
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Software Development Environments on
the Web: A Research Agenda

Lennart C. L. Kats, Richard Vogelij, Karl Trygve Kalleberg,
Eelco Visser

Report TUD-SERG-2012-014

SERG



TUD-SERG-2012-014

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Lennart C. L. Kats, Richard Vogelij, Karl Trygve Kalleberg, Eelco Visser. Software Development Environ-
ments on the Web: A Research Agenda. In Proceedings of the 11th SIGPLAN symposium on New ideas,
new paradigms, and reflections on programming and software (Onward! 2012), ACM Press, 2012.

@inproceedings{KatsVKV2012,
title = {Software Development Environments on the Web: A Research Agenda},
author = {Lennart C. L. Kats and Richard G. Vogelij

and Karl Trygve Kalleberg and Eelco Visser},
year = {2012},
booktitle = {Proceedings of the 11th SIGPLAN symposium on

New ideas, new paradigms, and reflections on programming
and software (Onward 2012)},

publisher = {ACM Press},
}

c© copyright 2012, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.



Software Development Environments on the Web:
A Research Agenda

Lennart C. L. Kats∗† Richard G. Vogelij∗ Karl Trygve Kalleberg‡ Eelco Visser∗
∗l.c.l.kats@tudelft.nl, r.g.vogelij-1@student.tudelft.nl, visser@acm.org, Delft University of Technology

† Cloud9 IDE, Inc.
‡ karltk@kolibrifx.com, KolibriFX

Abstract
Software is rapidly moving from the desktop to the Web. The
Web provides a generic user interface that allows ubiquitous
access, instant collaboration, integration with other online
services, and avoids installation and configuration on desk-
top computers. For software development, the Web presents
a shift away from developer workstations as a silo, and has
the promise of closer collaboration and improved feedback
through innovations in Web-based interactive development
environments (IDEs). Moving IDEs to the Web is not just a
matter of “porting” desktop IDEs; a fundamental reconsider-
ation of the IDE architecture is necessary in order to realize
the full potential that the combination of modern IDEs and
the Web can offer. This paper discusses research challenges
and opportunities in this area, guided by a pilot study of a
web IDE implementation.

Categories and Subject Descriptors D.2.6 [Software Engi-
neering]: Interactive Environments; H.5.3 [Information In-
terfaces and Presentation]: Group and Organization Inter-
faces—Web-based Interaction

General Terms Design, Languages

1. Introduction
Software is moving from the desktop to the Web. Online ser-
vices are rapidly replacing traditional shrink-wrapped and
downloadable software products. They run in the Cloud,
and use the web browser as a generic user interface that

allows ubiquitous access, instant collaboration, integration
with other online services, and avoids installation and con-
figuration on desktop computers.

Web-Based Software Development It is only natural that
software development tools follow this trend, providing a
Web-based interface for software development, supported by
cloud-based storage and services. Many software engineer-
ing tools, including issue tracking, version management, and
build farms for continuous integration, are already provided
as Web-based services. Based on the latest developments in
Ajax technologies, vastly improved JavaScript engines, and
the introduction of HTML5, there is now even a small but
growing collection of browser-based code editors.

Fully fledged integrated development environments
(IDEs) are still lagging behind in this pull towards the Web.
Modern, desktop-based IDEs integrate a wide range of soft-
ware engineering tools, and provide a platform for writ-
ing, maintaining, testing, building, running, debugging, and
deploying software. They increase developer productivity
by incorporating many different kinds of editor services
specific to the syntax and semantics of a language. These
services assist developers in understanding and navigating
through the code, they direct developers to inconsistent or
incomplete areas of code, and they even help with editing
code by providing automatic indentation, bracket insertion,
and content completion. The integration of complete tool
suites for software development and the development of
language-specific editor services took a tremendous effort
for the current generation of IDEs such as Eclipse and Vi-
sual Studio. Moving the next generation of IDEs to the Web
is not just a matter of “porting” desktop IDEs; a fundamental
reconsideration of the IDE architecture is necessary in order
to realize the full potential that the combination of modern
IDEs and the Web can offer.

The Web as a Software Development Platform As a plat-
form for software development, the Web offers a compelling
combination of challenges and opportunities.

On the one hand, it has an inhomogeneous, distributed
nature: computational nodes (servers vs web browsers)

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 1



have extremely varied computational capabilities; on the
browser-side, only JavaScript is natively supported; re-
sources are spread across unreliable networks, with com-
puting resources that may disappear and reappear randomly
and communication that is many orders of magnitude slower
than inter-process communication.

On the other hand, the Web also provides a new fron-
tier for software development. The connectedness of clients
on the Web enables closer collaboration between develop-
ers on a project through joint workspaces enabling real-time
collaborative editing and coordination of tasks. The central-
ized configuration and deployment of the cloud ensures that
all developers on a project use the same development envi-
ronment, since there is no need to locally install new ver-
sions of the IDE, compiler, or testing tools. The integration
with other services enables user-extensible platforms based
on embedded DSLs. The infinitely scalable resources of the
cloud enable speculative verification, compilation, and test-
ing. Highly parallel analysis enables instantaneous feedback
to developers, even for sophisticated whole-program analy-
ses.

A Research Agenda While software development environ-
ments on the Web may be an appealing vision, it is far from
reality. In this paper, we outline a research agenda for the
intersection of research in Integrated Development Environ-
ments and Web-based, Cloud-delivered software engineer-
ing. We examine use cases, opportunities, technical, archi-
tectural, and social challenges of the Web as software devel-
opment environment.

Outline In Section 2 we discuss the status quo of devel-
oping software with classical desktop IDEs such as Eclipse
and Visual Studio, elaborating on their features as well as
the problems. In Section 3 we explore use cases of the
Web as development environment and the research questions
these generate. In particular, we discuss WebLab, a proof-of-
concept e-learning web application for programming educa-
tion. In Section 4 we consider the architecture of desktop
IDEs and the implementation of IDE plugins from language
definitions as background for the realization of Web-based
IDES.

In Section 5 and Section 6 we discuss a pilot study of
a Web-based IDE implementation, which we conducted in
order to illustrate and formulate the research goals in this
area. Our aim in this pilot study has been to reuse as much
existing desktop and Web technology as possible, and to an-
alyze and measure the feasibility and performance of the ap-
proach. We present our proof of concept implementation of
a fully functional Web based, syntactically and semantically
aware, source code editor for the mobl [17] language and
present statistics from the performance benchmarks we have
performed. Based on the initial experience with the proof of
concept we speculate on the future possibilities and issues
Web-based IDE implementations could provide and present.

In Section 7 we consider the social and political impli-
cations of confining software development environments to
walled gardens on the Web.

2. IDEs in the Desktop Era
About five decades ago, the first IDE was introduced, tar-
geting the BASIC language [25]. The IDE was purely
command-based, and therefore did not look much like the
menu-driven, graphical IDEs prevalent today. Still, it in-
tegrated source code editing, compilation, debugging, and
execution in a manner consistent with a modern IDE.

Over the past five decades, desktop IDEs have become
mature and are now prevalent in modern software engineer-
ing. They provide tools for working with a wide range of
languages, combined with facilities for version management,
issue management, and so on. They scale to large software
projects, large teams, and can be used with a wide range of
programming languages and software engineering tools.

In the remainder of this section we discuss the features
and facilities current desktop IDEs provide, and reflect
on the limitations and the shortcomings that the desktop
paradigm has brought to IDEs and software development in
general.

2.1 IDE Components
Modern IDEs significantly increase developer productivity
by providing a rich user interface and tool support special-
ized for software development. They provide general facil-
ities for software development and language-specific facili-
ties for working with a particular programming language.

General IDE facilities include support for managing
source files, browsing through projects, searching and re-
placing text, and so on. They also include integration with
systems for version control, build management, and issue
tracking. The latter facilities can be reused independently of
a particular language, and often operate at the level of entire
projects, not single files.

Language-specific facilities include editor services and
tooling tailored towards a particular language. Modern IDEs
often support several dozen or more language-specific editor
services for a language, including from basic syntax high-
lighting, code navigation, documentation popups, content
completion, (realtime) type checking and compilation, code
outline view, refactoring, code formatting and other forms
of language-specific support. Figure 1 gives an overview of
several editor services in a desktop-based IDE. By continu-
ously parsing and analyzing the source code, these services
provide instant feedback while editing a program, for ex-
ample by marking possible errors or providing suggestions
to complete an expression. Other language-specific facilities
include integrated tools such as compilers, interpreters, and
debuggers.

At the heart of the modern IDE is the plugin model. It pro-
vides a generic framework for extending the IDE with new

Software Development Environments on the Web: A Research Agenda SERG

2 TUD-SERG-2012-014



Figure 1. Editor services in a desktop-based IDE (from [23]).

services. The user is in control of installing and upgrading
the plugins for his IDE installation. All plugins execute in-
side the IDE process, and share access to the same resources,
such as the workspace, the projects and the files on disk. Plu-
gin designed to execute in their own threads, must synchro-
nize their access to these shared resources.

2.2 Software Development in Context
Software development and maintenance is a highly collabo-
rative effort. The crucial role of efficient and precise commu-
nication between developers, developers and testers, and de-
velopers and end-users is well-known. It is also an accepted
truth that developers tend to follow the path of least resis-
tance. If the tools at their disposal make collaboration diffi-
cult, collaboration will happen less, or not at all.

Despite the many accomplishments and innovations of
desktop IDEs, they still operate within the constraints of
the desktop paradigm: individual developers work on sep-
arate machines, requiring the installation, configuration, and
maintenance of separate IDE instances for each developer. In
some sense, the desktop paradigm turns the developer work-
station into a silo. Communication with the outside world
works well for some aspects of development: software ar-
tifacts may be pushed to outside machines for deployment,
source code flows freely into and out of version control sys-
tems, issues (bugs, feature requests) are recorded into estab-
lished issue trackers and day-to-day communication flows
over instant messaging and/or e-mail.

These “sharing pipelines” have usually been set up before
the project starts, and collaboration is mostly limited to sce-
narios that fit into these “pipelines”. A typical case where
this breaks down is when developer A has encountered a
hard-to-reproduce bug. Even if developer B wanted to help

out, recreating the exact state to trigger the problem on B’s
machine is usually so time-consuming as not to be worth the
effort. It is usually better to join forces at the physical ma-
chine of developer A. None of the major IDEs provide real-
time collaborative features to mitigate this problem—even
though technology for doing so exists [5].

An analogy can be made in the case of authoring a doc-
ument. Co-writing a document using a traditional desktop-
based word processor requires a substantial amount of ma-
chinery and ceremony. The co-authors must agree on a “pro-
tocol” for sharing documents among the participants, for ex-
ample partitioning of the document and timely exchanges of
the partitions by e-mail. A policy for conflict resolution must
exist when multiple authors have edited their own copies of
the same document and want to merge it. Contrast this with a
co-writing documents in Google Docs. The real-time, online
document collaboration offered by Google Docs requires no
setup, no ceremony. Every participants sees the most up to
date document at any time (modulo a few milliseconds to
seconds, due to network latency).

Desktop word processors such as LibreOffice are now ac-
quiring similar collaborative editing features. This is not be-
cause collaborative editing was impossible before, because
people write larger documents today, or because people did
not collaborate in the past. It is more likely because real-time
collaboration did not fit well in the silo-like mentality of the
desktop paradigm, where every machine is an island.

2.3 IDE Deployment and Installation
The desktop paradigm dictates the local deployment, instal-
lation, and configuration of software on client machines.
The time and effort required for setting up an IDE from
scratch is not insignificant. We timed the setup process for an

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 3



Eclipse installation with plugins for an issue tracker, a ver-
sion control system, and a custom programming language to
be around 18 minutes, start to finish.

The next stage is to set up the development workspace.
In our experience, this is easily the most time-consuming
part. For larger applications, especially Java web applica-
tions, it can take almost an hour to configure everything
properly for a skilled developer, even when all necessary
plugins are already present. This problem is exacerbated
by Eclipse’s relatively poor capabilities for sharing config-
urations between workspaces, and non-existent support for
safely cloning workspaces.

Local deployment and installation imposes the burden
of maintaining and upgrading the installation on the devel-
oper. While this allows the individual developer to manage
the risk and time involved in upgrades, the recurring costs
of upgrades are usually paid by all developers. Resolving
conflicting version requirements for plugins is a well-known
headache for most IDE users, as is intermittent regressions
due to accidentally incompatible plugin updates.

Once everything is set up, it might have to be redone, if
the developer works on more than one machine, and espe-
cially if he works on more than one platform. Moving your
development workspace from the Windows machine at work
to the Linux machine at home requires installation of the en-
tire setup from scratch.

While the desktop paradigm provides full control of the
setup of the IDE, it fundamentally cannot offer the zero-
deployment benefits provided by the cloud. We discuss risks
related to lack of control in Section 7.

3. The Web as Development Environment
We can distinguish two broad categories of applications of
the Web software development environment. The first cate-
gory is online software development, where software devel-
opers transition to (integrated) programming tools deployed
in the cloud. The second category consists of programmable
web applications, web applications that can be configured
or programmed by end users by means of domain-specific
or even application-specific languages. In this section, we
explore examples from each of these categories.

Our aim in this section is not to present novel ideas that
would not have been possible in the desktop paradigm. We
instead want to focus on scenarios which become easier,
significantly different, or in some sense more natural in a
Web-based paradigm, and we aim to contrast these scenarios
from the status quo. The underlying ideas have already been
explored in the past, but might not have gained significant
traction; we posit that the Web might act as catalyst for
reviving some of these ideas.

3.1 Coding Online
A conceptually simple approach to developing software
on the Web is to replicate the desktop infrastructure for

Figure 2. Screenshot of a proof-of-concept web IDE for
mobl [17], featuring syntactic and semantic editor services
and embedding into the Cloud9 IDE [6].

the Web, and keep current development practices mostly
unchanged—to keep doing what we already do, but on the
Web. Since source code is easily stored in version manage-
ment systems accessible from the Web, the first step towards
fully online development is to support code editing in the
browser. Then, any developer with an Internet-connected
web browser is equipped to write code.

Code editing online has been available for a while al-
ready. GitHub1 supports code editing in the browser with
language-aware syntax highlighting. The Orion project2, a
sub-project of Eclipse, offers a prototype of online code edit-
ing of JavaScript code stored in Git repositories. The Cloud9
IDE [6] (Figure 2) provides a syntax-highlighting editor for
about two dozen popular languages, file management, in-
tegration with a handful of online source code repository
providers, and deployment support for a few selected cloud
hosting providers.

A full fledged web IDE needs to provide more than just
source code editing. In order to be a credible alternative to
the desktop IDE it needs the complete range of semantic ed-
itor services provided by the current generation of desktop
IDEs (code navigation, type checking for statically typed
languages, outlining, content completion, refactoring, etc).
Furthermore, it needs to support the entire software devel-
opment cycle: compiling, running, debugging, refactoring,
and deploying code. Realizing such a full-blown web IDE
prompts a number of immediate technical questions.

How does the edit-compile-run cycle work on the Web? In
the general case, the web browser cannot act as a runtime
for the program under development. The web IDE must be
connected to some form of runtime provider where the de-
veloper can execute the program under development as part

1GitHub, http://github.com/.
2The Eclipse Orion project, http://eclipse.org/orion/.

Software Development Environments on the Web: A Research Agenda SERG

4 TUD-SERG-2012-014



of the edit-compile-run cycle. That is, the runtime provider
becomes a Web service employed by the web IDE.

The present web IDEs are geared to developing Web/-
cloud applications, and offer execution for the program un-
der development on a few cloud providers, such as Heroku3,
and Google AppEngine4. With the current state of technol-
ogy, the startup time for a single cycle might be as much as
several minutes, but as the offerings mature, incremental de-
ployment is likely to reduce this drastically. We discuss this
topic further in Section 6.3.

What happens when the developer is offline? Most web ap-
plications simply do not support offline mode, and for some
developers, especially Web/cloud developers, that is perhaps
acceptable also for web IDEs. Even for other types of devel-
opers, one must consider how much of their working time is
spent offline? What will that figure be in five years? Given
developers’ reliance on documentation, search engines and
collaboration, can one really be productive offline anymore?
Even if offline mode is ultimately necessary, one could ar-
gue that offline support should be limited to a subset of the
full capabilities, starting with only what is necessary for the
edit-compile-run cycle.

How does the web IDE integrate with existing tools? For
pragmatical and economical reasons, the web IDE must inte-
grate well with the significant amount of high-quality devel-
oper tools already in use, such as continuous integration/con-
tinuous deployment, issue trackers, version control, static
analysis tools. Many of these are on the Web, and already
provide a web service API; they are online services designed
for integration with other online services. The other tools
must become services by acquiring a web service API. In-
teroperability requires the web IDE to provide a plugin ar-
chitecture. The plugins must be able to call out to external
web services, and to provide the necessary user-interface el-
ements for these services. While the desktop IDE is often a
collection of plugins running in the same process, the web
IDE is a collection of distributed services connected through
web services APIs. An important topic of research is the de-
sign of the protocols necessary for such interoperability –
the web IDE equivalent of the OSGi plugin model.

How will coding online affect productivity? It might be
beneficial: Experience from other online services indicate
that online services can shield the users (in this case the
developer) from the configuration specifics in the runtime
environment. The developer can spend less time on instal-
lation and configuration of the tools, and more time on de-
velopment. The daily maintenance (upgrades, backups, re-
dundancy, scaling) is handled by dedicated personnel, and
the costs are amortized across all users. It might be harmful:
Any network or cloud provider outages, or takedowns due to
legal disputes, will impact the developer severely since there

3The Heroku cloud application platform, http://heroku.com/.
4Google AppEngine, http://appengine.google.com/.

will (likely) be no backup or offline alternative. Lack of con-
trol of the platform makes it difficult, or even impossible, to
work around bugs and regressions and the developer might
not be able to control when and how upgrades to the IDE
should happen. Answering these questions requires empir-
ical study, and a strategy for how to measure and compare
developer productivity for Web vs desktop IDEs.

3.2 E-learning
Another application of web IDEs is in programming educa-
tion. Traditional programming education relies on program-
ming environments deployed on lab machines, which can be
a tedious process at odds with the speed of developments
in these tools. Furthermore, the furnished lab machine will
probably soon give way to student home desktop and laptop
computers, which will further complicate ensuring a homo-
geneous programming environment for all students. Another
problem of traditional course setup is reliably testing stu-
dents. Collecting and then grading assignments is typically
a laborious process that takes time away from teaching. Pa-
per exams provide an inadequate medium for testing the es-
sential skills of a programming course, i.e. problem solving
by formalizing solutions in code, and are tedious to grade. A
Web programming environment can address these issues.

WebLab As a proof of concept we have developed Web-
Lab (Figure 3) and applied it in a course on “Concepts of
Programming Languages” in the first year of the Computer
Science bachelor program at TU Delft. The course uses the
Scala programming language to teach functional program-
ming.

The WebLab web application integrates course adminis-
tration and student work in a single uniform user interface.
The application supports the instructor in creating and orga-
nizing all assignments of a programming course, from tuto-
rial exercises to graded assignments and exams. Assignment
descriptions, solution template and specification tests can be
edited and tested in the browser. Administration of enroll-
ment and computation of student grades based on course-
specific grading scheme are integrated in the application.

Students solve assignments by writing programs using
the ACE editor embedded in the page of the programming
assignment (Figure 3). The editor supports syntax highlight-
ing for Scala and basic code editing features such as bracket
matching. Programs are compiled on the server, and com-
piler output is fed back to the browser. Programs are also
executed on the server, running test sets defined by the stu-
dent and specification tests defined by the instructor. Pro-
grams are executed safely with a restricted class loader and
killed if taking too long (usually caused by an infinite loop
or recursion). Submissions are automatically graded based
on the ratio of specification tests that succeed. In addition,
submissions can be checked by a teaching assistant using
an assignment-specific check list. The online workspace im-
plies that an instructor or teaching assistant can inspect a

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 5



Figure 3. A Scala programming assignment in WebLab. Left: the assignment description, top right: a web editor for the
assignment, bottom right: the assignment’s status.

submission of a student exactly as the student sees it. As-
signments to be used as exam can be secured by a registra-
tion key, which requires students to be physically present in
the examination room to access the exam.

The current version of WebLab has already proved to be
robust and effective. It has supported a programming exam
with 130 students simultaneously writing, compiling and
executing programs. However, there are many opportunities
to make better use of the Web environment and optimize
the IDE to support learning of programming and computing
concepts.

How can we specialize the IDE to teaching? The separate
code editor and command-line compiler feedback are prim-
itive and should be replaced with a proper language-aware
editor with inline syntactic and semantic feedback that we
are used to from modern IDEs. However, the e-learning ap-
plication calls for an embedded programming environment.
Rather than sending students from the textbook to a gen-
eral purpose IDE to solve problems, the textbook and IDE
should be blended. Solving an assignment is like scribbling
a program on the page of a text book, including feedback
and a grade. Furthermore, the work of Marceau et al. [32]
suggests that there is a mismatch between the terminology
used in IDEs and in the class-room. Web IDEs specialized
to novice programmers may help closing this gap.

Software Development Environments on the Web: A Research Agenda SERG

6 TUD-SERG-2012-014



How can we improve student coding style? Running tests
is a fairly effective way to check the correctness of sub-
missions. However, it does not provide any feedback about
proper use of programming idioms. For example, are stu-
dents using functional style instead of imperative style? Can
we devise (semi-) automatic analyses of coding style in or-
der to provide relevant feedback to students?

How can we integrate fraud detection? Unfortunately, a
web IDE is not a magic solution against plagiarism. Rather,
the web browser in which assignments are now made is
probably seen by students as the tool for getting solutions
to problems using search engines. While a good tool in the
box, it does not help in understanding programming funda-
mentals. Can we integrate language-aware fraud detection
tools and monitoring of editing behaviour in order to un-
cover undesirable behaviour in an early stage and warn both
students involved and instructors?

What can we learn from monitoring student programming?
Monitoring of student programming behaviour can also be
used more positively for adaptive learning. By observing
what students struggle with, additional training exercises
may be suggested. And as instructors we can get more direct
insight in how students are doing in a course, so that we can
adapt our teaching. On the scientific level, having students
program in a web IDE provides for a great opportunity
to learn more about the programming behaviour of novice
programmers. Conducting studies such as those of Marceau
et al. [32] can be integrated into the environment in order to
automate the collection and analysis of data.

3.3 Collaboration
The Web was conceived as tool for collaboration, and most
of the services and techniques developed for the Web are
there to facilitate collaboration. Here we consider the poten-
tial impact of these services and techniques in the context of
IDEs.

When all developers are online, how does team collabo-
ration change? A number of Web 2.0 applications, such
as Google Docs and Wave, have shown that collaboration
changes when the participants interact in real-time, on the
same document. These applications emphasize synchronous
collaboration combined with versioning. They use the con-
nectiveness of the cloud combined with novel synchroniza-
tion algorithms such as Fraser’s differential synchronization
algorithm [11]. Using a realtime connection between clients,
every change to a model is reflected from the client to all
other active developers working on the same model. By con-
trast, current desktop IDEs tend to use asynchronous collab-
oration, where each developer works in their own instance
taken from a canonical master copy. Eventually they merge
their changes into a new master copy.

What is the impact of online collaboration on basic IDE ser-
vices? Collaboration and version management is an area

with a wide range of variability. The connectivity and the
centrality of configuration of the cloud makes it an excellent
platform to investigate different models. Fully synchronous
collaboration is highly effective for editing documents and
can facilitate pair programming, but it may not scale to soft-
ware development projects with more programmers editing
and debugging at the same time.

One direction for new approaches to online collaboration
is to use the language-specific facilities of the online IDE.
With many developers working at the same time, one sce-
nario that should be avoided is synchronous collaboration of
invalid or incomplete source code. With a language-aware
IDE, source code can be checked for syntactic and seman-
tic correctness, and even tested, before merging. Specula-
tive merging and checking of source code could be the basis
of new hybrid models between fully synchronous and asyn-
chronous collaboration.

Other online services relevant for online collaboration
include any communication channels incorporated into the
IDE, in particular issue trackers. Current issue trackers tend
to be loosely integrated into the development process. With
a fully integrated environment, issue reports could include a
versioned snapshot of issues encountered by other develop-
ers, or a representation of the runtime state or issues reported
by users.

3.4 Discovery and Recommendation
Understanding the source code of a software project is key
to efficient software development. Developers navigate the
code and documentation to discover its functions, and to
learn and follow the architecture and design patterns estab-
lished for a project. Experience with recommendation en-
gines show that they can be effective tools for helping users
navigate many types of content, including source code [37].

As source code is increasingly being placed online under
various open licenses, the collective corpus at our disposal
for automated mining and indexing is increasing rapidly.
Zeller predicts that discovery and recommendation systems
will eventually offer “[...] automated assistance in all devel-
opment decisions for programmers and managers alike: "For
this task, you should collaborate with Joe, because it will
likely require risky work on the Mailbox class."” [46]. Data
extracted from mining software repositories can be used for
a number of purposes, including API usage recommenda-
tion [31], e.g. what are the typical protocols that clients of
an API use?; bug prevention, e.g. based on historical bugs,
which parts of the source code is more likely to have new
bugs? [14]; structural code search, e.g. show me calls to
wait and notify that are not protected by a synchronized
block [30]; automated bug detection, by using static anal-
ysis tools such as FindBugs [2].

How does moving to the Web change discovery and recom-
mendation? In the Web-based development environment,
all the source code is by necessity online. It is collected in

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 7



centralized repositories, and is increasingly available under
open licenses. This simplifies indexing and mining substan-
tially. Measuring the accuracy of recommendation engines
is dependent on data from the developers’ workspace. User
tracking is a basic building block for most modern web ap-
plications. Privacy concerns notwithstanding, it is relatively
trivial to instrument the web IDEs to track the activity of de-
velopers, and thus quickly collect the necessary data needed
to tune degrees-of-interest models and thus improve the rec-
ommendations. Web-based issue trackers have provided ser-
vice APIs for some time. This makes it relatively easy to
mine and index bug history. Such mining may be used to
continuously tune tools for automated bug detection to weed
out false positives.

3.5 Remix Culture
The value attributed to many web sites lies in their users
and the content that these users produce, much more than
the technology behind the service and whatever content pro-
duced by the original web site creators. The growth of the
social Web clearly demonstrates that people want to be cre-
ative, and they want to share their creativity with others.

How can the web IDE improve the mashability of web appli-
cations? Skilled web developers can often mash together
new web applications quickly by joining together a few wid-
gets and connect these with a set of web services, at least
when they are familiar with the widgets and services they
are integrating. By integrating a web IDE integrated into a
mashable web site, interested developers have the ability—
in ways similar to what might be found in some Smalltalk
systems—to instantly “peek behind the scenes” of an ap-
plication, and play out “what if”-scenarios by tweaking the
code for the application. They could even be allowed to sub-
mit their improvements to the web site owners, thus partici-
pating in the development of sites they use and love. Alter-
natively, some sites might allow—or even encourage—their
users to fork the site and start their own spinoff. Building
the development tools into the site itself, and adding a “fork
me”-button would make the process of creating spinoffs triv-
ial. This sort of instant forking capability can be seen in web
applications built with CouchApp5; all CouchApp applica-
tions can by default be cloned from one CouchApp server to
another with a single command (but there is no built-in facil-
ity for online coding of CouchApps). Experience from open-
source desktop platforms shows that many (power) users
want and are able to contribute, as long as the initial barrier
for contribution is low enough.

How can the web IDE enable more users to become pro-
grammers? Let us consider taking mashability one step
further. People currently produce text, photos, music and
video, and remixes thereof, and share these freely on the
Web. While some social services are programmable, and al-

5CouchApp, http://couchapp.org/.

low registered developers to extend the platform through var-
ious sorts of plugin mechanisms, the barrier to entry for writ-
ing plugins is high. By and large, only skilled developers are
able to install and operate the necessary developer tools on
their computers.

Web IDEs have the potential to open up for end-user pro-
grammability of web applications, if they were to provide
high-level (textual and/or visual) DSLs for doing simple and
specific tasks within a given application. Some applications,
such as Google Docs, already provide this; users are able to
program spreadsheet scripts in JavaScript using an embed-
ded code editor. A mashable web IDE would significantly
reduce the cost of enabling end-user programming in any
web application. Regular end-users are already co-authors of
the Web. If the barrier to entry is lowered sufficiently, they
may eventually become co-developers.

Which design considerations must be adressed in the web
IDE to allow for mashability? Current web editors are
designed with embeddability and mashability in mind on
the user-interface (UI) level. For instance, the editor wid-
get of Cloud9 (Ace) is easily embedded inside any web
application, but this widget only provides basic text edit-
ing and syntax highlighting capabilities. When building pro-
grammable Web applications, it is necessary to plug into all
editor services, and all semantic services, i.e. also the non-
UI parts. Unfortunately, the level of embeddability offered
by the Cloud9 editor does not extend to its non-UI parts, and
this limitation is not specific to Cloud9. A mashable web
IDE must be designed with open web service APIs in mind
throughout, so that it can be integrated into any web appli-
cation.

4. From Desktop to Web: Realizing the Web
Development Environment

In this section we discuss the state-of-the-art of technical
realization of desktop IDEs, as background and introduction
to how the Web as a Development Environment can be
realized.

4.1 Architecture of Desktop IDEs
Modern, graphical user-interface based IDEs provide a rich
set of language-specific editor services that are tailored to-
wards a specific language. We distinguish syntactic and
semantic editor services. The former provide functionality
based on the syntax of a language, e.g. syntax highlighting,
syntax error marking, code folding, and an outline view. Se-
mantic editor services include services that correspond to
the output of a compiler, marking errors and warnings inside
a code editor. Modern IDEs even take it a step further and
provide semantic editor services that provide functionality at
the semantic level of a program, such as reference resolving,
content completion, and refactoring.

Figure 4 shows some of the typical language-specific
components of an IDE and their dependencies. Two central

Software Development Environments on the Web: A Research Agenda SERG

8 TUD-SERG-2012-014



Figure 4. Typical IDE components in a modern IDE and their dependencies. (Adapted from [23].)

components in textual IDEs are the scanner and parser (A).
They perform analysis (parsing) to construct abstract syn-
tax trees (ASTs) for user programs. By parsing or scanning
the source code, syntactic editor services related to presenta-
tion (B) and editing (C) can be provided as source programs
are edited. Using the ASTs obtained by the parser, seman-
tic analyses can be performed on the source program, and
semantic editor services can be provided (D).

Implementation Effort Traditionally, a considerable amount
of engineering effort was required for the development
of IDEs. The required technology stack for all language-
independent components alone is significant, but can be
reused across languages. The development of language-
specific facilities has to be repeated for each language.

Developing language-specific facilities by hand requires
the implementation of language syntax, semantics, and edi-
tor services. Parsers, data structures for abstract syntax trees,
traversals, transformations, and so on would be coded by
hand for each language. The development of editor ser-
vices adds to this burden, requiring developers to implement
syntax highlighting, outline views, content completion, and
all the other language-specific editor services for each lan-
guage. Altogether, this requires a significant investment in
time and effort to support a language in an IDE.

Extensible IDE Platforms Extensible IDE platforms such
as Eclipse or Visual Studio provide a foundation for IDE
support for multiple languages. These platforms readily pro-
vide a significant technology stack that ranges from a .NET
or Java virtual machine to widget libraries and a plugin sys-
tem. This makes it possible for language and IDE developers
to abstract over the low-level implementation details and fo-
cus only on the essentials by adding plugins to the system.

IDE plugins consist of one or more services, such as edi-
tor services, which are registered using a component model
such as the OSGi Service Platform [34]. Many plugins al-
ready exist for these IDE platforms, providing IDE support
for specific languages as well as language-independent facil-
ities such as version control and build management systems.

While extensible IDE platforms provide a significant
basis for implementing comprehensive IDE support for a
language, they still must be programmed at the level of
platform-specific APIs. Plugins in these platforms are im-
plemented using general-purpose languages such as C, C#,
or Java, and require thorough understanding of the extension
mechanisms of the plugin framework, as well as experience
in coding analyses and editor services at that level.

Generative Language Engineering Tools Generative lan-
guage engineering tools allowing language and IDE devel-
opers to write high-level language definitions rather than
handwrite every compiler, interpreter and IDE component.
Particularly successful are parser generators, which can gen-
erate efficient parsers from declarative syntax definitions.
For semantic aspects of languages, there are numerous meta-
programming languages and frameworks. For the develop-
ment of IDE support there are also various tools and frame-
works that significantly decrease the implementation effort.

Language workbenches are a new breed of language de-
velopment tools [10] that integrate tools for most aspects of
language engineering into a single environment. Language
workbenches make the development of new languages and
their IDEs much more efficient, by a) providing full IDE
support for language development tasks and b) integrating
the development of the language compiler/interpreter and its
IDE. Examples of language workbenches include MPS [43],
MontiCore [26], Xtext [9], and our own Spoofax [23].

For the transition to the Web, generative language engi-
neering tools and language workbenches in particular have
the potential to provide a reusable layer of abstraction. To ef-
ficiently realize Web-based IDEs for multiple languages, an
effort should be made to make language definitions reusable
for generating both desktop and web IDEs.

Spoofax As a concrete example of a language workbench,
Spoofax [23] is an open-source platform for developing tex-
tual DSLs with full-featured Eclipse editor plugins. It uses a
combination of three high-level specification languages for
language definitions.

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 9



For syntax, Spoofax uses SDF [16, 42], a declarative
syntax definition formalism that supports the full class of
context-free grammars, forgoing the problems of shift/re-
duce conflicts, left factoring, and allowing composition of
multiple grammars. By using a parser generator, Spoofax ab-
stracts over the manual implementation of a parser and the
addition of error recovery support to use it in an interactive
setting [21].

For semantics, Spoofax uses the Stratego transformation
language [4]. Stratego provides a unified formalism for con-
cise specification of analysis, transformation, and code gen-
eration [4].

Finally, Spoofax uses an editor descriptor language to
provide the bridge between specification of syntax and se-
mantics and concrete editor service components. As an ex-
ample, it can be used to describe what analysis to use for the
content completion editor service.

4.2 Migrating to the Web
In the following sections we report on our current experience
with proofs of concepts for realizing some of the fundamen-
tal services of a web IDE (code editing services, semantic
analysis services, and execution services). Migrating from
the desktop to the Web may be likened to solving a multi-
variable equation. The next sections outline what the known
variables are, i.e. where we can reuse knowledge directly
from the desktop paradigm, such as for parsing and type
checking. For other variables, we suggest probable solutions
based on analyses of the desktop solutions in the context of a
Web architecture. For yet other variables, such as how to best
design a distributed service model for a web IDE, we can
only offer some fundamental research questions that might
eventually lead to a solution.

5. Language-Aware Editing in the Browser
In this section we discuss the problems which arise when
targeting the web browser as platform for a rich source
code editor. We also discuss our proof-of-concept parser
implementation and provide benchmark results comparing
it with its native Java implementation.

5.1 Web-Based Code Editors
Crucial technologies that enable the implementation of Web-
based code editors are (X)HTML, CSS, and JavaScript.
These are available in any modern browser and provide a
high degree of compositionality and adaptability for use
within different Web pages. By contrast, browser plugins
such as Flash and Java applets require an additional client-
side installation step, and may not be supported on all plat-
forms such as portable devices. They also provide a much
lower degree of compositionality and adaptability.

A number of Web-based code editors have recently been
introduced, notably Cloud9’s Ace [6] and CodeMirror [7].
These code editors are defined in a highly modular fash-
ion and can be customized for different languages. However,

Figure 5. A proof-of-concept Web-based code editor with
syntax highlighting and syntax checking based on a parser.
Due to parse error recovery, editor services are robust in the
presence of syntactic errors.

they generally rely on scanning the code for keywords and
declarations using regular expressions, and provide only lim-
ited language-specific functionality and editor services.

Enabling Sophisticated Editor Services Sophisticated,
fully language-aware editor services such as syntax and type
checking require parsing the target source code. On the desk-
top, it is common practice to use a generated or partially
generated parser with IDEs. On the Web, few code editors
use a parser, and if they do, they use a handwritten parser.
The Ace editor uses the Narcissus [33] JavaScript parser to
provide simple static checks for JavaScript. Narcissus is a
recursive descent parser written in JavaScript. For the Ace
project, it was customized to support error recovery in order
to parse a file with syntactic errors. Error recovery is essen-
tial to support editor services during editing and thus often in
a syntactically incorrect state. The direct implementation of
a complete parser with error recovery requires a significant
effort. Parser generators support the automatic generation of
parsers from grammars, considerably reducing the work of
language and IDE developers.

Proof of Concept We conducted a pilot study to explore
the feasibility of generating sophisticated editor services for
Web-based code editors from language definitions. We im-
plemented a proof-of-concept Web-based editor by porting
a Spoofax IDE plugin. Our prototype is based on the Ace
editor and the Cloud9 IDE. The reusable editor compo-
nents are written in JavaScript. We compiled the Java-based

Software Development Environments on the Web: A Research Agenda SERG

10 TUD-SERG-2012-014



SGLR parser to JavaScript using the Google Web Toolkit
(GWT) [15].

Figure 5 shows a screenshot of the resulting Web-based
editor for the mobl language [17]. The editor supports syn-
tax checking displaying syntax errors with inline error mark-
ers. The editor supports syntax highlighting based on syntax
analysis, coloring keywords and operators after parsing. In-
ternally, the parser applies a syntax error recovery algorithm
to produce an AST for the source program even in the case of
errors. By contrast, conventional web editors highlight key-
words based on regular expressions, but they cannot distin-
guish between valid source code and syntactically incorrect
code, nor can they produce an AST as input for further se-
mantic analysis.

To study the feasibility of our approach, we benchmarked
the runtime performance and memory usage of the Java-
Script implementation, and compared it against the origi-
nal Java implementation. We benchmarked the two imple-
mentations on a quad core 3.2 Ghz, 8 GB RAM machine.
The Java tests were executed using Java 1.7, and the Java-
Script tests were run on the NodeJS engine. NodeJS is based
on the V8 JavaScript engine, which is used in the Chrome
browser. To run the JavaScript benchmarks, we tried both
the Chrome web browser (which includes the V8 engine)
and the command-line NodeJS engine, and achieved similar
results, but executed the full, automated benchmark only in
NodeJS. For the purposes of automation and gathering re-
sults, we used the NodeJS File I/O APIs to read and store
the input files, but our results should transfer to a pure
Web/HTTP based implementation.

Figure 6 shows our results for parsing Java source files.
The benchmark is based on 33 source files of lengths varying
between 0 and 800 lines of code, randomly selected from
the JSGLR and Stratego [4] project. We ran the parser three
times per test case and plotted the average run-times. The
results show linear behavior for the original JSGLR [22]
parser and for the JavaScript port, but also show a significant
performance difference for larger source files.

To study the effects of using a different source language
and to determine the performance behavior for larger input
files, we performed a second benchmark using the mobl lan-
guage [17], shown in Figure 7. In this benchmark, we gener-
ated artificial input files ranging between 0 and 16.000 lines
of code. Syntactically, the mobl language is slightly more
sophisticated, as it has a total of 704 production rules versus
the 507 of the Java grammar. Still, the results are similar:
parse times linearly increase with larger files, and become
prohibitively long for responsiveness somewhere between
2000 and 4000 lines of code.

Our results do not definitively show that parsing large
source files with JavaScript is infeasible, but they do show
that the current approach has a scalability problem. It is
easy to blame the crude conversion with GWT, and rewriting
the parser generator to directly generate JavaScript-native

0
200
400
600
800

1000
1200
1400
1600
1800

0 100 200 300 400 500 600 700

Ti
m

e
(m

s)

Lines of code

Java

++++++++++++++++++++++++++++ + + + +

JavaScript

××××××××××××××
××××××××

×××
××
×× ×

×

×
×

Figure 6. Performance of parsing Java source code using a
Java-based generated parser and its direct JavaScript port.

0
2
4
6
8

10
12
14
16
18
20

0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
(S

ec
on

ds
)

Lines of code

Java

+ + + + + + + + + + + + + + + + +

JavaScript

× × × × ×
× × × × × × × ×

× × ×
×

Figure 7. Performance of parsing mobl source code using a
Java-based generated parser and its direct JavaScript port.

14.3
19.0
23.8
28.6
33.0
38.1
42.9
47.7
52.5
57.2

0 100 200 300 400 500 600 700

M
em

or
y

us
ag

e
(M

B
)

Lines Of Code

Java

+++++++++++++++++++++++++
+++
+ +

+

+

+

JavaScript

××
×××
×××××
×××××××××
×××××

×××
××

× ×

×
×

Figure 8. Memory usage when parsing Java source code,
with a Java-based parser and its port to JavaScript.

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 11



parsers would definitely help performance. Still, the effects
of the change in platform and the possible requirement to
run on handheld devices should not be dismissed.

To further study the behavior of the generated parsers, we
analyzed their memory consumption. While a high memory
consumption may not be a problem on high-end systems,
high memory consumption can be prohibitive on handheld
devices, and may also explain some of the runtime perfor-
mance behavior. Figure 8 shows our results. Interestingly,
the JavaScript memory usage is not significantly higher than
the memory use on Java. We see this as a strong indication
that the platform indeed is suitable for tasks such as parsing.
Taking a closer look at the graph, the memory usage in Java-
Script appears to be linear, increasing at roughly 5.5 MB per
100 lines of code.

Altogether, our pilot study shows promising results. For
small files, using a parser generator seems feasible, even
when crudely porting the parser to JavaScript. Memory us-
age is acceptable, and would make it feasible even for use
with current mobile devices such as tablets, which at this
point typically have roughly about 256 MB RAM.

Portability In theory, the parser and Ace editor are also
highly portable across different platforms and mobile de-
vices. However, in practice, the Ace editor has many patches
for different browsers and platforms, and experiments with
our own prototype showed that it was not yet compatible
with tablets. Experience with the Ace editor shows that dif-
ferent browsers and platforms are still a moving target, and
require an ongoing effort to keep up. Further work in im-
plementation abstractions and standardization could signifi-
cantly decrease the effort this process requires.

Parser Size In addition to parser runtime performance and
memory usage, an additional concern raised by our proto-
type was parser size. In the case of mobl, the generic run-
time components of the parser amounted to 431KB, or 80KB
when gzipped. However, the parse table itself weighed in at
663KB, or 589KB gzipped, which can considerably increase
the load time of a web editor on a slow connection. Addi-
tional research into compacting parse tables or incremental,
asynchronous loading of parse tables could provide a signif-
icant improvement in parser load times.

Incremental Parsing An important direction to improve
the scalability of generated parsers is to use incremental
parsing. While incremental parsing is well-understood in the
literature for LL or LR parsers [12, 44], additional work is
required for incremental generalized parsers and scannerless
generalized parsers, in particular when applied to an interac-
tive editing setting. These parsers make it possible to declar-
atively define parsers without having to factorize grammars
to a particular class [24]. In an interactive editing setting, in-
cremental and generalized parsing should be combined with
parse error recovery to support parsing of incomplete or in-
correct programs. Current desktop IDEs tend to use hand-

tuned incremental, recovering parsers, but a fully generative
approach would make the production of interactive parsers
much more efficient.

6. Semantic Analyses and Editor Services
With a syntax-aware editor as basis, the next step for a
language-aware web editor and IDE is the introduction of se-
mantic editor services. These services use the AST provided
by the editor’s interactive parser, and the analyses that con-
tinuously run as the program under development is edited.

6.1 Client-side Analyses and Editor Services
Like the parser and syntactic editor services, semantic anal-
yses and editor services must operate in the same resource-
constrained, JavaScript-based environment to run in the
browser. While it might not be feasible to run analyses such
as type checking on complete, million-line projects in this
environment, running simple or partial analyses on the cur-
rent file being edited has the potential to significantly im-
prove performance compared to a server-side only analysis.
Client-side analyses also have the potential to simplify em-
beddings of web editors into different, third-party web appli-
cations if they forgo a dependency on a server component.

Proof of Concept We extend our pilot study by adding
semantic analyses and editor services to the editor of Sec-
tion 5. We focus on the mobl language, which has a complete
syntactic and semantic language definition for Spoofax. The
range of editor services provided by the mobl desktop IDE
extends far beyond that provided by current web editors,
which rarely reach the level of syntax-aware editors. Mobl
implements a name analysis, type analysis, local type infer-
ence, and editor services ranging from reference resolving to
content completion and refactoring [17]. Implementing these
services in a web editor is no small feat. In addition to these
services, the mobl semantic definition includes a compiler
that uses a series of transformation steps to compile mobl
programs to executable mobile apps.

Figure 9 shows a screenshot of the extended web edi-
tor. The editor supports both syntactic and semantic error
markers that are immediately updated as the source text
is changed. To show semantic errors, the editor parses the
source text and analyses the AST. Additional editor services
such as content completion and refactorings share the same
underlying analyses and have not been implemented for the
prototype.

Our study focuses on single-file analyses, and uses GWT
to transform the Spoofax-generated implementation to Java-
Script. To construct a full, comprehensive IDE, the editor
was integrated into the Cloud9 IDE [6].

We evaluated the runtime implementation on the same
3.2 Ghz, 8 GB RAM machine, and show our results in Fig-
ure 10. Hands-on experimentation with the prototype shows
that for small source files (e.g. smaller than 50 lines of code),
the feedback cycle of editing code to getting error mak-

Software Development Environments on the Web: A Research Agenda SERG

12 TUD-SERG-2012-014



Figure 9. A web editor for mobl with syntactic and seman-
tic editor services, showing inline error markers and hover
help messages for the reported errors.

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000

Ti
m

e
(s

ec
on

ds
)

Lines of code

Java

+ + + + + + + + + + + + + + +
+

+

JavaScript

× × × × × × × × × × ×
×

× ×
×

×
×

Figure 10. Performance of the semantic analysis in a mobl
editor for an implementation in Java and an implementation
in JavaScript.

ers is pleasant and comparable to a typical desktop based
IDE. However, a full benchmark, shown in Figure 7, re-
veals that the performance becomes an issue for larger pro-
grams. However, we are confident that by implementing a
Spoofax project compiler which is optimized for producing
JavaScript code we can positively affect the JavaScript im-
plementation’s performance to a significant degree.

6.2 Cloud-Based Analyses and Editor Services
To scale an IDE with syntactic and semantic analyses and ed-
itor services up to the level of complete projects, integration
with server-side components is necessary. With the current
cloud computing developments, web IDEs can be backed by
cloud-based services.

The implementation of semantic analyses that distribute
over clients and potentially multiple servers demands an
architecture that is vastly different from that used on the
desktop. There are many additional objectives:

– clients are resource-constrained and cannot perform a
complete analysis for large projects, and may not be able
to maintain the result of such an analysis in memory;

– clients have varying computational capabilities, and it
may be desirable to scale up or down the number of
client-side computations dynamically;

– the connection between client and server may be unreli-
able or may have limited bandwidth;

– expenses for computational resources in the cloud may
become prohibitive if not carefully controlled;

– it may be desirable to support an offline mode where
disconnected clients can use all or a limited set of editor
services.

To support these objectives, additional research is needed
for dynamically distributable analyses, providing analyses
for editor services based on incomplete information, and
abstractions to express such analyses or their distribution
strategies. A key strategy to apply is to identify small work
units for each analyses, and the dependencies between dif-
ferent work units, in order to apply incrementalization and
distribution. Other strategies include dynamic caching and
data relocation based on the actual computational resources
and constraints.

6.3 Execution, Debugging, Deployment
When discussing execution, debugging and deployment, it is
useful to distinguish two scenarios: the purely cloud-based
scenario where only the browser runs on the local (devel-
oper) machine, and everything else—including the program
under development—runs in the cloud; and, the hybrid sce-
nario where the developer has the ability to run some of the
code under development on his local machine, and some in
the cloud.

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 13



The Purely Cloud-based Scenario The WebLab project
introduced in Section 3.2 provides a proof-of-concept for ex-
ecuting user-developed programs entirely in the cloud. The
users write Scala programs in their browsers. These pro-
grams are compiled and executed on the server side, and the
result of program execution is displayed to the developer af-
ter execution, in the browser. In this scenario all programs
essentially become remote services. All execution, debug-
ging and deployment happens in the cloud on a platform
such as Amazon EC2, Azure, Google AppEngine or Heroku,
and they are manipulated through a remote service API pro-
vided by the web IDE. Conceptually, the IDE becomes—or
at least exposes—basic features of an operating system: the
ability to start and stop processes, inspect running processes,
and manage some concept of a file system of program arti-
facts.

The advantages of such a model include: 1) development
can happen on any Web-enabled machine, and execution re-
sources can be shared among developers; 2) collaboration
becomes easier, and might amount to as little as sharing the
URL to the same IDE “workspace”; 3) scaling from one ma-
chine to many becomes a matter of configuration – acquir-
ing, setting up and maintaining the hardware is handled by
the cloud provider; 4) for web applications, there is very lit-
tle difference between testing, debugging and deployment:
the mechanism for deploying in the edit-compile-run cycle
is the same as for testing and as for production.

The disadvantages include: 1) the developer gives up
(some) control of the execution environment and might be
unable to diagnose problems which require access to logs
and process inspection tools; 2) network bandwidth and la-
tency make some applications, especially graphically inten-
sive ones, infeasible to develop remotely; 3) network out-
ages; 4) duplication of most of the essential tools and con-
cepts already provided by the operating system on the user’s
machine, though this can be mitigated by exposing the de-
ployment/testing/debugging host through a remote shell, i.e.
by breaking out of the traditional Web interface; 5) integra-
tion with existing deployment and debugging tools is likely
to be difficult, if not impossible.

The Hybrid Scenario A natural companion to the cloud-
based scenario is a model where some (or even all) of the
execution takes place on the developer’s local machine.
Applications running on the developer machine would be
amenable to existing debugging and instrumentation tools.
This could be used to mitigate some of the drawbacks in the
cloud-based scenario.

By running a service on the developer machine that reg-
isters the machine as a runtime service with the web IDE, it
would be possible for the web IDE to send programs (and
their data) over the network to the developer’s machine for
execution. The infrastructure to do this could be mostly the
same as for the cloud-based scenario. The developer ma-
chine could run lightweight cloud provider software, and

register itself to the web IDE as a “micro-cloud” with only
one node.

7. Programming in a Walled Garden
In Section 3 we have discussed the opportunities provided by
software development environments on the Web. In the rest
of the paper we have explored the technical challenges that
lie ahead. However, there is another dimension to moving
software development environments to the Web. The Web
has been a catalyst of innovation by democratizing the means
of publication of new ideas. Software-as-as-service makes
many useful tools available at low costs to large numbers
of people, but it also puts control over those tools and their
use in the hands of the service provider. The disadvantages
of social web applications and search engines are starting
to become visible. Freedom of speech is not automatically
guaranteed and privacy is under pressure. As we are consid-
ering to move software development to the Web, we should
also consider the implications of the service model.

Who controls the installation and maintenance of the web
IDE? In Section 2.3 we discussed how IDE installation
and maintenance can burden individual developers, who
have to maintain their own private copies and configura-
tions of a desktop IDE. With the web IDE, installation and
maintenance can be controlled centrally instead, allowing
developers to pick up and use an existing web IDE config-
uration without much hassle. However, through centraliza-
tion, the web IDE does pose the risk of taking away some
of the control that developers currently have on their IDE.
What happens if a new version of the IDE introduces a re-
gression? What if they want to use an older version? What
if the service is simply unavailable, making it impossible to
launch the IDE?

Who controls which programming languages we can use in
the walled garden of the software-development-environment-
as-a-service? Innovation in programming languages re-
quires getting programming tools to programmers. In the
past that could be as simple as providing a compiler or in-
terpreter on a Web site. These days, a programming lan-
guage should come with an IDE as well. Thanks to plat-
forms such as Eclipse it is no longer necessary for each lan-
guage provider to develop a custom IDE for their language.
The plugin framework of Eclipse makes most of the IDE
reusable, allowing language developers to focus on the lan-
guage specific parts. Language workbenches such as Xtext
and Spoofax make it even easier to create language-specific
IDEs. Eclipse supports an open publication model for plug-
ins. Anyone can publish an IDE plugin for their language by
providing the URL of a download repository. Users can de-
cide which plugins to install by adding those URLs to their
Eclipse configuration. What web browsers are for hypertext
documents, Eclipse is for programming language IDEs. (We
could take this analogy a bit further and consider standards

Software Development Environments on the Web: A Research Agenda SERG

14 TUD-SERG-2012-014



for language definitions that are interpreted by IDE con-
tainers; but that is for another occasion.) The result is a rich
ecosystem of many dozens of languages supported by a wide
variety of plugins provided by the Eclipse foundation itself
and other parties.

What will happen to the open publication model of
Eclipse when we move software development environments
to the Web? Of course, any developer or organization is free
to install a Web-based development environment on a server
under their control and have it support their favourite lan-
guages. However, this defeats the purpose of the economies
of scale provided by software-as-a-service. Maintaining the
installation of a web IDE on a server probably requires more
effort than maintaining an Eclipse installation on a desk-
top/laptop computer, which is only worthwhile for large or-
ganizations.

Thus, it is a likely scenario that several large service
providers will emerge who will provide software develop-
ment as a service. Who decides what languages will sup-
ported by these services? Only ‘majority languages’, ‘popu-
lar languages’, languages in which the service provider has
a stake? There is a risk of a walled garden that restricts pro-
grammers in their freedom of expression. In addition there
is a risk of stagnation in language innovation, if service
providers are in control of provided languages. Disruption
of the language status quo then not only requires publica-
tion of a compiler on a website, but a full software devel-
opment service to go with it; or convincing an established
service provider to add the language to their catalog. There
is a technical side and a social/commercial side to this issue.

What happens to the plugin model in a Web-based world?
The plugin model is the big enabler of integrated develop-
ment environments on the desktop. While there are many
distributed component models [28], the typical component
models used in IDEs are designed to operate only in a sin-
gle process. In even the simplest of web IDEs, some plugins
must execute on the server, and some in the web browser,
thus requiring a distributed component model. This change
has rippling effects: every API call might be a remote call,
and must be dealt with on a case-by-case basis. Actual re-
mote calls must be handled using asynchronous program-
ming techniques.

The synchronous plugin model might still work well for
logic that will only execute in the browser, or only inside a
single process on the server. For everything else, it is cus-
tomary to think of it as a (Web) service – a chunk of func-
tionality provided by a remote machine. Consequently, the
web IDE will require a solid, distributed service model. This
model must ensure interoperability across processes, across
servers, across cloud providers, across implementation lan-
guages, and across geographical locations and timezones. It
must support API versioning and system upgrades, so that
new versions of components can be provided to a large au-
dience.

The design of the service model of the web IDE will set
the stage for how open, extensible and centralized a given
web IDE is. A restrictive model is likely to promote walled
gardens where a flexible model might dissuade the formation
of the same gardens.

How can we architect the web IDE to ensure the basic
freedoms? The open ecosystem of the desktop world has
served us very well by fostering innovation and allowing
competition on all levels. An important reason why the In-
ternet won out over the thousands of alternative networks of
the past, is that openness was architected into the Internet
from the beginning [29].

On a technical level, the software development environ-
ment should be capable of supporting multiple languages
through some form of plugin architecture, and the plugin
architecture should be designed so that the end-users—the
developers—are in control of the IDE they use. We want
the web IDE to be a mashup where users can add in new
components, also third party ones, as they see fit. If we only
consider the client-side, this is a problem with a number of
known solution patterns [13].

Components requiring a server-side component present
additional challenges. Examples of these include the seman-
tic components such as type checking and code navigation,
which both require access to the entire source code of the
program; language-specific execution environments that re-
quire a more powerful runtime that what is offered by the
JavaScript VM in the browser, and that must be able to
run arbitrary code provided by the end-user; and, platform-
specific deployment systems that might need to run native
executables in order to communicate with remote services.
Where should the server-side code run? How do you, as a
web IDE provider, deal with the security issues related to
running third-party code on your servers? How do you track
and bill the users for the resources consumed by third-party
components?

The web IDE provider might offer a server-side sandbox,
e.g. in the style of Google App Engine. Third party com-
ponents must be written to be compatible with this sandbox,
which could then be designed more like a traditional desktop
plugin-model, albeit with stricter resource control and poten-
tially by separating each plugin into its own process space.
Another possibility is to require every component-provider
to host the server-side part of their plugin, and expose it us-
ing an agreed-upon web service API. This API might then
be forwarded to the client so that the server side process-
ing is offloaded to a third party cloud, potentially a differ-
ent one for every third party component. This presents chal-
lenges related to latency, authentication and security, har-
monization of service-level agreements across components,
and design of the interoperability protocols required between
components. A third, hybrid model, is to allow both, and
also to allow developers to host third-party plugins on their
own hardware, and register these as services with their web

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 15



IDE provider. A fourth variant is the fully peer-to-peer sys-
tem with no central authority. This presents significant chal-
lenges with regards to trust. Either the computational nodes
must perform obfuscated algorithms on obfuscated data, or
the users must be able to trust each other to keep each other’s
data safe.

The model that becomes prevalent in the end will have
an impact on the openness of the web IDE concept in gen-
eral, and a number of social questions, such as: Who gets
to decide which components and therefore which languages
should be allowed? Even if you provide free-of-charge ser-
vice for your new language, how are you going to get others
to use your new language if they’re all on a walled up web
IDE? Is the service model fundamentally inclined towards
censorship, thus easily disallowing languages of the compe-
tition?

The above issues touch on a potential paradox: The web
IDE allows programming online, but will it allow program-
ming of itself?

What are the implications for innovation of programming
languages, IDEs, and language workbenches? Given that
these technical issues are resolved, the remaining social/-
commercial aspects are largely a matter of policy: Some web
IDE providers will be open to integration with third party
plugins, other will not. Experience from other walled gar-
dens, such as mobile app stores, suggests that we might end
up with a spectrum of openness among web IDE providers.

Research and innovation is likely to thrive on the providers
that are placed more toward the open end of the spectrum.
In a market where users demand services, providing (parts
of) the software behind the service is suddenly not only fea-
sible, but a by now established way of gaining credibility
and popularity with the user base. Just as was the case with
Eclipse, this is likely to benefit the research community, as
the basic infrastructure will be freely available to build on.

What if something breaks at the web IDE service provider?
This is more of a pragmatic issue. Upgrades and system
changes often result in regressions. By hosting the IDE on
the Web, the developer gives up a control over when and how
potentially devastating upgrades should happen. While it is
often possible to track down and come up with workarounds
to upgrade problems on your local machine, or to roll back,
doing the same for a web service is often impossible. Out-
ages and regressions are usually covered legally by service-
level agreements, but experience shows that even the biggest
and most reliable service providers with the strictest SLAs
can go down for days—and may have faulty backups. By
hosting the web IDE on multiple, different cloud providers,
in different versions, or by designing the IDE around a de-
centralized peer-to-peer architecture, it might be possible to
mitigate this problem somewhat, since an old (presumably
working) version is then likely to be around, and available.

Call to Action In conclusion, we see a risk for language
monocultures in the Brave New World of Web-based soft-
ware development environments. Service providers should
commit to language neutrality and support as wide a va-
riety of programming languages as possible. Furthermore,
they should support innovation by supporting language de-
signers to create and publish new languages.

8. Related Work
Work in some of the areas as suggested by our research
agenda is already taking place. We briefly discuss a selection
of the most relevant recent developments.

Contemporary efforts to move programming to the Web
may be divided into three broad categories: 1) rearchitected
legacy IDEs, 2) light-weight code editing widgets, and 3)
true web IDEs, designed from scratch, for the Web.

Rearchitected Legacy IDEs Examples of rearchitected
legacy IDEs in the first category include Eclipse 4.0 and
the Eclipse Rich Ajax Platform (RAP) [40], CodeRun Stu-
dio, an online IDE for PHP, JavaScript and C# [8], and
WWWorkspace [38] and the derived Adinda prototype [41].
Their legacy desktop UI layers are replaced with a JSP-like
model: freshly written UI logic is running on the web server,
and the browser acts as a thin client for widget rendering
only. The server runs one headless instance of the legacy
IDE per user. In the case of RAP, every key press and mouse
event is processed on the server. The latency issues inherent
in this model prevent many types of interaction, especially
for graphical languages. Another drawback is scalability;
each user requires their own OS process on the server side.
Consequently, creating mashups is also more difficult, since
any Web site that integrates the client-side UI component
should also host the server-side components for the IDE to
be usable.

Light-weight Code Editing Widgets In the second cate-
gory, we find code editors without syntactic or semantic
services [19, 36], or with just minimal regular expression-
based syntax highlighting [7, 20]. These tools can be use-
ful for coding small programs, and in the form of widgets
they provide ample opportunity for mashups. As an exam-
ple, WeScheme [45] is an educational programming envi-
ronment, embedding CodeMirror [7] for syntax highlighting
and bracket matching. However, while these can widgets can
useful tools for coding small programs, they do not provide
a comprehensive environment with all the facilities that are
especially important for productivity in larger projects. They
also do not offer any support for collaboration.

Web IDEs The third category is rapidly expanding. IDEs
specialized for a particular language are most widespread.
Notable examples include Ares [35], Palm’s online IDE for
developing software for their mobile devices, and Atlas, an
online IDE for RAD with JavaScript [1]. Another IDE, spe-
cialized to IronPython, is provided by VoidSpace, and uses

Software Development Environments on the Web: A Research Agenda SERG

16 TUD-SERG-2012-014



SilverLight for its implementation [39]. There is currently
one open source initiative for creating an extensible IDE for
the Web, allowing developers to add new components us-
ing JavaScript. The Cloud9 project [6] integrates the Mozilla
SkyWriter [27] and ACE editors, and provides a plugin-
based IDE architecture in HTML5 and JavaScript.

None of the above projects pursue a generative approach
to web IDEs. They do not provide a parser framework, much
less any declarative editor services support, making it hard to
adapt the systems to provide full-fledged IDE support for a
different language. They also do not yet embrace a dynamic
distribution strategy as proposed in this paper, but rather use
a fixed infrastructure layout that is chosen beforehand and
determines the system architecture.

Cloud Computing Related to our research agenda on soft-
ware development environments on the Web, others have set
out research goals for cloud computing. Birman et al. [3] re-
ported the experiences and research challenges discussed at
the 2008 LADIS workshop on Large Scale Distributed Sys-
tems, while Sriram and Khajeh-Hosseini [18] review the lit-
erature and directions in the field of cloud computing.

9. Summary and Conclusion
In this paper we have outlined a research agenda for bring-
ing software development environments from the desktop to
the Web. The proposed research questions arose from plac-
ing ourselves in the seat of the software developer who al-
ready develops for the Web, but now wants to transition his
daily development activites to the Web, and take advantage
of the hallmarks of the Web: pervasive collaboration, zero-
deployment, instant-access from anywhere, and vast compu-
tational resources. We discuss both the technical and social
aspects of moving the development from one paradigm (the
desktop) to another (the Web). We elaborate on the research
questions with data and our experience from several proofs
of concepts: WebLab, an e-learning platform that lets stu-
dents write, execute and test Scala programs entirely in their
browser; a scalability analysis of a parser and typechecker
for the programming language mobl that executes entirely
in the web browser; and a scalability analysis of a parser
for Java, also in the browser. The proofs of concept serve as
early evidence for the usefulness of web IDEs as a teaching
aid and the feasibility executing advanced editor services in
the browser. Based on our findings so far, it is clear that the
transition from desktop to Web presents significant techni-
cal challenges (going from a plugin model to a distributed
service model increases the complexity of the IDE signifi-
cantly), and several social hurdles (giving up control of the
IDE puts developers at the mercy of the web IDE service
providers). At the same time, the potential for new and more
efficient forms of collaboration and sharing of development
resources, as well as new opportunities for directly engag-
ing end-users in the development of Web sites are promising

areas with the potential to change how we usually approach
software development.

Acknowledgements This research was partially funded by
LogicBlox. We would like to thank Molham Aref, Martin
Bravenboer, Shan Shan Huang (LogicBlox), and Rik Arends
(Cloud9) for our discussions about software development on
the web.

References
[1] Atlas. http://280atlas.com/.

[2] N. Ayewah and W. Pugh. The google findbugs fixit. In
P. Tonella and A. Orso, editors, Nineteenth Int. Symposium
on Software Testing and Analysis, ISSTA 2010, Trento, Italy,
July 12-16, 2010, pages 241–252. ACM, 2010.

[3] K. Birman, G. Chockler, and R. van Renesse. Toward a cloud
computing research agenda. News, 40(2):68–80, 2009.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.17. A language and toolset for program trans-
formation. Sci. of Comp. Programming, 72(1-2):52–70, June
2008. Special issue on experimental software and toolkits.

[5] L.-T. Cheng, C. R. B. de Souza, S. Hupfer, J. Patterson, and
S. Ross. Building collaboration into IDEs. Queue, 1(9):40–
50, Dec. 2003.

[6] Cloud9 IDE. http://www.cloud9ide.com/.

[7] CodeMirror. http://codemirror.net/, Apr. 2012.

[8] CodeStore Inc. Coderun. http://coderun.com, 2010.

[9] S. Efftinge and M. Völter. oAW xText - a framework for
textual DSLs. In Modeling Symposium, Eclipse Summit,
2006.

[10] M. Fowler. Language workbenches: The killer-app for
domain specific languages? http://martinfowler.
com/articles/languageWorkbench.html, 2005.

[11] N. Fraser. Differential synchronization. In U. M. Borghoff
and B. Chidlovskii, editors, 2009 Symposium on Document
Engineering, Munich, Germany, September 16-18, 2009,
pages 13–20. ACM, 2009.

[12] C. Ghezzi and D. Mandrioli. Incremental parsing. ACM
Transactions on Programming Languages and Systems (TOPLAS),
1(1):58–70, 1979.

[13] L. Grammel and M.-A. Storey. The smart internet. chapter
A survey of mashup development environments, pages 137–
151. Springer-Verlag, Berlin, Heidelberg, 2010.

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, July 2000.

[15] The google web toolkit documentation. http://code.
google.com/webtoolkit/, Apr. 2012.

[16] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF: Reference manual. SIGPLAN
Not., 24(11):43–75, 1989.

[17] Z. Hemel and E. Visser. Declaratively programming the mo-
bile web with mobl. In K. Fisher and C. V. Lopes, editors,

SERG Software Development Environments on the Web: A Research Agenda

TUD-SERG-2012-014 17



2011 Int. conference on Object oriented programming sys-
tems languages and applications, OOPSLA 2011, pages 695–
712. ACM, 2011.

[18] S. I and K.-H. A. Research agenda in cloud technologies.
http://arxiv.org/abs/1001.3259. LSCITS technical report,
2010.

[19] jsCoder IDE for the Apple iPhone. http://stuff.
techwhack.com/9946-jscoder.

[20] jsFiddle – an online editor for the web. http://jsfiddle.
net.

[21] L. C. L. Kats, M. de Jonge, E. Nilsson-Nyman, and E. Visser.
Providing rapid feedback in generated modular language en-
vironments. Adding error recovery to scannerless generalized-
LR parsing. In G. T. Leavens, editor, Proceedings of the
24th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA
2009), volume 44 of SIGPLAN Notices, pages 445–464, New
York, NY, USA, 2009. ACM.

[22] L. C. L. Kats, K. T. Kalleberg, and E. Visser. Generating
editors for embedded languages. integrating sglr into imp.
In J. Vinju and A. Johnstone, editors, Eight Workshop on
Language Descriptions, Tools, and Applications, volume 238
of ENTCS. Elsevier, April 2008.

[23] L. C. L. Kats and E. Visser. The Spoofax language work-
bench: rules for declarative specification of languages and
IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard, editors,
Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2010, pages 444–463. ACM, 2010.

[24] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declar-
ative syntax definition: paradise lost and regained. In W. R.
Cook, S. Clarke, and M. C. Rinard, editors, Object-Oriented
Programming, Systems, Languages, and Applications, OOP-
SLA 2010, pages 918–932. ACM, 2010.

[25] J. Kemeny and T. Kurtz. Back to Basic; The History, Corrup-
tion, and Future of the Language. Addison-Wesley Longman
Publishing Co., Inc., 1985.

[26] H. Krahn, B. Rumpe, and S. Völkel. Monticore: Modular
development of textual domain specific languages. In R. F.
Paige and B. Meyer, editors, Objects, Components, Models
and Patterns, TOOLS EUROPE 2008, volume 11 of Lecture
Notes in Business Information Processing, pages 297–315.
Springer, 2008.

[27] M. Labs. Mozilla labs: Skywriter, 2010.

[28] K.-K. Lau and Z. Wang. Software component models. IEEE
Trans. Softw. Eng., 33(10):709–724, Oct. 2007.

[29] L. Lessig. Code and Other Laws of Cyberspace. Basic Books,
Inc., New York, NY, USA, 2000.

[30] E. Linstead, S. K. Bajracharya, T. C. Ngo, P. Rigor, C. V.
Lopes, and P. Baldi. Sourcerer: mining and searching
internet-scale software repositories. Data Min. Knowl. Dis-
cov., 18(2):300–336, 2009.

[31] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman. Jungloid
mining: helping to navigate the api jungle. In Proceedings

of the 2005 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’05, pages 48–61,
New York, NY, USA, 2005. ACM.

[32] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your
language: on novices’ interactions with error messages. In
10th symposium on New ideas, new paradigms, and reflec-
tions on programming and software, ONWARD ’11, pages
3–18. ACM, 2011.

[33] Narcissus. http://mxr.mozilla.org/mozilla/
source/js/narcissus/, Apr. 2012.

[34] OSGi Service Platform, Core Specification, Release 4, Ver-
sion 4.2. OSGi Alliance, 2009.

[35] Palm Inc. Ares. https://ares.palm.com/, 2010.

[36] processingjs.org. Processing.js. a port of the processing visual
language. web ide. http://processingjs.org/learning/ide, 2010.

[37] M. Robillard, R. Walker, and T. Zimmermann. Recommenda-
tion systems for software engineering. IEEE Softw., 27(4):80–
86, July 2010.

[38] W. Ryan. Web-based Java integrated development environ-
ment. BEng thesis, University of Edinburgh, 2007.

[39] The Eclipse Foundation. Voidspace – python in your browser
with silverlight. http://www.voidspace.org.uk/
ironpython/silverlight/index.shtml.

[40] The Eclipse Foundation. Rich Ajax Platform (RAP). www.
eclipse.org/rap/, 2010.

[41] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman,
M. Pinzger, and A. Guzzi. Adinda: A knowledgable, browser-
based ide. In ICSE New Ideas and Emerging Results Track,
2010.

[42] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[43] M. Voelter and K. Solomatov. Language modularization and
composition with projectional language workbenches illus-
trated with MPS. In M. van den Brand, B. Malloy, and
S. Staab, editors, Proceedings of the Second International
Conference on Software Language Engineering (SLE 2010),
volume 6395 of Lecture Notes in Computer Science, pages
32–46. Springer, 2010.

[44] T. Wagner and S. Graham. Efficient and flexible incremental
parsing. ACM Transactions on Programming Languages and
Systems (TOPLAS), 20(5):980–1013, 1998.

[45] D. Yoo, E. Schanzer, S. Krishnamurthi, and K. Fisler. We-
Scheme: the browser is your programming environment. In
Proceedings of the 16th annual joint conference on Innova-
tion and technology in computer science education, pages
163–167. ACM, 2011.

[46] A. Zeller. The future of programming environments: Integra-
tion, synergy, and assistance. In L. C. Briand and A. L. Wolf,
editors, Int. Conference on Software Engineering, ISCE 2007,
Workshop on the Future of Software Engineering, FOSE
2007, May 23-25, 2007, Minneapolis, MN, USA, pages 316–
325, 2007.

Software Development Environments on the Web: A Research Agenda SERG

18 TUD-SERG-2012-014





TUD-SERG-2012-014
ISSN 1872-5392 SERG


