
Unifying and Generalizing Relations
in Role-Based Data Modeling and Navigation

Daco Harkes and Eelco Visser

Delft University of Technology, The Netherlands
d.c.harkes@student.tudelft.nl, visser@acm.org

Abstract. Object-oriented programming languages support concise nav-
igation of relations represented by references. However, relations are not
first-class citizens and bidirectional navigation is not supported. The re-
lational paradigm provides first-class relations, but with bidirectional
navigation through verbose queries. We present a systematic analysis of
approaches to modeling and navigating relations. By unifying and gen-
eralizing the features of these approaches, we developed the design of a
data modeling language that features first-class relations, n-ary relations,
native multiplicities, bidirectional relations and concise navigation.

1 Introduction

Object-oriented programming languages model data with object graphs. Nav-
igation through object graphs is simple; following references leads to related
objects. But references in object graphs are one-directional and cannot be navi-
gated backwards. Bidirectional navigation can be obtained by storing references
on both sides of relations between objects. But keeping such redundant refer-
ences consistent requires bookkeeping code. By contrast, relational databases
support bidirectional navigation. Foreign keys can be used in queries to navigate
both ways. There is no need for redundant references. Queries are however not
as concise as navigation through references.

Proposals for object-oriented languages with first-class relations provide bidi-
rectional navigation [3]. These languages remove the need for manually keeping
references consistent but navigation is done through querying, which is still ver-
bose. There are modeling techniques that are yet different from object-oriented
and relational modeling: Object-Role modeling [7], Entity-Relationship modeling
[6], UML [10] and undirected graphs.

In this paper, we present a systematic analysis of the design space of relations
in data modeling and present a new data modeling language that unifies and
generalizes relations. In particular, our contributions are:

– We extrapolate Steimann’s approach [19] to model multiplicities using an-
notations in Java to native multiplicities that are integrated into the type
system (Section 2).

– A systematic analysis of approaches to modeling relations (Section 3).

B. Combemale et al. (Eds.): SLE 2014, LNCS 8706, pp. 241–260, 2014.
c© Springer International Publishing Switzerland 2014

242 D. Harkes and E. Visser

class Student { }

class Course {
@any(ArrayList.class) Student student;

void addStudent(@any(ArrayList.class) Student s){
this.student += s;

}
}

Fig. 1. Multiplicity annotations in Java

– A new relational data modeling language featuring native multiplicities, bidi-
rectional navigation, n-ary relations, first-class relations, and concise navi-
gation expressions based on the analysis (Section 4).

– A formal definition of the type system (Section 5) and operational semantics
(Section 6) of this language.

2 Native Multiplicities

The first thing we need to fix to get relations right is the treatment of their
cardinality or multiplicity. Encoding of to-many relations as associations to col-
lections results in a discontinuity in programming style [19]:

– Navigating one-to-one and many-to-one relations produces singleton values,
while navigating through one-to-many and many-to-many relations produces
collections of values. Thus, the caller has to unwrap the result before using
it, for example by using an iterator.

– The caller has to deal with different sub-type substitution conditions. Sup-
pose Student extends Person. Assigning an Student to a Person is fine
(to-one), but trying to assign Set<Student> to Set<Person> will trigger a
type error (to-many).

– The call semantics is call-by-value for to-one and call-by-reference for to-
many. Collection objects are passed by reference, so that they can be mod-
ified the callee. Call-by-value semantics for collections requires immutable
collections.

Multiplicity Annotations. To address these issues, Steimann proposes an exten-
sion of regular object-oriented programming with multiplicities [19]. He presents
an extension of Java with multiplicity. Expressions of a singleton value type can
return an arbitrary number of objects of this type. Figure 1 illustrates the ap-
proach with a small example in which a Course has an association to Student.
Through the @any annotation the association is declared to be to-many instead
of using a collection type.

Unifying and Generalizing Relations 243

class Student {
String! name;
Course* courses;
int! numCourses(){ return count(this.courses); }

}
class Course {

Student* students;
void addStudent(Student+ s){ this.students += s; }
int? avgNumCourses(){ return avg(this.students.numCourses()); }

}

Fig. 2. Native multiplicities in Java

Native Multiplicities. We have extrapolated Steimann’s annotations based ap-
proach and integrated multiplicities into the type system to arrive at native
multiplicities. Type expressions use one of the following four multiplicity opera-
tors (similar to regular expressions) to denote the possible range of values:

– t? is [0, 1] an optional value of type t
– t! is [1, 1] a required value of type t
– t* is [0, n) zero or more values of type t
– t+ is [1, n) one or more values of type t

The ! can be omitted as [1, 1] is the default multiplicity.
As a sketch, Figure 2 illustrates native multiplicities in an extension of Java.

We have not formalized an extension of Java, but rather integrated native mul-
tiplicities in our relational data modeling language. In Section 5 we formalize
a type system for that language including multiplicities. The type system en-
sures that the actual number of values at run-time is always inside the specified
range. For example, assigning an optional string (a value of type String?) to a
student.name will trigger a type error: multiplicity error: [1, 1] expected, [0, 1]
given. Our language also supports expected multiplicities for function arguments.
The built-in function count handles any multiplicity and any type and it returns
exactly one integer with the number of values passed. The built-in function avg
also handles [0, n) values and the argument type must be numeric. The return
multiplicity of avg depends on its input multiplicity. If a programmer supplies
[0, n) as input the return multiplicity will be [0, 1]. The average of no values does
not exist, so no value will be returned in that case. If the programmer supplies
[1, n) as input the return multiplicity is [1, 1]. With at least one value there is
always an average computable. We use this model of multiplicities, reasoning
over ranges, in the type system of our language.

3 Design Space for Role-Based Relations

There are several proposals in the literature for extending data modeling to
better support data modeling with relations. This section presents a systematic

244 D. Harkes and E. Visser

analysis of the design space of relations in data modeling taking in into account
these proposals. Figures 3 and 4 summarize the complete design space in tabular
form emphasizing its regularities. From this analysis a new data modeling lan-
guage emerges which unifies and generalizes the various approaches to modeling
relations.

In all our examples we assume the language to have native multiplicities in-
stead of using collections that would be needed in a plain OO approach. The
running example data model defines Students who are enrolled in Courses,
sometimes via a first-class Enrollment relation. For the sake of the example,
students can be enrolled in zero or more courses (* multiplicity), and courses
should have at least one student (+ multiplicity). In the example expressions we
use Student ‘bob’ and Course ‘math’. For each point in the design space we
give a type graph diagram describing the data model, a textual specification of
the data model, and expressions for querying the model. For the expressions we
use => to express the result of evaluation.

3.1 Overview

Before discussing each point in the design space (Figures 3 and 4) individually,
we first introduce the categories represented by the columns and rows.

Columns: Four Modeling Paradigms. The four columns in the design space
represent four modeling paradigms.

Object-Oriented. Relations between objects are defined through reference valued
attributes, which can be navigated in one direction only. The name of the relation
is the name of the attribute in the source class. The relation is unknown to
the target class. A relation can also be modeled by, redundantly, maintaining a
reference attribute on the other side of the relation, as well, allowing bidirectional
navigation. However, this requires code for keeping the two sides of the relation
consistent. We do not cover models with redundant information in our design-
space analysis, as this is an undesirable property.

Relational. In a relational database schema references are expressed as foreign
keys; an identifier corresponds to a memory address and a foreign key to a ref-
erence into memory. An important difference is that these references can be
navigated in two directions through queries in a query language (SQL). ER and
UML diagrams are also located in this column, but they only provide schema def-
initions, not queries. Because queries are verbose we introduce our own notation
for forward and backward navigation through references. For forward navigation
we use the the normal field access notation. For backward navigation from an
object o we need to find all the objects of type T that refer to o through ref-
erences r, which is expressed by o<-(T.r). For example, to find the students
enrolled in a course c we use the navigation expression c<-(Student.courses).

Unifying and Generalizing Relations 245

Object-Role Modeling. A distinguishing feature of ORM [7] is that associations
between objects have a different name on both sides. This conceptually solves
the problem of not being able to refer to a reference backwards. Similarly, inverse
properties in WebDSL [20] tie two fields in different classes together as inverses.

Graph databases. In contrast to the directed edges in the previous three
paradigms, graph databases feature undirected edges. In this model the edge
names are defined in both source and target namespaces. As with the ORM
paradigm there is always a name available in the namespace of participating
objects, but in this case this name is identical for both sides. There is one dis-
advantage of this model: modeling asymmetric same type relations is nontrivial.
Consider a TreeNode with a parent and children. If a node p has a parent edge
to another node q, then q also has a parent edge to p. This can be solved through
indirection (J and K), but that is not particularly elegant.

Rows: Three Relation Models. The three rows in the design space corre-
spond to three ways of modeling a relation.

Edge. The simplest way of representing a relation is through an edge between
two nodes (either directed or undirected). This is a concise way of specifying a
relation but it has the disadvantage that the relation is not a first-class citizen
(see below). Also it is not possible to declare ternary, or higher arity, relations
with edges.

Tuple (Ordered Roles). By lifting relations to objects they become first-class
citizens, i.e. relations can have attributes, and relations can be the subject in
other relations. A relation object modeled as a tuple has ordered roles. The
absence of role names requires the order (or position) of the roles to be used for
navigation. For binary relations this entails four predefined navigation operators
(see E). But for higher arity relations 2n operators are required, which does not
scale.

Object (Named Roles). Giving the roles in a relation names makes navigation
understandable and makes modeling n-ary relations feasible.

3.2 Detailed Description of Points in Design Space

We discuss each of the points A to K in the design space (Figures 3 and 4).

Object-Oriented (A, B and C). There are multiple patterns for modeling rela-
tions in objected-oriented languages [16]. As mentioned before, we replace col-
lections by multiplicities and do not consider patterns with redundant references
for bidirectional navigation. Three basic patterns remain: reference (A), relation
tuple (B), and relation class (C), which we assume to be familiar to the reader.
It is noteworthy that a language extension is not required for the representation

246 D. Harkes and E. Visser

Student Coursecourses

Student Course

Student Course

student course

(A) Object-Oriented Reference

class Student { }
class Course { }
class Enrollment extends
 Pair<Student, Course> { }

b_takes_m.first => bob
b_takes_m.second => math

(C) Object-Oriented Class

first (1) second (2)

(B) Object-Oriented Tuple

class Student { }
class Course { }

class Enrollment {
 Student student
 Course course
}

b_takes_m.student => bob
b_takes_m.course => math

class Student {
 Course* courses;
}
class Course { }

bob.courses => math

(D) Backwards Reference Navigation

entity Student {
 Course* courses +
}
entity Course { }

bob.courses => math
math<-(Student.courses) => bob

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob<-(Enrollment.student).course => math
bob<-(Enrollment.student) => b_takes_m
math<-(Enrollment.course).student => bob
math<-(Enrollment.course) => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

(E) Relations as Tuples [RelJ]

(F) Relation Objects [Rumer, RelJ e.]

Student Coursecourses

Student Course

from (1) to (2)

lift relation
to object

give roles
names

Student Course

student course

Object-Oriented Relational / SQL, ER, UML

inverse
reference

lookup

Enrollment Enrollment

Enrollment Enrollment

Ed
ge

Tu
pl

e
(R

ol
es

 o
rd

er
ed

)
O

bj
ec

t (
Ro

le
s

na
m

ed
)

Edge name defined in Source Edge name defined in Source + Inverse lookup

Fig. 3. Design space of relations in data modeling and navigation (part 1)

Unifying and Generalizing Relations 247

Student Courseenrollments

Student Course

Enrollment

Student Course

Enrollment

student course

Student Course
courses

Enrollment

student course

(I) Undirected Graph

(J) Intermediary Nodes

from (1) to (2)

(K) Undirected indirect graph

entity Student {
 Course* enrollments +
}
entity Course { }

bob.enrollments => math
math.enrollments => bob

entity Student { }
entity Course { }

relation Enrollment {
 Student student *
 Course course +
}

bob.student.course => math
bob.student => b_takes_m
math.course.student => bob
math.course => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

entity Student {
 Course* courses <- + students
}
entity Course { }

bob.courses => math
math.students => bob

(G) Inverse Properties [WebDSL]

It doesn’t make sense to define inverse reference
names without role names

students

enrollments enrollments

entity Student { }
entity Course { }

relation Enrollment {
 Student student <- * enrollments
 Course course <- + enrollments

 student.courses <-> course.students
}

bob.courses => math
bob.enrollments => b_takes_m
math.students => bob
math.enrollments => b_takes_m
b_takes_m.student => bob
b_takes_m.course => math

courses

students

(H) Relations with Concise Navigation

First-class

Bidirectional

N
-ary

entity Student { }
entity Course { }
relation Enrollment <*Student, +Course>

bob.Enrollment => math
bob:Enrollment => b_takes_m
math:.Enrollment => bob
math::Enrollment => b_takes_m
b_takes_m.from => bob
b_takes_m.to => math

Object Role Modeling Graph Databases

inverse
reference

name

automatic
inverse
name

Edge defined in Source and Target w. different names Edge defined in Source and Target with same name

Student Course

Fig. 4. Design space of relations in data modeling and navigation (part 2)

248 D. Harkes and E. Visser

class Student { }
class Course { }
relationship Enrollment (Student, Course) { int grade; }

bob.Enrollment // bob’s courses
bob:Enrollment // Enrollment−type relation objects
bob:Enrollment.grade
b_takes_m.from // bob
b_takes_m.to // math

Fig. 5. First-class citizen tuple based relations in RelJ [4]

of first-class relations. The term first-class is sometimes used for having a dedi-
cated language construct, but a dedicated language construct is not required for
adding attributes to relations or letting relations participate in other relations.
First-class relations based on tuples (B) have been implemented as a Java library
[15].

Backwards reference navigation (D). If we extend an object-oriented language
with facilities for backwards reference lookup (o<-(T.r)) we can use a single
reference for bidirectional navigation. Note that in this case the object graph is
identical to the single reference pattern (A).

Relation as Tuples (E). The RelJ Java extension lifts relations to tuple ob-
jects [4]. In RelJ different operators are used to disambiguate between different
navigation operations (Figure 5). RelJ provides no facilities for bidirectional nav-
igation. However, that is not a conceptual limitation. Adding two operators (:.
and ::) would allow backward navigation, as suggested in (E). While this is
theoretically extensible to relations with more than two participants, it requires
adding new operators for each participant.

Relation Objects (F). Naming roles allows usable extension to n-ary relations.
This is the model used by Rumer [2,3] as illustrated in Figure 6. While Rumer’s
implementation does not support n-ary relations, it provides the ingredients
needed for n-ary relations: role names and first-class citizenship. A proposed ex-
tension for RelJ [22] adds names to roles, as illustrated in Figure 7, and is essen-
tially equivalent to Rumer’s syntax. As an alternative query syntax, we propose
math<-(Enrollment.course).student, which is closer to the usual navigation
syntax: from an object (math) find all relations with that object in one of its
roles (Enrollment.course), and produce objects in the other role (student).
All these notations are rather verbose, even if more concise than full blown SQL
queries. We would prefer a more concise notation for navigating n-ary relations.

Inverse Properties (G) WebDSL [20] supports bidirectional navigation without
a verbose syntax for inverse lookups by means of inverse properties [9] as il-
lustrated in Figure 8. Explicit names on both sides of an association simplifies
navigation to just following named references. However, these names have to be

Unifying and Generalizing Relations 249

class Student { }
class Course { }
relationship Enrollment participants (Student student, Course course) {

int grade;
}
Enrollment.select(s_c: s_c.course == math).student; // math students

Fig. 6. First-class relations with named roles in Rumer [2,3]

class Student { }
class Course { }
relationship Enrollment

extends Relation (Student student, Course course, Student tutor) {
int grade;

}
Enrollment[course == math].student; // math students

Fig. 7. Ternary relation extension proposal for RelJ [22]

defined in both the source and target class. In (G) we have normalized this to
a single property definition with two names; the second name is used for the
backwards reference from target to source.

Concise Relations (H). Combining the advantages of (F) and (G), we arrive at
our proposal for a unified and generalized approach to modeling relations (H).
Relations are first-class citizens: (1) relations can have attributes and (2) rela-
tions can be the subject in other relations. In addition, relations can have any
number of roles (n-ary relations). By explicitly providing a name for the naviga-
tion between each pair of participants in the relation we get concise navigation
expressions: (1) from relation to participant and back (b_takes_m.student and
bob.enrollments), and (2) from participant to other participant (bob.courses)
and back (math.students). Instead of defining these names in the source and
target classes, as in (G), all names are introduced in the relation. The declaration
of a role T r <- m i introduces a role r of type T with inverse i with multiplicity
m. This provides navigation from relation to participant through r and navigation
from participant to relation through i. A declaration r1.n1 <-> r2.n2 intro-
duces names for navigation between participants: r1.n1 leads to r2 and r2.n2
leads to r1. In contrast to (G), these declarations do not introduce attributes
in the participant classes, but rather shortcuts. For example, bob.courses is
a shortcut for bob.enrollments.course. This approach naturally extends to
n-ary relations, as illustrated in Figure 9.

entity Student { courses : Set<Course> }
entity Course { students : Set<Student> (inverse=Student.courses) }
math.students // math students
bob.courses // bobs courses

Fig. 8. Inverse properties in WebDSL

250 D. Harkes and E. Visser

entity Student { }
entity Course { }
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments
Student tutor <− * tutoring

student.courses <−> course.students
student.tutors <−> tutor.students
course.tutors <−> tutor.courses

}

Fig. 9. Ternary relation with concise navigation (H) (this paper)

Undirected Graphs (I, J, K). Graph databases also feature three relation pat-
terns. The simple edge (I), adding an intermediary node without role names (J),
and an intermediary node with role names (K). Since without edge names, edge
directionality does not matter (J) is equivalent to (E). So we will only cover (I)
and (K).

The simple edge (I) cannot be used to model asymmetric same type relations.
Asymmetric relations of the different types can be disambiguated by the type
one starts navigating from, but if both participants have the same type their
role is ambiguous. Disambiguation can be done through indirection (I or K).
With indirection (K) navigation from participant to participant is navigating
two edges. With undirected edges role names cannot be reused with different
relations concerning the same entity. Consider adding another relation where
Course also participates as course. math.course now becomes ambiguous. The
language could then be extended with the type of the node navigating to, but
this is equivalent to the backwards reference navigation: naming the edge and
the type on the other side. So that would bring us back at (F).

It seems there is a fundamental trade-off between undirected and directed
graphs when considering reference names. The directed graph (column two) re-
quires an extra identifier (the target type) to navigate edges backwards. To get
rid of this extra identifier we can automatically define the edge name on both
sides. This is gets us to the undirected graph (column four). In undirected graphs
we have ambiguities. Adding an extra identifier (the target type) to disambiguate
brings us back at the directed graphs.

4 A Relational Data Modeling Language

We have designed a language for data modeling featuring native multiplicities,
bidirectional navigation, n-ary relations, first-class relations, and concise naviga-
tion expressions based on point (H) in the design space. In this section we discuss
two extensions of the basic idea of (H) and the grammar of the language. In the
next sections we give a formal definition of the type system and operational
semantics.

Unifying and Generalizing Relations 251

relation Enrollment { Student* Course+ }

expands to (lower case participant type, lower case relation type, add s for * and +)
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments

}

expands to (use role name, add s for * and +)
relation Enrollment {

Student student <− * enrollments
Course course <− + enrollments
student.courses <−> course.students

}

Fig. 10. Expansion of concise relation definition

entity Student {
Int? avgGrade = avg(this.enrollments.grade)

}

Fig. 11. Relations language with derivation

Concise Definition of Relations. While navigation according to (H) is very con-
cise, the definition of a relation is somewhat verbose due to the introduction of
names for each of the arrows in the diagram. In many cases we can derive these
names from the types of the roles. Figure 10 illustrates how a definition with
implicit names is expanded to a definition with explicit names. This automatic
expansion can of course lead to name collisions, for example if the participant
classes have an attribute with a name introduced by a relation. In this case the
programmer has to (partially) specify names explicitly.

Derived Attributes. To express business logic in data models, we extend entities
and relations with derived attributes. The value of a derived attribute is described
in terms of the values of other attributes and relations as illustrated in Figure 11.
Thus, if one of the underlying values changes, the derived attribute is updated.

Grammar. The grammar of the relations language is given in Figure 12. a, i, r
and t are respectively attribute, inverse, role and entity-type names. The roles,
r, are the solid arrows in the design space diagram and the inverses/shortcuts,
i, are the dashed and dotted arrows. a′, i′, r′, r′′, and t′ refer to these names.
The lookup expression (t [a == e]) is only intended to look up objects of a
certain type with a certain attribute value in the heap. It is not our intention to
provide a full-fledged query language; our focus is on navigation expressions.

Prototype. We have implemented this language on the language designers work-
bench Spoofax [11]. The prototype is publicly available.1 The type system and
semantics described in the next sections matches those of the prototype.
1 https://github.com/metaborg/relationstagv0.2.0

https://github.com/metaborg/relations tag v0.2.0

252 D. Harkes and E. Visser

Program ::= model Entity* execute e

Entity ::= entity t { Attribute* }
| relation t { Attribute* Role* Shortcut* }

Attribute ::= p m a

| p m a = e

Role ::= t′ r <− m i

Shortcut ::= r
′
. i <−> r

′′
. i

p ∈ PrimitiveType ::= Boolean | Int | String
m ∈ Multiplicity ::= ? | ! | * | +

e ∈ Expr ::= f (e) | e1 ⊕ e2 | ! e | e1 ? e2 : e3

| e . a′ | e . i′ | e . r′

| true | false | literalInt | literalString

| this | t [a == e]

f ∈ AggrOp ::= min | max | avg | sum | concat | count | conj | disj

⊕ ∈ {+,−, ∗, /,%,&&, ||,>,>=, <,<=,==, ! =, <+,++}

Fig. 12. The grammar of the relations language

5 Type System

Our language features static typing. Everything in the language has both a type
and a multiplicity. These are defined orthogonally.

Meta variables. In the the static and dynamic semantic rules we use a meta
variables for looking up definitions on usage sites.

P ∈ Program : EntityMap × Expr

E ∈ EntityMap : EntityName → AttributeMap × InverseMap × RoleMap

A ∈ AttributeMap : AttrName → PrimitiveType × Multiplicity × Expr

I ∈ InverseMap : InverseName → EntityName × RoleName × RoleName

R ∈ RoleMap : RoleName → EntityName × Multiplicity

A program P is a tuple, (E , e), where E is a map from entity (and relation)
names to entity definitions and e is the main expression.

Entity definitions are triples (A, I,R), where A is a map from attribute names
to attribute definitions, I is a map of inverse names to their origin and R is a map
from role names to role definitions. Both entities and relations define entities. We
refer to an entity t’s attribute, inverse and role map as At, It and Rt respectively.

Attribute definitions are triples (p,m, e), where p is the primitive type, m is
the multiplicity and e is the optional derivation expression. If e has no derivation
expression it is equal to nil. Role definitions are tuples (t,m), where t is an
entity name and m is a multiplicity. Inverse (and shortcut) definitions are triples
(t, r1, r2) where r1 and r2 are roles in entity t. The inverse map definition is best
explained by example:

Unifying and Generalizing Relations 253

entity Enrollment {
Student student <− * enrollment
Course course <− + enrollment
student.courses <−> course.students

}

IStudent : ’enrollment’ → ’Enrollment’ × ’student’ × nil

’courses’ → ’Enrollment’ × ’student’ × ’course’
ICourse : ’enrollment’ → ’Enrollment’ × ’course’ × nil

’students’ → ’Enrollment’ × ’course’ × ’students’

The inverses of roles are mapped back to the role in the relation they are the
inverse of. In this case r2 is nil. The shortcut is translated to two records, one
for both participant types. The inverse maps are used as the backwards reference
navigation mechanism.

Lastly, to simplify static and dynamic semantics we transform the shortcut
expressions to an inverse and a role expression by the transformation rule:

e : t1 It1(i1) = (t2, r1, r2) It1(i2) = (t2, r1, nil)
e . i1 → e . i2 . r2

Types. There are two type sorts: p (primitive types) and t (entity types). All
attributes are primitive types. Entities and relations define entity types. Roles,
inverses and shortcuts in a relation are entity types.

Most typing rules are straightforward, so we only cover the rules that are non-
standard. The aggregation rule (Aggr) is interesting. Since multiplicities are
encoded orthogonally the aggregation functions are of type int → int. The mul-
tiplicity operators choice and concatenate work with any type. They only check
whether both operands have the same type and propagate the type (Mult).

With roles and inverses one can conceptually navigate over the type graph
defined by the entities and relations. The type of a navigation expression is
naturally the place where one ends up in the model after navigating. When
navigating from a relation to a participant the type is the participant’s type
(RoleNav). When navigating from a participant to a relation, by an inverse,
we find the type of the relation by looking up the inverse definition (InvNav).

Multiplicities. For multiplicities there are two notational conventions: single
characters from the concrete syntax and ranges. We use the ranges notation
in the multiplicity rules as it gives us access to the upper and lower bounds
directly.

Binary operators mimic maybe-Monad behaviour for zero or one values: a
maybe value as input for the computation returns a maybe value as output.
Taking the Cartesian product between the bags of values and applying the op-
eration to each pair provides this behaviour. The multiplicity range is expressed
as taking the minimum of both lower bounds and the maximum of the upper
bounds (BinOp). The division and modulo operators exhibit slightly different
behaviour (DivOp). Since dividing by zero has no result, at least one value in

254 D. Harkes and E. Visser

c ∈ {true, false}
c : boolean

[Bool]

literalInt : int
[Int]

literalString : string
[Str]

θ � this : θ
[This]

⊕ ∈ {+,−, ∗, /,%}
e1 : int e2 : int

e1 ⊕ e2 : int
[Math]

e1 : string e2 : string

e1 + e2 : string
[Conc]

⊕ ∈ {&&, ||}
e1 : boolean e2 : boolean

e1 ⊕ e2 : boolean
[AndOr]

e : boolean

! e : boolean
[Not]

⊕ ∈ {>,>=, <,<=}
e1 : t e2 : t t ∈ {int, string}
e1 ⊕ e2 : boolean

[Cmp]

e1 : t e2 : t ⊕ ∈ {==, !=}
e1 ⊕ e2 : boolean

[Eq]

e1 : boolean e2 : t e3 : t

e1 ? e2 ":" e3 : t
[Cond]

e : int f ∈ {avg,min,max, sum}
f(e) : int

[Aggr]

e : boolean f ∈ {conj, disj}
f(e) : boolean

[Logic]

e : _

count(e) : int
[Count]

e1 : t e2 : t ⊕ ∈ {<+,++}
e1 ⊕ e2 : t

[Mult]

e : t At(a) = (p,_._)

e . a : p
[Attr]

e : ta At(a) = (ta,_)

t [a == e] : t
[Lookup]

e : t Rt(r) = (tr ,_)

e . r : tr
[RoleNav]

e1 : t1 It1(i) = (t2,_, nil)

e . i : t2
[InvNav]

Fig. 13. Type rules

c ∈ {true, false, false, Int, String}
c ∼ [1, 1]

[Const]

⊕ ∈ {+,−, ∗,&&, ||,>,
>=, <,<=,==, !=}

e1 ∼ [l1, u1] e2 ∼ [l2, u2]

e1 ⊕ e2 ∼ [min(l1, l2),max(u1, u2)]
[BinOp]

⊕ ∈ {/,%}
e1 ∼ [_, u1] e2 ∼ [_, u2]

e1 ⊕ e2 ∼ [0,max(u1, u2)]
[DivOp]

e1 ∼ [l1, 1] e2 ∼ [l2, u2]
e3 ∼ [l3, u3]
m = [min(l1, l2, l3),max(u2, u3)]

e1 ? e2 ":" e3 ∼ m
[Cond]

e ∼ m

! e ∼ m
[Not]

f ∈ {avg,min,max, conj, disj}
e ∼ [l, n)

f(e) ∼ [l, 1]
[Aggr]

f ∈ {sum, count}
f(e) ∼ [1, 1]

[Aggr2]

e1 ∼ [0, u1] e2 ∼ [l2, u2]

e1 <+ e2 ∼ [l2,max(u1, u2)]
[Choice]

e1 ∼ [1, u1]

e1 <+ e2 ∼ [1, u1]
[Choice2]

e1 ∼ [l1,_] e2 ∼ [l2,_]

e1 ++ e2 ∼ [max(l1, l2), n)
[Concat]

e ∼ [l1, u1] Ate (a) = (_, [l2, 1],_)

e . a ∼ [min(l1, l2), u1]
[Attr]

t [a == e] ∼ [0, n)
[Lookup]

e : t e ∼ m Rt(r) = (_,_)

e . r ∼ m
[RoleNav]

e1 : t1 It1(i) = (t2, r, nil)
Rt2(r) = (_, [l2, u2])

e . i ∼ [min(l1, l2),max(u1, u2)]
[InvNav]

Fig. 14. Multiplicity rules

Unifying and Generalizing Relations 255

a = (_, [_, 1], nil)

� a
[AttrDec]

a = (p, [l1, 1], e) e : p e ∼ [l2, 1] l1 ≤ l2

� a
[AttrDec2]

r = (t,m) E(t) = (_,_)

� r
[RoleDec]

i = (t, r1, nil) Rt(r1) = (_,_)

� i
[InvDec]

i = (t, r1, r2) Rt(r1) = (_,_) Rt(r2) = (_,_)

� i
[ShortcutDec]

θ′ = t ∀a ∈ dom(At) : θ′ � a ∀r ∈ dom(Rt) : θ′ � r ∀i ∈ dom(It) : θ′ � i

� t
[EntityDec]

θ′ = ⊥ ∀t ∈ dom(E) : θ′ � t θ′ � e : _ θ′ � e ∼ _

� (E, e)
[ProgramDec]

Fig. 15. Attribute, role, inverse, shortcut, entity and program well-formedness

both operands might still result in no answer. Instead of throwing a division by
zero exception zero answers are given for any denominator equal to zero.

The Choice operator chooses at runtime the left expression if it has a result,
and otherwise the right expression. The multiplicity is defined as the maximum
of both upper and lower bound, except if the left lower bound is one. Then we
know that the left expression will always be chosen. Note that it does not make
sense to use the choice operator in that case, because the right expression will
be dead code. The Concat operator combines the results of both expressions.
This means that we might always have more than one value at runtime; thus the
upper bound is n. The lower bound is the maximum of both.

Attributes are allowed to be either [0,1] or [1,1]. In the first case attribute
access decreases the lower bound to zero, as the attribute might not be set
(Attr). A role always has exactly one value, so role navigation leaves multiplicity
intact (RoleNav). Navigation to relations entities participate in behaves like
a SQL join between the input expression entities and the relation. Like binary
operators this means taking the lowest lower bound and the highest upper bound.

Well-formedness. Programs are well-formed if they satisfy the rules in Figure
15. Attributes are only allowed to have a multiplicity of at most one, their type
has to be primitive (which is enforced by the syntax definition already) and if
a derivation is specified, it should be of the correct type and its multiplicity
should fit inside the target range. Role declarations are well-formed if the entity
playing the role exists in the entity map. Inversions are well-formed if the role
exists in the entity of which they are the inverse and shortcuts are well-formed
if both roles exist in the entity. Entity definitions are well-formed if all their
attributes, inverses and roles are well-formed and a program is well-formed if
all its entities and the main expression are well-formed. We only consider well-
formed programs.

256 D. Harkes and E. Visser

6 Dynamic Semantics

We specify evaluation rules for a big-step semantics. We use the I-MSOS nota-
tional style, which implicitly propagates stores if they are not mentioned [14].

Stores. In order to evaluate a program an entity store Σ and relation store Δ
must be passed; our language is a data modeling and navigation language and
does not provide facilities to add, edit or remove data. Expression in addition
get passed a this-reference θ.

Σ,Δ � p ⇓ v (Evaluation of program)

Σ,Δ, θ � e ⇓ v (Evaluation of expressions)

The entity store corresponds to the usual heap: a map from object references
to a map from attribute names to their values. The relation store is used for
storing all relations between entities. It is a map from relation name, relation
object reference and role name to the reference of the object playing this role.
The this-reference is a single reference to an object.

Σ ∈ EntityStore : Reference → AttributeStore

AttributeStore : AttrName → V alue

Δ ∈ RelationStore : EntityName × Reference × RoleName → Reference

θ ∈ ThisReference : Reference

Store well-formedness. Figure 16 describes what it means means for these stores
to be well-formed. The entity store is well-formed if all the entities in it are
well-formed. An entity is well-formed if (1) all records in its attribute store are
well-formed, (2) all its required, non-derived attributes have been set (3) all its
roles have a value and (4) the number of relation records, that point to it for a
certain role that he plays, is within the multiplicity range specified for that role.

An attribute record is well-formed if it has a value of the correct type. The
relation store is well-formed if all its records are well-formed. A relation record
is well-formed if its references point to entities. Finally the this-reference is well-
formed if it points to an entity. We assume a well-formed entity and relation
stores for evaluation.

Evaluation rules All the evaluation rules have a specific form: they operate on
bags. Expressions can return any number of values, modeling this with bags is a
natural choice. A nice example of this is the rule for binary operations (BinOp).
The left and right expressions evaluate to a bag of values, the Cartesian product
of these bags is taken and on each pair of values the operator is applied. For
single values a normal computation is performed, for maybe values a maybe com-
putation and for many values a Cartesian product computation. Most evaluation
rules follow this pattern.

Aggregation operations are defined for at least a single value (Aggr) and for
empty lists there is predefined behaviour (Aggr2 and Sum). Choice returns

Unifying and Generalizing Relations 257

∀(ref → astore) ∈ Σ : � (ref → astore)

� Σ
[EntityStore]

ref : t
∀(a → v) ∈ astore : ref � (a → v)
∀(a → p, [1, 1],_) ∈ At : astore(a) = _
∀(r → _,_) ∈ Rt : Δ(t, ref, r) = _
∀(i → t2, r2, nil) ∈ Ir :(|{v | Δ(t2,_, r2) = v}| = m Rt2(r2) = (_, [l, u]) l ≤ m ≤ u

)

� (ref → astore)
[EntityRecord]

e : t At(a) = (ta,_,_) v : ta

e � a → v
[AttrRecord]

∀(t v1 r → v2) ∈ Δ : � (t v1 r → v2)

� Δ
[RelationStore]

v1 : t Σ(v1) = _ Rt(r) = (t2,_) v2 : t2 Σ(v2) = _

� t v1 r → v2
[RelationRecord]

Σ(θ) = _

� θ
[ThisReference]

Fig. 16. Store well-formedness

c is constant

c ⇓ {| c |}
[Const]

θ � this ⇓ {| θ |}
[This]

⊕ ∈ {+,−, ∗,&&, ||,>,
>=, <,<=,==, !=}

e1 ⇓ V1 e2 ⇓ V2

e1 ⊕ e2 ⇓ {| v1 ⊕ v2 |
v1 ∈ V1, v2 ∈ V2 |}

[BinOp]

e1 ⇓ V1 e2 ⇓ V2 ⊕ ∈ {/,%}
e1 ⊕ e2 ⇓ {| v1 ⊕ v2 | v2 != 0,

v1 ∈ V1, v2 ∈ V2 |}
[Div]

e ⇓ V

! e ⇓ {| ¬ v | v ∈ V |}
[Not]

e1 ⇓ V1 e2 ⇓ V2 e3 ⇓ V3

e1 ? e2 : e3 ⇓ {| v1 ? v2 : v3 | v1 ∈ V1,
v2 ∈ V2, v3 ∈ V3 |}

[Cond]

f ∈ {avg,min,max, conj, disj, sum}
e ⇓ V |V | ≥ 1

f(e) ⇓ {| f(V) |}
[Aggr]

f ∈ {avg,min,max, conj, disj}
e ⇓ ∅
f(e) ⇓ ∅

[Aggr2]

e ⇓ ∅
sum(e) ⇓ {| 0 |}

[Sum]

e ⇓ V

count(e) ⇓ {| |V | |}
[Count]

e1 ⇓ V1 e2 ⇓ V2

e1 <+ e2 ⇓ (V1 != ∅) ? V1 : V2

[Choice]

e1 ⇓ V1 e2 ⇓ V2

e1 ++ e2 ⇓ V1 ∪ V2

[Concat]

e ⇓ V e : t At(a) = (_,_, nil)

Σ � e . a ⇓ {| Σ(v)(a) | v ∈ V |}
[Attr]

e ⇓ V e : t At(a) = (_,_, e2)
V2 = {| v2 | (θ′ � e2 ⇓ {v2}), θ′ ∈ V |}
e . a ⇓ V2

[At2]

e ⇓ V e : t

Δ � e . r ⇓ {| Δ(t, v, r) | v ∈ V |}
[RoleNav]

e ⇓ V e : t It(i) = (t, r, nil)
V2 ={| v2 | Δ(t, v2, r) = v, v ∈ V |}
Δ � e . i ⇓ V2

[InvNav]

p = (E, x) θ′ = ⊥
Σ,Δ, θ′ � x ⇓ v

Σ,Δ � p ⇓ v
[Program]

Fig. 17. Evaluation rules (Big Step SOS). "{| |}" is bag notation [5]

258 D. Harkes and E. Visser

the value of the left expression, if it has at least one value, otherwise the value of
the right expression. Concat combines all values, regardless of how many there
are. Attributes can either be normal or have a derivation expression. For normal
attributes a lookup is done in the attribute map of each entity passed into the
expression (Attr). The lookup of unset attributes fails, but these are filtered
out. Derivations behave like a method call without arguments (At2). Navigation
works differently for navigating through a role or through an inverse. Navigating
by role does a simple map lookup for each value (RoleNav). Navigating by
inverse does a reverse map lookup on the role it is the inverse of (InvNav).
Finally the program executes the main expression with the stores.

7 Related Work

Our work builds on research in different fields: language constructs for relations,
navigating and querying relations and multiplicities. Specific differences with our
work are highlighted per article.

Languages with first-class relations. The Rumer language by Balzer has first-
class relations [2,3]. It features first-class relations with named roles and queries.
Rumer provides reactive queries as well as imperative code. It has cardinalities
specified in constraints and implements binary relationships. Our approach dif-
fers in the fact that our modeling language does not support imperative code,
multiplicities are part of the type system and we implement relations of all de-
grees.

Classages is a language that also features relations [12]. Classages is targeted
at modelling the interactions and interaction life span between objects. It fea-
tures static and dynamic relations, bidirectional relations and multiplicities. Our
approach has in common that it has bidirectional relations but we are focused
on modeling data instead of interactions.

Pearce and Noble extended Java with first-class relationships using aspects
[17]. Relations are modeled as external tuples and objects are agnostic to re-
lations they are in. Their approach to behavioural changes of objects based on
their relations should be implemented by aspects, externally. Our approach is the
opposite, entities know what relations they participate in. This allows specifying
relation dependent behaviour in derivations.

RelJ is first-class relationship extension to Java by Biermann and Wren [4,22].
In their approach they support relationships as first-class citizens. The relations
are also modeled as tuples, where the roles have a position in the tuple but no
name. In our approach the roles are named and unordered; allowing navigation
based on roles. Their relations are binary and one-directional. In the techni-
cal report they also sketch an extension with named roles [4]. In this sketched
extension relations can have any arity and support bidirectional navigation.

Nelson implemented first-class relationships in Java [15]. This is a library and
not a language extension. Mutable sets of tuples are used as first-class constructs
to model relations. Without specific language constructs this approach does not

Unifying and Generalizing Relations 259

supply additional semantics for relations and thus cannot provide additional
static type checking.
Languages with non first-class relations. In 1987 Rumbaugh was the first to add
relations to a language [18]. His approach is pre-processor based and dynamic.
It does not have relations as first-class citizens.

In 1991 a relationship mechanism for a Strongly Typed Object-Oriented
Database Programming language introduced statically typed relations as part of
a language [1]. The paper explains the data model definition and transactions.
It does however not explain in detail how querying or navigation is done.

WebDSL introduced inverse properties which inspired the inverses [20]. Refer
to Section 3 for details.
Queries of relations in object-oriented languages. The Java Query Language
(JQL) adds queries to Java [21]. There is no additional support for relations, so
navigation uses value-based joins like in SQL. LINQ also uses value-based joins
[13]. These approaches are in the left column of the design space (Section 3). In
contrast, our navigation is based on the role names of relations.

Multiplicities in programming languages. In Content over Container: Object-
Oriented Programming with multiplcities Steimann adds multiplicity annota-
tions to Java in order to remove the Collection containers [19]. Refer to Section
2 for details.

Finally the ideas for this paper were presented in the ACM Student Research
Competition [8]. The design space analysis and formal semantics of the language
are new to this paper. Also the syntax changed as a result of the design-space
analysis.

8 Conclusion
Unification and generalization of relations led to a new data modeling and nav-
igation language. This goes hand in hand with native multiplicities. Both the
relations aspect and the native multiplicities aspect lead to more a more con-
cise definition and navigation of relationships; removing maintenance of reference
consistency, removing collection classes and providing single identifier navigation
by inverses and shortcuts.
Future work. We would like to add more aspects orthogonally to the type system.
Our first candidates are ordered/unordered and unique/duplicates. It is worth
exploring how well different aspects can be modelled orthogonally in a type
system.

Also we would like to extend our language to provide type-and-multiplicity-
safe operations on data. Adding or removing entities and relations might in-
validate the multiplicity constraints on relations. We would like to catch these
potential errors by static analysis and indicate to the programmer that he should
catch that situation. The goal is to make sure that multiplicity-safe operations
will never trigger runtime errors because a multiplicity constraint for a relation
is violated. We would like to explore if we can ensure correct multiplicities at
runtime statically.

260 D. Harkes and E. Visser

References

1. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly typed
object-oriented database programming language. In: VLDB, pp. 565–575 (1991)

2. Balzer, S.: Rumer: a Programming Language and Modular Verification Technique
Based on Relationships. Ph.D. thesis, ETH, Zürich (2011)

3. Balzer, S., Gross, T.R., Eugster, P.T.: A relational model of object collaborations
and its use in reasoning about relationships. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 323–346. Springer, Heidelberg (2007)

4. Bierman, G., Wren, A.: First-class relationships in an object-oriented language. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 262–286. Springer, Heidelberg
(2005)

5. Buneman, P., Libkin, L., Suciu, D., Tannen, V., Wong, L.: Comprehension syntax.
SIGMOD 23(1), 87–96 (1994)

6. Chen, P.P.: The entity-relationship model - toward a unified view of data.
Tods 1(1), 9–36 (1976)

7. Halpin, T.: Object-role modeling (orm/niam). In: Handbook on architectures of
information systems, pp. 81–103. Springer (2006)

8. Harkes, D.: Relations: a first class relationship and first class derivations program-
ming language. In: AOSD, pp. 9–10 (2014)

9. Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static consistency check-
ing of web applications with WebDSL. JSC 46(2), 150–182 (2011)

10. Jacobson, I., Booch, G., Rumbaugh, J.E.: The unified software development process
- the complete guide to the unified process from the original designers. Addison-
Wesley object technology series. Addison-Wesley (1999)

11. Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In: OOPSLA, pp. 444–463 (2010)

12. Liu, Y.D., Smith, S.F.: Interaction-based programming with classages. In: OOP-
SLA. pp. 191–209 (2005)

13. Meijer, E., Beckman, B., Bierman, G.M.: Linq: reconciling object, relations and
xml in the .net framework. In: Sigmod, p. 706 (2006)

14. Mosses, P.D., New, M.J.: Implicit propagation in structural operational semantics.
ENTCS 229(4), 49–66 (2009)

15. Stephen, Nelson, J.N., Pearce, D.J.: Implementing first-class relationships in java.
Proceedings of RAOOL 8 (2008)

16. Noble, J.: Basic relationship patterns. Pattern Languages of Program Design 4
(1997)

17. Pearce, D.J., Noble, J.: Relationship aspects. In: AOSD, pp. 75–86 (2006)
18. Rumbaugh, J.E.: Relations as semantic constructs in an object-oriented language.

In: OOPSLA, pp. 466–481 (1987)
19. Steimann, F.: Content over container: object-oriented programming with multi-

plicities. In: OOPSLA, pp. 173–186 (2013)
20. Visser, E.: WebDSL: A case study in domain-specific language engineering. In:

GTTSE, pp. 291–373 (2007)
21. Willis, D., Pearce, D.J., Boyland, J.: Efficient object querying for java. In: Thomas,

D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 28–49. Springer, Heidelberg (2006)
22. Wren, A.: Relationships for object-oriented programming languages. University

of Cambridge, Computer Laboratory, Technical Report 702(UCAM-CL-TR-702)
(November 2007)

	Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation
	1 Introduction
	2 Native Multiplicities
	3 Design Space for Role-Based Relations
	3.1 Overview
	3.2 Detailed Description of Points in Design Space

	4 A Relational Data Modeling Language
	5 Type System
	6 Dynamic Semantics
	7 Related Work
	8 Conclusion
	References

