
The Spoofax Name Binding Language

Gabriël D. P. Konat, Vlad A. Vergu, Lennart C. L. Kats, Guido H. Wachsmuth, Eelco Visser
Delft University of Technology, The Netherlands

g.d.p.konat@student.tudelft.nl, {v.a.vergu, l.c.l.kats, g.h.wachsmuth, e.visser}@tudelft.nl

Abstract
In textual software languages, names are used to identify
program elements such as variables, methods, and classes.
Name analysis algorithms resolve names in order to estab-
lish references between definitions and uses of names. In
this poster, we present the Spoofax Name Binding Language
(NBL), a declarative meta-language for the specification of
name binding and scope rules, which departs from the pro-
grammatic encodings of name binding provided by regular
approaches. NBL aspires to become the universal language
for name binding, which can be used next to BNF defini-
tions in reference manuals, as well as serve the generation of
implementations.

Categories and Subject Descriptors D.2.1 [Requirements-
/Specifications]: Languages; D.3.2 [Language Classifica-
tions]: Very high-level languages

Keywords name binding, name resolution, declarative,
meta-language, Spoofax

1. Introduction
Name binding is concerned with the relation between def-
initions and references through identifiers in textual soft-
ware languages, including scope rules that govern these rela-
tions. Classical approaches to name binding provide defini-
tions in terms of programmatic encodings that carry environ-
ments through tree traversals. Attempts at abstractions such
as attribute grammars (3; 4) or dynamic rewrite rules (2) re-
duce the overhead of such programmatic encodings, but are
still algorithmic in nature. Our goal is a declarative domain-
specific language for name binding that can be used to ex-
plain the binding rules of a language and and from which an
efficient name resolution algorithm can be automatically de-
rived, much like grammar formalisms (EBNF) abstract from
the programmatic encoding of parsers.

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

In this poster, we present the Spoofax Name Binding Lan-
guage (NBL) (6), a declarative meta-language for the spec-
ification of name binding in terms of namespaces, defini-
tions, references, scopes, and imports. From definitions in
NBL, a compiler generates a language-specific name res-
olution strategy in the Stratego rewriting language (1) by
parametrizing an underlying generic, language independent
strategy. Name resolution results in a persistent symbol ta-
ble for use by semantic editor services such as reference res-
olution, consistency checking of definitions, type checking,
refactoring, and code generation. NBL is integrated in the
Spoofax Language Workbench (5), but should be reusable
in other language processing environments.

2. Name Binding and Scope Rules
We discuss the core concepts of NBL and illustrate their
usage for a subset of C#.

Definitions and References The essence of name binding
is establishing relations between a definition that binds a
name and a reference that uses that name. Each class in a
C# program defines the name of a class. Figure 1 defines the
classes Env, Expr, BinOp, Plus and Let. Base class declara-
tions are references to class definitions. For example, class
Plus has a reference to its base class BinOp.

An NBL specification consists of a collection of rules of
the form pattern : clause∗, where pattern is an abstract
tree (term) pattern and clause∗ is a list of name binding
declarations about the language construct that matches with
pattern. Figure 2 shows the NBL specification for name
analysis of the C# subset. The first rule declares that a node
matching the pattern Class(x, , ) defines a class with name
x. The second rule declares that the term pattern Base(x)

is a reference to a class with name x. Thus, : BinOp is a
reference to class BinOp.

Namespaces Definitions and references declare relations
between named program elements and their uses. Languages
typically distinguish several namespaces, i.e. different kinds
of names, such that an occurrence of a name in one names-
pace is not related to an occurrence of that same name in an-
other. The Let class in the example has a method and a field
with name eval; methods and fields have their own names-
pace in our C# subset.

79



Scopes Scopes restrict the visibility of definitions. Scopes
can be nested and name resolution typically looks for defini-
tions from inner to outer scopes. The example includes three
definitions for a method eval. These definitions are not dis-
tinguishable by their namespace Method and their name x,
but, they are distinguishable by their scope, i.e. their con-
taining class. The scopes ns clause in NBL declares a con-
struct to be a scope for namespace ns. The Class rule in
the NBL specification scopes all names in the Field and
Method namspaces. Methods in turn scope local variables in
the Variable namespace.

Imports An import introduces definitions from another
scope into the current scope, either under the same name
or under a new name. An import that imports all definitions
can be transitive. Inheriting from a base class corresponds
to (transitively) importing methods and fields from the base
class into the super class. For example the Plus class im-
ports the fields l and r from BinOp, BinOp imports eval from
Expr. The second rule in the NBL specification declares that
a base class reference to class x transitively imports all ele-
ments from the Field and Method namespaces of that class
into the surrounding scope.

Types Types also play a role in name resolution. When
calling a method e.m(e∗), the resolution of the method
depends on the type of the target e and the types of the
arguments e∗. For example, l.eval(env) refers to the
eval method of the Expr interface, since l has type Expr

and env has type Env. In NBL, the of type t clause of
a defines declaration indicates a type assignment. The
where e has type t clause can be used to retrieve the type
of an expression. For example, the rule for Call computes
the types of the arguments and target of the method call.

Editor services Modern IDEs provide a wide range of edi-
tor services where name resolution plays a crucial role. Tra-
ditionally, each of these services is handcrafted for each
language supported by the IDE. We automatically gener-
ate a name resolution algorithm and editor services from
an NBL definition. Reference resolution, constraint check-
ing and code completion are automatically generated from
an NBL specification. Figure 3 shows an example of the gen-
erated constraint checking editor service; error markers are
shown for unresolved references. An example of the gener-
ated code completion can be seen in Figure 4.

References
1 M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Strat-

ego/XT 0.17. A language and toolset for program transformation.
SCP, 72(1-2):52–70, 2008. 1

2 M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program
transformation with scoped dynamic rewrite rules. FUIN, 69(1-
2):123–178, 2006. 1

3 T. Ekman and G. Hedin. Modular name analysis for java using
jastadd. In GTTSE, pages 422–436, 2006. 1

interface Env { Env add(string name, int val); }
interface Expr { int eval(Env env); }
class BinOp : Expr { Expr l; Expr r; }
class Plus : BinOp {
int eval(Env env) {
return l.eval(env) + r.eval(env);

} }
class Let : Expr {
string name; Expr eval; Expr body;
int eval(Env env) {
return body.eval(env.add(name, eval.eval(env)));

} }

Figure 1. Expression evaluation classes in C# subset.
namespaces Class Method Field Variable
rules
Class(x, , ) :
defines Class x of type Type(x)
scopes Field, Method

Base(x) :
refers to Class x
imports Field, Method from Class x {transitive}

Method(t, x, p∗, ) :
defines Method x of type (t∗, t)
scopes Variable
where p∗ has type t∗

Call(exp, x, a∗) :
refers to Method x of type (t∗, ) in Class c
where a∗ has type t∗
where exp has type Type(c)

Field(t, x) :
defines Field x of type t

Param(t, x) :
defines Variable x of type t

VarRef(x) :
refers to Variable x
otherwise refers to Field x

Figure 2. NBL specification for a subset of C#.

Figure 3. Constraint checking for C# subset.

Figure 4. Code completion for C# subset.

4 U. Kastens and W. M. Waite. Modularity and reusability in
attribute grammars. ACTA, 31(7):601–627, 1994. 1

5 L. C. L. Kats and E. Visser. The Spoofax language workbench:
rules for declarative specification of languages and IDEs. In
OOPSLA, pages 444–463, 2010. 1

6 G. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser. Language-
parametric name resolution based on declarative name binding
and scope rules. In SLE, 2013. 1

80


	1 Introduction
	2 Name Binding and Scope Rules



