
Declarative Name Binding and Scope Rules

Gabriël Konat, Lennart Kats, Guido Wachsmuth, and Eelco Visser

Delft University of Technology, The Netherlands
g.d.p.konat@student.tudelft.nl,

{l.c.l.kats,g.h.wachsmuth,e.visser}@tudelft.nl

Abstract. In textual software languages, names are used to reference
elements like variables, methods, classes, etc. Name resolution analyses
these names in order to establish references between definition and use
sites of elements. In this paper, we identify recurring patterns for name
bindings in programming languages and introduce a declarative meta-
language for the specification of name bindings in terms of namespaces,
definition sites, use sites, and scopes. Based on such declarative name
binding specifications, we provide a language-parametric algorithm for
static name resolution during compile-time. We discuss the integration
of the algorithm into the Spoofax Language Workbench and show how
its results can be employed in semantic editor services like reference res-
olution, constraint checking, and content completion.

1 Introduction

Software language engineering is concerned with linguistic abstraction, the for-
malization of our understanding of domains of computation in higher-level soft-
ware languages. Such languages allow direct expression in terms of the domain,
instead of requiring encoding in a less specific language. They raise the level of
abstraction and reduce accidental complexity. One of the key goals in the field
of language engineering is to apply these techniques to the discipline itself: high-
level languages to specify all aspects of software languages. Declarative languages
are of particular interest since they enable language engineers to focus on the
What? instead of the How?. Syntax definitions are a prominent example. With
declarative formalisms such as EBNF, we can specify the syntactic concepts of a
language without specifying how they can be recognized programmatically. This
declarativity is crucial for language engineering. Losing it hampers evolution,
maintainability, and compositionality of syntax definitions [15].

Despite the success of declarative syntax formalisms, we tend to program-
matic specifications for other language aspects. Instead of specifying languages,
we build programmatic language processors, following implementation patterns
in rather general specification languages. These languages might still be con-
sidered domain-specific, when they provide special means for programmatic lan-
guage processors. They also might be considered declarative, when they abstract
over computation order. However, they enable us only to implement language

K. Czarnecki and G. Hedin (Eds.): SLE 2012, LNCS 7745, pp. 311–331, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



312 G. Konat et al.

processors faster, but not to specify language aspects. They lack domain concepts
for these aspects and focus on the How?. That is a problem since (1) it entails
overhead in encoding concepts in a programming language and (2) the encoding
obscures the intention; understanding the definition requires decoding.

Our goal is to extend the set of really declarative, domain-specific languages
for language specifications. In this paper, we are specifically concerned with name
binding and scope rules. Name binding is concerned with the relation between
definitions and references of identifiers in textual software languages, including
scope rules that govern these relations. In language processors, it is crucial to
make information about definitions available at the references. Therefore, tra-
ditional language processing approaches provide programmatic abstractions for
name binding. These abstractions are centered around tree traversal and in-
formation propagation from definitions to references. Typically, they are not
specifically addressing name binding, but can also be used for other language
processing tasks such as compilation and interpretation.

Name binding plays a role in multiple language engineering processes, includ-
ing editor services such as reference resolution, code completion, refactorings,
type checking, and compilation. The different processes need different informa-
tion about definitions. For example, name resolution tries to find one definition,
while code completion needs to determine all possible references in a certain
place. The different requirements lead either to multiple re-implementations of
name binding rules for each of these purposes, or to non-trivial, manual weaving
into a single implementation supporting all purposes. This results in code dupli-
cation with as result errors, inconsistencies, and increased maintenance effort.

The traditional paradigm influences not only language processing, but also lan-
guage specification. For example, the OCL language standard [19] specifies name
binding in terms of nested environments, which are maintained in a tree traversal.
The C# language specification [1] defines name resolution as a sequence of impera-
tive lookup operations. In this paper, we abstract from the programmatic mechan-
ics of name resolution. Instead, we aim to declare the roles of language constructs
in name binding and leave the resolution mechanics to a generator and run-time
engine. We introduce the Name Binding Language (NBL), a language with linguis-
tic abstractions for declarative definition of name binding and scope rules. NBL
supports the declaration of definition and use sites of names, properties of these
names associated with language constructs, namespaces for separating categories
of names, scopes in which definitions are visible, and imports between scopes.

NBL is integrated in the Spoofax Language Workbench [14], but can be reused
in other language processing environments. From definitions in the name binding
language, a compiler generates a language-specific name resolution strategy in
the Stratego rewriting language [25] by parametrizing an underlying generic,
language independent strategy. Name resolution results in a persistent symbol
table for use by semantic editor services such as reference resolution, consistency
checking of definitions, type checking, refactoring, and code generation. The
implementation supports multiple file analysis by default.



Declarative Name Binding and Scope Rules 313

We proceed as follows. In Sect. 2 and 3 we introduce NBL by example, using a
subset of the C# language. In Sect. 4 we discuss the derivation of editor services
from a name binding specification. In Sect. 5 we give a high-level description of
the generic name resolution algorithm underlying NBL. In Sect. 6 we discuss the
integration of NBL into the Spoofax Language Workbench. Sect. 7 and 8 are for
evaluation and related work.

2 Declarative Name Binding and Scope Rules

In this section we introduce the Spoofax Naming Binding Language illustrated
with examples drawn from the specification of name binding for a subset of
C# [1]. Fig. 1 defines the syntax of the subset in SDF [24]. The subset is by no

Using* NsMem* → CompilationUnit {"Unit"}

"using" NsOrTypeName ";" → Using {"Using"}
"using" ID "=" NsOrTypeName → Using {"Alias"}
ID → NsOrTypeName {"NsOrType "}
NsOrTypeName "." ID → NsOrTypeName {"NsOrType "}

"namespace" ID "{" Using* NsMem* "}" → NsMem {" Namespace"}
Partial "class" ID Base "{" ClassMem * "}" → NsMem {"Class"}

→ Partial {" NonPartial"}
"partial " → Partial {"Partial "}

→ Base {"NoBase "}
":" ID → Base {"Base"}

Type ID ";" → ClassMem {"Field"}
RetType ID "(" {Param ","}* ")" Block ";" → ClassMem {"Method "}

ID → Type {" ClassType"}
"int" → Type {"IntType "}
"bool" → Type {"BoolType "}
Type → RetType
"void" → RetType {"Void"}
Type ID → Param {"Param"}

"{" Stmt* "}" → Block {"Block"}
Decl → Stmt
EmbStmt → Stmt
"return" Exp ";" → Stmt {"Return "}
Type ID ";" → Decl {"Var"}
Type ID "=" Exp ";" → Decl {"Var"}
Block → EmbStmt
StmtExp ";" → EmbStmt
"foreach " "(" Type ID "in" Exp ")" EmbStmt → EmbStmt {"Foreach "}

INT → Exp {"IntLit "}
"true" → Exp {"True"}
"false" → Exp {"False"}
ID → Exp {"VarRef "}
StmtExp → Exp
Exp "." ID → StmtExp {" FieldAccess"}
Exp "." ID "(" {Exp ","}* ")" → StmtExp {"Call"}
ID "(" {Exp ","}* ")" → StmtExp {"Call"}

Fig. 1. Syntax definition in SDF for a subset of C#. The names in the annotations are
abstract syntax tree constructors.



314 G. Konat et al.

means complete; it has been selected to model representative features of name
binding rules in programming and domain-specific languages. In the following
subsections we discuss the following fundamental concepts of name binding: def-
inition and use sites, namespaces, scopes, and imports. For each concept we give
a general definition, illustrate it with an example in C#, and then we show how
the concept can be modeled in NBL.

2.1 Definitions and References

The essence of name binding is establishing relations between a definition that
binds a name and a reference that uses that name. Name binding is typically
defined programmatically through a name resolution algorithm that connects
references to definitions. A definition site is the location of a definition in a
program. In many cases, definition sites are required to be unique, that is, there
should be exactly one definition site for each name. However, there are cases
where definition sites are allowed to be non-unique.

class C1 {}
class C2:C1 {}
partial class C3:C2 {}
partial class C3 {}

Fig. 2. Class declarations in C#

Example. Figure 2 contains class definitions in
C#. Each class definition binds the name of a
class. Thus, we have definition sites for C1, C2,
and C3. Base class specifications are references
to these definition sites. In the example, we have
references to C1 as the base class of C2 and C2 as the base class of C3. (Thus, C2
is a sub-class of, or inherits from C1.) There is no reference to C3. The definition
sites for C1 and C2 are unique. By contrast, there are two definition sites for C3,
defining parts of the same class C3. Thus, these definition sites are non-unique.
This is correct in C#, since regular class definitions are required to be unique,
while partial class definitions are allowed to be non-unique.

Abstract Syntax Terms. In Spoofax abstract syntax trees (ASTs) are repre-
sented using first-order terms. Terms consist of strings ("x"), lists of terms
(["x","y"]), and constructor applications (ClassType("C1")) for labelled tree
nodes with a fixed number of children. Annotations in grammar productions
(Fig. 1) define the constructors to be used in AST construction. For example,
Class(Partial(), "C3", Base("C2"), []) is the representation of the first
partial class in Figure 2. A term pattern is a term that may contain variables (x)
and wildcards (_).

Model. A specification in the name binding language consists of a collection of
rules of the form pattern : clause∗, where pattern is a term pattern and
clause∗ is a list of name binding declarations about the language construct
that matches with pattern. Figure 3 shows a declaration of the definitions and
references for class names in C#. The first two rules declare class definition
sites for class names. Their patterns distinguish regular (non-partial) and par-
tial class declarations. While non-partial class declarations are unique definition
sites, partial class declarations are non-unique definition sites. The third rule
declares that the term pattern Base(c) is a reference to a class with name c.



Declarative Name Binding and Scope Rules 315

rules
Class(NonPartial(), c, _, _): defines unique class c
Class(Partial(), c, _, _) : defines non−unique class c
Base(c) : refers to class c
ClassType(c) : refers to class c

Fig. 3. Declaration of definitions and references for class names in C#

Thus, the ": C1" in Figure 2 is a reference to class C1. Similarly, the second
rule declares a class type as a reference to a class.

2.2 Namespaces

Definitions and references declare relations between named program elements
and their uses. Languages typically distinguish several namespaces, i.e. different
kinds of names, such that an occurrence of a name in one namespace is not
related to an occurrence of that same name in another.

class x {
int x;
void x() {
int x; x = x + 1;

}
}

Fig. 4. Homonym class,
field, method, and variable
declarations in C#

Example. Figure 4 shows several definitions for the
same name x, but of different kinds, namely a class,
a field, a method, and a variable. Each of these kinds
has its own namespace in C#, and each of these
namespaces has its own name x. This enables us
to distinguish the definition sites of class x, field x,
method x, and variable x, which are all unique.

Model. We declared definitions and references for
the namespace class already in the previous example. Figure 5 extends that
declaration covering also the namespaces field, method, and variable. Note
that it is required to declare namespaces to ensure the consistency of name bind-
ing rules. Definition sites are bound to a single namespace (defines class c),
but use sites are not. For example, a variable in an expression might either refer
to a variable, or to a field, which is modeled in the last rule. In our example,
this means that variable declarations hide field declarations, because variables
are resolved to variables, if possible. Thus, both x in the assignment in Figure 4
refer to the variable x.

2.3 Scopes

Scopes restrict the visibility of definition sites. A named scope is the definition
site for a name which scopes other definition sites. By contrast, an anonymous

namespaces class field method variable
rules

Field(_, f) : defines unique field f
Method(_, m, _, _): defines unique method m
Call(m, _) : refers to method m

Var(_, v): defines unique variable v
VarRef(x): refers to variable x otherwise to field x

Fig. 5. Declaration of name bindings for different namespaces in C#



316 G. Konat et al.

1 class C {
2 void m() { int x; }
3 }
4
5 class D {
6 void m() {
7 int x;
8 int y;
9 { int x; x = y + 1; }

10 x = y + 1;
11 }
12 }

Fig. 6. Scoped homonym method and
variable declarations in C#

rules
Class(NonPartial(), c, _, _):

defines unique class c
scopes field, method

Class(Partial(), c, _, _):
defines non−unique class c
scopes field, method

Method(_, m, _, _):
defines unique method m
scopes variable

Block(_): scopes variable

Fig. 7. Declaration of scopes for different
namespaces in C#

scope does not define a name. Scopes can be nested and name resolution typically
looks for definition sites from inner to outer scopes.

Example. Figure 6 includes two definition sites for a method m. These definition
sites are not distinguishable by their namespace method and their name m, but,
they are distinguishable by the scope they are in. The first definition site resides
in class C, the second one in class D. In C#, class declarations scope method dec-
larations. They introduce named scopes, because class declarations are definition
sites for class names. The listing also contains three definition sites for a variable
x. Again, these are distinguishable by their scope. In C#, method declarations
and blocks scope variable declarations. Method declarations are named scopes,
blocks are anonymous scopes. The first definition site resides in method m in
class C, the second one in method m in class D, and the last one in a nameless
block inside method m in class D. In the assignment inside the block (line 9),
x refers to the variable declaration in the same block, while the x in the outer
assignment (line 10) refers to the variable declaration outside the block. In both
assignments, y refers to the variable declaration in the outer scope, because the
block does not contain a definition site for y.

Model. The scopes ns clause in NBL declares a construct to be a scope for
namespace ns. Figure 7 declares scopes for fields, methods, and variables. Named
scopes are declared at definition sites. Anonymous scopes are declared similarly,
but lack a defines clause.

Namespaces as Language Concepts. C# has a notion of ‘namespaces’. It
is important to distinguish these namespaces as a language concept from name-
spaces as a naming concept, which group names of different kinds of declara-
tions. Specifically, in C#, namespace declarations are top-level scopes for class
declarations. Namespace declarations can be nested. Figure 8 declares a top-level
namespace N, scoping a class declaration N and an inner namespace declaration N.



Declarative Name Binding and Scope Rules 317

namespace N {
class N {}
namespace N { class N {} }

}

Fig. 8. Nested namespace declarations in
C#

namespaces namespace
rules

Namespace(n, _):
defines namespace n
scopes namespace, class

Fig. 9. Declaration of name bindings for
nested namespace declarations in C#

The inner namespace declaration scopes another class declaration N. The def-
inition sites of the namespace name N and the class name N are distinguish-
able, because they belong to different namespaces (as a naming concept). The
two definition sites of namespace name N are distinguishable by scope. The
outer namespace declaration scopes the inner one. Also, the definition sites of
the class name N are distinguishable by scope. The first one is scoped by the
outer namespace declaration, while the second one is scoped by both namespace
declarations.

Model. The names of C# namespace declarations are distinguishable from names
of classes, fields, etc. As declared in Figure 9, their names belong to the namespace
namespace. The name binding rules for definition sites of names of this namespace
models the scoping nature of C# namespace declarations.

Imports. An import introduces into the current scope definitions from another
scope, either under the same name or under a new name. An import that imports
all definitions can be transitive.

Example. Figure 10 shows different kinds of imports in C#. First, a using direc-
tive imports type declarations from namespace N. Second, another using direc-
tive imports class C from namespace M into namespace O under a new name D.
Finally, classes E and F import fields and methods from their base classes. These
imports are transitive, that is, F imports fields and methods from E and D.

Model. Figure 11 shows name binding rules for import mechanisms in C#. The
first rule handles using declarations, which import all classes from the name-
space to which the qualified name qname resolves to. The second rule models
aliases, which either import a namespace or a class under a new name, depend-
ing on the resolution of qname. The last rule models inheritance, where fields
and methods are imported transitively from the base classes.

2.4 Types

So far, we discussed names, namespaces, and scopes to distinguish definition
sites for the same name. Types also play a role in name resolution and can be
used to distinguish definition sites for a name or to find corresponding definition
sites for a use site.



318 G. Konat et al.

using N;

namespace M {
class C { int f; }

}

namespace O {
using D = M.C;
class E:D {

void m() {}
}
class F:E { }

}

Fig. 10. Various forms of imports
in C#

rules
Using(qname):

imports class from namespace ns
where qname refers to namespace ns

Alias(alias, qname):
imports namespace ns as alias
where qname refers to namespace ns
otherwise imports class c as alias
where qname refers to class c

Base(c):
imports field (transitive),

method (transitive)
from class c

Fig. 11. Declaration of import mechanisms in
C#

class C {
void m() {}
void m(int x) {}
void m(bool x) {}
void m(int x, int y) {}
void m(bool x, bool y) {}

void x() {
m();
m(42);
m(true);
m(21, 21);
m(true, false);

}
}

Fig. 12. Overloaded method decla-
rations in C#

Example. Figure 12 shows a number of over-
loaded method declarations. These share the
same name m, namespace method, and scope
class C. But we can distinguish them by
the types of their parameters. Furthermore,
all method calls inside method x can be
uniquely resolved to one of these methods by
taking the argument types of the calls into
account.

Model. Figure 13 includes type information
into name binding rules for fields, methods,
and variables. Definition sites might have
types. In the simplest case, the type is part
of the declaration. In the example, this holds for parameters. For method calls,
the type of the definition site for a method name depends on the types of the
parameters. A type system is needed to connect the type of a single parameter,
as declared in the rule for parameters, and the type of a list of parameters, as
required in the rule for methods. We will discuss the influence of a type system
and the interaction between name and type analysis later. For now, we assume
that the type of a list of parameters is a list of types of these parameters.

Type information is also needed to resolve method calls to possibly overloaded
methods. The refers clause for method calls therefore requires the correspond-
ing definition site to match the type of the arguments. Again, we omit the de-
tails how this type can be determined. We also do not consider subtyping here.
Method calls and corresponding method declarations need to have the same
argument and parameter types.



Declarative Name Binding and Scope Rules 319

3 Name Binding Patterns

We now identify typical name binding patterns. These patterns are formed by
scopes, definition sites and their visibility, and use sites referencing these def-
inition sites. We explain each pattern first and give an example in C# next.
Afterwards, we show how the example can be modelled with declarative name
binding rules.

rules
Method(t, m, p∗, _):

defines unique method m of type (t∗, t)
where p∗ has type t∗

Call(m, a∗):
refers to method m of type (t∗, _)
where a∗ has type t∗

Param(t, p): defines unique variable p of type t

Fig. 13. Types in name binding rules for overloaded methods in C#

Unscoped Definition Sites. In the simplest case, definition sites are not
scoped and globally visible.

Example. In C#, namespace and class declarations (as well as any other type
declaration) can be unscoped. They are globally visible across file boundaries. For
example, the classes C1, C2, and C3 in Figure 2 are globally visible. In Figure 4,
only the outer namespace N is globally visible.

In contrast to C#, C++ has file scopes and all top-level declarations are only
visible in a file. To share global declarations, each file has to repeat the decla-
ration and mark it as extern. This is typically achieved by importing a shared
header file.

rules
CompilationUnit(_, _):

scopes namespace, class

(f, CompilationUnit(_, _)):
defines file f
scopes namespace, class

Fig. 14. Different ways to model file
scope for top-level syntax tree nodes

Model. We consider any definition site
that is not scoped by another definition
site or by an anonymous scope to be in
global scope. These definition sites are vis-
ible over file boundaries. File scope can
be modelled with a scoping rule in two
different ways. Both are illustrated in Fig-
ure 14. The first rule declares the top-level
node of abstract syntax trees as a scope
for all namespaces which can have top-level declarations. This scope will be
anonymous, because the top-level node cannot be a definition site (otherwise
this definition site would be globally visible). The second rule declares a tuple
consisting of file name and the abstract syntax tree as a scope. This tuple will
be considered a definition site for the file name. Thus, the scope will be named
after the file.



320 G. Konat et al.

Definition Sites Inside Their Scopes. Typically, definition sites reside inside
the scopes where they are visible. Such definition sites can either be visible only
after their declaration, or everywhere in their surrounding scope.

Example. In C#, namespace members such as nested namespace declarations
and class declarations are visible in their surrounding scope. The same holds for
class members. In contrast, variable declarations inside a method scope become
visible only after their declaration.

Model. Scoped definition sites are by default visible in the complete scope. Op-
tionally, this can be stated explicitly in defines clauses. Figure 15 illustrates
this for namespace declarations. The second rule in this listing shows how to
model definition sites which become visible only after their declaration.

Definition Sites Outside Their Scopes Some declarations include not only
the definition site for a name, but also the scope for this definition site. In such
declarations, the definition site resides outside its scope.

rules
Namespace(n, _):

defines non−unique namespace n in surrounding scope

Var(t, c):
defines unique variable of type t in subsequent scope

Fig. 15. Declaration of the visibility of definition sites inside scopes

class C {
void m(int[] x) {

foreach (int x in x)
System.Console.WriteLine(x);

}
}

Fig. 16. foreach loop with scoped iterator
variable x in C#

Example. Let expressions are a
classical example for definition
sites outside their scopes. In C#,
foreach statements declare iter-
ator variables, which are visible
in embedded statement. Figure 16
shows a method with a parameter
x, followed by a foreach statement
with an iterator variable of the same name. This is considered incorrect in C#,
because definition sites for variable names in inner scopes collide with definition
sites of the same name in outer scopes. However, the use sites can still be re-
solved based on the scopes of the definition sites. The use site for x inside the
loop refers to the iterator variable, while the x in the collection expression refers
to the parameter.

Model. Figure 17 shows the name binding rule for foreach loops, stating the
scope of the variable explicitly. Note that definition sites which become visible
after their declaration are a special case of this pattern. Figure 18 illustrates
how this can be modelled in the same way as the foreach loop. The first rule
assumes a nested representation of statement sequences, while the second rule
assumes a list of statements.



Declarative Name Binding and Scope Rules 321

using N.N.N;

namespace N’ {
class C {

C f;
void m(C p) { }

}
class D {

void m(C p) {
p.m(p.f);

}
}

}

Fig. 19. Contextual use
sites in C#

Contextual Use Sites. Definition sites can be ref-
erenced by use sites outside of their scopes. These use
sites appear in a context which determines the scope
into which they refer. This context can either be a di-
rect reference to this scope, or has a type which deter-
mines the scope.

Example. In C#, namespace members can be imported
into other namespaces. Figure 8 shows a class N in a
nested namespace. In Figure 19, this class is imported.
The using directive refers to the class with a qualified
name. The first part of this name refers to the outer
namespace N. It is the context of the second part, which
refers to the inner namespace N. The second part is then the context for the last
part of the qualified name, which refers to the class N inside the inner namespace.

rules
Foreach(t, v, exp, body):

defines unique variable v of type t in body

Fig. 17. Declaration of definition sites outside of their scopes

rules
Seq(Var(t, v), stmts):

defines unique variable v of type t in stmts

[Var(t, v) | stmts]:
defines unique variable v of type t in stmts

Fig. 18. Alternative declaration of definition sites becoming visible after their decla-
ration

rules
NsOrType(n1, n2):

refers to namespace n2 in ns
otherwise to class n2 in ns
where n1 refers to namespace ns

FieldAccess(e, f):
refers to field f in c
where e has type ClassType(c)

MethodCall(e, m, p∗):
refers to method m of type (t∗, _) in c
where e has type ClassType(c)
where p∗ has type t∗

Fig. 20. Declaration of contextual use sites



322 G. Konat et al.

Figure 19 also illustrates use sites in a type-based context. In method m in
class D, a field f is accessed. The corresponding definition site is outside the
scope of the method in class C. But this scope is given by the type of p, which is
the context for the field access. Similarly, the method call is resolved to method
m in class C because of the type of p.

Model. Figure 20 illustrates how to model contextual use sites. The scope of the
declaration site corresponding to a use site can be modelled in refers clauses.
This scope needs to be determined from the context of the use site. The first rule
resolves the context of a qualified name part to a namespace ns and declares the
use site to refer either to a namespace or to a class in ns. The remaining rules
declare use sites for field access and method calls. They determine the type of
the context, which needs to be a class type. A field access refers to a field in
that class. Similarly, a method call refers to a method with the right parameter
types in that class.

4 Editor Services

Fig. 21. Error checking

Modern IDEs provide a wide range of edi-
tor services where name resolution plays a
large role. Traditionally, each of these ser-
vices would be handcrafted for each lan-
guage supported by the IDE, requiring
substantial effort. However, by accurately
modeling the relations between names in
NBL, it is possible to generate a name res-
olution algorithm and editor services that
are based on that algorithm.

Reference Resolving. Name resolution is exposed directly in the IDE in the
form of reference resolving: press and hold Control and hover the mouse cursor
over an identifier to reveal a blue hyperlink that leads to its definition side. This
behavior is illustrated in Fig. 22.

Fig. 22. Reference resolution of name field reference to name field definition



Declarative Name Binding and Scope Rules 323

Fig. 23. Code completion for fields and local variables

Constraint Checking. Modern IDEs statically check programs against a wide
range of constraints. Constraint checking is done on the fly while typing and
directly displayed in the editor via error markers on the text and in the outline
view. Error checking constraints are generated from the NBL for common name
binding errors such as unresolved references, duplicate definitions, use before def-
inition and unused definitions. Fig. 21 shows an editor with error markers. The
message parameter in the post method has a warning marker indicating that
it is not used in the method body. On the line that follows it, the posterName

variable is assigned but has not yet been declared, violating the visibility rules
of Figure 15. Other errors in the method include a subsequent duplicate defini-
tion of posterName, which violates the uniqueness constraint of the variable

namespace of Figure 5, and referencing a non-existent property nam.

Code Completion. With code completion, partial (or empty) identifiers can be
completed to full identifiers that are valid at the context where code completion
is executed. Figure 23 shows an example of code completion. In the left program
code completion is triggered on a field access expression on the user object. The
user object is of type User, so all fields of User are shown as candidates. On
the right, completion is triggered on a variable reference, so all variables in the
current scope are shown.

5 Implementation

To implement name resolution based on NBL, we employ a name resolution
algorithm that relies on a symbol table data structure to persist name bindings
and lazy evaluation to resolve all references. In this section we give an overview
of the data structure, the name resolution algorithm, and their implementation.

Persistence of Name Bindings. To persist name bindings, each definition and
reference is assigned a qualified name in the form of a URI. The URI identifies
the occurrence across a project. Use sites share the URIs of their corresponding
definition sites.

A URI consists of the namespace, the path, and the name of a definition
site. As an example, the URI method://N/C/m is assigned to a method m in
a class C in a namespace N. Here, the segments represent the names of the



324 G. Konat et al.

scopes. Anonymous scopes are represented by a special path segment anon(u),
where u is a unique string to distinguish different anonymous scopes. For use in
analyses and transformations, URIs can be represented in the form of ATerms,
e.g. [method(),"N","C","m"] is URI for the method m.

All name bindings are persisted in an in-memory data structure called the
semantic index. It consists of a symbol table that lists all URIs that exist in a
project, and can be efficiently implemented as a hash table. It maps each URI to
the file and offset of their occurrences in the project. It can also store additional
information, such as the type of a definition.

Resolving Names. Our algorithm is divided into three phases. First, in the
annotation phase, all definition and use sites are assigned a preliminary URI,
and definition sites are stored in the index. Second, definition sites are analyzed,
and their types are stored in the index. And third, any unresolved references are
resolved and stored in the index.

Annotation Phase. In the first phase, the AST of the input file is traversed in
top-down order. The logical nesting hierarchy of programs follows from the AST,
and is used to assign URIs to definition sites. For example, as the traversal enters
the outer namespace scope n, any definitions inside it are assigned a URI that
starts with ‘n.’. As a result of the annotation phase, all definition and use sites
are annotated with a URI. In the case of definition sites, this is the definitive
URI that identifies the definition across the project. For references, a temporary
URI is assigned that indicates its context, but the actual definition it points to
has to be resolved in a following phase. For reference by the following phases,
all definitions are also stored in the index.

Definition Site Analysis Phase. The second phase analyzes each definition site
in another top-down traversal. It determines any local information about the
definition, such as its type, and stores it in the index so it can be referenced
elsewhere. Types and other information that cannot be determined locally are
determined and stored in the index in the last phase.

Use Site Analysis Phase. When the last phase commences, all local informa-
tion about definitions has been stored in the index, and non-local information
about definitions and uses in other files is available. What remains is to resolve
references and to determine types that depend on non-local information (in par-
ticular, inferred types). While providing a full description of the use site analysis
phase and the implementation of all name binding constructs is outside the scope
of this paper, the below steps sketch how each reference is resolved. See the NBL
website 1 for links to the algorithm’s source files.

1. Determine the temporary URI ns://path/n which was annotated in the
first analysis phase.

2. If an import exists in scope, expand the current URI for that import.
3. If the reference corresponds to a name-binding rule that depends on non-local

information such as types, retrieve that information.
1 http://strategoxt.org/Spoofax/NBL

http://strategoxt.org/Spoofax/NBL


Declarative Name Binding and Scope Rules 325

4. Look for a definition in the index with namespace ns, path path, and name
n. If it does not exist, try again with a prefix of path that is one segment
shorter. If the no definition is found this way, store an error for the reference.

5. If the definition is an alias, resolve it.

An important part to highlight in the algorithm is the interaction between name
and type analysis that happens for example with the FieldAccess expression of
Figure 20. For name binding rules that depend on types or other non-local infor-
mation, it is possible that determining the type recursively triggers name resolu-
tion. For this reason, we apply lazy evaluation, ensuring that any reference can be
resolved lazily as requested in this phase. By traversing through the entire tree,
we ensure that all use sites are eventually resolved and persisted to the index.

6 Integration into Spoofax

The NBL, together with the index, is integrated into the Spoofax Language
Workbench. Stratego rules are generated by the NBL that use the index API to
interface with Spoofax. In this section we will show the index API and how the
API is used to integrate the editor services seen in Section 4.

IndexAPI. Once all analysis phases have been completed, the index is filled with
a summary of every file. To use the summaries we provide the index API with a
number of lookups and queries. Lookups transform annotated identifiers into def-
initions. Queries transform definitions (retrieved using a lookup) into other data.
The API is used for integrating editor services, but is also exposed to Spoofax lan-
guage developers for specifying additional editor services or other transformations.

index−lookup−one performs a lookup that looks for a definition of given
identifier in its owning scope. The index−lookup lookup performs a lookup
that tries to look for a definition using index−lookup−one. If it cannot be
found, the lookup is restarted on the outer scope until the root scope is reached.
If no definition is found at the root scope, the lookup fails. There is also an
index−lookup−all variant that returns all found definitions instead of stopping
at the first found definition. Finally, index−lookup−all−levels is a special
version of index−lookup−all that supports partial identifiers.

editor−complete:
ast → identifiers
where

node@COMPLETION(name) := <collect−one(?COMPLETION(_))> ast ;
proposals := <index−lookup−all−levels(|name)> node ;
identifiers := <map(index−uri−name)> proposals

Fig. 25. Code completion

To get data from the index, index−get−data is used. Given a definition and
a data kind, it will return all data values of that kind that is attached to the
definition. Uses are retrieved in the same way using index−get−uses−all.



326 G. Konat et al.

Reference Resolution. Resolving a reference to its definition is very straight-
forward when using index−lookup, since it does all the work for us. The only
thing that has to be done when Spoofax requests a reference lookup is a simple
transformation: node →<index−lookup> node. The resulting definition has lo-
cation information embedded into it which is used to navigate to the reference.
If the lookup fails, this is propagated back to Spoofax and no blue hyperlink will
appear on the node under the cursor.

constraint−error:
node → (key, "Duplicate definition")
where

<nam−unique> node ;
key := <nam−key> node ;
defs := <index−lookup−one> key ;
<gt> (<length> defs, 1)

Fig. 24. Duplicate definitions constraint check

Constraint Checking. Con-
straint checking rules are called
by Spoofax after analysis on ev-
ery AST node. If a constraint
rule succeeds it will return the
message and the node where the
error marker should be put on.

The duplicate definition con-
straint check that was shown
earlier is defined in Figure 24. First nam−unique (generated for unique defi-
nitions by the NBL) is used to see if the node represents a unique definition;
non-unique definition such as partial classes should not get duplicate definition
error markers. The identifier is retrieved using nam−key and a lookup in the
current scope is done with index−lookup−one. If more than one definition is
found, the constraint check succeeds and an error marker is shown on the node.

Code Completion. When code completion is requested in Spoofax, a
completion node is substituted at the place where the cursor is. For example,
if we request code completion on VarRef("a"), it will be substituted by
VarRef(COMPLETION("a")) to indicate that the user wants to complete this
identifier. See Figure 25 for the code completion implementation. We first re-
trieve the completion node and name using collect−one. Completion propos-
als are gathered by index−lookup−all−levels since it can handle partial
identifiers. Finally the retrieved proposals are converted to names by mapping
index−uri−name over them.

7 Evaluation and Discussion

Our aim with this work has been to design high-level abstractions for name res-
olution applicable to a wide range of programming languages. In this section we
discuss the limitations of our approach and evaluate its applicability to differ-
ent languages and other language features than those covered in the preceding
sections.

Limitations. There are two areas of possible limitations of NBL. One is in the
provided abstraction, the other is in the implementation algorithm that supports
it. As for the provided abstraction, as a definition language, NBL is inherently
limited in the number of features it can support. While the feature space it



Declarative Name Binding and Scope Rules 327

supports is extensive, ultimately there may always be language features or vari-
ations that are not supported. For these cases, the definition of NBL, written in
Stratego, can be extended, or it is possible to escape NBL and extend an NBL
specification using handwritten Stratego rules. As for the implementation algo-
rithm, NBL’s current implementation strategy relies on laziness, and does not
provide much control over the traversal for the computation of names or types.
In particular, sophisticated type inference schemes are not supported with the
current algorithm. To implement such schemes, the algorithm would have to
be extended, preferably in a way that maintains compatibility with the current
NBL definition language.

Coverage. During the design and construction of NBL, we have performed a
number of studies on languages and language features to determine the extent
of the feature space that NBL would support. In this paper we highlighted many
of the features by using C# as a running example, but other languages that we
studied include a subset of general-purpose programming languages C, Java, and
domain-specific languages WebDSL [10], the Hibernate Query Language (HQL),
and Mobl [12]. We also applied our approach to the Java Bytecode stack machine
language using the Jasmin [17] syntax.

For our studies we used earlier prototypes of NBL, which led to the design
as it is now. Notable features that we studied and support in NBL are partial
classes, inheritance, visibility, lexical scoping, imports, type-based name resolu-
tion, and overloading; all of which have been discussed in Sect. 4. In addition, we
studied aspect-oriented programming with intertype declarations and pointcuts,
file-based scopes in C, and other features. Our design has also been influenced
by past language definitions, such as SDF and Stratego. Altogether, it is fair to
say that NBL supports a wide range of language features and extensive variabil-
ity, but can only support the full range of possible programming languages by
allowing language engineers to escape the abstraction. In future work, we would
like to enhance the possibilities of extending NBL and design a better interface
for escapes.

8 Related Work

We give an overview of other approaches for specifying and implementing name
resolution. The main distinguishing feature of our approach is the use of linguistic
abstractions for name bindings, thus hiding the low level details of writing name
analysis implementations.

Symbol Tables. In classic compiler construction, symbol tables are used to
associate identifiers with information about their definition sites. This typically
includes type information. Symbol tables are commonly implemented using hash
tables where the identifiers are indexed for fast lookup. Scoping of identifiers can
be implemented in a number of ways; for example by using qualified identifiers
as index, nesting symbol tables or destructively updating the table during pro-
gram analysis. The type of symbol table influences the lookup strategy. When



328 G. Konat et al.

using qualified identifiers the entire identifier can be looked up efficiently, but
considering outer scopes requires multiple lookups. Nesting symbol tables always
requires multiple lookups but is more memory efficient. When destructively up-
dating the symbol table, lookups for visible variables are very efficient, but the
symbol table is not available after program analysis. The index we use is a sym-
bol table that uses qualified identifiers. We map qualified identifiers (URIs) to
information such as definitions, types and uses.
Attribute Grammars. Attribute Grammars [16] (AGs) are a formal way
of declaratively specifying and evaluating attributes for productions in formal
grammars. Attribute values are associated with nodes and calculated in one or
more tree traversals, where the order of computations is determined by depen-
dencies between attributes.

Eli provides an attribute grammar specification language for modular and
reusable attribute computations [13]. Abstract, language-independent compu-
tations can be reused in many languages by letting symbols from a concrete
language inherit these computations. For example, computations Range, IdDef,
and IdUse would calculate a scope, definitions, and references. A method defi-
nition can then inherit from Range and IdDef, because it defines a function and
opens a scope. A method call inherits from IdUse because it references a func-
tion. These abstract computations are reflected by naming concepts of NBL and
the underlying generic resolution algorithm. However, NBL is less expressive,
more domain-specific. Where Eli can be used to specify general (and reusable)
computations on trees, NBL is restricted to name binding concepts, helping to
understand and specify name bindings more easily.

Silver [26] is an extensible attribute grammar specification language which can
be extended with general-purpose and domain-specific features. Typical exam-
ples are auto-copying, pattern matching, collection attributes, and support for
data-flow analysis. However, name analysis is mostly done the traditional way;
an environment with bindings is passed down the tree using inherited properties.

Reference Attribute Grammars (RAGs) extend AGs by introducing attributes
that can reference nodes. This substantially simplifies name resolution imple-
mentations. JastAdd [7] is a meta-compilation system for generating language
processors relying on RAGs and object orientation. It also supports parametrized
attributes to act as functions where the value depends on the given parameters.
A typical name resolution as seen in [5,7,2] is implemented in lookup attributes
parameterised by an identifier of use sites, such as variable references. All nodes
that can have a variable reference as a child node, such as a method body, then
have to provide an equation for performing the lookup. These equations im-
plement scoping and ordering using Java code. JastAdd implementations have
much more low level details than NBL declarations. This provides flexibility, but
entails overhead on encoding and requires decoding for understanding. For exam-
ple, scopes for certain program elements are encoded within a set of equations,
usually implemented by early or late returns.

Visibility Predicates. CADET [20] is a notation for predicates and functions
over abstract syntax tree nodes. Similar to attribute grammar formalisms, it



Declarative Name Binding and Scope Rules 329

allows to specify general computations in trees but lacks reusable concepts for
name binding. Poetsch-Heffter proposes dedicated name binding predicates [21],
which can be translated into efficient name resolution functions [22]. In contrast
to NBL, scopes are expressed in terms of start and end points and multi-file
analyses are not supported.

Dynamic Rewrite Rules. In term rewriting, an environment passing style
does not compose well with generic traversals. As an alternative, Stratego allows
rewrite rules to create dynamic rewrite rules at run-time [3]. The generated
rules can access variables available from their definition context. Rules generated
within a rule scope are automatically retracted at the end of that scope. Hemel
et al. [11] describe idioms for applying dynamic rules and generic traversals
for composing definitions of name analysis, type analysis, and transformations
without explicitly staging them into different phases. Our current work builds
on the same principles, but applies an external index and provides a specialized
language for name binding declarations.

Name analysis with scoped dynamic rules is based on consistent renaming,
where all names in a program are renamed such that they are unequal to all other
names that do not correspond to the same definition site. Instead of changing
the names directly in the tree, annotations can be added which ensure unique-
ness. This way, the abstract syntax tree remains the same modulo annotations.
Furthermore, unscoped dynamic rewrite rules can be used for persistent map-
pings [14].

Textual Language Workbenches. Xtext [6] is a framework for developing
textual software languages. The Xtext Grammar Language is used to specify
abstract and concrete syntax, but also name bindings by using cross-references in
the grammar. Use sites are then automatically resolved by a simplistic resolution
algorithm. Scoping or visibility cannot be defined in the Grammar Language, but
have to be implemented in Java with help of a scoping API with some default
resolvers. For example field access, method calls, and block scopes would all need
custom Java implementations. Only package imports have special support and
can be specified directly in the Grammar Language. Common constraint checks
such as duplicate definitions, use before definition, and unused definitions also
have to be specified manually. This increases the amount of boilerplate code that
has to be rewritten for every language.

In contrast to Xtext’s Grammar Language, NBL definitions are separated
from syntax definitions in Spoofax. This separation allows us to specify more
advanced name binding concepts without cluttering the grammar with these
concepts. It also preserves language modularity. When syntax definitions are
reused in different contexts, different name bindings can be defined for these
contexts, without changing the grammar. From an infrastructure perspective,
Spoofax and Xtext work similarly, using a global index to store summaries of
files and URIs to identify program elements.

EMFText [8] is another framework for developing textual software languages.
Like Xtext, it is based on the Eclipse Modeling Framework [23] and relies on



330 G. Konat et al.

metamodels to capture the abstract syntax of a language. While in Xtext this
metamodel is generated from a concrete syntax definition, EMFText takes the
opposite approach and generates a default syntax definition based on the UML
Human-Usable Textual Notation [18] from the metamodel. Language designers
can then customize the syntax definition by adding their own grammar rules.

In the default setup, reference resolution needs to be implemented in Java.
Only simple cases are supported by default implementations [9]. JastEMF [4]
allows to specify the semantics of EMF metamodels using JastAdd RAGs by
integrating generated code from JastAdd and EMF.

References

1. Standard ECMA-334 C# language specification, 4th edn (2006)
2. Åkesson, J., Ekman, T., Hedin, G.: Implementation of a Modelica compiler using

JastAdd attribute grammars. Science of Computer Programming 75(1-2), 21–38
(2010)

3. Bravenboer, M., van Dam, A., Olmos, K., Visser, E.: Program transformation with
scoped dynamic rewrite rules. Fundamenta Informaticae 69(1-2), 123–178 (2006)

4. Bürger, C., Karol, S., Wende, C., Aßmann, U.: Reference Attribute Grammars for
Metamodel Semantics. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE
2010. LNCS, vol. 6563, pp. 22–41. Springer, Heidelberg (2011)

5. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: Gabriel, R.P., Ba-
con, D.F., Lopes, C.V. (eds.) Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, pp. 1–18. ACM (2007)

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Int. Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, pp. 307–309. ACM (2010)

7. Hedin, G.: An Introductory Tutorial on JastAdd Attribute Grammars. In: Fernan-
des, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491,
pp. 166–200. Springer, Heidelberg (2011)

8. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
Refinement of Textual Syntax for Models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009)

9. Heidenreich, F., Johannes, J., Reimann, J., Seifert, M., Wende, C., Werner, C.,
Wilke, C., A§mann, U.: Model-driven modernisation of java programs with jamopp.
In: Joint Proceedings of MDSM 2011 and SQM 2011. CEUR Workshop Proceed-
ings, pp. 8–11 (March 2011)

10. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-
ing of web applications with WebDSL. Journal of Symbolic Computation 46(2),
150–182 (2011)

11. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model
transformation: a case study in transformation modularity. Software and Systems
Modeling 9(3), 375–402 (2010)

12. Hemel, Z., Visser, E.: Declaratively programming the mobile web with mobl. In:
Fisher, K., Lopes, C.V. (eds.) 2011 Int. Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2011, pp. 695–712. ACM
(2011)



Declarative Name Binding and Scope Rules 331

13. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta
Inf. 31(7), 601–627 (1994)

14. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.)
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, pp. 444–463. ACM (2010)

15. Kats, L.C.L., Visser, E., Wachsmuth, G.: Pure and declarative syntax definition:
paradise lost and regained. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010,
pp. 918–932. ACM (2010)

16. Knuth, D.E.: Semantics of context-free languages. Theory Comput. Syst. 2(2),
127–145 (1968)

17. Meyer, J., Downing, T.: Java Virtual Machine. O Reilly (1997)
18. Object Management Group: Human Usable Textual Notation Specification (2004)
19. Object Management Group: Object Constraint Language, 2.3.1 edn. (2012)
20. Odersky, M.: Defining context-dependent syntax without using contexts. Transac-

tions on Programming Languages and Systems 15(3), 535–562 (1993)
21. Poetzsch-Heffter, A.: Logic-based specification of visibility rules. In: PLILP,

pp. 63–74 (1991)
22. Poetzsch-Heffter, A.: Implementing High-Level Identification Specifications. In:

Pfahler, P., Kastens, U. (eds.) CC 1992. LNCS, vol. 641, pp. 59–65. Springer,
Heidelberg (1992)

23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work, 2nd edn. Addison-Wesley (2009)

24. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, University
of Amsterdam (September 1997)

25. Visser, E.: Program Transformation with Stratego/XT. In: Lengauer, C., Batory,
D., Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS,
vol. 3016, pp. 216–238. Springer, Heidelberg (2004)

26. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: An extensible attribute
grammar system. Science of Computer Programming 75(1-2), 39–54 (2010)


	Declarative Name Binding and Scope Rules
	Introduction
	Declarative Name Binding and Scope Rules
	Definitions and References
	Namespaces
	Scopes
	Types

	Name Binding Patterns
	Editor Services
	Implementation
	Integration into Spoofax
	Evaluation and Discussion
	Related Work
	References




