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Abstract. In modern Integrated Development Environments (IDEs),
textual editors are interactive and can handle intermediate, incomplete,
or otherwise erroneous texts while still providing editor services such
as syntax highlighting, error marking, outline views, and hover help. In
this paper, we present an approach for the robust synchronization of
interactive textual and graphical editors. The approach recovers from
errors during parsing and text-to-model synchronization, preserves tex-
tual and graphical layout in the presence of erroneous texts and models,
and provides synchronized editor services such as selection sharing and
navigation between editors. It was implemented for synchronizing tex-
tual editors generated by the Spoofax language workbench and graphical
editors generated by the Graphical Modeling Framework.

1 Introduction

Modeling languages such as Behavior Trees [3,17] or QVT Relational [18] provide
both textual and graphical concrete syntax. Textual and graphical editors for
such languages need to synchronize textual representations, graphical represen-
tations, and underlying models. During this synchronization, layout in textual
and graphical representations needs to be preserved.

Textual editors generated by textual modeling frameworks such as TEF [19]
and Xtext [8] synchronize only on user request. Embedded textual editors based
on TEF synchronize on open and close [20]. Xtext-based editors synchronize on
save [16]. This breaks the interactive nature of integrated development environ-
ments (IDEs), where editors provide a wide variety of language-specific services
such as syntax highlighting, error marking, code navigation, content completion
and outline views in real-time, while their content is edited. Furthermore, those
editors can only synchronize valid models and tend to break either textual or
graphical layout. TEF-based editors ignore textual layout by design. Xtext-based
editors typically preserve textual layout, but tend to break layout in graphical
editors once identifiers change.

Robust real-time synchronization of textual and graphical editors is mainly
prevented by current text-to-model transformation practice, where model ele-
ments are temporarily deleted and recreated during parsing, existing persisted
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Fig. 1. Steps involved in synchronizing textual and graphical editors: ➊ Parsing,
➋ tree-to-model transformation, ➂ model merge, ➃ edit policy, ➎ model-to-text trans-
formation, ➅ pretty-printing. Steps marked black support error recovery. Steps marked
white support layout preservation.

models are ignored and overwritten by new models, and error recovery is limited.
In this paper, we propose a new approach which is outlined in Fig. 1. To synchro-
nize textual changes with a model, the text is ➊ parsed into an abstract syntax
tree, which is ➋ transformed into a model. The resulting model is ➂ merged
with the model in a graphical editor, which invokes an edit policy to ➃ update
its graphical representation of the model. To synchronize graphical changes with
a text, the edit policy ➃ changes the underlying model, which is ➎ transformed
into a tree. The resulting tree is ➅ merged with the tree in the textual editor and
turned back into text. The approach was implemented for synchronizing textual
editors generated by the Spoofax language workbench [13] and graphical editors
generated by the Graphical Modeling Framework for the Eclipse IDE. We ap-
plied this approach to Behavior Trees. Fig. 2 shows the textual and graphical
editor, which both share the same Behavior Tree model.

We proceed as follows. We first describe a mapping from grammars to meta-
models and the corresponding transformations ➋➎ between trees and models.
In Sect. 3, we discuss error recovery in steps ➊➋➎. In Sect. 4, we elaborate on
the preservation of textual and graphical layout in steps ➂➃➅. In Sect. 5, we
present our case study on the development of synchronizing editors for Behavior
Trees. Finally, we discuss related work in Sect. 6.

2 Tree-to-Model and Model-to-Tree Transformations

The textual syntax definition is the starting point of our approach. In this sec-
tion, we present a mapping from textual syntax definitions to metamodels and a
corresponding bidirectional mapping between abstract syntax trees conforming
to the textual syntax definition and models conforming to the generated meta-
model. We start with abstract mappings which need to be adapted for concrete
formalisms. We then discuss such an adaptation using the examples of Spoofax’
syntax definition formalism SDF [9,26], its name binding language NaBL [14],
and EMF’s metamodeling formalism Ecore [24].

2.1 Mapping Textual Syntax Definition to Metamodel

We start with minimalistic grammar and metamodeling formalisms. In these for-
malisms, grammars,metamodels and models are represented as terms. Fig. 3 shows
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Fig. 2. Behavior Tree model in a textual editor (left) and in a graphical editor (right).
Both editors edit the same model and synchronize changes with each other.

the corresponding signatures. These signatures are of the form c : T → s with c
a constructor for sort s and T a declaration of the number and types of arguments
of c. The mapping is specified in Fig. 4 by rewrite rules expressed in Spoofax’
transformation language Stratego [1,11]. These rules are of the form r : t1 →
t2 where s with r the rule name, t1 and t2 first-order terms, and s a strat-
egy expression. A rule applies to a term if the term matches t1 and s succeeds,
resulting in the instantiation of t2.

Grammars, metamodels, and models. A grammar consists of a lexical syn-
tax definition, a context-free syntax definition, and a list of namespace spec-
ifications (Fig. 3, line 1). Both lexical and context-free syntax are defined by
productions, which are grouped by the sorts they define (l. 2). Productions and
sorts are named, and each production provides a list of symbols (l. 3). A symbol
is either a character class (typically used to define lexical sorts), a string, a ref-
erence to a lexical sort, or a reference to a context-free sort (ll. 4-7). References
are named (first ID), refer to a sort by name (second ID), and might come with
a postfix operator for options, lists, or optional lists. References to lexical sorts
can be involved in name bindings, either as definition or use sites of a name
in a namespace (ll. 8-11). This integration of name binding into productions is
similar to Xtext’s approach. But in contrast to Xtext, we decouple namespaces
from sorts and allow them to be hierarchically structured.

A metamodel consists of a list of types, which are either primitive data types,
enumerated data types, abstract classes, or concrete classes (ll. 16-21). Type
names are qualified, providing a simple packaging mechanism. Both kinds of
classes consist of a list of qualified parent class names, defining the inheritance
hierarchy, and a list of features. We distinguish attributes, references, and con-
tainments (ll. 22-24). Each feature is named, refers its type by qualified name,
and defines a lower and upper bound (ll. 25-26).
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1 Grammar: List(Sort)*List(Sort)*List(NSpace) → Grammar
2 Sort : ID*List(Prod) → Sort
3 Prod : ID*List(Symbol) → Prod
4 Chars : List(Char) → Symbol
5 Literal: String → Symbol
6 LSort : ID*ID*Binding*Operator → Symbol
7 CfSort : ID*ID*Operator → Symbol
8 None : Binding
9 DefSite: ID → Binding

10 UseSite: ID → Binding
11 NSpace : ID*List(ID) → NSpace
12 None : Operator
13 Option : Operator
14 List : Operator
15 OptList: Operator

16 MM : List(Type) → Metamodel
17 DType : QID → Type
18 Enum : QID*List(Literal) → Type
19 AClass : List(QID)*QID*List(Feature) → Type
20 CClass : List(QID)*QID*List(Feature) → Type
21 Literal: ID → Literal
22 Attr : ID*QID*Bounds → Feature
23 Ref : ID*QID*Bounds → Feature
24 Contain: ID*QID*Bounds → Feature
25 QID : ID*ID → QID
26 Bounds : INT*UnlimitedINT → Bounds

27 M : Object → Model
28 Obj : Opt(URI)*QID*List(Slot) → Object
29 : Value → Slot
30 : Opt(Value) → Slot
31 : List(Value) → Slot
32 Data : String → Value
33 Link : URI → Value
34 Contain: Object → Value

Fig. 3. Signatures for grammars (top), metamodels (center), and models (bottom)

A model is represented as a single root object (l. 27). An object consists of
an optional URI, the qualified name of the class it instantiates, and a list of
slots (l. 28). A slot may hold a single value or a list of values, where a value
is either an instance of a data type represented as a string, a link to an object
represented as the URI of this object, or a contained object (ll. 29-34). Slots do
not refer to features. Instead, we assume an immutable order of the features of
a class, which links slots of an object to the features of its class.

Lexical Syntax. We are not interested in the inner structure of lexical tokens
and represent them as basic data at the leaves of abstract syntax trees. We
can keep the same basic data in models. Thus, we map lexical sorts from a
grammar to data types in a metamodel (Fig. 4, ll. 7-14). Predefined data types
(enumerations and primitives) are provided by the metamodel formalism and the
condition lex2qid ensures that user-defined data types are only generated when
no corresponding predefined data type exists. When a lexical sort defines
only a finite number of literals, an enumeration is generated (sort2enum).
Only when sort2enum fails, we try to generate a primitive with sort2dtype
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1 grammar2mm:
2 Grammar(lex∗, cf∗, ns∗) → MM([ty1∗, ty2∗, ty3∗])
3 where
4 <filter(sort2enum <+ sort2dtype)> lex∗ ⇒ ty1∗ ;
5 <mapconcat(sort2classes)> cf∗ ⇒ ty2∗ ;
6 <map(ns2class)> ns∗ ⇒ ty3∗

7 sort2enum:
8 Sort(name, prod∗) → Enum(<lex2qid> name, <map(prod2lit)> prod∗)
9

10 prod2lit: Prod(_, [Literal(name)]) → Literal(name)
11
12 sort2dtype: Sort(name, _) → DType(<lex2qid> name)
13
14 lex2qid: name → QID("lex", name) where <not(predefined)> name

15 sort2classes:
16 Sort(name, prod∗) → [AClass([], QID("cf", name), [])|class∗]
17 where
18 <map(prod2class(|name)))> prod∗ ⇒ class∗
19
20 prod2class(|parent):
21 Prod(name, sym∗) → CClass([parent|parent∗], Q("ast", name), feat∗)
22 where
23 <filter(symbol2parent)> sym∗ ⇒ parent∗ ;
24 <filter(symbol2feature)> sym∗ ⇒ feat∗
25
26 symbol2feature:
27 LSort(label, sort, None(), op) → Attr(label, ty, <op2bounds> op)
28 where
29 <predefined <+ user−defined> sort ⇒ ty
30
31 symbol2feature:
32 CfSort(lbl, sort, op) → Contain(lbl, QID("cf", sort), <op2bounds> op)
33
34 op2bounds: None() → Bound(1, 1)
35 op2bounds: Option() → Bound(0, 1)
36 op2bounds: OptList() → Bound(0, Unbound())
37 op2bounds: List() → Bound(1, Unbound())

38 ns2class:
39 NSpace(name, ns∗) → AClass(<map(ns2qid)> ns∗, QID("ns", name), [])
40
41 ns2qid: name → QID("ns", name)
42
43 symbol2parent: LSort(_, _, DefSite(nspace), _) → QID("ns", nspace)
44
45 symbol2feature:
46 LSort(label, sort, DefSite(_), op) → Attr(label, ty, <op2bounds> op)
47 where
48 <predefined <+ user−defined> sort ⇒ ty
49
50 symbol2feature:
51 LSort(label, _, UseSite(ns), op) → Ref(label, QID("ns", ns), bounds)
52 where
53 <op2bounds> op ⇒ bounds

Fig. 4. Rewrite rules defining a grammar-to-metamodel transformation in Stratego

(in the first condition for grammar2mm, <+ encodes a deterministic choice). To
avoid name conflicts, we organize generated data types in a package lex.

Context-free Syntax. Abstract syntax trees represent the structure of sen-
tences. We can express such trees also as models. Therefore, the metamodel
needs to capture the structural rules of the context-free syntax. We achieve



Robust Real-Time Synchronization between Textual and Graphical Editors 97

1 tree2model: t → M(<term2obj>)
2 term2obj : c#(t∗) → Obj(<def−uri>, QID("ast", c), <map(term2slot)> t∗)
3 term2slot : None() → None()
4 term2slot : Some(t) → Some(<term2slot> t)
5 term2slot : t∗ → <map(term2slot)> t∗
6 term2val : t → Data(t) where is−string; not(ref−uri)
7 term2val : t → Link(<ref−uri>)
8 term2val : t → Contain(<term2obj> t) where is−compound
9

10 model2tree: M(obj) → <obj2term> obj
11 obj2term : Obj(_, QID("ast", c), s∗) → c#(<map(slot2term)> s∗)
12 slot2term : None() → None()
13 slot2term : Some(val) → Some(<slot2term> val)
14 slot2term : val∗ → <map(slot2term)> val∗
15 val2term : Data(val) → val
16 val2term : Link(uri) → <name−of> uri
17 val2term : Contain(obj) → <obj2term> obj

Fig. 5. Rewrite rules defining corresponding tree-to-model and model-to-tree transfor-
mations in Stratego

this by generating classes from context-free sorts and productions (ll. 15-24).
To avoid name conflicts, we organize them in separate packages cf and ast.
For each context-free sort, we generate an abstract class (sort2classes). For
each production of this sort, we generate a concrete class subclassing the abstract
class (prod2class). Features are generated from the symbols of the produc-
tion (ll. 26-32). We generate an attribute for each lexical sort (first rule). The
type of this attribute is derived from the lexical sort. For each context-free sort,
we generate a containment reference (second rule). Bounds of generated features
depend on operators (ll. 34-37). Options get a lower bound of 0, while all other
symbols get a lower bound of 1. Lists get an unlimited upper bound, while all
other sorts get an upper bound of 1.

Name Binding. In our minimalistic grammar formalism, namespaces and sorts
are separate concepts. Thus, namespaces impose their own class hierarchy on
the generated metamodel. For each namespace, we generate an abstract class
which subclasses its parent namespaces (ll. 38-43). When a production defines a
definition site of a name, the concrete class generated from this production needs
to subtype the namespace of the definition site. Therefore, symbol2parent
collects the namespaces of definition sites. At definition sites, the generated
feature is the same as for ordinary lexical sorts (ll. 45-48). At use sites, a reference
to the namespace is generated instead (ll. 50-53).

2.2 Bidirectional Mapping between Trees and Models

We specify a bidirectional mapping between trees and models as a pair of uni-
directional mappings tree2model and model2tree in Fig. 5.

To transform a tree into a model, we transform its term representation into an
object (tree2model). This is done by decomposing the term into its constructor
c and subterms t*. The constructor is used to identify the corresponding class
in the operator and the subterms are transformed into slots. When a term is the
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lexical syntax
[a−zA−Z][a−zA−Z0−9]∗ → ID

context−free syntax
"module" id:ID types:Type∗ → Start {"Module"}
"entity" ID "{" Property∗ "}" → Type {"Entity"}
"datatype" ID → Type {"DataType"}
ID ":" ID → Property {"Property"}

namespaces Module Type Property

binding rules
Module(m, _):

defines non−unique Module m
scopes Type

Entity(e, _):
defines unique Type e
scopes Property

DataType(t):
defines unique Type t

Property(p, t):
defines unique Property p
refers to Type t

Fig. 6. Syntax definition in SDF (top), name binding rules in NaBL (left) and generated
Ecore metamodel (right) for an entity language.

definition site of a name, we expect def-uri to provide a URI for it. Otherwise,
it should yield None(). The first rule of term2val transforms strings (the
leaves of a tree) into (one of) the slot’s value(s). The rule only works if the
string is not the use site of a name. The second rule covers such use sites, by
generating a link with a URI. We expect ref-uri to provide the URI of a
bound name. Otherwise, it should fail. The third rule of term2val transforms
compound terms into contained objects.

The rules for model2tree mirror the rules for tree2model. We expect
name-of to yield the name which establishes the binding to the linked object.

2.3 Connecting Spoofax and EMF

In Spoofax, lexical and context-free syntax are defined in SDF [9,26]. Name
binding and scope rules are defined separately in NaBL [14]. From these defi-
nitions we generate metamodels in Ecore, EMF’s metamodeling formalism [24].
Fig. 6 shows syntax definition, name binding rules and generated metamodel for
a small data modeling language.

SDF and NaBL differ from the minimalistic grammar formalism in several
ways. First, naming conventions are different. Since symbols are only optionally
labeled in SDF, we generate missing labels either from sorts or from referred
namespaces. We use annotated constructor names as production names. Since
these are not required to be unique in SDF, we generate unique names where
needed. Second, SDF supports special injection and bracket productions,which
we model by inheritance. Third, SDF provides additional kinds of EBNF-like
operators and allows to apply them not only to sorts, but on any symbol. We
introduce intermediate sorts to break down such applications. Finally, NaBL
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separates name binding rules from productions. We weave productions and name
binding rules based on their constructors.

Ecore differs from the minimalistic metamodel formalism as well. The only
relevant differences are order and uniqueness of many-valued features. Since text
is sequential, we generate ordered features. While references and containments
are inherently unique in Ecore, we generate non-unique attributes. In a post-
processing step, we simplify the generated metamodel. We fold linear inheritance
chains, merge classes which share all their subclasses, and pull common features
from subclasses into their parent class.

For the mapping between trees and models, we apply the previously shown
transformations.Additionally, we provide a thin, generic Java layer which can
convert between models as Spoofax terms and models as EMF objects.

3 Error Recovery

Error recovery is crucial for real-time synchronization between editors. Further-
more, it allows for persisting erroneous models using the textual syntax. We
distinguish three kinds of errors which affect editor synchronization. Parse er-
rors and unresolved names are discovered in the textual editor when the text
is parsed to an AST which is afterwards statically analyzed. Graphical syntax
errors occur in the graphical editor when a model does not satisfy lower bound
constraints of its metamodel. Graphical editors relax this constraint to allow
for incremental modeling. More specific, semantic errors do not affect synchro-
nization and error marking for such errors is allowed in either the textual or
graphical editor, or both.

Parse Errors. Modern IDEs parse text with every change that is made to
it, ensuring rapid syntactic and semantic feedback as a program is edited. As
text is often in a syntactically invalid state as it is edited, parse error recovery
is needed to diagnose and report parse errors, and to construct a valid AST
for syntactically invalid text. Therefore, Spoofax has strong support for parse
error recovery [4]. It introduces additional recovery productions to grammars
that make it possible to parse syntactically incorrect text with added or missing
characters. These rules are automatically derived from the original grammar.
Spoofax’ parsing algorithm activates these rules only when syntax errors are
encountered and uses layout information to improve the quality of recoveries for
scoping structures, while still ensuring efficient parsing of erroneous text. This
approach avoids the loss of AST parts when a correct text is changed into an
incorrect one, which is crucial for real-time synchronization.

Unresolved names. Spoofax resolves names after parsing with an algorithm
which is based on declarative name binding and scoping rules [14]. The algorithm
is language-independent, handles multiple files, and works incrementally, which
allows for efficient re-analysis after changes. During intermediate editing stages,
not all references may be resolved. Fig. 7 illustrates this with a simple data
model. It contains a property title of type Strin, which cannot be resolved.
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entity Book {
title : Strin

}

entity Author {}

datatype String

entity Book {
title : Strin
x : Author

}

entity Author {}

datatype String

Fig. 7. Recovery from a name resolution error and from a graphical syntax error

We recover from such errors during tree-to-model transformation (step ➋).
Spoofax provides special URIs for unresolved references. When we discover such
a URI, we do not fill the corresponding slot in the model. GMF handles such
underspecified models and visualizes model elements with unfilled slots. In the
example from Fig. 7, the property appears in the graphical editor without any
type. The user can specify the missing type either by continue typing or by
choosing the type in the properties view of the graphical editor.

Graphical syntax errors. During graphical editing, newly added model ele-
ments are typically underspecified. Since graphical editors do not enforce comple-
tion, a user might first create a number of such underspecified elements before she
starts to complete them. To recover from such errors, the model-to-tree transfor-
mation needs to handle incomplete models (step ➎). A simple fix would be to map
unfilled slots to empty strings in the AST. Step ➅ would add these empty strings at
positions where the parser expects text for the missing element. The parser recov-
ers from such errors, but might report the error at a different position, confusing
the user. To overcome this problem, the model-to-tree transformation creates tex-
tual default values for unspecified attributes and references and ignores elements
with unspecified containments.

Both attributes and references are represented by strings in text. If they are
unspecified upon model-to-text transformation, we generate a default value that
conforms to the lexical syntax. For example, if an integer is expected, we take
default value 0, while if a string is expected, we take default value x (cf. Fig. 7).
Note that in case of a reference, it is important not to choose an existing name,
since this will connect every new model element to an existing one. The genera-
tion of default values introduces unresolved names and possibly semantic errors
as well. These errors are marked until they are resolved by completing under-
specified elements. Users may also switch to textual editing in the meantime, and
resolve the errors by typing. The solution can be further improved by allowing
users to specify default values in the syntax definition, as one may not prefer the
‘default’ defaults. Unspecified containments should ideally not be permitted by
graphical editors. In the graphical Behavior Trees editor (Sect. 5), for example, we
automatically create both an atomic sequence and a contained node upon using
the node tool. However, this is not possible if multiple subtypes are allowed, in
which case the user needs to manually indicate the type of the contained element.
Therefore,we ignore elements with unspecified containments during model-to-tree
transformation. This means that users are required to complete such an element
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entity Book {
title : String
//comment

}
entity Author {}

entity Book {
title : String
//comment
author : Author

}
entity Author {}

Fig. 8. Textual layout preservation and pretty-printing in reaction to a new property

before switching to the textual editor, or the element will be destroyed upon the
next text-to-model transformation.

4 Layout Preservation

Textual layout consists of comments and whitespace, while graphical layout con-
sists of positions and sizes of graphical elements. This information needs to be
preserved during editor synchronization. Our approach to layout preservation is
based on merging in both directions (steps ➂➅). New ASTs or models are com-
pared against their old version to calculate differences between them. Differences
are then merged into the relevant representation, which causes the representation
to be incrementally updated with changes from the other editor.

Textual Layout Preservation. Spoofax supports textual layout preservation
for refactorings [5]. To achieve this, it combines origin tracking with pretty-
printing. We reuse this feature to preserve textual layout when propagating
changes from the graphical editor to text. Origin tracking relates nodes in an
AST with text fragments. This information is propagated by transformations.
It is lost when we transform a tree into a model, but it is still available in
the AST of the textual editor. Pretty-printing considers this old AST and a
new one generated by model-to-tree transformation. It compares both ASTs and
preserves text corresponding to unchanged parts. Fragments corresponding to
removed parts are removed from the text. New AST nodes are pretty-printed and
inserted into the text. For this purpose, Spoofax generates pretty-printing rules
from the syntax definition, which can be enhanced with user-defined rules [4].

Fig. 8 shows an example for the data modeling language that involves pretty-
printing. First, a reference of type Author is added to the entity Book in the
graphical editor. A new object is added to the underlying model and positional
information for the connection anchors is added to the notation model. Model-
to-tree transformation yields a new AST. Each of its subterms will match with
a term in the old AST, except for the term corresponding to the new reference.
This term is pretty-printed and inserted into the text. Comments and whitespace
in the surrounding text are preserved.

The approach works in the presence of any type of syntactic or semantic error.
However, it fails during a graphical cut-and-paste operation. Cutting destroys
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entity Boo {
title : String
//comment
author : Author

}
entity Author {}

entity Book {
author : Author
title : String
//comment

}
entity Author {}

Fig. 9. Graphical layout preservation in reaction to a changed order of properties

the corresponding textual element and its associated layout. The element is
recreated upon pasting, but its original layout is lost.

Graphical Layout Preservation. Spoofax re-parses text once it changes.
Tree-to-model transformation turns the new AST into a model which is merged
with the model from the graphical editor. We rely on EMF Compare [28,2]
for comparing and merging models. Since old and new model will typically show
much resemblance, difference calculation is very precise and changes that require
merging are very small.

An example is given in Fig. 9 where we change the order of entities in the
text. The text is parsed and a new AST is created that shows the reordering
of two subterms. Tree-to-model transformation yields a new model which is
compared against the old one. The only difference is a change in the order of the
owned references of the Module object. We merge this into the old model, which
result in a reordering of a list. Since the order of the entities is not graphically
represented, GMF keeps the notation model and the diagram unchanged.

Fig. 9 shows another example in which we change the identifier of an entity.
Many model merging approaches use identifiers of objects for matching. When
an identifier changes, objects are no longer matched resulting in a deletion and
re-creation. Layout of the deleted object is lost. EMF Compare takes not only
identifiers but all slots of an object into account. It typically matches renamed
elements and layout information can be preserved.

This is also shown in Fig. 9. Here, we change the name of entity Boo into
Book. This change is reflected in the new AST and the new model. Since the
name slots of the old and new Entity object show much resemblance and since
both objects contain the same property, the objects match. During merging,
only the value of the name attribute changes. During synchronization with the
graphical editor (step ➃), no information is added to the notation model, but
the label corresponding to the attribute is re-rendered to show the new name.

The approach works in the presence of any type of semantic or graphical syn-
tactic error. However, sometimes we cannot recover from a parse error, in which
case only a partial AST is created. Synchronization will then destroy the graph-
ical elements corresponding to the erroneous text region. Upon resolving the
error, the graphical elements are recreated, but their original layout is lost. Fur-
thermore, similarly to textual layout preservation, graphical layout preservation
fails during textual cut-and-paste operations.
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5 Case Study: Behavior Trees

A behavior tree (see Fig. 2 and Fig. 10 for examples) is a formal, tree-like graphi-
cal form that represents behavior of individual or networks of entities [7]. The Be-
havior Trees (BT) language has formed the base of Behavior Engineering (BE),
an approach to systems development that supports the engineering of large-scale
dependable software intensive systems [17].

Tooling support for BT initially focused on graphical editors only [27,22]. Re-
cently, the language was extended with a formal textual syntax [3] and TextBE,
a textual editor combined with a visualizer based on EMFText and SVG Eclipse,
was introduced [17]. Although textual editing greatly reduced the time to create
behavior tree models, TextBE is still limited in that it visualizes only on-save,
which inhibits the expected interaction in an IDE, prevents manual layout of
the graphical representation, which affects use cases like printing and sharing
seriously, and does not provide navigation means between textual and graphical
representation, which inhibits fast visual search. We applied our approach to
BT in order to create an integrated textual and graphical editor. The editors
synchronize in real-time, allow for manual and automated textual and graphical
layout, preserve layout during synchronization, and support selection sharing to
navigate between both representations.

Fig. 10 illustrates the robustness of the text-to-model transformation. First,
the identifier of state Closed changes from 2 into 21. As a consequence, refer-
ences to this state become unresolved and the label in the graphical model van-
ishes. Next, a semicolon is added after the node which results in a parse error.
Though, a new model element appears since the semicolon indicates a following
node. When we continue typing R1 C3 1, the graphical node is incrementally

#RT R1 R1
#C C1 CAR
#S 1 Arrives

2 Proceeds
#C C2 GATE
#L 1 Open

2 Closed

#T R1 C1 1 #N{
R1 + C2 2
R1 + C2 1

}

#RT R1 R1
#C C1 CAR

#S 1 Arrives
2 Proceeds

#C C2 GATE
#L 1 Open

21 Closed

#T R1 C1 1 #N{
R1 + C2 2
R1 + C2 1;

}

#RT R1 R1
#C C1 CAR
#S 1 Arrives

2 Proceeds
#C C2 GATE
#L 1 Open

21 Closed

#T R1 C1 1 #N{
R1 + C2 21
R1 + C2 1; R1 C1 2

}

Fig. 10. Graphical layout preservation and auto-layout during textual editing and in
the presence of parse errors and unresolved references.



104 O. van Rest et al.

#T R1 C1 1 #N{
R1 + C2 2 #N{
R1 + C2 1

}
}

#T R1 C1 1 #N{
R1 + C2 2 #N{
}
R1 + C2 1

}

Fig. 11. Graphical layout preservation during textual drag-and-drop

!?#\%+&∗)#N
#T R1 C1 1 #N{

R1 + C2 2 //comment
}

!?#\%+&∗)#N
#T R1 C1 1 #N{

R1 + C2 2 //comment
x x 0

}

Fig. 12. Textual layout preservation and pretty-printing during graphical editing in
the presence of both graphical and textual syntax errors

built up while its original assigned position is maintained. Finally, we update the
broken reference by typing an additional 1. This resolves the reference such that
the graphical representation shows the same label as before. Fig. 11 illustrates
a more drastic change, where text is dragged from an inner scope and dropped
in an outer scope. Graphically, connections between nodes change accordingly,
while all positions of nodes are preserved. Fig. 12 shows the text before and after
a new node is created in the graphical editor. Although mandatory features are
not yet specified, we already obtain a textual representation of the node. The
pretty printer automatically indents the node, while layout information consist-
ing of whitespace and a comment is preserved. This all works in the presence of
an erroneous text region (cf. !?#%+&*)#N) which is also preserved.

6 Discussion

There are two classes of tools that support textual and graphical model editing.
Textual modeling frameworks such as Xtext [8], MontiCore [15], EMFText [10],
TCS [12], and TEF [19] support textual editing by parser generation and a
generic tree-to-model mapping. First, we discuss their specification approach
and then we discuss their support for editor synchronization, error-recovery
and layout preservation. Similar to our approach, Xtext provides a grammar-
based formalism and generates metamodels. However, name binding constructs
provided by the formalism are limited. Scope and import rules, which can be
declaratively defined in NaBL, need to be implemented in Java instead. This is
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a limitation of the other frameworks as well. MontiCore provides a formalism
for describing both a grammar and a metamodel. While we automatically derive
a set of abstract classes and an inheritance hierarchy from the textual syntax
definition, MontiCore allows users to manually specify those. This provides more
flexibility to influence the resulting metamodel. TEF requires the user to specify
both grammar and metamodel, which is very redundant. EMFText and TCS
take the opposite approach and start from a metamodel. TCS requires the user
to specify templates, which are then used for parsing and pretty-printing. With
EMFText, user-defined templates are optional, since it generates default ones
based on the UML Human-Usable Textual Notation [23].

Of all the frameworks, only TEF merges textual and graphical models, while
the others only inherit limited synchronization capabilities from EMF and GMF,
where models are synchronized on save. Saving overwrites the previous model
and breaks references from the notation model. A GMF edit policy then tries
to repair references, which often leads to deletions followed by re-creations of
notations and a loss of layout. All frameworks except TEF support textual lay-
out preservation. However, in on-save synchronization multiple model changes
are merged into the text at once, making the merging process imprecise such
that layout is not always preserved correctly. All frameworks have only limited
error recovery capabilities such that switching between textual and graphical
editing is only possible if models are not broken. However, on-save synchroniza-
tion does not introduce the problem of layout being destroyed when elements
are temporarily lost due to parse errors or cut-and-paste operations. Our ap-
proach could possibly be improved by providing additional means to maintain
such layout, or by delaying synchronization until parse errors don’t result in
partial ASTs anymore and cut-and-paste operations are completed.

Projectional editors as provided by MPS [6] or Intentional [21] support dif-
ferent views and different concrete syntax projections which are automatically
synchronized since they all share the same abstract syntax model. Editing di-
rectly affects the abstract syntax, similar to graphical editing. However, typical
textual operations such as indentation or rearranging are not possible, but can
be simulated to a certain degree. Another notable tool that provides mappings
between text and models is Enso [25], which requires the user to provide both a
grammar and a metamodel that need to be kept consistent.

7 Conclusion

This paper presented an approach for robust real-time synchronization between
textual and graphical editors. It recovers from errors during synchronization and
preserves textual and graphical layout during editing, even in the presence of
errors. It allows for a new type of highly interactive editors and has successfully
been applied to the Behavior Trees modeling language.
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