takes care of propagating the required context sen-
sitive information to the access terms by creating dynamic
rules. The name annotation rule is implemented in the com-
piler front-end as complement of the name analysis traversal.

4.3 Checking Name Bindings
Name binding violations can be detected by passing a vio-

lation check rule to the name analysis, offering an alternative
to Section 3. The bindings that held before the transforma-
tion are stored in the tree as annotations, the bindings after
the transformation are looked up during the re-applied name
analysis (collect-binding-violations, Figure 7). To al-
low the comparison of old and new bindings, we assume that
declarations keep their reference name when revisited. The
comparison of the old and new binding is implemented by
the is-binding-violation rule (Figure 7), which succeeds
if original and newly looked up reference annotations are
different. In case a binding violation is detected, a bind-
ing violation error is stored (BindingViolation) which will



collect-binding-violations:
ast -> violations
where

<analyse-names(store-binding-violation)> ast;
violations := <bagof-BindingViolation>

store-binding-violation:
access -> access
where

<is-binding-violation> access;
rules(BindingViolation:+ access)

is-binding-violation:
access -> access
where

new-annotated-access := <annotate-name> access;
<not(equal)> (access, new-annotated-access)

Figure 7: Binding violations are collected by comparing the
old- and newly analyzed binding annotations during a name
analysis traversal.

later be reported to the user.

4.4 Restoring Name Bindings
A name binding violation occurs when the original refer-

ence of an access term is shadowed by a name declared in an
inner scope. The name binding is restored when a qualified
name forces the lookup in a more general namespace. The
code fragment in Figure 8 implements name binding repair
for the Java (sub)language. The create-qualified-access
rule restores the name bindings of violated access terms. The
rule repeatedly creates qualified names that enforce lookup
in a more general namespace, until a qualified name is con-
structed that preserves the original binding. The preser-
vation is checked by applying the is-binding-violation
rule discussed before. As with the name lookup strategy
(Figure 6), the “outwards upwards” motion is followed. The
cast-up and cast-out rules implement the construction of
a new qualified name that targets the next, more general
namespace. The walk across namespaces requires contextual
information which is propagated during the name analysis
traversal analyze-names implemented in the compiler front
end.

5. EXPERIENCE
In this section we report on our experience with imple-

menting refactorings for different languages, namely Mobl,
Stratego and the subset of Java discussed in the paper. In
the case of Mobl and Stratego, we used the existing compil-
ers [3, 6], for the Java subset we implemented the compiler
from scratch.

Genericity. To see if our techniques are applicable to dif-
ferent languages, we implemented rename refactorings for
the Java, Mobl and Stratego compilers. The implementa-
tions show that the preservation condition is applicable to
languages with statically known name bindings. To realize
behavior preservation for Java we had to cope with method
overriding and hence dynamic dispatch. Changes introduced
in method overriding may change the behavior of the pro-
gram without changing (static) name bindings. We imple-
mented an additional semantic condition that checks if a
refactoring changes the overriding structure of the program
in which case a warning is reported. The technique is not
applicable to dynamic languages were the name bindings are

restore-name-bindings:
ast -> <analyze-names(restore-binding)> ast

restore-binding:
access -> qualified-access
where

qualified-access := <
create-qualified-access <+
rules(BindingViolation:+ access)

> access

create-qualified-access:
access -> qualified-access
where

qualified-access :=
<while-not(

while-not(
where(not(is-binding-violation)),
cast-up

),
cast-out

)> access

//cast-up and cast-out qualified names
cast-up: QA(qualifier, name) ->

QA(<cast-up-qualifier> qualifier, name)
cast-out: QA(qualifier, name) ->

QA(<cast-out-qualifier> qualifier, name)
cast-out: Var(name) -> QA(This(), name)

//cast-up and cast-out qualifiers
cast-up-qualifier: This() -> Super()
cast-up-qualifier:

Super() -> CastRef(<get-type; ns-up> Super(), This())
cast-up-qualifier:

CastRef(c, v) -> CastRef(<ns-up> c, v)
cast-up-qualifier: QThis(c) -> QSuper(c)
cast-up-qualifier:

qs@QSuper(t) -> CastRef(<get-type; ns-up>qs, QThis(t))
cast-out-qualifier:

This() -> QThis(<get-type; ns-out> This())
cast-out-qualifier:

QThis(t) -> QThis(<get-type; ns-out> t)
Figure 8: restore-binding restores a violated name bind-
ing by creating a qualified name. The qualified name is
created by repeatedly up(out)-casting the qualifier until the
binding preservation check succeeds. a

a s1 < + s2 is Stratego syntax for guarded left choice. First
s1 is applied, and only if it fails, s2 is applied to the original
term.

not statically known.

Applicability. In this paragraph we comment on the effort
it took to realize the implementations for the mentioned lan-
guages. Name binding preservation for Mobl and Stratego
was accurately checked by applying the preservation crite-
rion of Section 3. The clear benefit of using this technique
was that no extra code had to be written to implement
behavior preservation. However, the existing name analy-
sis had to be tailored before it could be applied to check
name binding preservation. The existing analysis was im-
plemented on single files, resolving imported files from the
file system. However, our approach requires that all affected
ASTs are (re)analyzed in memory, since the correctness of
the refactoring is evaluated in memory, before the files in
the file system are modified. We coped with this issue by
slightly modifying the existing name analysis so that it takes
into account a list of in-memory ASTs when resolving im-



ports.
For Java (subset) we applied the technique discussed in

Section 4.4 which offers support for restoring name bindings
by creating qualified names. Some language specific code
had to be written to implement the creation of qualifiers, the
code is shown in Figure 8. Implementing the name analysis
as a parameterized strategy hardly took any additional effort
since it fits well in the Stratego paradigm.

Correctness. To evaluate the correctness of our approach,
we manually tested rename refactorings on existing projects
in Mobl and Stratego. In addition, we implemented test
suites that cover critical cases for Mobl, Stratego and the
Java sub-language. The test results confirm the correctness
of the preservation criterion. Finally, we implemented an
automated test strategy that uses an inverse oracle [13] to
test whether the name bindings are preserved. First, a list
of potential harmful names is created by collecting all names
that appear in the program. Then, rename refactorings are
applied to all names in the program with the new name ran-
domly chosen from the set of potential harmful names. The
renaming is only applied in case no binding violations are
detected. As a last step, rename refactorings are applied
that revert the names of all declarations to their original
name. The inverse oracle states that the resulting tree is
equal to the original tree (modulo annotations). We suc-
cessfully applied this automated test strategy to evaluate
the correctness of the preservation criterion of Section 3 on
the Stratego compiler front end (written in Stratego). Dur-
ing the application of the test strategy, 484 renamings were
applied, while 196 renamings were rejected because of bind-
ing violations.

Performance. The final important question to evaluate is if
the implementation is practical with respect to performance.
To address this issue, we performed a number of renamings
on the source code of the Mobl compiler, which consists of
about 8000 lines of Stratego code. Our experience shows
that the approach scales at least to this size of projects. We
did not yet do performance tests on larger programs.

6. RELATED WORK
This paper presents a language generic approach to name

binding preservation, reusing the existing name analysis de-
fined in the compiler of the language. We describe a preser-
vation condition which is directly applicable to different lan-
guages and different refactoring transformations. Further-
more, we show that name analysis can be defined as a reusable
traversal strategy that is applied to set binding annotations,
to check bindings and to restore bindings by creating qual-
ified names. These techniques offer an efficient and reliable
solution; efficient because the refactoring developer does not
have to implement complex conditions for name binding
preservation, reliable because the semantics of the language
is implemented only once, with the compiler being the single
source of truth. Our implementation uses the technique of
strategic term rewriting, and is implemented in Stratego.

Precondition Approaches. Behavior preservation of refac-
torings has been a primary concern in refactoring research.
Opdyke [31] and Roberts [32] propose a precondition based
approach. Preconditions specify which conditions a program

has to meet for the refactoring to be correct. Limitations
of a precondition based approach are pointed out in [33].
Complex scope nesting rules common in current languages
make it hard to define sufficient preconditions, furthermore,
additional preconditions have to be implemented in case the
language evolves. A second limitation is that preconditions
are often too strong, preventing refactorings that could be
carried out with some small modifications. The mentioned
paper gives examples where widely used refactoring tools
(Eclipse [1], NetBeans [4], and IntelliJ [2]) admitted unsound
rename refactorings where names did not bind to the correct
declarations after the renaming.

JastAdd. JastAdd [15] implements an approach based on
reference attribute grammars [21] that allow to express name
analysis in a concise and modular manner. The JastAdd ap-
proach to name binding preservation [33] is based on the idea
of inverted lookup functions. The inverted lookup functions
compute names for variable accesses that bind to a given dec-
laration. The access computation can be tailored to create
qualified names, allowing the refactoring to proceed where
otherwise a conflict would occur. After a refactoring trans-
formation is performed, all endangered accesses are updated
so that they resolve to the same declaration as before. If the
updating fails, the refactoring is rejected and all changes are
undone. The inverted lookup functions closely follow the
lookup functions that specify the name analysis, as noticed
in the paper, the size of the access computation code com-
pares to the size of the lookup code. The correspondence be-
tween lookup and access computation helps to avoid many
pitfalls overseen in precondition based approaches and to
adjust the access computation when new language features
are introduced. However, the process of inverting can not be
automated. As a consequence, the invertible look up func-
tions introduce duplication and therefore vulnerabilities for
subtle bugs.

Formal Specification. In [19], the authors present a formal
approach to the specification and verification of refactorings.
Refactorings are specified formally, with conditional rewrite
rules in the form of executable Maude equations. The refac-
toring specifications extend the equational semantics of the
language at hand. Given a formal specification of the Java
semantics, they provide detailed correctness proofs for be-
havior preservation of two Java refactorings. The approach
can be used in conjunction with any language for which an
equational semantics has been provided.

Refactoring Tools for Functional Languages. Huiqing
Li et al. [30] present HaRe, a refactoring framework for
Haskell. The HaRe framework makes use of the static anal-
ysis provided by the Haskell compiler frontend Programat-
ica [20]. Transformations and analysis are implemented us-
ing Strafunski [29], a library for functional strategic pro-
gramming in Haskell. Instead of an invariant based ap-
proach, the behavior preservation is implemented with help
of pre- and postconditions and possible compensation strate-
gies in case the conditions are violated.

Lammel [28] sketches the idea of a generic refactoring
framework that could be instantiated for a variety of lan-
guages. The implementation is based on functional strate-
gic programming in Haskell [29], and includes generic trans-
formations and analysis functions as building blocks. The



generic functions are parameterized with the language-specific
ingredients. The intention of the paper is to investigate the
idea of a generic refactoring framework, but its applicability
does not seem to go beyond a proof of concept.

7. CONCLUSION
We are developing a language generic refactoring frame-

work with the objective to reduce the effort it takes to im-
plement refactorings for new languages. By reusing the ex-
isting compiler infrastructure, we implemented a language
generic solution to name binding preservation. We success-
fully applied the binding preservation criterion to implement
renaming for different languages, which resulted in reliable
implementations that required only a small effort in terms
of lines of code. As future work, we plan to implement ad-
ditional preservation conditions for control- and data- flow.
Furthermore, we intend to implement a library of language
generic refactorings that are directly applicable to new lan-
guages.
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