
A Language Designer’s Workbench
A One-Stop-Shop for Implementation and Verification of Language Designs

Eelco Visser
Delft University of Technology

visser@acm.org

Guido Wachsmuth
Delft University of Technology

guwac@acm.org

Andrew Tolmach
Portland State University

apt@cs.pdx.edu

Pierre Neron, Vlad Vergu
Delft University of Technology

{p.j.m.neron, v.a.vergu}@tudelft.nl

Augusto Passalaqua, Gabriël Konat
Delft University of Technology

{a.passalaquamartins, g.d.p.konat}@tudelft.nl

Abstract
The realization of a language design requires multiple ar-
tifacts that redundantly encode the same information. This
entails significant effort for language implementors, and of-
ten results in late detection of errors in language definitions.
In this paper we present a proof-of-concept language de-
signer’s workbench that supports generation of IDEs, inter-
preters, and verification infrastructure from a single source.
This constitutes a first milestone on the way to a system that
fully automates language implementation and verification.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; D.3.2
[Programming Languages]: Language classifications; F.3.1
[Logics and Meanings of Programs]: Specifying and Ver-
ifying and Reasoning about Programs; D.3.4 [Program-
ming Languages]: Processors; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

Keywords Language Designer Workbench; Meta-Theory;
Language Specification; Syntax; Name Binding; Types; Se-
mantics; Domain Specific Languages

1. Introduction
Programming language design is hard. But we continue to
need new languages, particularly domain-specific languages
(DSLs), to help software engineers handle the complexity of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3210-1/14/10.
http://dx.doi.org/10.1145/2661136.2661149

modern software systems. Programming language designers
want only one thing: to get usable, reliable realizations of
their languages into the hands of programmers as efficiently
as possible. To achieve this goal, they need to produce a
number of artifacts:

• A compiler or interpreter that allows programmers to
execute programs in the language;
• An IDE that supports programmers in constructing pro-

grams in the language;
• A high-level specification of the language that documents

its intent for programmers;
• Validation, via automated testing or formal verification,

that their language designs and implementations are cor-
rect and consistent.

Today’s savvy language designer knows that there are good
tools available to help with these tasks. However, existing
tools generally require the designer to create each of these
artifacts separately, even though they all reflect the same un-
derlying design. Consequently, a compiler or interpreter is
often the only artifact produced; documentation, IDE, and—
especially—validation are typically omitted. For example,
language implementations seldom formally guarantee se-
mantic correctness properties such as type soundness and be-
havior preservation of transformations, because current im-
plementation tools provide no support for verification. This
can lead to subtle errors in languages that are discovered late.

Some state-of-the-art tools do support the production of
two or more language artifacts. Language implementation
workbenches such as Xtext [54], MPS [24], and Spoofax
[26] provide fairly high-level support for implementation
of IDEs and code generators. Semantics engineering tools
such as K [15], Redex [17], and Ott [46] support the high-
level specification of type systems and dynamic semantics
in order to facilitate testing or verification. The CompCert

95

certified C compiler [32] is both implemented and verified
within the Coq theorem prover. But no current tool addresses
the full scope of designer activities.

Our vision is a language designer’s workbench as a one-
stop-shop for development, implementation, and validation
of language designs. The key idea for the realization of
this vision is to conceptualize the sub-domains of language
definition as a collection of declarative language definition
formalisms (or meta-languages) that are multi-purpose, so
that a single language definition can be used as the source for
the implementation of efficient and scalable compilers and
IDEs, the verification or testing of correctness properties,
and as a source of (technical) documentation for users of the
language.

In this paper, we report on a first milestone towards
the goal of supporting the complete specification of syn-
tax, static semantics, and dynamic semantics within a single
integrated environment. To this end, we have extended the
Spoofax Language Workbench1, which already supported
declarative specification of syntax definition and name bind-
ing, with declarative meta-languages for type analysis and
dynamic semantics (Section 4). From specifications in these
meta-languages we derive (i) an IDE including syntactic ed-
itor services such as syntax checking, syntax highlighting
and semantic editor services such as type checking and ref-
erence resolution (Section 5), (ii) an interpreter (Section 6),
and (iii) Coq definitions that encode semantics in a form that
can be used to verify language properties (Section 7). (We
leave support for automated testing to future work.)

The contributions of this paper are:

• The architecture of a language designer’s workbench that
separates the concerns of language definition into syntax
definition, name binding, type analysis, and dynamic se-
mantics specification (Section 3).
• The TS language for type analysis (Section 4.3), which

complements the specification of name binding and
scope rules in our existing NaBL language.
• The DynSem language for the specification of opera-

tional semantics (Section 4.4), based on the work on
modular operational semantics by Mosses [36, 9].
• The systematic derivation of a naive interpreter in Java

from a dynamic semantics specification in DynSem (Sec-
tion 6).
• The systematic derivation of Coq definitions for syntax

definition, name binding rules, type analysis rules, and
dynamic semantics rules (Section 7). In particular, we
provide a semantics that characterizes well-bound terms
according to a specification in a subset of NaBL.
• The specification of the syntax and semantics of the PCF

language in these meta-languages (Section 4) and the

1 Spoofax Eclipse is available at http://metaborg.org/wiki/spoofax

generation of an IDE, interpreter, and proof infrastruc-
ture from that specification. Based on the latter we man-
ually prove type preservation for the dynamic semantics
(Section 7).

The version of the workbench that we present here is a proof
of concept. While we expect that the approach can be applied
to a wide range of languages, we have not yet validated that
expectation. It is likely that our meta-languages, in particular
the more experimental ones for type analysis and dynamic
semantics, will be refined as we extend their coverage.

2. Problem
Bridging the gap between domain concepts and the imple-
mentation of these concepts in a programming language is
one of the core challenges of software engineering. Modern
programming languages have considerably reduced this gap,
but still require low-level programmatic encodings of do-
main concepts. Domain-specific software languages (DSLs)
address the complexity problem through linguistic abstrac-
tion by providing notation, analysis, verification, and opti-
mization that are specialized to an application domain and
allow developers to directly express design intent (‘language
shapes thought’).

Rapidly developing DSLs for emerging domains of com-
putation can become an important method to manage soft-
ware complexity. However, a software language is a com-
plex software system in its own right — consisting of syn-
tactic and semantic analyzers, a translator or interpreter, and
an interactive development environment (IDE) — and can
take significant effort to design and implement. Language
Workbenches are language development tools [18] that con-
siderably lower the threshold for software engineers to de-
velop DSLs to automate software tasks. Examples of modern
language workbenches include MPS [24], Xtext [54], and
Spoofax [26].

2.1 Correctness of Language Definitions
Language definitions and implementations rarely guarantee
semantic consistency properties such as type soundness, cor-
rect capture-free substitution, or semantics preservation by
transformations.

As the languages developed with workbenches grow in
complexity, more subtle semantic errors will be introduced.
These may result in type checkers that fail to signal programs
that might cause run-time errors; code generators that pro-
duce ill-formed code; optimizers that produce code with a
different meaning than the (intended) meaning of the source
program; and refactorings that change the meaning of pro-
grams. For example, refactoring implementations often con-
tain many bugs, even in mature tools such as Java IDEs [45].
The correctness of these tools depends on informal program-
mer reasoning, which easily overlooks corner cases and fea-
ture interactions. Errors that emerge may be hard to locate in
the implementation, and their absence may be hard to guar-

96

antee. These problems are aggravated when languages are
invented by software engineers who lack formal training in
language design.

Formal verification can ensure that semantic correctness
properties hold for all possible programs, which is neces-
sary for complex transformations such as refactorings [45].
Property-based testing can aid in detecting errors by ran-
domly generating programs to test semantic correctness
properties [28, 55]. However, the focus of the current gener-
ation of language workbenches is on using language defini-
tions to construct implementations; they provide no support
for formal verification.

This situation is problematic at several levels. First, it af-
fects language designers who spend time chasing bugs. Sec-
ond, the late detection of problems affects the quality of
language designs; repairing languages becomes hard once
a body of code has been developed. Third, it affects the reli-
ability of programming tools, which in turn affects the pro-
ductivity of software developers and the quality of the soft-
ware they produce. Overall, the resulting complexity of the
language design and implementation process is an impedi-
ment to the large scale introduction of linguistic abstraction
as a software engineering tool.

2.2 Analysis
Understanding this state-of-the-art requires a closer look at
the nature of language design and implementation. A lan-
guage implementation includes the following language com-
ponents. A compiler translates a source program to exe-
cutable code in a lower-level language. An interpreter or ex-
ecution engine directly executes a program. An integrated
development environment (IDE) supports developing (edit-
ing) programs by means of a range of editor services that
check programs and help in navigating large programs.

The production of each of these components incorporates
several or all of the following language definition concerns.
A syntax definition defines the structure of well-formed sen-
tences in the language. Name binding and scope rules de-
termine the relation between definitions and uses of names
in programs. A type system defines static constraints on syn-
tactically well-formed programs, avoiding a large class of
run-time errors. Transformations define modifications that
improve programs in some dimension such as performance
or understandability. The dynamic semantics defines the dy-
namic behaviour (execution) of programs. A code generator
defines the translation to code in another, typically lower-
level, ‘target’ language.

Over five decades, programming language developers and
designers have produced many different methods for encod-
ing the definition of language concerns. Some are special-
ized to the implementation of compilers and IDEs, others are
specialized to reasoning about the correctness of language
definitions. This leads to redundancy and duplication of ef-
fort for language designers.

Specialization in language workbenches. For most of
these concerns, existing language workbenches require de-
signers to encode their intent by writing explicit code, and to
do so separately for each concern. Syntax definitions are the
exception to this rule [27]: they are declarative and can be
used to address multiple concerns—characteristics that we
would like to emulate in other domains if possible.

Programmatic encoding. Language definitions are en-
coded in a general-purpose programming language, which
makes domain-specific analysis and verification difficult.
For example, the implementation of name resolution in a
programming language, or even as attribute grammar, ob-
scures the definition of name binding concepts such as ‘def-
inition’, ‘reference’, and ‘scope’. This makes it impossi-
ble to check a property such as ‘reachability of definitions
from references’. By contrast, a context-free grammar is a
declarative definition of the syntax of a language, which
abstracts from the details of parser implementations, and
which can be analyzed for properties such as reachability of
non-terminals.

Specialized definitions. Definitions are specialized to spe-
cific components, which requires re-definition of the same
concepts in different formats, increasing the risk of incon-
sistencies. For example, the name binding rules for a lan-
guage are encoded in a name resolution algorithm for editor
services such as code completion, and in a capture-free sub-
stitution function for use in transformations. By contrast, a
declarative syntax definition can be used as the single source
for deriving a parser, a pretty-printer, a language-aware edi-
tor, and an abstract syntax tree type definition.

Specialization in semantics engineering. Another line of
tools for language designers aims at support for semantics
engineering. Recent advances in executable definitions of
dynamic semantics [17, 44], DSLs for semantics specifica-
tion [46], model checking of type systems [43], random test
generation for compiler correctness [11, 28, 55], and verified
compilers [32], promise a semantics engineering discipline
with automated testing and verification of language safety
properties, detecting bugs early, and increasing the confi-
dence in language definitions.

However, in their current form these approaches are not
yet suitable for the assistance of software engineers design-
ing DSLs for one or more of the following reasons: (i)
Semantic definitions are aimed at modeling languages for
the purpose of verification and ignore implementation con-
straints. For example, reference resolving in an IDE poses
different constraints on the definition of name binding than
the implementation of a type soundness proof. The result is
redundancy in specification efforts. (ii) Realization of ver-
ification requires significant overhead with respect to the
basic definitions. For instance, the verification code for the
CompCert compiler [32] is about seven times as large as the
compiler implementation itself. This overhead is aggravated

97

Language Designer’s Workbench

Language Design

Syntax	

Definition

Name	

Binding

Type	

System

Dynamic	

Semantics

Transforms

SDF3 Stratego

Consistency
Proof

NaBL TS DynSem

Responsive
Editor (IDE)

Documentation
Interpreter
& Compiler

Figure 1. Architecture of a language designer’s workbench.
Language design is directly expressed using high-level
declarative meta-languages from which multiple artifacts are
derived automatically.

by use of low-level languages (‘internal DSLs’) for verifi-
cation. “Proof assistants help with automatic checking, but
come with their own problems. The sources of definitions
are still cluttered with syntactic noise, non-trivial encod-
ings are often needed [46].” (iii) Semantic definitions need
to be reformulated for use with different proof assistants.
This breaks the abstraction of declarative language defini-
tions and exposes DSL designers to the ‘implementation de-
tails of verification’, which makes adoption by a larger au-
dience of software engineers problematic. (iv) The approach
is specific for a particular language or compiler and is not
reusable for other languages. (v) The approach assumes low-
level target languages, and does not address the complexity
of domain-specific target platforms.

In our work we aim to adapt and extend the achievements
of semantics frameworks and mechanized meta-theory, mak-
ing them accessible to software engineers using language
workbenches to design DSLs.

3. Architecture
A language designer’s workbench is a programming envi-
ronment that supports language designers in all aspects of
language design, eliminates redundancy, and automates im-
plementation and verification. Our approach to the realiza-
tion of such a workbench is illustrated by the architecture in
Figure 1.

Separation of concerns. The first goal is represented by
the top arrow in Figure 1. Language designers should be
able to directly express their designs rather than program-
matically encoding them. This requires conceptualizing the
sub-domains of language definition as a collection of lan-
guage definition formalisms: specialized meta-languages—

Figure 2. Definition of PCF in Spoofax Language Work-
bench with, from top to bottom, syntax definition in SDF3
(Figure 4), name binding rules in NaBL (Figure 5), type
rules in TS (Figure 6), dynamic semantic rules in DynSem
(Figure 7), and generated editor for PCF (Figure 3).

98

for syntax definition, name binding, type analysis, dynamic
semantics, and transformation—that abstract from specific
implementation concerns.

Multi-purpose language definition. The second goal is
represented by the bottom arrows in Figure 1. The expres-
sion of a design should be multi-purpose. A language defini-
tion should be usable as the single source for the implemen-
tation of efficient and scalable compilers and IDEs, the ver-
ification of correctness properties, and as a source of (tech-
nical) documentation for users of the language. We believe
this goal is also reachable through separation of concerns;
by specializing meta-languages we can remove any bias to-
wards the implementation of a particular artifact.

Proof of concept. The Spoofax Language Workbench [26]
provides a platform for the construction of IDEs based on
declarative syntax definition with SDF2 [48] and program
transformation with Stratego [5]. We are in the process of
refactoring and extending Spoofax to realize the architecture
sketched in Figure 1. For that purpose, we are developing the
meta-languages SDF3 for syntax definition, NaBL for name
binding, TS for type analysis, and DynSem for dynamic
semantics to support the complete specification of syntax
and semantics of languages.

Here we present a first proof of concept that exercises all
aspects of the new approach for a very basic language. We
have formalized the syntax, static semantics, and dynamic
semantics of PCF [35] in the new meta-languages2. Figure
2 shows the definition of PCF edited in Eclipse/Spoofax to-
gether with the generated IDE for PCF. We discuss the for-
malizations together with the meta-languages in the next
section. From this definition we generate an IDE (Section 5),
an interpreter (Section 6), and definitions for the Coq proof
assistant, which can be used as the basis for a proof of type
preservation for the dynamic semantics (Section 7). We have
not yet addressed compilation, code generation, and trans-
formation in this new setting. Regarding documentation, our
first concern is to design meta-languages that lead to read-
able language definitions. We have not yet addressed the au-
tomatic generation of documents that can serve as technical
documentation of a language such as supported by Redex
[17] and K [15].

4. Declarative Language Definition
In this section we describe the Spoofax meta-languages for
syntax definition, name binding, type analysis, and dynamic
semantics. As running example we use the PCF language
[35]. Fig. 3 shows an example PCF program.

4.1 Syntax Definition
Often, the syntax of a language is only formally defined
in terms of a parser that turns a program text into an ab-
stract syntax tree. However, there are many other opera-

2 Available at https://github.com/metaborgcube/metaborg-pcf

tions that depend on the grammar of a language, including
pretty-printing, syntax highlighting, and syntactic comple-
tion. These are typically implemented as separate artifacts,
duplicating information that is part of the grammar. Fur-
thermore, parser-oriented approaches expose the underlying
parsing technique. Declarative approaches to syntax defini-
tion allow reasoning about the structure of a language inde-
pendently of the parsing technique enabled by generalized
parsing algorithms [27]. In addition, such declarative syntax
definitions can be interpreted for multiple purposes.

We are developing SDF3 as a successor to the syntax def-
inition formalisms SDF [20] and SDF2 [48]. SDF3 fully in-
tegrates abstract syntax tree generation, derivation of pretty-
printers, and syntactic completion templates [49]. Fig. 4 de-
fines the syntax of PCF in SDF3.

Tree structure. An important principle guiding the design
of SDF3 is to support understanding of the syntax of a
language purely in terms of its tree structure [27]. An SDF3
production such as

Exp.Fun = [fun [Param] ([Exp])]

defines a context-free grammar production
Exp −> "fun" Param "(" Exp ")"

That is, it defines one alternative for the non-terminal (Exp)
to be a sequence of symbols [fun [Param] ([Exp])]

in which the anti-quoted identifiers ([Param] and [Exp])
correspond to phrases generated by the corresponding non-
terminals. The constructor (Fun) is used to construct nodes
in the abstract syntax tree corresponding to this production.
Thus, the production implicitly defines a constructor with
signature

Fun : Param ∗ Exp −> Exp

Fig. 3 shows the term structure of the PCF program accord-
ing to the grammar of Fig. 4.

Declarative disambiguation. Instead of encoding the dis-
ambiguation of expressions in the grammar rules by means
of a non-terminal for each precedence level, SDF3 supports
the declarative disambiguation of expressions using relative
priorities3. For example, the declaration
Exp.Mul > {left: Exp.Add Exp.Sub}

states that multiplication has higher priority than addition
and subtraction, which are mutually left associative. Fur-
thermore, associativity annotations on productions indicate
whether an operator is left, right, or non-associative.

Templates. Productions are called templates since gram-
mars double as generators [49]. A template characterizes a
syntax pattern, quoting the literal text in the pattern, and us-
ing anti-quotation to indicate the holes. The whitespace sep-
arating the symbols in the template body is interpreted as ar-
bitrary LAYOUT for the purpose of parsing. It is interpreted as
line break and indentation directives when producing syntac-

3 For some corner cases additional non-terminals may still be needed.

99

let fac : int −> int =
fix f : int −> int (
fun n : int (

ifz n then 1 else n ∗ (f (n − 1))))
in (fac 3)

Let("fac", FunType(IntType(), IntType()),
Fix(

Param("f", FunType(IntType(), IntType())),
Fun(Param("n", IntType()),

Ifz(Var("n"), Num("1"),
Mul(Var("n"),
App(Var("f"),

Sub(Var("n"), Num("1"))))))),
App(Var("fac"), Num("3"))

)

Figure 3. Factorial function in PCF concrete syntax and
abstract syntax according to the syntax definition in Figure 4.

module PCF

imports Common

context−free start−symbols Exp

sorts Exp Param Type

templates

Exp.Var = [[ID]]
Exp.App = [[Exp] [Exp]] {left}
Exp.Fun = [
fun [Param] (

[Exp]
)

]
Exp.Fix = [
fix [Param] (

[Exp]
)

]
Exp.Let = [
let [ID] : [Type] =

[Exp]
in [Exp]

]
Exp.Ifz = [
ifz [Exp] then

[Exp]
else

[Exp]
]
Exp.Num = [[INT]]
Exp.Add = [[Exp] + [Exp]] {left}
Exp.Sub = [[Exp] − [Exp]] {left}
Exp.Mul = [[Exp] ∗ [Exp]] {left}
Exp.Div = [[Exp] / [Exp]] {left}
Exp = [([Exp])] {bracket}

Type.IntType = [int]
Type.FunType = [[Type] −> [Type]]

Param.Param = [[ID] : [Type]]

context−free priorities

Exp.App > Exp.Mul > {left: Exp.Add Exp.Sub}
> Exp.Ifz

Figure 4. Syntax definition for PCF in SDF3.

module names

namespaces Variable

binding rules

Var(x) :
refers to Variable x

Param(x, t) :
defines Variable x of type t

Fun(p, e) :
scopes Variable

Fix(p, e) :
scopes Variable

Let(x, t, e1, e2) :
defines Variable x of type t in e2

Figure 5. Name binding and scope rules for PCF in NaBL.

tic completion and pretty-print rules. Thus, pretty-printing
schemes can be defined by example.

4.2 Name Binding
A key complication in any language engineering framework
is the treatment of name binding. While much language
processing can follow the inductive structure of abstract
syntax trees, names cut across that structure with references
to other parts of the tree. For example, a function definition
introduces a name that can be used to call the function from
a distant point in the tree.

In language engineering approaches, name bindings are
often realized using a random access symbol table such that
multiple analysis and transformation stages can reuse the re-
sults of a single name resolution pass [1]. Another approach
is to represent the result of name resolution by means of ref-
erence attributes, direct pointers from the uses of a name
to its definition [19]. Semantics engineering approaches to
name binding vary from first-order representation with sub-
stitution [28], to explicit or implicit environment propaga-
tion [41, 36, 9], to higher-order abstract syntax [8]. Further-
more, some approaches use a nameless representation (De
Bruijn index) of bound variables to uniquely represent terms
modulo alpha equivalence [2]. In semantics engineering ap-
proaches, identifier bindings are represented with environ-
ments that are passed along in derivation rules, rediscover-
ing bindings for each operation [41]. The key problem of
all these approaches is the specification of name binding
by means of an encoding in a more general purpose for-
malism (ranging from programming languages, to attribute
grammars, to transition systems, to lambdas in the meta-
language), which requires decoding for understanding and
analysis, and is typically biased to a particular purpose (such
as substitution, completion, navigation).

The references in a language are governed by rules for
name binding and scope. The key concepts in these rules are

100

definitions that introduce names, references to definitions,
and scopes that restrict the visibility of definitions. However,
those rules are typically not directly expressed. Rather they
are programmatically encoded and repeated in many parts
of a language implementation, such as the definition of a
substitution function, the implementation of name resolution
for editor services, and refactorings. This repetition results in
duplication of effort and risks inconsistencies.

We are developing NaBL, a high-level language for the
declarative specification of the name binding and scope rules
expressed directly in terms of name binding concepts [30].
Fig. 5 defines the name binding rules for PCF using the three
basic NaBL concepts: definitions, references, and scopes.
The rules associate name binding declarations with abstract
syntax tree patterns. For example, the rule for the formal pa-
rameter of a function expression states that a Param(x, t)

term is a definition for the variable x. Similarly, a Var(x)

term is a reference to a definition of a variable with name
x. Finally, the Fun and Fix rules state that these constructs
are scopes for Variables. This means that variables defined
inside nodes constructed with Fun and Fix are only visible
within the sub-terms dominated by those nodes. A more pre-
cise characterization of NaBL’s rules is given in Section 7.
The Variable qualifier that is used in the rules indicates
the namespace of a name. While PCF has only one kind
of name, i.e. variables, most programming languages distin-
guish multiple kinds (e.g. classes, fields, methods, variables
in Java). Namespaces in NaBL keep these names distinct.

4.3 Type Analysis
Types “categorize objects according to their usage and be-
haviour [6].” A type system formalizes this categorization, in
order to ensure that only the intended operations are used on
the representation of values of a type, avoiding run-time er-
rors [41]. Typical formalizations of type systems tangle the
name resolution with type analysis, the computation of types
of expressions. We are developing TS, a high-level language
for the declarative specification of type analysis that is com-
plementary to the name analysis expressed in NaBL. Fig. 6
defines the type rules for PCF in TS.

Type rules define judgments of the form p : t stating
that term p has type t. Terms and types are abstract syn-
tax trees based on the syntax definition. The where clause
of a rule defines the conditions under which the judgment
holds. For example, consider the rule for function applica-
tion (App) in Fig. 6. The rule defines that App(e1, e2)

has type tr, provided that the first argument e1 has func-
tion type FunType(tf, tr), the second argument e2 has
type ta, and that the formal argument and the actual argu-
ment have the same type (tf == ta). The else branch on
that equation generates a type error for use in the IDE on
target term e2.

Type rules are complementary to name binding. This
means that type rules do not have to propagate typing envi-
ronments. Assuming that name binding has been performed,

module types

type rules // binding

Var(x) : t
where definition of x : t

Param(x, t) : t

Fun(p, e) : FunType(tp, te)
where p : tp and e : te

App(e1, e2) : tr
where e1 : FunType(tf, tr) and e2 : ta
and tf == ta

else error "type mismatch" on e2

Fix(p, e) : tp
where p : tp and e : te
and tp == te

else error "type mismatch" on p

Let(x, tx, e1, e2) : t2
where e2 : t2 and e1 : t1
and t1 == tx

else error "type mismatch" on e1

type rules // arithmetic

Num(i) : IntType()

Ifz(e1, e2, e3) : t2
where e1 : IntType() and e2 : t2 and e3 : t3
and t2 == t3

else error "types not compatible" on e3

e@Add(e1, e2)
+ e@Sub(e1, e2)
+ e@Mul(e1, e2) : IntType()
where e1 : IntType()

else error "Int type expected" on e
and e2 : IntType()

else error "Int type expected" on e

Figure 6. Type analysis rules for PCF in TS.

the type rule for variables (Var) can obtain the type of a vari-
able by simply referring to the definition of x. Note
that in the name binding rule for Param in Fig. 5 we associ-
ated the type from the parameter declaration to the definition
of a variable.

The rules for PCF suggest that name resolution and type
analysis can be staged sequentially. In general, however,
name binding may depend on the results of type analysis.
For example, in a class-based object-oriented language, re-
solving a method call expression e.f(e1,..,en) requires
knowing the type of the receiver e to determine the target
class, and may require knowing the types of the argument
expressions to resolve overloading.

4.4 Dynamic Semantics
The dynamic semantics of a language describes the behav-
ior of its programs. Current language workbenches do not
provide dedicated support for specification of dynamic se-
mantics. Efficient interpreters can be implemented in a reg-

101

module semantics

signature
constructors
C : string ∗ Exp ∗ E → value // closure
I : int → value // integer
T : term ∗ E → value // thunk

addInt : int ∗ int → int { native }
subInt : int ∗ int → int { native }
mulInt : int ∗ int → int { native }

rules // binding

E env ` Var(x) → v
where env[x] ⇒ T(e, env’),

E env’ ` e → v

E env ` Fun(Param(x, t), e) → C(x, e, env)

E env ` App(e1, e2) → v
where E env ` e1 → C(x, e, env’),

E {x 7→ T(e2, env), env’} ` e → v

E env ` Fix(Param(x, t), e) → v
where
E {x 7→ T(Fix(Param(x,t),e),env), env} ` e → v

E env ` Let(x, t, e1, e2) → v
where E {x 7→ T(e1, env), env} ` e2 → v

rules // arithmetic

Num(i) → I(i)

Ifz(e1, e2, e3) → v
where e1 → I(i), i = 0, e2 → v

Ifz(e1, e2, e3) → v
where e1 → I(i), i 6≡ 0, e3 → v

Add(e1, e2) → I(addInt(i, j))
where e1 → I(i), e2 → I(j)

Sub(e1, e2) → I(subInt(i, j))
where e1 → I(i), e2 → I(j)

Mul(e1, e2) → I(mulInt(i, j))
where e1 → I(i), e2 → I(j)

Figure 7. Big-step operational semantics for PCF in
DynSem.

ular programming language, but usually the semantics of a
language is defined only by means of code generation. This
makes it difficult to verify that the implementation matches
the intended design.

A formal definition of the dynamic semantics enables for-
mal reasoning about the behavior of programs, for example
proving that a particular program terminates on a given in-
put, or on all inputs, or that it yields the correct results. In
combination with formal definitions of other language con-
cerns, it enables formal reasoning about properties of all pro-
grams of the language. For example, we may prove that all
well-typed programs run without run-time type errors (type
soundness). The problem with formal semantics specifica-

tions is that they provide little direct value to language de-
signers in terms of providing useful artifacts for their users.

The CompCert compiler [32] defines the dynamic seman-
tics of its source, intermediate and target languages by means
of inductive relations in Coq in order to verify the semantics
preservation of translations. Specification languages such as
Ott [46] provide a more readable language for the produc-
tion of definitions in proof assistants such as Coq. Semantics
engineering frameworks such as Redex [17] and K [15] sup-
port definition of executable semantics, which can be used
as a basis for testing during language development, but the
reduction strategy does not produce efficient interpreters for
program development.

We are developing DynSem, a meta-language for the
definition of dynamic semantics, that should enable formal
reasoning about the behavior of programs in the workbench.
However, in order to make defining the semantics worth the
while of the language designer, we also aim to generate
efficient interpreters from such specifications. Interpreters
should at least be usable during software development to
avoid the overhead of compilation, and could potentially
serve as the sole implementation of a language.

Our current design of DynSem is based on the frame-
work of implicitly-modular structural operational semantics
(I-MSOS) developed by Mosses et al. [36, 9]. Fig. 7 defines
the DynSem specification for PCF. The rules are similar to
conventional big-step structural operational semantics rules.
However, due to the I-MSOS approach, semantic compo-
nents such as environments (and stores, etc.) do not have
to be mentioned in rules that do not access these compo-
nents. For example, the rules for arithmetic in Fig. 7 do not
refer to the environment. In such rules, the environment is
implicitly passed from conclusion to premises (and a store
would be passed between premises from left to right). While
we are using DynSem here to define big-step operational se-
mantics, the formalism can also be used for the definition of
small-step operational semantics.

5. Deriving Front-Ends
To support programmers in editing programs in a language,
the language workbench generates an Eclipse plugin with
language-aware editor services that provide interactive feed-
back about a program during editing. Such feedback in-
cludes inline error messages about inconsistencies in a pro-
gram that appear as you type, project navigation, and contex-
tual discovery. Realizing such interactive services requires
analyses to support error recovery in order to not break
down on the first error. Furthermore, analysis needs to be
incremental so that the effort of analysis is proportional to
the changes made. Supporting such features hugely compli-
cates the manual implementation of analyses. By abstracting
from implementation strategies in our meta-languages, we
can generically forge additional features such as error recov-
ery and incremental analysis on generated implementations.

102

Spoofax extends Eclipse with an interface for connecting
syntactic and semantic editor services [26]. In the process of
the project outlined in this paper, we are replacing manually
written implementations of editor services by implementa-
tions generated from higher-level meta-languages. Genera-
tion of syntactic editor services is previous work [26]. We
have extended our previous work [51] on incremental name
analysis to type analysis.

Syntactic editor services. A declarative syntax definition
formalism is the ultimate multi-purpose DSL. From an SDF3
syntax definition we generate a wide range of syntactic ed-
itor services. All services rely on the abstract syntax tree
schema that is derived from a syntax definition. We gener-
ate a parser based on Scannerless Generalized-LR parsing
[48, 47] from an SDF3 definition. The resulting parser sup-
ports error recovery [13], which allows an AST to be created
even if the parsed program is not completely syntactically
correct. This means that other editor services relying on an
AST can continue to operate in the face of syntactic errors.
In addition to deriving a parser, we derive syntax highlight-
ing, code folding rules, and outline views [26]. The template
nature of SDF3 enables the generation of syntactic comple-
tion templates and pretty-print rules [49].

Semantic editor services. The semantic editor services are
built around the name and type analysis algorithm derived
from an NaBL and TS definition. This algorithm identifies
definitions of names, resolves references to identifiers, com-
putes the types of expressions, and generates error messages
in case of failures. The algorithm is incremental due to the
use of a ‘task engine’ that caches resolution tasks and their
results [51]. We have introduced the TS language in order to
generate task generation rules for type analysis. The results
of name and type analysis are used for navigation through
reference resolution; for semantic code completion by sug-
gesting possible valid completions of an identifier; and to
display error messages, such as for unresolved references,
duplicate definitions, and type errors.

6. Deriving Interpreters
To support the direct execution of programs in the object lan-
guage, we systematically generate a Java-based AST inter-
preter from a DynSem specification for the language. Each
constructor of the language is translated to a class in Java
with an evaluate method based on the DynSem rules for
the constructor.

We choose to generate AST interpreters rather than byte-
code interpreters. Bytecode interpreters require a translation
to bytecode, while we are aiming at an expression of the
semantics at the source level. AST interpreters are simpler
to reason about, preserve the structure of the program to be
executed and allow optimizations to be performed locally
in the program. The AST interpreters that we generate look
and act similar to regular Java programs which allows the

Explication:

Add(e1, e2) → I(AddInt(i, j))
where e1 → I(i), e2 → I(j)

after:

E env ` Add(e1, e2) → I(AddInt(i, j))
where E env ` e1 → I(i), E env ` e2 → I(j)

Factorization:

E env ` Fun(Param(x, t), e) → C(x, e, env)

after:

E env ` Fun(p, e) → c
where p ⇒ Param(x, t), C(x, e, env) ⇒ c

Merging:

Ifz(e1, e2, e3) → v
where e1 → I(i), i ≡ 0, e2 → v

Ifz(e1, e2, e3) → v
where e1 → I(i), i 6≡ 0, e3 → v

after:

Ifz(e1, e2, e3) → v
where e1 → I(i),
[i ≡ 0, e2 → v] + [i 6≡ 0, e3 → v]

Figure 8. Examples of transformations on DynSem rules
before and after explication, factorization, and merging.

Java VM to recognize program patterns and perform opti-
mizations. Graal [53], a variation of the Java Hotspot VM,
promises to eliminate the overhead of dynamic dispatch in
AST interpreters by aggressively inlining program nodes.

6.1 Rule preprocessing
To simplify code generation we first simplify rules and their
premises by explication, factorization, and merging. We ex-
plain the individual preprocessing steps below and refer to
the examples in Fig. 8.

Explication. DynSem rules implicitly pass the environ-
ment to premises. For example, in the Add reduction rule
in Fig. 8 the unchanged environment is implicitly passed to
the evaluation of the left and right hand sides of the expres-
sion. Explication rewrites rules so that all environments are
explicitly mentioned and passed.

Factorization. We factorize terms to lift nested pattern
matches and instantiations to a sequence of premises that
only perform simple pattern matches and instantiations. For
example, in the rule evaluating Fun to closures we lift the
nested pattern match on Param to a premise.

Rule merging. Evaluation alternatives are expressed in
DynSem by multiple rules matching on the same construc-
tor. For example, the DynSem rules for PCF’s ifz expres-
sion from Fig. 8 are overloaded on the matching pattern.

103

The generator merges these rules into a single one. The first
premise of the two rules are identical. Our generator merges
overloaded rules and shares the longest matching sequence
of premises between the alternatives. In Fig. 8 we use +

to denote alternatives between premises. This rewriting im-
proves evaluation efficiency by eliminating the redundant
evaluation of expression e1, the redundant pattern matching
against constructor I(i), and the double binding of variable
i. Merging also eliminates the need for backtracking, which
would harm performance due to redundant evaluations and
exception raising and catching.

Our factorization and merging technique is similar to
left-factoring [3, 39]. The merging strategy does not insert
additional rules or constructors to encapsulate alternatives,
which would impact performance by increasing the number
of dispatch operations and the depth of the evaluation stack.

6.2 Interpreter generation
We transform DynSem rules to an AST interpreter in Java.
An AST interpreter represents the running program as an
abstract syntax tree, and uses the stack of the host language
to store the execution state. Each node of the tree has an
evaluate method. Fig. 9 shows the interpreter class for the
Ifz constructor of PCF. Execution begins by invoking the
evaluate method on some node of the AST; in the PCF
case, this is the root node. The evaluate code for each
node defines the execution of the program subtree rooted
at that node; typically this involves invoking the evaluation
functions of child nodes. Control is returned to the caller
when evaluation has completed successfully. The interpreter
aborts evaluation of a program if an error occurs.

Each call to the evaluate method passes an evaluation
environment (frame) that maps keys to values. The PCF in-
terpreter uses the environment to map variable names to
integer values, closures and thunks. Environments are im-
mutable and have hiding semantics on update. This means
that evaluation of a child node cannot alter the contents of
an environment visible to its parent.

Code generation. The generator translates explicated, fac-
torized, merged, and analyzed rules to evaluation methods.
For example, Fig. 9 shows the generated interpreter node for
the rule

E env ` Ifz(e1, e2, e3) → v
where E env ` e1 → I(i),

[i ≡ 0, E env ` e2 → v] +
[i 6≡ 0, E env ` e3 → v]

Evaluation of the Ifz node begins by declaring and binding
variables env, e1, e2 and e3. The interpreter then evaluates
the condition e1 to intermediate value v1. The pattern match
against variable v1 is translated to an instanceof check
and all remaining premise evaluations are nested in the suc-
cess branch of the match. Binding of variable i occurs only
if the match succeeds. Premise alternatives from the merged
rule are translated to nested if−then−else clauses such

package org.metaborg.lang.pcf.interpreter.nodes;

public class Ifz_3_Node extends AbstractNode
implements I_Exp

{
public I_Exp _1, _2, _3;

@Override
public Value evaluate(I_InterpreterFrame frame){
I_InterpreterFrame env = frame;
I_Exp e1 = this._1;
I_Exp e2 = this._2;
I_Exp e3 = this._3;
Value v1 = e1.evaluate(env);
if (v1 instanceof I_1_Node) {
I_1_Node c_0 = (I_1_Node) v1;
int i = c_0._1;
if (i != 0) {

return e3.evaluate(env);
} else {

if (i == 0) {
return e2.evaluate(env);

} else {
throw new
InterpreterException("Premise failed");

}
}

} else {
throw new
InterpreterException("Premise failed");

}
}
// constructor omitted

}

Figure 9. Derived interpreter for PCF’s Ifz expression.

that evaluation of e2 or e3 only takes place if its guard suc-
ceeds. The interpreter throws an exception and evaluation is
aborted if a premise with no alternatives fails.

6.3 Results and Future work
The interpreters we generate are reasonably fast. In an in-
terpreter for the Green-Marl graph analysis DSL [22]—
implemented manually, but following the same approach—
programs evaluate 10 times slower than their compiled
equivalents, on average. Over 80% of the effort is spent
in environment lookups. A PCF program which recursively
computes the sum of the first 500 natural numbers executes
on average in 14 ms.4 This program also spends most of
its effort doing environment lookups. We experimented with
adding inline caching to variable lookups to capitalize on the
stability of the environments. This optimization decreased
evaluation time of the recursive PCF program to 0.6 ms.
This is a naive example but it suggests that immutable envi-
ronments together with the local stability of execution in an
AST interpreter offer good opportunities for optimizations
by inlining caching.

In the future we will investigate both static optimizations
of the DynSem rules and dynamic optimizations on the pro-
gram AST. Static optimizations will include unused variable

4 On a machine with a 2.7 GHz Intel Core i7 process and 16 GB of RAM

104

elimination, common premise elimination and mechanized
construction of more efficient pattern matching DFAs. The
latter two optimizations can significantly reduce the amount
of evaluation work required by avoiding redundant evalua-
tions. We believe that much efficiency can be gained by per-
forming program optimization at runtime. Some of the opti-
mizations we envision are premise reordering, inline caching
of premise evaluation results, dispatch caching, and guarded
program tree rewriting speculating on stable local behavior.
The idea of self-optimizing AST interpreters is promoted by
the Truffle [53] interpreter framework and the FastR project
[25]. We focus our investigation on automatically deriving
such optimizations from the DynSem rules.

AST interpreters negatively impact performance due to
deep stack allocations during evaluation. Local inlining of
evaluation functions is expected to compensate this over-
head. Static analysis of the semantic rules can detect some
inlining opportunities. The statically detectable cases can
be inlined during interpreter generations. Many inlining op-
portunities can only be detected at runtime. A possibility
for these cases is to rely on a new-generation JIT compiler
for the JVM – Graal [53]. Graal aggressively inlines stable
nodes to reduce function calls. Interpreter developers are ex-
pected to explicitly annotate methods that may not be in-
lined. While not all inlining opportunities are visible stati-
cally, many cases where inlining may not be performed are
visible statically in the semantics.

7. Deriving Proof Infrastructure
To support verification of properties of language definitions,
we systematically generate language models in the Coq
proof assistant [10]. The semantics of each meta-language—
syntax, name binding, typing, and dynamic semantics—is
specified by defining predicates over a simple universal rep-
resentation of program terms. The semantic predicates de-
scribe generic properties of the meta-language, and are pa-
rameterized over a further set of definitions and predicates
that characterize each particular object language. As an ex-
ample, the definitions characterizing the PCF language5 are
presented (with some slight simplifications for this paper) in
Fig. 11.

To illustrate the approach, we start by presenting the Coq
model for the abstract syntax signatures corresponding to
syntax definitions in SDF3, which also underlies the models
for our other meta-languages.

Syntax Definition An SDF3 definition specifies both the
concrete syntax of a particular object language and how syn-
tactically valid programs should be represented as abstract
syntax trees. For verification of language properties, we can
ignore the concrete syntax of the language (we do not aim
at proving parser or pretty-printer correctness at this point),
and focus on the abstract syntax. Thus we specify the formal

5 Available at https://github.com/metaborgcube/metaborg-pcf

Variable I C : Type.

Inductive term : Type :=
| Co : C → list term → term
| Id : I → term.

Variable S : Type.
Variable sig : C → (list S ∗ S).
Variable I_Sort Prog_Sort : S.

Inductive ws_term : sort → term → Prop :=
| Co_ws cn s ss ts:

sig cn = (ss,s) →
Forall2 ws_term ss ts →
ws_term s (Co cn ts)

| Id_ws x : ws_term I_Sort (Id x).

Figure 10. Coq model of SDF3

semantics of an SDF3 definition as the set of trees corre-
sponding to syntactically valid object-language programs.

To capture this idea in Coq, we start by defining a uni-
versal term representation suitable for ASTs from arbitrary
object languages. Terms are built out of constructor nodes
and leaf identifier nodes. The representation is parameter-
ized by a type I representing identifiers and inductive set C
of constructors as presented in Fig. 10.

Not all the terms in term make sense for a particular
SDF3 definition. For example, the putative PCF term:

Co App [Co IntType []]

is not well formed because it violates PCF’s sort conventions
(e.g., constructor App has arity 2 and should take two terms
of sort Exp as arguments whereas IntType has sort Type).
To define the set of well-sorted terms, we also extract from
the SDF3 definition a set S of sorts, a function sig mapping
each constructor to the sorts of its arguments and its result, a
distinguished sort I_Sort corresponding to terms represent-
ing identifiers and a distinguished sort Prog_Sort corre-
sponding to complete programs in this language. Given these
parameters, we define in Fig. 10 a well-sortedness predicate
ws_term s t that checks that a particular term t is well sorted
for a particular sort s.

Finally, we can define the semantics of the SDF3 defini-
tion specified by (I, C, S, sig, I_Sort, Prog_Sort) as the
following set of syntactically well-sorted programs:

{t ∈ term | ws_term Prog_Sort t}.

We chose this approach — starting with a universal term
representation and then using predicates to define the well-
sorted subset corresponding to a particular SDF3 specifica-
tion — to let us state and prove generic Coq lemmas that ap-
ply across specifications. An alternative approach, which we
also plan to explore, would be to generate a specialized term
representation (e.g., in which terms are explicitly indexed by
sorts) for each SDF3 specification and generate proofs of the
generic lemmas as well.

Semantics of Name Binding In a similar style, the seman-
tics of an NaBL name binding specification is given by a

105

(∗ SDF model ∗)
Definition I := nat. (∗ identifiers ∗)

Inductive C := (∗ constructors ∗)
| ParamC | TNatC | TBoolC | TFunC
| VarC | LamC | FixC | AppC
| IfzC | PlusC | TimesC | NatC (n :nat).

Inductive S := (∗ sorts ∗)
| ID_S | Exp_S | Param_S | Type_S .

Definition I_Sort := ID_S.

Fixpoint sig (sc:C) : list S ∗ S :=
match sc with
| TFunC ⇒ ([Type_S; Type_S], Type_S)
| VarC ⇒ ([ID_S],Exp_s)
| LamC ⇒ ([Param_S; Exp_S],Exp_S)
| ParamC ⇒ ([ID_S;Type_S], Param_S)
. . .

end.

Definition Prog_Sort := Exp_S.

Variable (t : term) (R : pos → pos).

(∗ Nabl model ∗)
Inductive scopes : term → Prop :=
| Lam_scopes_Var lp : scopes (Co LamC lp)
| Fix_scopes_Var lp : scopes (Co FixC lp).

Inductive defines : term → I → Prop :=
| Param_defines_Var x t :

defines (Co ParamC ((Id x)::t)) x.

Inductive refers_to : term → I → Prop :=
| Var_refers_Var x lp :

refers_to (Co VarC ((Id x)::lp)) x.

(∗ Type system ∗)
Inductive defines_ty : term → I → term → Prop :=
| Param_types_defines_Var x ty :

defines_ty (Co ParamC [(Id x);ty]) x ty.

Inductive well_typed : term → term → Prop :=
| VarC_wt x ty :

lookup x ty →
well_typed (Co VarC [Id x]) ty

| AppC_wt e1 e2 ty1 ty2 :
well_typed e1 (Co TFunC [ty1;ty2]) →
well_typed e2 ty1 →
well_typed (Co AppC [e1;e2]) ty2

| ...

(∗ Dynamic semantics ∗)
Inductive eval : Env → term → value → Prop :=
| VarC_sem x tr env va nenv :

get_env x env tr nenv →
eval nenv tr va →
eval env (Co VarC [Id x]) va

| AppC_sem e1 e2 v e x env nenv :
eval env e1 (Clos x e nenv) →
eval { x |−→ (e2,env), nenv} e v →
eval env (Co AppC [e1;e2]) v

| PlusC_sem e1 e2 env m n:
eval env e1 (Natv n) →
eval env e2 (Natv m) →
eval env (Co PlusC [e1;e2]) (Natv (m+n))

| ...

Figure 11. Coq definitions of PCF derived from Spoofax

scope0

scope1ref0(x)

ref1(x)

ref2(x)

scope2

def0(x)

def1(x)

Figure 12. Scoping and resolution

correctness predicate for resolution maps over (well-sorted)
programs. Resolution is specified in terms of subterm po-
sitions (of type pos) within the top-level program term. A
resolution map Rt : pos → pos for the top-level term t
maps each node that represents an identifier use to the node
at which the identifier is defined, according to a particular
NaBL specification. Rather than defining Rt constructively,
we define a predicate characterizing correctness of Rt for an
arbitrary properly-resolved program t. (To lighten notation,
we generally assume a fixed program t and drop the sub-
script on R.)

The predicate presented here characterizes a substantial
subset of the specifications that can be written in NaBL, in-
cluding mutual recursive definitions, but excluding advanced
features such as importat of names from modules. It reflects
the following intuitive semantics of resolution, illustrated by
Fig. 12.

(i) Each definition potentially reaches all nodes dominated
by its nearest enclosing scope delimiter. (Note that this
permits the scope of definitions to extend upwards and
leftwards in the tree as well as rightwards and down-
wards; this can be useful for, e.g., mutually recursive
definitions.) For example, in Fig. 12, the nearest enclos-
ing scope delimiter for def1 is scope1, so def1 potentially
reaches ref1 and ref2. Similarly, def0 potentially reaches
all three references.

(ii) Each reference resolves to the (unique) potentially reach-
ing definition within the innermost dominating scope that
has such a definition (i.e., definitions in inner scopes
shadow those in outer ones). For example, in Fig. 12,
ref1 and ref2 resolve to def1 because scope1 lies inside
scope0.

Our Coq formalization of these semantics is parameter-
ized by three relations extracted from the binding rules in the
NaBL specification (here, for simplicity, we ignore names-
paces and some other details involving positions that appear
in the actual formalization). defines t x holds when term t
defines identifier x, refers_to t x holds when term t refers
to identifier x, and scopes t holds when term t delimits a
scope. Fig. 11 illustrates the instantiation of these relations
for PCF.

106

scopeof p ps :=
∃ts, ts@ps ∧ scopes ts ∧ ps ≺ p ∧
∀p′s t′s,
(t′s@p′s ∧ scopes t′s ∧ ps � p′s ≺ p) =⇒ p′s = ps

mightreach pr pd ps := scopeof pd ps ∧ ps ≺ pr

reaches pr x pd :=
∃td, td@pd ∧ defines td x ∧
∃ps, mightreach pr pd ps∧
∀p′d t′d p′s, t

′
d@p′d =⇒

(defines t′d x ∧ mightreach pr p
′
d p′s) =⇒

p′s ≺ ps ∨ (p′s = ps ∧ p′d = pd)

sound R :=
∀pr pd, R(pr) = pd =⇒
∃x tr, tr@pr ∧ refers_to tr x ∧
∃td, td@pd ∧ defines td x ∧ reaches pr x pd

complete R :=
∀pr tr x, tr@pr ∧ refers_to tr x =⇒
∃pd, R(pr) = pd

lookup x pr ty :=
∃pd td, R(pr) = pd ∧ td@pd ∧ defines_ty td x ty

Figure 13. NaBL mapping correctness

We now proceed assuming a fixed top-level term repre-
senting the whole program; positions implicitly refer to this
term. In Fig. 13, we define some useful auxiliary predicates.
We write t@p to assert that t is the subterm at position p, and
write p1 � p2 (resp. p1 ≺ p2) to mean that the node at posi-
tion p1 is an ancestor (resp. a strict ancestor) of the node at
position p2. The scopeof p ps predicate says that the near-
est enclosing scope delimiter of the node at position p is at
position ps. The mightreach pr pd ps predicate says that a
definition at node pd potentially reaches a reference at node
pr within the scope delimited by ps. The reaches pr x pd
predicate says that the node at pd defines x and that this def-
inition definitely reaches the node at pr, because it poten-
tially reaches it and any other definition of x that potentially
reaches it is in an outer scope (and is therefore shadowed).

Finally, we can define a correct map R as one that is
sound and complete, according to the sound and complete
definitions from Fig. 13.

Type System The Coq formalization of the type language
TS is largely straightforward. Types are represented as
terms having distinguished sort Type_S. The semantics
of a TS specification is given by a Coq inductive relation
well_typed R t ty (also written `R t : ty) between (pro-
gram) terms t and types ty, which is generated in an obvious
way from the TS type rules. Fig. 11 shows some typical
clauses of this relation.

Unlike a conventional typing relation, this one lacks an
environment component for looking up the types of vari-

ables. Instead, to give meaning to the where definition

of clause in a TS specification (e.g. for PCF Var nodes),
we use the type information associated with variable decla-
rations by NaBL specifications.

We extend the defines relation introduced previously to
include a type component. The defines_ty t x ty predicate
holds when the term t defines identifier x with type ty. To
determine the type of an identifier at a reference, we use the
resolution map R to find the corresponding definition, as de-
scribed by the lookup relation in Fig. 13. The well_typed
clause for Var in Fig. 11 illustrates the use of lookup.

Dynamic Semantics Translation of the dynamic semantics
as defined in DynSem is also quite straightforward. The
DynSem constructors declared with sort value are used to
define a new Coq inductive type value and the DynSem
definitions are directly translated into an inductive relation
eval E t v (also written E ` t ⇒ v) over environments E,
terms t and values v.

Values and operations considered “native” to the DynSem
specification are directly translated into their existing Coq
equivalent. As an example, in PCF, the natural numbers are
directly embedded in the constructors NatC n and values
Natv n , and the PlusC constructor directly evaluates to
the Coq + function.

Type Preservation To illustrate that our Coq models can be
used to prove useful properties of language definitions, we
have developed (manually) a Coq proof of type preservation
for PCF. To do this, we first extend the typing relation ` to
values in the obvious way. We can then prove:
∀e Re v ty,
(ws_term Exp_S e ∧ sound Re ∧ complete Re) =⇒
(∅ ` e⇒ v ∧ `Re

e : ty) =⇒
` v : ty

In future work, we hope to automate routine proofs of this
kind, at least for some languages.

8. Related Work
The language definition landscape provides the following
complementary categories of tools for language designers
and engineers:

• Language workbenches such as Xtext [54], MPS [50],
Rascal [29], and Spoofax [26] support separation of con-
cerns in implementation of compilers and IDEs, but do
not support specification of dynamic semantics, verifi-
cation, or test generation. Erdweg et al. [16] give an
overview of the features of modern language work-
benches.
• Semantics frameworks such as PLT Redex [17], K [31],

and I-MSOS [37, 9] support separation of concerns in
specification of dynamic semantics. The main goal is the
formalization and documentation of the dynamic seman-
tics of programming languages or models of full-fledged

107

languages. Specifications may be validated by executing
programs (e.g., generated through random testing). How-
ever, specifications are not intended to support static ver-
ification of language properties or the generation of high
performance interpreters.
• Proof assistants such as Coq [10], Isabelle/HOL [23],

and Twelf [40] support construction of machine-checked
proofs of meta-theoretic properties of languages and im-
plementations. These are general-purpose systems that
largely lack specific features for describing program-
ming languages, although Twelf does have primitive sup-
port for higher-order abstract syntax. Language encod-
ings tend to be low-level, targeted at a single purpose,
and tailored to the particular features of a single prover.
Frameworks such as Ott [46] and Lem [38] address these
short-comings by providing a single uniform mechanism
for defining semantics as transition systems, from which
encodings in a variety of provers, executable languages,
and typesetting systems can be extracted automatically.
However, the verification proper (construction of proofs)
is still done using the generated encoding in the language
of the proof assistant.

Executable type systems. Formal definitions of type sys-
tems are specialized to a particular application. Type sys-
tems in semantics engineering take the form of derivation
systems, defining judgments of the form Γ ` e : t — expres-
sion e has type t in environment Γ — by means of derivation
rules. Such derivation systems target the production of doc-
umentation and proofs [52]. Name binding and scope rules
are typically incorporated in these systems by propagation
of environments. On the other hand, language workbenches
such as Xtext [54] and Spoofax [21] separate the concerns
of name resolution, type analysis, and error constraints, tar-
geting the production of type checkers for IDEs. The use
of general purpose languages (programming languages, term
rewriting systems, attribute grammars), complicates the ver-
ification of the correctness of such definitions.

A declarative type system abstracts from the algorithmics
of type checking and type inference, much like a declarative
syntax definition abstracts from the algorithmics of parsing
[27]. However, unlike the domain of syntax definition, it is
not common practice to generate type checkers from type
system specifications. Type systems that are convenient for
reasoning may be non-deterministic, and need to be mas-
saged for use in a non-backtracking algorithm [34, 42]. An
interesting direction for future work will be to investigate
the automatic generation of algorithmic type checkers from
highly declarative type system specifications.

Executable dynamic semantics. Semantic frameworks tar-
get simulation of dynamic semantics specifications, rather
than generating efficient interpreters, as is the goal for
DynSem. The K semantic framework [31] provides an inte-
grated language for defining the syntax, static, and dynamic

semantics of a language. Dynamic semantics are defined in
terms of structural and reduction rules. The former trans-
form the structure of a program’s data such that the latter
rules can be applied to evaluate the program. Specifications
in K are compiled to interpreters in Maude. By comparison,
in DynSem one only specifies the reduction rules and there
are no structural rules. The interpreters we derive can per-
form rewriting but they do not rely on rewriting for program
evaluation. A PCF interpreter derived from a specification in
K had an evaluation time for the naive recursive summation
program of Sect. 6 in the order of minutes (as opposed to
milliseconds for our DynSem interpreter).

Dynamic semantics of languages defined in PLT Redex
[17] are given as reduction relations with a reduction con-
text. The reduction context determines the next possible
evaluation steps to be performed. In the general case, the
search for each step needs to start at the root of the AST,
adding to each reduction step a tree traversal, which makes
execution expensive. In addition, Redex definitions typically
use explicit substitution for binding values to names. This
simplifies definitions, but also makes execution expensive,
as the application of a substitution requires another traversal
of the AST. By comparison, specifications in DynSem use
environments as an alternative to explicit substitution.

The DynSem language is based on the I-MSOS approach
to operational semantics. As such it can be used for specifi-
cations in small-step and big-step style. Small-step seman-
tics definitions are more suitable for verification. However,
small-step semantics lead to interpreters with worse perfor-
mance than those derived from big-step semantics. This is
caused by the need to scan the entire intermediate program
to discover the next evaluation step to be performed. Small-
step semantics can be transformed into equivalent big-step
rules by refocusing [12]. Bach Poulsen and Mosses [3] show
promising benchmark results for the application of refocus-
ing on a small set of benchmarks.

Big-step style rules lack expressivity for specification of
abrupt termination and divergence. Pretty-big-step seman-
tics [7] provides a compact notation for explicitly expressing
exceptions and concurrency. Exceptions are accompanied by
evaluation traces and are valid outcomes of reduction rules.
This eliminates the need for implicit backtracking which is
non-trivial in the presence of side-effects. Bach Poulsen and
Mosses [4] demonstrate the derivation of pretty-big-step se-
mantics from small-step rules. We plan to explore the advan-
tages and disadvantages of the different styles of operational
semantics in DynSem and its interpreter generator.

Combining specification, implementation and verification.
The goal of the Language Designer’s Workbench project de-
scribed in this paper is to combine the features of each of
these categories of tools into a workbench that provides com-
prehensive support for all aspects of language design, im-
plementation, and validation. These features have not often

108

been integrated in prior work, particularly not within an ex-
tensible framework.

The CompCert [32] C compiler specifies language se-
mantics, compiler implementation, and compiler properties
all within the Coq proof assistant, which uses a single lan-
guage to express specifications, programs, and theorems
connecting the two (although the proofs of these theorems
typically rely on a separate tactic language). This approach
relies heavily on Coq’s ability to extract programs into an
efficiently compilable language such as OCaml. However,
CompCert is not intended as a general framework for con-
structing verified compilers, although it does contain a num-
ber of supporting libraries that could be useful for compiling
source languages other than C.

The 3MT theory of Delaware et al. [14] describes a mod-
ular framework in which various effectful language features
can be individually specified, together with proofs of their
type soundness, and then freely composed to form differ-
ent languages in such a way that the proofs compose too.
Although 3MT’s current implementation in Coq requires a
rather heavy encoding, we expect its insights about proof
modularization to prove valuable in our framework.

Lorenzen and Erdweg [33] describe a system for auto-
matically verifying soundness of typing rules for macro ex-
tensions, given desugaring transformations into a type-safe
base language. In essence, they verify that the macro typing
rules are logically implied by the base language rules applied
to the desugared code. Given a suitably rich base language,
this technique might be used to verify type soundness for
many useful domain-specific language features.

9. Conclusion
In this paper, we have presented the vision of a language
designer’s workbench, which reduces the effort of language
design by integrating implementation and verification. Our
proof of concept suggests that this vision is at least feasi-
ble for a class of simple languages, and provides an out-
look on a future in which software language design can be
a matter of exploring design alternatives rather than grind-
ing away on tedious implementation details. Realizing this
vision requires research in three directions. We must: (1) ex-
tend the coverage of our meta-languages to support a larger
range of languages; (2) improve performance of analysis al-
gorithms and interpreters to reach production quality imple-
mentations; and (3) provide highly automated support for
verification of language definitions.

These directions are not independent, as there is a trade-
off between expressivity (coverage) of our meta-languages
and the extent to which implementation and verification can
be automated. Semantics frameworks target semantics engi-
neers, with or working towards a PhD in programming lan-
guage theory, designing advanced programming languages
with complex type systems. Language workbenches target
software engineers, with a master’s degree in computer sci-

ence, designing DSLs to automate software development in
a particular domain. This difference justifies a trade-off, in-
creasing automation of verification at the expense of expres-
sivity, in order to help software engineers avoid language
design pitfalls.

Acknowledgments
We thank Peter Mosses and Martin Churchill for hosting the
productive visit of Eelco Visser to Swansea that led to the
DynSem language. We thank Peter Mosses, Casper Bach
Poulsen, Paolo Torrini, and Neil Sculthorpe for comments on
a draft of this paper. We thank the participants of the Summer
School on Language Frameworks in Sinaia, Romania in July
2012 — in particular Grigore Rosu, Robby Findler, and Pe-
ter Mosses — for inspiring us to address dynamic semantics
in language workbenches. This research was partially funded
by the NWO VICI Language Designer’s Workbench project
(639.023.206), the NWO Free Competition Language Li-
braries project (612.001.114), and by a gift from the Oracle
Corporation.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[2] B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack,
and S. Weirich. Engineering formal metatheory. In G. C.
Necula and P. Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 3–15. ACM, 2008.

[3] C. Bach Poulsen and P. D. Mosses. Generating special-
ized interpreters for modular structural operational seman-
tics. In Proceedings of the 23rd international symposium on
Logic Based Program Synthesis and Transformation, LOP-
STR, 2013.

[4] C. Bach Poulsen and P. D. Mosses. Deriving pretty-big-step
semantics from small-step semantics. In Z. Shao, editor, Pro-
gramming Languages and Systems - 23rd European Sympo-
sium on Programming, ESOP 2014, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-
ings, volume 8410 of Lecture Notes in Computer Science,
pages 270–289. Springer, 2014.

[5] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Pro-
gram transformation with scoped dynamic rewrite rules. Fun-
damenta Informaticae, 69(1-2):123–178, 2006.

[6] L. Cardelli and P. Wegner. On understanding types, data
abstraction, and polymorphism. ACM Computing Surveys,
17(4):471–522, 1985.

[7] A. Charguéraud. Pretty-big-step semantics. In M. Felleisen
and P. Gardner, editors, Programming Languages and Sys-
tems - 22nd European Symposium on Programming, ESOP
2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy,

109

March 16-24, 2013. Proceedings, volume 7792 of Lecture
Notes in Computer Science, pages 41–60. Springer, 2013.

[8] A. J. Chlipala. A verified compiler for an impure functional
language. In M. V. Hermenegildo and J. Palsberg, editors,
Proceedings of the 37th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010, pages 93–106. ACM,
2010.

[9] M. Churchill, P. D. Mosses, and P. Torrini. Reusable com-
ponents of semantic specifications. In W. Binder, E. Ernst,
A. Peternier, and R. Hirschfeld, editors, 13th International
Conference on Modularity, MODULARITY ’14, Lugano,
Switzerland, April 22-26, 2014, pages 145–156. ACM, 2014.

[10] Coq development team. The Coq proof assistant reference
manual. http://coq.inria.fr, 2012. Version 8.4.

[11] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Auto-
mated testing of refactoring engines. In I. Crnkovic and
A. Bertolino, editors, Proceedings of the 6th joint meeting
of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 185–194. ACM, 2007.

[12] O. Danvy and L. R. Nielsen. Refocusing in reduction se-
mantics. Technical Report RS-04-26, BRICS, Department of
Computer Science, University of Aarhus, Nov. 2004.

[13] M. de Jonge, L. C. L. Kats, E. Visser, and E. Söderberg.
Natural and flexible error recovery for generated modular
language environments. ACM Transactions on Programming
Languages and Systems, 34(4):15, 2012.

[14] B. Delaware, S. Keuchel, T. Schrijvers, and B. C. Oliveira.
Modular monadic meta-theory. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’13, pages 319–330. ACM, 2013.

[15] C. Ellison and G. Rosu. An executable formal semantics of C
with applications. In J. Field and M. Hicks, editors, Proceed-
ings of the 39th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2012, Philadel-
phia, Pennsylvania, USA, January 22-28, 2012, pages 533–
544. ACM, 2012.

[16] S. Erdweg, T. van der Storm, M. Völter, et al. The state
of the art in language workbenches - conclusions from the
language workbench challenge. In M. Erwig, R. F. Paige,
and E. V. Wyk, editors, Software Language Engineering - 6th
International Conference, SLE 2013, Indianapolis, IN, USA,
October 26-28, 2013. Proceedings, volume 8225 of Lecture
Notes in Computer Science, pages 197–217. Springer, 2013.

[17] M. Felleisen, R. Findler, and M. Flatt. Semantics Engineering
with PLT Redex. MIT Press, 2009.

[18] M. Fowler. Language workbenches: The killer-app for do-
main specific languages?, 2005.

[19] G. Hedin and E. Magnusson. Jastadd–an aspect-oriented
compiler construction system. Science of Computer Program-
ming, 47(1):37–58, 2003.

[20] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF - reference manual. SIGPLAN
Notices, 24(11):43–75, 1989.

[21] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser.
Code generation by model transformation: a case study in
transformation modularity. Software and Systems Modeling,
9(3):375–402, 2010.

[22] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl:
a DSL for easy and efficient graph analysis. In T. Harris and
M. L. Scott, editors, Proceedings of the 17th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2012, London, UK,
March 3-7, 2012, pages 349–362. ACM, 2012.

[23] Isabelle2013-2 tutorials and manuals. http://www.cl.
cam.ac.uk/research/hvg/Isabelle/documentation.
html, 2013.

[24] JetBrains. Meta programming system. https://www.
jetbrains.com/mps.

[25] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A fast ab-
stract syntax tree interpreter for R. In M. Hirzel, E. Petrank,
and D. Tsafrir, editors, 10th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, VEE
’14, Salt Lake City, UT, USA, March 01 - 02, 2014, pages 89–
102. ACM, 2014.

[26] L. C. L. Kats and E. Visser. The Spoofax language work-
bench: rules for declarative specification of languages and
IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard, editors,
Proceedings of the 25th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2010, pages 444–463, Reno/Tahoe,
Nevada, 2010. ACM.

[27] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and declar-
ative syntax definition: paradise lost and regained. In W. R.
Cook, S. Clarke, and M. C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2010, pages 918–932, Reno/Tahoe, Nevada,
2010. ACM.

[28] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen,
M. Flatt, J. A. McCarthy, J. Rafkind, S. Tobin-Hochstadt, and
R. B. Findler. Run your research: on the effectiveness of
lightweight mechanization. In J. Field and M. Hicks, editors,
Proceedings of the 39th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2012,
Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 285–296. ACM, 2012.

[29] P. Klint, T. van der Storm, and J. J. Vinju. Rascal: A domain
specific language for source code analysis and manipulation.
In Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2009, Edmonton,
Alberta, Canada, September 20-21, 2009, pages 168–177.
IEEE Computer Society, 2009.

[30] G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser.
Declarative name binding and scope rules. In K. Czarnecki
and G. Hedin, editors, Software Language Engineering, 5th
International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, volume 7745 of Lecture Notes in
Computer Science, pages 311–331. Springer, 2012.

110

[31] D. Lazar, A. Arusoaie, T. F. Serbanuta, C. Ellison, R. Mereuta,
D. Lucanu, and G. Rosu. Executing formal semantics with
the K tool. In D. Giannakopoulou and D. Méry, editors,
FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings, volume
7436 of Lecture Notes in Computer Science, pages 267–271.
Springer, 2012.

[32] X. Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[33] F. Lorenzen and S. Erdweg. Modular and automated type-
soundness verification for language extensions. In G. Mor-
risett and T. Uustalu, editors, ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston,
MA, USA - September 25 - 27, 2013, pages 331–342. ACM,
2013.

[34] R. Milner. A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3):348–375, 1978.

[35] J. C. Mitchell. Foundations for programming languages.
Foundation of computing series. MIT Press, 1996.

[36] P. D. Mosses. Modular structural operational semantics. Jour-
nal of Logic and Algebraic Programming, 60-61:195–228,
2004.

[37] P. D. Mosses and M. J. New. Implicit propagation in struc-
tural operational semantics. Electronic Notes in Theoretical
Computer Science, 229(4):49–66, 2009.

[38] S. Owens, P. Böhm, F. Z. Nardelli, and P. Sewell. Lem:
A lightweight tool for heavyweight semantics. In M. C.
J. D. van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk,
editors, Interactive Theorem Proving - Second International
Conference, ITP 2011, Berg en Dal, The Netherlands, August
22-25, 2011. Proceedings, volume 6898 of Lecture Notes in
Computer Science, pages 363–369. Springer, 2011.

[39] M. Pettersson. A compiler for natural semantics. In T. Gy-
imóthy, editor, Compiler Construction, 6th International
Conference, CC 96, Linköping, Sweden, April 24-26, 1996,
Proceedings, volume 1060 of Lecture Notes in Computer Sci-
ence, pages 177–191. Springer, 1996.

[40] F. Pfenning and C. Schürmann. Twelf user’s guide, ver-
sion 1.4. http://www.cs.cmu.edu/~twelf/guide-1-4,
2002.

[41] B. C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, Massachusetts, 2002.

[42] B. C. Pierce and D. N. Turner. Local type inference.
ACM Transactions on Programming Languages and Systems,
22(1):1–44, 2000.

[43] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Ef-
ficient software model checking of soundness of type sys-
tems. In G. E. Harris, editor, Proceedings of the 23rd An-
nual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2008, October 19-23, 2008, Nashville, TN, USA, pages 493–
504. ACM, 2008.

[44] G. Rosu and T.-F. Serbanuta. An overview of the K semantic
framework. Journal of Logic and Algebraic Programming,
79(6):397–434, 2010.

[45] M. Schäfer, T. Ekman, and O. de Moor. Challenge pro-
posal: verification of refactorings. In T. Altenkirch and T. D.
Millstein, editors, Proceedings of the 3rd ACM Workshop
Programming Languages meets Program Verification, PLPV
2009, Savannah, GA, USA, January 20, 2009, pages 67–72.
ACM, 2009.

[46] P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge,
S. Sarkar, and R. Strnisa. Ott: Effective tool support for the
working semanticist. Journal of Functional Programming,
20(1):71–122, 2010.

[47] M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and
E. Visser. Disambiguation filters for scannerless generalized
LR parsers. In R. N. Horspool, editor, Compiler Construc-
tion, 11th International Conference, CC 2002, Held as Part
of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2002, Grenoble, France, April 8-12, 2002,
Proceedings, volume 2304 of Lecture Notes in Computer Sci-
ence, pages 143–158. Springer, 2002.

[48] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[49] T. Vollebregt, L. C. L. Kats, and E. Visser. Declarative
specification of template-based textual editors. In A. Sloane
and S. Andova, editors, International Workshop on Language
Descriptions, Tools, and Applications, LDTA ’12, Tallinn,
Estonia, March 31 - April 1, 2012, page 8. ACM, 2012.

[50] M. Völter and K. Solomatov. Language modularization and
composition with projectional language workbenches illus-
trated with MPS. In M. G. J. van den Brand, B. Malloy,
and S. Staab, editors, Software Language Engineering, Third
International Conference, SLE 2010, Lecture Notes in Com-
puter Science. Springer, 2010.

[51] G. Wachsmuth, G. D. P. Konat, V. A. Vergu, D. M. Groenewe-
gen, and E. Visser. A language independent task engine for
incremental name and type analysis. In M. Erwig, R. F. Paige,
and E. V. Wyk, editors, Software Language Engineering - 6th
International Conference, SLE 2013, Indianapolis, IN, USA,
October 26-28, 2013. Proceedings, volume 8225 of Lecture
Notes in Computer Science, pages 260–280. Springer, 2013.

[52] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, November 1994.

[53] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One
VM to rule them all. In A. L. Hosking, P. T. Eugster, and
R. Hirschfeld, editors, ACM Symposium on New Ideas in
Programming and Reflections on Software, Onward! 2013,
part of SPLASH ’13, Indianapolis, IN, USA, October 26-31,
2013, pages 187–204. ACM, 2013.

[54] Xtext documentation. http://www.eclipse.org/Xtext/
documentation/2.6.0/Xtext, 2014.

[55] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and un-
derstanding bugs in C compilers. In M. W. Hall and D. A.
Padua, editors, Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
283–294. ACM, 2011.

111

